51
|
Succession of Bacterial and Fungal Communities during Fermentation of Medicinal Plants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fermentation of medicinal plants has been studied very little, as compared to the fermentation of food and beverages. One approach applies fermentation by single bacterial or fungal strains and targets the production of specific compounds or preservation of the fermented material. Spontaneous fermentation by an autochthonous starter community may lead to a more diverse blend of fermentation products because co-occurring microbes may activate the biosynthetic potentials and formation of compounds not produced in single strain approaches. We applied the community approach and studied the fermentation of four medicinal plants (Achillea millefolium, Taraxacum officinale, Mercurialis perennis, and Euphrasia officinalis), according to a standardized pharmaceutical fermentation method. It is based on the spontaneous fermentation by plant-specific bacterial and fungal communities under a distinct temperature regime, with a recurrent cooling during the first week and further fermentation for at least six months. The results revealed both general and plant-specific patterns in the composition and succession of microbial communities during fermentation. Lactic acid bacteria increasingly dominated in all preparations, whereas the fungal communities retained more plant-specific features. Three distinct fermentation phases with characteristic bacterial communities were identified, i.e., early, middle, and late phases. Co-occurrence network analyses revealed the plant-specific features of the microbial communities.
Collapse
|
52
|
Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and desorption characterizations of AB-8 macroporous resin for flavonoids from fermented dandelion (FD) were determined and purification parameters were optimized. Qualitative analysis using UPLC-MS/MS analysis was explored to identify the components of the purified flavonoids of FD (PFDF). The antioxidant activity of PFDF in vitro and in vivo was analyzed. The optimum purification parameters were as follows: a sample concentration of 2 mg/mL, 120 mL of the sample volume, a pH of 2.0, and eluted with 90 mL of 70% ethanol (pH 5). After purification, the concentration of the flavonoids in PFDF was 356.08 mg/mL. By comparison with reference standards or the literature data, 135 kinds of flavonoids in PFDF were identified. Furthermore, PFDF had a strong reducing power and scavenging ability against 8-hydroxy radical and DPPH radical. PFDF can effectively reduce the oxidative stress of zebrafish embryos and IPCE-J2 cells by modulating antioxidant enzyme activities. In summary, the purified flavonoids from fermented dandelion have good antioxidant activity and display superior potential as a natural antioxidant in animal husbandry.
Collapse
|
53
|
Anti-Photoaging Effect of Rhodiola rosea Fermented by Lactobacillus plantarum on UVA-Damaged Fibroblasts. Nutrients 2022; 14:nu14112324. [PMID: 35684124 PMCID: PMC9183149 DOI: 10.3390/nu14112324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/06/2022] Open
Abstract
UVA can cause oxidative stress and photoaging of cells. We established a UVA-induced oxidative stress model of human fibroblasts and focused on the antioxidant and anti-photoaging ability of Lactobacillus plantarum fermented Rhodiola rosea. Compared with the unfermented Rhodiola rosea, Lactobacillus plantarum fermented Rhodiola rosea has better DPPH free radical and hydroxyl free radical scavenging ability, significantly reduces the content of reactive oxygen species (ROS), and improves the antioxidant level. Further studies have shown that the Lactobacillus plantarum fermented Rhodiola rosea can activate the Nrf2/Keap1 signaling pathway and up-regulate heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), catalase (CAT) and glutathione Peptide peroxidase (GSH-Px), and protect fibroblasts from oxidative stress caused by UVA. On the other hand, Lactobacillus plantarum fermented Rhodiola rosea significantly reduces the activity of metalloproteinases in the cell, thereby increasing the collagen and elastin in the cell, alleviating the photoaging caused by UVA. Finally, we concluded that the antioxidant capacity and anti-photoaging ability of Lactobacillus plantarum fermented Rhodiola rosea are better than that of unfermented Rhodiola rosea.
Collapse
|
54
|
Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. BEVERAGES 2022. [DOI: 10.3390/beverages8020033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent social, economic, and technological evolutions have impacted consumption habits. The new consumer is more rational, more connected and demanding with products, more concerned with the management of the family budget, with the health, origin, and sustainability of food. The food industry over the last few years has shown remarkable technological and scientific evolution, with an impact on the development and innovation of new products using non-thermal processing. Non-thermal processing technologies involve methods by which fruit juices receive microbiological inactivation and enzymatic denaturation with or without the direct application of low heat, thereby lessening the adverse effects on the nutritional, bioactive, and flavor compounds of the treated fruit juices, extending their shelf-life. The recognition of the nutritional and protective values of fruit juices and fermented fruit beverages is evident and is attributed to the presence of different bioactive compounds, protecting against chronic and metabolic diseases. Fermentation maintains the fruit's safety, nutrition, and shelf life and the development of new products. This review aims to summarize the chemical and sensory characteristics of fruit juices and fermented fruit drinks, the fermentation process, its benefits, and its effects.
Collapse
|
55
|
Ran B, Guo CE, Zhang Y, Han C, Cao T, Huang H, Geng Z, Li W. Preventive effect of Chinese dwarf cherry [ Cerasus humilis (Bge.) Sok.] fermentation juice on dextran sulfate sodium-induced ulcerative colitis rats through the regulation of IgA and the intestinal immune barrier. Food Funct 2022; 13:5766-5781. [PMID: 35536119 DOI: 10.1039/d1fo04218a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ulcerative colitis (UC) is a modern, refractory disease, and studies have shown that UC is closely associated with the gut microbiota and intestinal immune barrier. This study evaluated the protective effects and regulatory mechanism of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] fermentation juice (CFJ) on UC induced by dextran sulfate sodium (DSS). The results indicated that CFJ could significantly modulate the oxidative stress index in the serum and colon, observably reduce MPO and NO activity, and increase the SOD level. CFJ significantly downregulated the levels of TNF-α, IL-1β and IL-6 and reduced inflammation caused by DSS. SIgA and short-chain fatty acids (SCFAs) levels were effectively improved in the CFJ group, especially the acetic acid and butyric acid levels. Intestinal flora analysis showed that DSS could enrich harmful bacteria such as Alistipes and Oribacterium and that CFJ could increase the abundance of beneficial bacteria (Parasutterella, Bacteroides, Roseburia and Blautia). SIgA in the colon was positively correlated with Lachnoclostridium, Blautia, Lachnospiraceae_UCG-004, Prevotellaceae_NK3B31_group and other beneficial bacteria. The results showed that DSS group rats had immunity and signalling pathway disorders and that CFJ could regulate immune disorders, mainly by regulating the expression of IgA pathway components. Taken together, our results demonstrated that CFJ could regulate changes in the gut microbiota, improve the expression of immune protein-related genes, further regulate intestinal mucosal immune function and maintain intestinal mucosal barrier homeostasis.
Collapse
Affiliation(s)
- Beibei Ran
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China. .,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 102488, P. R. China
| | - Chang-E Guo
- Beijing Fengtai District Hospital of Chinese Medicine, Nanyuan Hospital, Beijing 100076, P. R. China
| | - Yushi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China. .,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 102488, P. R. China
| | - Chao Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China. .,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 102488, P. R. China
| | - Tianli Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China. .,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 102488, P. R. China
| | - Houyu Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China. .,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 102488, P. R. China
| | - Zeyu Geng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China. .,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 102488, P. R. China
| | - Weidong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China. .,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 102488, P. R. China
| |
Collapse
|
56
|
In Vitro Anti-Obesity Effect of Shenheling Extract (SHLE) Fermented with Lactobacillus fermentum grx08. Foods 2022; 11:foods11091221. [PMID: 35563944 PMCID: PMC9104015 DOI: 10.3390/foods11091221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity is a common global problem. There are many fat-reducing herbal prescriptions in traditional Chinese medicine that have been proven to be safe and functional during long-term application. Microbial fermentation can improve the efficacy of herbal medicine and improve the unsavory flavor. In this study, Shenheling extract (SHLE) composed of six medicine food homology materials was used as the research object. The purpose of this study was to evaluate the effects of Lactobacillusfermentum grx08 fermentation on the antiobesity efficacy and flavor of SHLE. We found that L. fermentum grx08 grew well in SHLE. After 72 h of fermentation, the total polysaccharides, total flavonoids, total polyphenols and total saponins of SHLE decreased, but the lipase inhibitory activity and total antioxidant capacity (FRAP) were significantly increased (p < 0.01). There were no significant differences in the α-glucosidase inhibition rate and DPPH· clearance rate before or after fermentation (p > 0.05). In addition, the fermentation reduces the unpleasant flavors of SHLE such as bitterness and grassy and cassia flavors. This study demonstrates that SHLE fermented by L. fermentum grx08 improved some anti-obesity functions and improved the unpleasant flavor.
Collapse
|
57
|
Ozkan K, Karadag A, Sagdic O. The effects of drying and fermentation on the bioaccessibility of phenolics and antioxidant capacity of Thymus vulgaris leaves. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Fresh thyme leaves (Thymus vulgaris L.) were dried at 45 °C for 5 h and naturally fermented at 20 °C in a brine solution containing salt and vinegar for 18 days. The ethanolic extracts of fresh (FT), dried (DT), and fermented-pickled (PT) thyme leaves were assessed in terms of total phenolic content (TPC), total flavonoid content (TFC), antioxidant capacity values and subjected to in vitro gastrointestinal digestion. TPC, TFC, and antioxidant capacity values of fermented thyme leaves were found significantly higher than of dried and fresh samples. The bioaccessibility index (BI) value for TPC and TFC was highest for PT and lowest for DT, indicating that both processes had different effects on the structure of phenolic compounds present in the thyme leaves. Similarly both Recovery and BI values of DPPH antioxidant capacity were highest for PT, but lowest for fresh samples. When CUPRAC assay was applied, the recovery % for FT and PT was similar, and the BI was higher for FT. Results showed that compared to the results of fresh thyme leaves, drying and pickling had a considerable effect on the initial phenolic compounds extracted and their fate during in vitro digestion.
Collapse
Affiliation(s)
- K. Ozkan
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| | - A. Karadag
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| | - O. Sagdic
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| |
Collapse
|
58
|
Fazil M, Nikhat S. Why the "sugars" in traditional Unani formulations are a pivotal component: A viewpoint perspective. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:91-95. [PMID: 35078747 DOI: 10.1016/j.joim.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022]
Abstract
Traditional medicine systems around the globe, like Unani, Ayurveda and traditional Chinese medicine, include a number of sugar-based formulations, which contain a large amount of saccharide-containing sweetener, such as honey, sucrose or jaggery. With pervasive lifestyle disorders throughout the world, there have been discussions to consider alternative sweetening agents. Here, from the perspective of Unani medicine, we discuss how the saccharide-based sweeteners may be an essential component of these traditional preparations, like electuaries, which may be deprived of their bioactivities without these saccharides. With contemporary researches, it is known that apart from their own therapeutic effects, saccharides also form deep eutectic solvents which help in enhancing the bioactivity of other ingredients present in crude drugs. In addition, they provide energy for fermentation which is essential for biotransformation of compounds. Interestingly, the sugars also increase the shelf-life of these compound drugs and act as natural preservatives. On the basis of this review, we strongly believe that saccharide-based sweeteners are an essential component of traditional medicines and not merely an excipient.
Collapse
Affiliation(s)
- Mohammad Fazil
- Hakim Ajmal Khan Institute for Literary and Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Jamia Millia Islamia Campus, New Delhi 110025, India
| | - Sadia Nikhat
- Department of Ilaj bit Tadbeer, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
59
|
Shu CH, Jaiswal R, Peng YY, Liu TH. Improving bioactivities of Momordica charantia broth through fermentation using mixed cultures of Lactobacillus plantarum, Gluconacetobacter sp. and Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Pham TNA, Kim HL, Lee DR, Choi BK, Yang SH. Anti-inflammatory Effects of Scrophularia buergeriana Extract Mixture Fermented with Lactic Acid Bacteria. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Li X, Chen F, Xu J, Guo L, Xiong Y, Lin Y, Ni K, Yang F. Exploring the Addition of Herbal Residues on Fermentation Quality, Bacterial Communities, and Ruminal Greenhouse Gas Emissions of Paper Mulberry Silage. Front Microbiol 2022; 12:820011. [PMID: 35222315 PMCID: PMC8874217 DOI: 10.3389/fmicb.2021.820011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to investigate the influence of herbal residues on the fermentation quality and ruminal fermentation of paper mulberry silage. Clove, mint, and purple perilla residues were used as additives. Silage treatments were designed as control (no additives), 5% of clove, 5% of mint, and 5% of purple perilla. After 21 and 75 days of fermentation, the fermentation characteristics, bacterial communities, and ruminal greenhouse gas emissions in vitro incubation of paper mulberry were analyzed. The results showed that the used herbal residues could reduce the protein losses in paper mulberry silage based on the lower contents of ammoniacal nitrogen and nonprotein nitrogen. Compared with control, higher lactic acid and propionic acid contents were observed in the silages treated with mint and purple perilla but with a higher acetic acid content in clove treatment. Real-time sequencing technology (single-molecule real-time) revealed that Lactobacillus was the dominant bacteria in all silages at the genus level, whereas the bacterial abundance in the treated silages differed greatly from control at the species level. Lactobacillus hammesii abundance was the highest in control, whereas Lactobacillus acetotolerans was the first predominant in the treated silages. All the additives enhanced the digestibility of in vitro dry matter significantly. However, purple perilla decreased the production of total gas, methane, and carbon dioxide. The findings discussed earlier suggested that herbal residues have potential effects in improving fermentation quality, reducing protein loss, and modulating greenhouse gas emissions in the rumen of paper mulberry silage by shifting bacterial community composition.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Jingjing Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Beijing Sure Academy of Biosciences, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Kuikui Ni,
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Fuyu Yang,
| |
Collapse
|
62
|
Wang Y, Liu X, Su C, Ding Y, Pan L. Process optimization for fermented siwu decoction by multi-index-response surface method and exploration of the effects of fermented siwu decoction on the growth, immune response and resistance to Vibrio harveyi of Pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2022; 120:633-647. [PMID: 34822997 DOI: 10.1016/j.fsi.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to explore the optimal fermentation technology of Chinese herbal medicine formula-Siwu Decoction and the effects of fermented Siwu Decoction (FSW) on the growth performance, immune response, intestinal microflora and anti microbial ability of Litopenaeus vannamei. Response to surface methodology (RSM) was used to optimize the fermentation process of Siwu Decoction. The optimal fermentation conditions were obtained as follows: inoculation amount of mixed strains was 4.5%, fermentation time was 36 h, and the ratio of material to liquid was 20%. A total of 1260 shrimps were selected and divided into seven groups, three in parallel in each group. The dietary level of each group was as follows: Control (No additions), USW1 (0.2% unfermented herbal medicine), USW2 (0.5% unfermented herbal medicine), USW3 (0.8% unfermented herbal medicine), FSW1 (0.2% fermented herbal medicine), FSW2 (0.5% fermented herbal medicine), FSW3 (0.8% fermented herbal medicine). The immune response and antioxidant defense ability of hemocytes and intestine were measured at 21 and 42 days of feeding and the intestinal flora and growth performance were measured at 42 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. The results showed that fermented Siwu Decoction significantly improved the growth performance and body composition of Litopenaeus vannamei; significantly increased the total number of hemocytes, phagocytic activity, antibacterial activity and bacteriolytic activity of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei; the addition of fermented Siwu Decoction significantly increased the gene expression level of hemocytes and intestinal tract of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei. The abundance of Bacillus increased, while the abundance of Vibrio decreased. After Vibrio harveyi challenge, the cumulative mortality of FSW group was significantly lower than that of control group. Fermented Siwu Decoction may be a potential physiological enhancer in aquaculture, and can be widely used in aquaculture.
Collapse
Affiliation(s)
- Yuxuan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, China
| | - Xintian Liu
- Fishery Technical Extension Station of Weihai, Weihai, Shandong, 264200, China
| | - Chen Su
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, China
| | - Yanjun Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
63
|
Kamal GM, Uddin J, Muhsinah AB, Wang X, Noreen A, Sabir A, Musharraf SG. 1H NMR-Based metabolomics and 13C isotopic ratio evaluation to differentiate conventional and organic soy sauce. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
64
|
Pei Y, Cheng F, Li W, Yu Q, Ma C, Zou Y, Xu T, Liu S, Zhang S, Wang Q. Enhancement of anti-inflammatory effect of cattle bile by fermentation and its inhibition of neuroinflammation on microglia by inhibiting NLRP3 inflammasome. J Biosci Bioeng 2021; 133:146-154. [PMID: 34887181 DOI: 10.1016/j.jbiosc.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
As a kind of animal medicine, cattle bile has anti-inflammatory, antipyretic and cholagogic effects. The fermentation process of cattle bile is included in the application of many traditional Chinese medicines. In this study, we fermented cattle bile singly and investigated the impact of fermentation on the anti-inflammatory effect of cattle bile, as well as the mechanism of fermented cattle bile on microglia cells. After high temperature sterilization, cattle bile was fermented with Massa Medicata Fermentata (medicated leaven, Shen Qu). We used ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) to analyze the bile acids of cattle bile and fermented cattle bile. The results showed that 3-dehydrocholic acid, 7-ketolithocholic acid, 12-dehydrocholic acid, 12-Ketolithocholic acid, ursodeoxycholic acid and dehydrolithocholic acid increased more significantly than others; glycocholic acid and glycochenodeoxycholic acid decreased more significantly than others. After fermentation, cattle bile significantly reduced the release of NO and inflammatory factors (TNF-α and IL-1β). Furthermore, the protein expression of TNF-α, IL-1β and iNOS were decreased. In addition, we found that fermented cattle bile could have an anti-inflammatory effect through attenuating the activation of NLRP3 inflammasome. Thus, fermentation can enhance the anti-inflammatory effect of cattle bile. Fermented cattle bile has an anti-inflammatory effect by inhibiting the NLRP3 inflammasome pathway, which can expand the clinical application of cattle bile and provide new thoughts and methods for the application of cattle bile.
Collapse
Affiliation(s)
- Yuying Pei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiaoyu Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chongyang Ma
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yan Zou
- Shineway Pharmaceutical Group Ltd., Shijiazhuang 051430, China
| | - Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuling Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
65
|
Huang Z, Luo Y, Xia X, Wu A, Wu Z. Bioaccessibility, safety, and antidiabetic effect of phenolic-rich extract from fermented Psidium guajava Linn. leaves. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
66
|
Zhang L, Zhang M, Mujumdar AS. New technology to overcome defects in production of fermented plant products- a review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
67
|
Effects of Live and Pasteurized Forms of Akkermansia from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms 2021; 9:microorganisms9102039. [PMID: 34683361 PMCID: PMC8538271 DOI: 10.3390/microorganisms9102039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising probiotic candidate owing to its health-promoting properties. A previous study reported that the pasteurized form of A. muciniphila strains isolated from human stool samples had a beneficial impact on high-fat diet-induced obese mice. On the other hand, the differences in the probiotic effects between live and pasteurized A. muciniphila on the metabolism and immune system of the host are still inconclusive. This study examines the differences between the live and pasteurized forms of A. muciniphila strains on the lipid and glucose metabolism and on regulating the inflammatory immune responses using a HFD-fed obese mouse model. The animals were administered the live and pasteurized forms of two A. muciniphila strains five times per week for the entire study period of 12 weeks. Both forms of the bacterial strains improved the HFD-induced obesity and metabolic dysregulation in the mice by preventing body-weight gains after one week. In addition, they cause a decrease in the weights of the major adipose tissues, adipogenesis/lipogenesis and serum TC levels, improvement in glucose homeostasis and suppression of inflammatory insults. Furthermore, these treatments restored the damaged gut architecture and integrity and improved the hepatic structure and function in HFD-induced animals. On the other hand, for both bacterial strains, the pasteurized form was more potent in improving glucose tolerance than the live form. Moreover, specific A. muciniphila preparations with either live or pasteurized bacteria decreased the number and population (%) of splenic Treg cells (CD4+ Foxp3+) significantly in the HFD-fed animals, further supporting the anti-inflammatory properties of these bacteria.
Collapse
|
68
|
Machado CCDS, Fernandes MTC, Mauro CSI, Farinazzo FS, Prudencio SH, Garcia S. Probiotic Juçara and Banana Sorbet: Cell Viability, Antioxidant Activity during Storage and Sensory Acceptability by Children. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2020.1787287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Carolina Saori Ishii Mauro
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| | - Fernanda Silva Farinazzo
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| | - Sandra Helena Prudencio
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| | - Sandra Garcia
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| |
Collapse
|
69
|
Liu F, Song M, Wang X, Sun Y, Liu X, Zhou F, Guo Q. Optimizing the liquid‐state fermentation conditions used to prepare a new Shan‐Zha‐Ge‐Gen formula‐derived probiotic. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fuyu Liu
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Min Song
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Xinke Wang
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Yizheng Sun
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Xiaoyun Liu
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Fengqin Zhou
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Qingmei Guo
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| |
Collapse
|
70
|
Shin NR, Bose S, Choi Y, Kim YM, Chin YW, Song EJ, Nam YD, Kim H. Anti-Obesity Effect of Fermented Panax notoginseng Is Mediated Via Modulation of Appetite and Gut Microbial Population. Front Pharmacol 2021; 12:665881. [PMID: 34381356 PMCID: PMC8350340 DOI: 10.3389/fphar.2021.665881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Panax notoginseng (PN) is a traditional herbal medicine containing several active compounds such as saponins and ginsenosides with many therapeutic applications including anti-obesity activity. Fermentation by lactic acid bacteria has the potential to metabolize ginsenosides to more active forms. This study examined whether fermentation has any benefits on the protective effects of a PN extract against obesity using a high-fat diet (HFD)-fed mouse model. PN was fermented with Lactobacillus plantarum which exhibited high β-glucosidase activity. Upon fermentation, the PN extract exhibited an altered ginsenoside profile, a dramatic increase in the lactate level. Treatment of the HFD group with fermented PN (FPN), but not PN, decreased both the food and calorie intake significantly, which was consistent with the more potent suppressing effects of FPN than PN on the signaling pathways involved in appetite and energy intake. The PN treatment also modulated the gut microbial composition. The PN and FPN treatment groups showed clear differences in the population of gut microbiota. The relative abundance of Bacteroidetes, Erysipelotrichaceae, Coprococus, and Dehalobacterium were significantly higher in the FPN group then the normal, HFD, and XEN groups. Furthermore, the relative abundances of Akkermansia, Dehalobacterium, Erysipeliotrichaceae and parpabacteroides were significantly higher in the FPN group than the PN group, but the relative abundances of Allobaculum, Erysipelotrichi and Erysipelotrichale were significantly lower. The relative abundance of Bacteroides and Lactococcus was significantly higher and lower, respectively in the PN and FPN groups than the HFD group. In conclusion, the altered ginsenoside and organic acid's profile, and altered gut microbial composition are believed to be the major factors contributing to the anti-obesity properties of FPN.
Collapse
Affiliation(s)
- Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Shambhunath Bose
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Yura Choi
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
71
|
Sauer S, Dlugosch L, Kammerer DR, Stintzing FC, Simon M. The Microbiome of the Medicinal Plants Achillea millefolium L. and Hamamelis virginiana L. Front Microbiol 2021; 12:696398. [PMID: 34354692 PMCID: PMC8329415 DOI: 10.3389/fmicb.2021.696398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
In the recent past many studies investigated the microbiome of plants including several medicinal plants (MP). Microbial communities of the associated soil, rhizosphere and the above-ground organs were included, but there is still limited information on their seasonal development, and in particular simultaneous investigations of different plant organs are lacking. Many studies predominantly addressed either the prokaryotic or fungal microbiome. A distinction of epi- and endophytic communities of above-ground plant organs has rarely been made. Therefore, we conducted a comprehensive investigation of the bacterial and fungal microbiome of the MP Achillea millefolium and studied the epi- and endophytic microbial communities of leaves, flower buds and flowers between spring and summer together with the microbiome of the associated soil at one location. Further, we assessed the core microbiome of Achillea from four different locations at distances up to 250 km in southern Germany and Switzerland. In addition, the bacterial and fungal epi- and endophytic leaf microbiome of the arborescent shrub Hamamelis virginiana and the associated soil was investigated at one location. The results show a generally decreasing diversity of both microbial communities from soil to flower of Achillea. The diversity of the bacterial and fungal endophytic leaf communities of Achillea increased from April to July, whereas that of the epiphytic leaf communities decreased. In contrast, the diversity of the fungal communities of both leaf compartments and that of epiphytic bacteria of Hamamelis increased over time indicating plant-specific differences in the temporal development of microbial communities. Both MPs exhibited distinct microbial communities with plant-specific but also common taxa. The core taxa of Achillea constituted a lower fraction of the total number of taxa than of the total abundance of taxa. The results of our study provide a basis to link interactions of the microbiome with their host plant in relation to the production of bioactive compounds.
Collapse
Affiliation(s)
- Simon Sauer
- WALA Heilmittel GmbH, Bad Boll, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
72
|
Shakya S, Danshiitsoodol N, Sugimoto S, Noda M, Sugiyama M. Anti-Oxidant and Anti-Inflammatory Substance Generated Newly in Paeoniae Radix Alba Extract Fermented with Plant-Derived Lactobacillus brevis 174A. Antioxidants (Basel) 2021; 10:1071. [PMID: 34356304 PMCID: PMC8300999 DOI: 10.3390/antiox10071071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Fermentation of medicinal herbs can be a significant technique to obtain bioactive compounds. Paeoniae Radix (PR) used in the present study is a well-known herbal medicine that exhibits anti-inflammatory and immunomodulatory activity. The aim of this study is to explore the possibility that a bioactive compound is newly generated in PR extract by fermentation with a plant-derived lactic acid bacteria Lactobacillus brevis 174A. We determined the anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The PR extract fermented with Lactobacillus brevis 174A markedly increased the total phenolic content, decreased intracellular ROS levels, inhibited the release of nitric oxide (NO). It also suppressed inflammatory cytokines IL-6, TNF-ɑ, while simultaneously downregulating the gene expressions of iNOS, IL-6, TNF-ɑ, and IL-1β compared to the unfermented PR extract. Furthermore, the bioactive compound newly generated from the fermentation was identified as pyrogallol. It inhibits the inflammatory responses in a dose-dependent manner suggesting that fermentation of the herbal extract used as a medium together with the plant-derived lactic acid bacterial strain may be a practical strategy to produce medicines and supplements for healthcare.
Collapse
Affiliation(s)
- Shrijana Shakya
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| | - Sachiko Sugimoto
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| |
Collapse
|
73
|
Bonde CS, Bornancin L, Lu Y, Simonsen HT, Martínez-Valladares M, Peña-Espinoza M, Mejer H, Williams AR, Thamsborg SM. Bio-Guided Fractionation and Molecular Networking Reveal Fatty Acids to Be Principal Anti-Parasitic Compounds in Nordic Seaweeds. Front Pharmacol 2021; 12:674520. [PMID: 34149425 PMCID: PMC8206555 DOI: 10.3389/fphar.2021.674520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 01/25/2023] Open
Abstract
Widespread use of antimicrobial drugs has led to high levels of drug-resistance in pathogen populations and a need for novel sources of anti-bacterial and anti-parasitic compounds. Macroalgae (seaweed) are potentially a rich source of bioactive compounds, and several species have traditionally been used as vermifuges. Here, we investigated the anti-parasitic properties of four common cold-water Nordic seaweeds; Palmaria palmata (Rhodophyta), Laminaria digitata, Saccharina latissima and Ascophyllum nodosum (Ochrophyta, Phaeophyceae). Screening of organic extracts against helminths of swine (Ascaris suum) and sheep (Teladorsagia circumcincta) revealed that S. latissima and L. digitata had particularly high biological activity. A combination of molecular networking and bio-guided fractionation led to the isolation of six compounds from extracts of these two species identified in both fermented and non-fermented samples. The six isolated compounds were tentatively identified by using MS-FINDER as five fatty acids and one monoglyceride: Stearidonic acid (1), Eicosapentaenoic acid (2), Alpha-Linolenic acid (3), Docosahexaenoic acid (4), Arachidonic acid (5), and Monoacylglycerol (MG 20:5) (6). Individual compounds showed only modest activity against A. suum, but a clear synergistic effect was apparent when selected compounds were tested in combination. Collectively, our data reveal that fatty acids may have a previously unappreciated role as natural anti-parasitic compounds, which suggests that seaweed products may represent a viable option for control of intestinal helminth infections.
Collapse
Affiliation(s)
- Charlotte Smith Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Louis Bornancin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Department of Animal Health, León, Spain
| | - Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
74
|
Hunter SM, Blanco E, Borrion A. Expanding the anaerobic digestion map: A review of intermediates in the digestion of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144265. [PMID: 33422959 DOI: 10.1016/j.scitotenv.2020.144265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is a promising technology as a renewable source of energy products, but these products have low economic value and process control is challenging. Identifying intermediates formed throughout the process could enhance understanding and offer opportunities for improved monitoring, control, and valorisation. In this review, intermediates present in the anaerobic digestion process are identified and discussed, including the following: volatile fatty acids, carboxylic acid, amino acids, furans, terpenes and phytochemicals. The key limitations associated with exploiting these intermediates are also addressed including challenging mixed cultures of microbiology, complex feedstocks, and difficult extraction and separation techniques.
Collapse
Affiliation(s)
- Sarah M Hunter
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
75
|
Agatonovic-Kustrin S, Gegechkori V, Morton DW. The effect of extractive lacto-fermentation on the bioactivity and natural products content of Pittosporum angustifolium (gumbi gumbi) extracts. J Chromatogr A 2021; 1647:462153. [PMID: 33957349 DOI: 10.1016/j.chroma.2021.462153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Pittosporum angustifolium, known as gumbi gumbi, is a native Australian plant, which has traditionally been used as an Aboriginal medicine. This study investigates the effect of different solvents and extractive fermentation on the content and natural products composition of Pittosporum angustifolium extracts, and compares their antioxidant activity, in vitro α-amylase inhibition, and anti-inflammatory properties. Anti-inflammatory activity of the extracts was determined by measuring the inhibition of nitric oxide (NO) production. Extracts were characterised with FTIR-ATR spectroscopy, and screened for antioxidant activities and α-amylase inhibitory activity via High-performance thin-layer chromatography (HPTLC)-Effect-directed analysis (EDA) with direct bioautography. HPTLC combined with chemical derivatization and bioassays was used for EDA screening. The results show that lactic acid fermentation of gumbi gumbi leaves boosts the antioxidant activity in extracts by increasing the total phenolic content, but does not affect (increase or decrease) α-amylase inhibitory activity or nitrogen scavenging/anti-inflammatory activity. Analysis of the ATR-FTIR spectra from the band at RF = 0.85 that inhibits α-amylase, suggests that fatty acid esters are responsible for the enzyme inhibition; both saturated fatty acid esters in unfermented extracts and unsaturated fatty acid esters in fermented extracts. The ATR-FTIR spectra of the polyphenolics in fermented extracts (RF = 0.15-0.20) suggests the presence of soluble lignin fragments (i.e. lignins depolymerized into monomers and oligomers during the fermentation process).
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
76
|
Qu Q, Yang F, Zhao C, Liu X, Yang P, Li Z, Han L, Shi X. Effects of fermented ginseng on the gut microbiota and immunity of rats with antibiotic-associated diarrhea. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113594. [PMID: 33217518 DOI: 10.1016/j.jep.2020.113594] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng Meyer) is a well-known herb in traditional Chinese medicine and has been used to treat many diseases for thousands of years. Recent studies have shown that ginseng is a promising agent for improving the gut microbiota and treating ulcerative colitis. Fermentation is a common process in traditional Chinese medicine making that can be used to enhance efficacy and reduce toxicity. AIM OF THE STUDY The purpose of the present study was to research the efficacy of ginseng fermented with probiotics (Lactobacillus fermentum) on the gut microbiota and immunity of rats with antibiotic-associated diarrhea (AAD). MATERIALS AND METHODS SPF Sprague-Dawley rats were randomly divided into eight groups: control group, antibiotic group, natural recovery group, and five groups treated with different doses of fermented ginseng (FG1 to FG5). A model of AAD was established by treating the rats with triple antibiotics, and obvious symptoms of AAD were observed. A histopathological analysis of the colon was performed. The total bacteria in the intestinal microbiota and five types of gut microbes in the feces were detected by quantitative PCR. The expression levels of related immune factors TLR4 and NF-κB in the colon were assayed. RESULTS An appropriate dose of fermented ginseng (0.5 g/kg/d) relieved some of the symptoms of AAD and colon inflammation and reduced the expression of the immune factors TLR4 and NF-κB in the colon. The alteration of the gut microbiota observed in the rats treated with antibiotics also returned to normal after treatment with fermented ginseng. Moreover, different doses of fermented ginseng exerted different influences on the gut microbiota, and excessively high or low doses of fermented ginseng were disadvantageous for resolving the symptoms of AAD and promoting recovery. CONCLUSIONS These results demonstrate that fermented ginseng can treat AAD symptoms and colon inflammation and restore the gut microbiota to its original state.
Collapse
Affiliation(s)
- Qingsong Qu
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Chongyan Zhao
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Zhixun Li
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Lu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, 100029, Beijing, China.
| |
Collapse
|
77
|
Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
Chen Q, Wang R, Wang Y, An X, Liu N, Song M, Yang Y, Yin N, Qi J. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
79
|
Diagnostic product ions-based chemical characterization and antioxidative activity evaluation of solid fermentation for Astragali radix produced by Paecilomyces cicadae. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
80
|
Fermented traditional Chinese medicine alters the intestinal microbiota composition of broiler chickens. Res Vet Sci 2020; 135:8-14. [PMID: 33412475 DOI: 10.1016/j.rvsc.2020.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 11/20/2022]
Abstract
For a long time, phytogenic resources have been widely used as substitutes for antibiotics in livestock production. However, few studies have examined the relationship between the intestinal microbiota and fermented herbal medicines. Here, 252 Arbor Acres broiler plus broiler chickens were randomly assigned to a control group, which was fed a basal diet; an unfermented healthy chicken powder group (JJS) fed a basal diet containing 20 g/kg JJS; or one of 5 fermented JJS groups, which were fed a basal diet containing 20 g/kg JJS, fermented with by 5 different bacterial strains for 42 days. The growth performances of the different groups were measured and the changes in the intestinal microbiota were analyzed. The body weight gain in the Bacillus subtilis group (Bs) was the highest among the 6 groups, while the feed conversion ratio (FCR) was best with Z. rouxii fermentation. The result indicated that products of JJS fermentation products of JJS by B. subtilis and Z. rouxii had important effects on chicken growth performance. The foregut and hindgut microbial communities of Bs, Zr, the control group and the JJS group, were collected for 16S rDNA sequencing. The results showed that JJS and its fermentation products mainly acted on the foregut and had little effect on the hindgut, and Z. rouxii fermentation products can increased the diversity in the foregut microbial community. In addition, the relative abundance of Bifidobacterium in the foregut of the Z. rouxii group was significantly increased, which may be an important factor in promoting growth.
Collapse
|
81
|
Fermentation as an Alternative Process for the Development of Bioinsecticides. FERMENTATION 2020. [DOI: 10.3390/fermentation6040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, insect pest control is carried out through the application of synthetic insecticides which have been related to harmful effects on both human and environmental health, as well as to the development of resistant pest populations. In this context, the development of new and natural insecticides is necessary. Agricultural and forestry waste or by-products are very low-cost substrates that can be converted by microorganisms into useful value-added bioactive products through fermentation processes. In this review we discuss recent discoveries of compounds obtained from fermented substrates along with their insecticidal, antifeedant, and repellent activities. Fermentation products obtained from agricultural and forestry waste are described in detail. The fermentation of the pure secondary metabolite such as terpenes and phenols is also included.
Collapse
|
82
|
Immunomodulatory effects of fermented fig (Ficus carica L.) fruit extracts on cyclophosphamide-treated mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
83
|
Wang BY, Yang XQ, Hu M, Shi LJ, Yin HY, Wu YM, Yang YB, Zhou H, Ding ZT. Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum. J Ginseng Res 2020; 44:770-774. [PMID: 33192119 PMCID: PMC7655485 DOI: 10.1016/j.jgr.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 05/27/2019] [Accepted: 06/28/2019] [Indexed: 12/03/2022] Open
Abstract
Background Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 μM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.
Collapse
Affiliation(s)
- Bang-Yan Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Ming Hu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Li-Jiao Shi
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Hai-Yue Yin
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Ya-Mei Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Hao Zhou
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| |
Collapse
|
84
|
Yang M, Bose S, Lim S, Seo J, Shin J, Lee D, Chung WH, Song EJ, Nam YD, Kim H. Beneficial Effects of Newly Isolated Akkermansia muciniphila Strains from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms 2020; 8:E1413. [PMID: 32937828 PMCID: PMC7564497 DOI: 10.3390/microorganisms8091413] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
The identification of new probiotics with anti-obesity properties has attracted considerable interest. In the present study, the anti-obesity activities of Akkermansia muciniphila (A. muciniphila) strains isolated from human stool samples and their relationship with the gut microbiota were evaluated using a high fat-diet (HFD)-fed mice model. Three strains of A. muciniphila were chosen from 27 isolates selected based on their anti-lipogenic activity in 3T3-L1 cells. The anti-lipogenic, anti-adipogenic and anti-obesity properties of these three strains were evaluated further in HFD-induced obese mice. The animals were administered these strains six times per week for 12 weeks. The treatment improved the HFD-induced metabolic disorders in mice in terms of the prevention of body weight gain, caloric intake and reduction in the weights of the major adipose tissues and total fat. In addition, it improved glucose homeostasis and insulin sensitivity. These effects were also associated with the inhibition of low-grade intestinal inflammation and restoration of damaged gut integrity, prevention of liver steatosis and improvement of hepatic function. These results revealed a difference in the distribution pattern of the gut microbial communities between groups. Therefore, the gut microbial population modulation, at least in part, might contribute to the beneficial impact of the selected A. muciniphila strains against metabolic disorders.
Collapse
Affiliation(s)
- Meng Yang
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| | - Shambhunath Bose
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| | - Sookyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| | - JaeGu Seo
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (J.S.); (J.S.); (D.L.)
| | - JooHyun Shin
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (J.S.); (J.S.); (D.L.)
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (J.S.); (J.S.); (D.L.)
| | - Won-Hyong Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea;
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| |
Collapse
|
85
|
Zeng J, Liu XL, Xin FZ, Zhao ZH, Shao YL, Yang RX, Pan Q, Fan JG. Effects and therapeutic mechanism of Yinzhihuang on steatohepatitis in rats induced by a high-fat, high-cholesterol diet. J Dig Dis 2020; 21:179-188. [PMID: 31950587 PMCID: PMC7187410 DOI: 10.1111/1751-2980.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We aimed to investigate the therapeutic mechanism of Yinzhihuang (YZH) liquid, a traditional Chinese medicine mainly composed of extracts of four components, on nonalcoholic steatohepatitis (NASH) induced by a high-fat, high-cholesterol diet (HFHCD) in rats. METHODS Altogether 30 Sprague-Dawley rats were randomized into three groups: control, the model group (HFHCD + saline) and the treatment group (HFHCD + YZH). Liver histological features and serum biochemical parameters were assessed by the end of the 16th week. RNA sequencing and protein mass spectrometry detection were performed. The genes and proteins expressed differentially were subjected to KEGG pathway enrichment analysis and included in a network-based regulatory model. RESULTS The weight, liver and fat indices and serum alanine transaminase, aspartate transaminase and total cholesterol levels of the HFHCD + YZH group were all significantly lower than those of the HFHCD + saline group. Moreover, their hepatic steatosis, ballooning and lobular inflammation were relieved, and 64 hepatic genes and 73 hepatic proteins were found to be reversed in their expression patterns after YZH treatment (P < 0.05). The network-based regulatory model showed that these deregulated genes and proteins were mainly involved in oxidative phosphorylation, Toll-like receptor, nucleotide-binding oligomerization domain-like receptor, peroxisome proliferator-activated receptor signaling, nuclear factor-kappa B tumor necrosis factor signaling pathways and fatty acid metabolism. CONCLUSION YZH could alleviate NASH in HFHCD-fed rats by inhibiting lipogenesis, accelerating lipid β-oxidation, alleviating oxidative stress and relieving necroinflammation in the liver.
Collapse
Affiliation(s)
- Jing Zeng
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao Lin Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Feng Zhi Xin
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ze Hua Zhao
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - You Lin Shao
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Xu Yang
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qin Pan
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Gao Fan
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Children's Digestion and NutritionShanghaiChina
| |
Collapse
|
86
|
Choi Y, Bose S, Shin NR, Song EJ, Nam YD, Kim H. Lactate-Fortified Puerariae Radix Fermented by Bifidobacterium breve Improved Diet-Induced Metabolic Dysregulation via Alteration of Gut Microbial Communities. Nutrients 2020; 12:E276. [PMID: 31973042 PMCID: PMC7070547 DOI: 10.3390/nu12020276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puerariae Radix (PR), the dried root of Pueraria lobata, is reported to possess therapeutic efficacies against various diseases including obesity, diabetes, and hypertension. Fermentation-driven bioactivation of herbal medicines can result in improved therapeutic potencies and efficacies. METHODS C57BL/6J mice were fed a high-fat diet and fructose in water with PR (400 mg/kg) or PR fermented by Bifidobacterium breve (400 mg/kg) for 10 weeks. Histological staining, qPCR, Western blot, and 16s rRNA sequencing were used to determine the protective effects of PR and fermented PR (fPR) against metabolic dysfunction. RESULTS Treatment with both PR and fPR for 10 weeks resulted in a reduction in body weight gain with a more significant reduction in the latter group. Lactate, important for energy metabolism and homeostasis, was increased during fermentation. Both PR and fPR caused significant down-regulation of the intestinal expression of the MCP-1, IL-6, and TNF-α genes. However, for the IL-6 and TNF-α gene expressions, the inhibitory effect of fPR was more pronounced (p < 0.01) than that of PR (p < 0.05). Oral glucose tolerance test results showed that both PR and fPR treatments improved glucose homeostasis. In addition, there was a significant reduction in the expression of hepatic gene PPARγ, a key regulator of lipid and glucose metabolism, following fPR but not PR treatment. Activation of hepatic AMPK phosphorylation was significantly enhanced by both PR and fPR treatment. In addition, both PR and fPR reduced adipocyte size in highly significant manners (p < 0.001). Treatment by fPR but not PR significantly reduced the expression of PPARγ and low-density lipoproteins in adipose tissue. CONCLUSION Treatment with fPR appears to be more potent than that of PR in improving the pathways related to glucose and lipid metabolism in high-fat diet (HFD)+fructose-fed animals. The results revealed that the process of fermentation of PR enhanced lactate and facilitated the enrichment of certain microbial communities that contribute to anti-obesity and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yura Choi
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| | | | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 24 55365, Korea; (E.-J.S.); (Y.-D.N.)
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun 34113, Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 24 55365, Korea; (E.-J.S.); (Y.-D.N.)
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun 34113, Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| |
Collapse
|
87
|
Wang Y, Qin S, Jia J, Huang L, Li F, Jin F, Ren Z, Wang Y. Intestinal Microbiota-Associated Metabolites: Crucial Factors in the Effectiveness of Herbal Medicines and Diet Therapies. Front Physiol 2019; 10:1343. [PMID: 31736775 PMCID: PMC6828839 DOI: 10.3389/fphys.2019.01343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Although the efficacy of herbal medicines (HMs) and traditional Chinese medicines (TCMs) in human diseases has long been recognized, their development has been hindered in part by a lack of a comprehensive understanding of their mechanisms of action. Indeed, most of the compounds extracted from HMs can be metabolized into specific molecules by host microbiota and affect pharmacokinetics and toxicity. Moreover, HMs modulate the constitution of host intestinal microbiota to maintain a healthy gut ecology. Dietary interventions also show great efficacy in treating some refractory diseases, and the commensal microbiota potentially has significant implications for the high inter-individual differences observed in such responses. Herein, we mainly discuss the contribution of the intestinal microbiota to high inter-individual differences in response to HMs and TCMs, and especially the already known metabolites of the HMs produced by the intestinal microbiota. The contribution of commensal microbiota to the inter-individual differences in response to dietary therapy is also briefly discussed. This review highlights the significance of intestinal microbiota-associated metabolites to the efficiency of HMs and dietary interventions. Our review may help further identify the mechanisms leading to the inter-individual differences in the effectiveness of HM and dietary intervention from the perspective of their interactions with the intestinal microbiota.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Fujun Jin
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
88
|
Kim HY, Bae WY, Yu HS, Chang KH, Hong YH, Lee NK, Paik HD. Inula britannica fermented with probiotic Weissella cibaria D30 exhibited anti-inflammatory effect and increased viability in RAW 264.7 cells. Food Sci Biotechnol 2019; 29:569-578. [PMID: 32296568 DOI: 10.1007/s10068-019-00690-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to increase the bioavailability of Inula britannica (IB) through fermentation with probiotic Weissella cibaria D30, and to evaluate the chemical composition, viability, and anti-inflammatory effect of fermented I. britannica (FIB). IB was fermented with W. cibaria D30 at 37 °C for 24 h. FIB increased total phenolic content and decreased total flavonoid content of IB. 1-O-acetylbritannilactone and ergolide production, which are associated with the viability, increased from 1.38 to 4.13 μg/mg, and decreased from 5.24 to 0.94 μg/mg, in the control and FIB, respectively. In addition, the cell viability of RAW264.7 cells increased when pretreated with 400 μg/mL FIB. FIB inhibited the production of nitric oxide and proinflammatory cytokines by inhibiting NF-κB and MAPKs pathways. Therefore, FIB with W. cibaria D30 reduced the toxicity and increased the anti-inflammatory properties. These results indicate that FIB is a potential beneficial bioactive agent for functional foods.
Collapse
Affiliation(s)
- Hyeong-Yeop Kim
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Won-Young Bae
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyung-Seok Yu
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kyung-Hoon Chang
- CJ CheilJedang Blossom Park, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Young-Ho Hong
- CJ CheilJedang Blossom Park, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Na-Kyoung Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
89
|
Shiferaw Terefe N, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr 2019; 60:2887-2913. [PMID: 31583891 DOI: 10.1080/10408398.2019.1666250] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fermented foods are experiencing a resurgence due to the consumers' growing interest in foods that are natural and health promoting. Microbial fermentation is a biotechnological process which transforms food raw materials into palatable, nutritious and healthy food products. Fermentation imparts unique aroma, flavor and texture to food, improves digestibility, degrades anti-nutritional factors, toxins and allergens, converts phytochemicals such as polyphenols into more bioactive and bioavailable forms, and enriches the nutritional quality of food. Fermentation also modifies the physical functional properties of food materials, rendering them differentiated ingredients for use in formulated foods. The science of fermentation and the technological and health functionality of fermented foods is reviewed considering the growing interest worldwide in fermented foods and beverages and the huge potential of the technology for reducing food loss and improving nutritional food security.
Collapse
|
90
|
Improved in vitro antioxidant properties and hepatoprotective effects of a fermented Inula britannica extract on ethanol-damaged HepG2 cells. Mol Biol Rep 2019; 46:6053-6063. [DOI: 10.1007/s11033-019-05040-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 01/14/2023]
|
91
|
Wang Y, Mei X, Liu Z, Li J, Zhang X, Wang S, Geng Z, Dai L, Zhang J. Chemical Constituent Profiling of Paecilomyces cicadae Liquid Fermentation for Astragli Radix. Molecules 2019; 24:molecules24162948. [PMID: 31416254 PMCID: PMC6721272 DOI: 10.3390/molecules24162948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Astragli Radix (AR) is one of the most popular traditional Chinese medicines with chemical constituents including flavonoids and saponins. As recently evidenced, some fungi or their fermentation liquid may have the potential to affect the bioactive constituents and different pharmacological effects of AR. Thus, the composition of fermented AR (FAR) produced by Paecilomyces cicadae (Miquel) Samson in liquid-state fermentation was investigated using a UHPLC-LTQ-Orbitrap mass spectrometer in both positive and negative ion modes. Firstly, the MSn data sets were obtained based on a data-dependent acquisition method and a full scan–parent ions list–dynamic exclusion (FS-PIL-DE) strategy. Then, diagnostic product ions (DPIs) and neutral loss fragments (NLFs) were proposed for better constituent detection and structural characterization. Consequently, 107 constituents in total, particularly microconstituents in FAR and AR, were characterized and compared in parallel on the same LTQ–Orbitrap instrument. Our results indicated that AR fermentation with Paecilomyces significantly influenced the production of saponins and flavonoids, especially increasing the content of astragaloside IV. In conclusion, this research was not only the first to show changes in the chemical components of unfermented AR and FAR, but it also provides a foundation for further studies on the chemical interaction between microbiota and AR.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaodan Mei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zihan Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shaoping Wang
- School of Pharmacy, BIN ZHOU Medical University, Yantai 260040, China
| | - Zikai Geng
- School of Pharmacy, BIN ZHOU Medical University, Yantai 260040, China
| | - Long Dai
- School of Pharmacy, BIN ZHOU Medical University, Yantai 260040, China.
| | - Jiayu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
- School of Pharmacy, BIN ZHOU Medical University, Yantai 260040, China.
| |
Collapse
|
92
|
Conversion of Plant Secondary Metabolites upon Fermentation of Mercurialis perennis L. Extracts with two Lactobacteria Strains. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial fermentation of plant extracts with Lactobacteria is an option to obtain microbiologically stable preparations, which may be applied in complementary medicine. We investigated the metabolic conversion of constituents from Mercurialis perennis L. extracts, which were prepared for such applications. For this purpose, aqueous extracts were inoculated with two Lactobacteria strains, namely Pediococcus sp. (PP1) and Lactobacillus sp. (LP1). Both were isolated from a fermented M. perennis extract and identified by 16S rRNA sequencing. After 1 day of fermentation, an almost complete conversion of the genuine piperidine-2,6-dione alkaloids hermidine quinone (3) and chrysohermidin (4)—both of them being oxidation products of hermidin (1) —was observed by GC-MS analysis, while novel metabolites such as methylhermidin (6) and methylhermidin quinone (7) were formed. Surprisingly, a novel compound plicatanin B (bis-(3-methoxy-1N-methylmaleimide); 8) was detected after 6 days, obviously being formed by ring contraction of 4. An intermediate of a postulated reaction mechanism, isochrysohermidinic acid (14), could be detected by LC-MS. Furthermore, an increase in contents of the metabolite mequinol (4-methoxyphenol; 9) upon fermentation points to a precursor glycoside of 9, which could be subsequently detected by GC-MS after silylation and identified as methylarbutin (15). 15 is described here for M. perennis for the first time.
Collapse
|
93
|
Jin J, Zhou R, Xie J, Ye H, Liang X, Zhong C, Shen B, Qin Y, Zhang S, Huang L. Insights into Triterpene Acids in Fermented Mycelia of Edible Fungus Poria cocos by a Comparative Study. Molecules 2019; 24:molecules24071331. [PMID: 30987348 PMCID: PMC6479485 DOI: 10.3390/molecules24071331] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
As an edible sclerotia-forming fungus, Poria cocos is widely used as a food supplement and as a tonic in China. High-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (HPLC-QTOF-MS/MS) was applied to identify triterpene acids in fermented mycelia of P. cocos, as well as the epidermis and inner part of natural sclerotia. A total of 19 triterpene acids were identified in fermented mycelia, whereas 31 were identified in the epidermis and 24 in the inner part. Nine triterpene acids were quantitatively determined, and the concentrations of two valuable triterpenes, dehydropachymic acid and pachymic acid, reached 1.07 mg/g and 0.61 mg/g in the fermented mycelia part, respectively, and were both significantly higher than the concentration in the two natural parts. The fermented mycelia could be a good choice for producing some target triterpene compounds and functional foods through fermentation thanks to the high concentration of some triterpene acids.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Rongrong Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Huixuan Ye
- Jiuzhitang Co., Ltd, Changsha 410205, China.
| | - Xuejuan Liang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Can Zhong
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Bingbing Shen
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - You Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China.
- 2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410208, China.
| | - Luqi Huang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
94
|
Qin D, Shen W, Wang J, Han M, Chai F, Duan X, Yan X, Guo J, Gao T, Zuo S, Dong J. Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4.1850. PHYTOCHEMISTRY 2019; 158:56-66. [PMID: 30476897 DOI: 10.1016/j.phytochem.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Highly oxygenated schitriterpenoids are interesting for study of their structures, bioactivities and synthesis. From Kadsura angustifolia fermented by an associated symbiotic endophytic fungus, Penicillium sp. SWUKD4.1850, nine undescribed triterpenoids, kadhenrischinins A-H, and 7β-schinalactone C together with four known triterpenoids, henrischinins A and B, schinalactone C and nigranoic acid were isolated and established by the extensive 1D-, 2D-NMR, HR-ESI-MS and ECD data analysis. Except nigranoic acid, all these metabolites have been first detected in non-fermented K. angustifolia. Structurally, kadhenrischinins A-D belong to the relatively rare class of highly oxygenated schitriterpenoids that contain a unique 3-one-2-oxabicyclo [3,2,1]-octane motif, while kadhenrischinins E-H feature a cyclopentane ring in a side chain rarely found in the family Schisandraceae. These results indicated that fermentation of K. angustifolia with SWUKD4.1850 induced the production of highly oxygenated schitriterpenoids from nigranoic acid, which provided a guidance to obtain desired compounds from those plants initially thought not to produce. This is the first report on the fermentation of K. angustifolia medical plant and the first discovery of highly oxygenated schitriterpenoids by microbial technology.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Weiyun Shen
- First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou 313000, China.
| | - Junqi Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Meijun Han
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Fangni Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Xiaoxiang Duan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Xiao Yan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Jiali Guo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Tiancong Gao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Shihao Zuo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| | - Jinyan Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
95
|
Yoon WK, Choi JW, Lim JS, Garcia CV, Lee SP. Novel Co-fermentation of Dendropanax morbifera Extract to Produce γ-aminobutyric Acid and Poly-γ-glutamic Acid. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Woong-Kyu Yoon
- Department of Food Science and Technology, Keimyung University
| | - Jae-Won Choi
- Department of Food Science and Technology, Keimyung University
| | - Jong-Soon Lim
- Department of Food Science and Technology, Keimyung University
| | | | - Sam-Pin Lee
- Department of Food Science and Technology, Keimyung University
| |
Collapse
|
96
|
Lei XJ, Kim YM, Kim IH. Effects of dried citrus pulp and fermented medicinal plants on growth performance, nutrient digestibility, blood characteristics, and meat quality in growing–finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present experiment was conducted to determine the effects of dried citrus pulp and fermented medicinal plants in growing–finishing pigs. A total of 96 pigs (62.34 ± 1.96 kg body weight) were randomly allotted into three dietary treatments: (1) control, basal diet (CON); (2) diet containing 10% dried citrus pulp (DCP); (3) diet containing 10% dried citrus pulp supplemented with 0.1% fermented medicinal plants (DCPFMP). From weeks 0 to 5 and 0 to 10, pigs fed the DCPFMP diet had significantly decreased (P < 0.05) average daily feed intake and increased (P < 0.05) gain:feed ratio compared with those fed the CON diet. The apparent total tract digestibility of gross energy was greater (P < 0.05), and serum total cholesterol concentration was decreased (P < 0.05) for pigs fed the DCPFMP diet compared with those fed the DCP diet in week 10. In addition, an increase (P < 0.05) in Longissimus muscle area was observed for pigs fed the DCPFMP diet compared with those fed the CON diet. In conclusion, supplementation with fermented medicinal plants in a diet containing 10% dried citrus pulp improved growth performance and Longissimus muscle area and lowered serum low-density lipoprotein cholesterol and total cholesterol concentrations.
Collapse
Affiliation(s)
- Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - Yong Min Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| |
Collapse
|
97
|
Ansari A, Bose S, Patra JK, Shin NR, Lim DW, Kim KW, Wang JH, Kim YM, Chin YW, Kim H. A Controlled Fermented Samjunghwan Herbal Formula Ameliorates Non-alcoholic Hepatosteatosis in HepG2 Cells and OLETF Rats. Front Pharmacol 2018; 9:596. [PMID: 29971000 PMCID: PMC6018163 DOI: 10.3389/fphar.2018.00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatosteatosis (HS), a clinical feature of fatty liver with the excessive intracellular accumulation of triglyceride in hepatocytes, is manifested by perturbation of the maintenance of liver lipid homeostasis. Samjunghwan (SJH) is an herbal formula used mostly in Korean traditional medicine that is effective against a number of metabolic diseases, including obesity. Herbal drugs, enriched with numerous bioactive substances, possess health-protective benefits. Meanwhile, fermented herbal products enriched with probiotics are known to improve metabolic processes. Additionally, current lines of evidence indicate that probiotics-derived metabolites, termed as postbiotics, produce the same beneficial effects as their precursors. Herein, the anti-HS effects of 5-weeks naturally fermented SJH (FSJH) was investigated with FSJH-mixed chow diet in vivo using Otsuka Long-Evans Tokushima Fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats as animal models of HS and controls, respectively. In parallel, the anti-HS effects of postbiotic-metabolites of three bacterial strains [Lactobacillus brevis (LBB), Lactococcus lactis (LCL) and Lactobacillus plantarum (LBP)] isolated from FSJH were also evaluated in vitro using the FFAs-induced HepG2 cells. Feeding OLETF rats with FSJH-diet effectively reduced body, liver, and visceral adipose tissue (VAT) weights, produced marked hypolipidemic effects on serum and hepatic lipid parameters, decreased serum AST and ALT levels, and upregulated the HMGCOR, SREBP, and ACC, and downregulated the AMPK and LDLR gene expressions levels. Additionally, exposure of FFAs-induced HepG2 cells to postbiotic metabolic media (PMM) of bacterial strains also produced marked hypolipidemic effects on intracellular lipid contents and significantly unregulated the HMGCOR, SREBP, and ACC, and downregulated the AMPK and LDLR genes expressions levels. Overall, our results indicate that FSJH enriched with fermented metabolites could be an effective anti-HS formulation.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | | | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Goyang, South Korea
| | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Dong-Woo Lim
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Koh-Woon Kim
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jing-Hua Wang
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, South Korea
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
98
|
Lei XJ, Yun HM, Kim IH. Effects of dietary supplementation of natural and fermented herbs on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1429955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Jian Lei
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Hyeok Min Yun
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
99
|
Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int 2018; 104:86-99. [DOI: 10.1016/j.foodres.2017.09.031] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/27/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022]
|
100
|
Filannino P, Di Cagno R, Trani A, Cantatore V, Gambacorta G, Gobbetti M. Lactic acid fermentation enriches the profile of biogenic compounds and enhances the functional features of common purslane ( Portulaca oleracea L.). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|