51
|
Hossain MI, Mizan MFR, Roy PK, Nahar S, Toushik SH, Ashrafudoulla M, Jahid IK, Lee J, Ha SD. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res Int 2021; 148:110595. [PMID: 34507740 DOI: 10.1016/j.foodres.2021.110595] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Owing to their preservative and antimicrobial effects, postbiotics (metabolic byproducts of probiotics) are promising natural components for the food industry. Therefore, the present study aimed to investigate the efficacy of postbiotics collected from isolated Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2 against Listeria monocytogenes pathogens in planktonic cells, motility, and biofilm states. The analysis of the metabolite composition of the postbiotics revealed various organic acids, along with a few well-known bacteriocin-encoding genes with potential antimicrobial effects. Postbiotics maintained their residual antimicrobial activity over the pH range 1-6 but lost all activity at neutral pH (pH 7). Full antimicrobial activity (100%) was observed during heat treatment, even under the autoclaving condition.Minimum inhibitory concentration (MICs) of L. curvatus B.67 and L. plantarum M.2 against L. monocytogenes were 80 and 70 mg/mL, respectively. However, four sub-MICs of the postbiotics (1/2, 1/4, 1/8, and 1/16 MIC) were tested for inhibition efficacy against L. monocytogenes during different experiment in this study. Swimming motility, biofilm formation, and expression levels of target genes related to biofilm formation, virulence, and quorum-sensing were significantly inhibited with increasing postbiotics concentration. Postbiotics from L. plantarum M.2 exhibited a higher inhibitory effect than the postbiotics from L. curvatus B.67. Nonetheless, both these postbiotics from Lactobacillus spp. could be used as effective bio-interventions for controlling L. monocytogenes biofilm in the food industry.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Bangladesh
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea.
| |
Collapse
|
52
|
Alexpandi R, Ponraj JG, Swasthikka RP, Abirami G, Ragupathi T, Jayakumar R, Ravi AV. Anti-QS mediated anti-infection efficacy of probiotic culture-supernatant against Vibrio campbellii infection and the identification of active compounds through in vitro and in silico analyses. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
53
|
Barreto MO, Soust M, Moore RJ, Olchowy TWJ, Alawneh JI. Systematic review and meta-analysis of probiotic use on inflammatory biomarkers and disease prevention in cattle. Prev Vet Med 2021; 194:105433. [PMID: 34298303 DOI: 10.1016/j.prevetmed.2021.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to appraise the available evidence on the effectiveness of probiotic treatment on mature cattle immunity, inflammation, and disease prevention. A systematic review with meta-analysis was conducted to analyse studies that were eligible to answer the following research question: "in cattle of at least 6-months of age, is the use of probiotics associated with immunomodulatory and inflammatory responses, and clinical disease outcomes?" Our literature search yielded 25 studies that fit the inclusion criteria. From these studies, only 19 were suitable for inclusion in the meta-analysis due to data limitations and differences in study population characteristics. Included studies were assessed for bias using a risk assessment tool adapted from the Cochrane Collaboration's tool for assessing risk of bias in randomised trials. GRADE guidelines were used to assess the quality of the body of evidence at the outcome level. The meta-analysis was performed using Review Manager and R. The overall quality of evidence at the outcome level was assessed as being very low. On average, the treatment effect on immunoglobulin G (IgG), serum amyloid A (SAA), haptoglobin (Hp) and β-hydroxybutyrate (BoHB) for cows receiving probiotics did not differ from control cows. Exposure to probiotics was not associated with reduced risk of reproductive disorders (pooled RR = 1.02 95 % CI = 0.81-1.27, P = 0.88). There is insufficient evidence to support any significant positive effects of probiotics on cattle immunity and disease prevention. This lack of consistent evidence could be due to dissimilarities in the design of the included studies such as differences in dosage, dose schedule, diet composition and/or physiological state of the host at the time of treatment.
Collapse
Affiliation(s)
- Michelle O Barreto
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, Queensland, 4573, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Timothy W J Olchowy
- The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T3R 1J3, Canada
| | - John I Alawneh
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Murdoch University, School of Veterinary Medicine, Perth, Western Australia, 6150, Australia.
| |
Collapse
|
54
|
Wu C, Lin X, Tong L, Dai C, Lv H, Zhou X, Zhang J. In vitro evaluation of lactic acid bacteria with probiotic activity isolated from local pickled leaf mustard from Wuwei in Anhui as substitutes for chemical synthetic additives. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The extensive abuse of chemical synthetic additives has raised increased attention to food safety. As substitutes, probiotics play an important role in human health as they balance the intestinal microbes in host. This study was aimed to isolate and evaluate the potential probiotic activities of lactic acid bacteria (LAB) from a local pickled leaf mustard (PLM) from Wuwei city in Anhui province through in vitro experiments. A total of 17 LAB strains were obtained as probiotics. All the isolates were sensitive to chloramphenicol, tetracycline, erythromycin, and doxycycline but exhibited resistance to antibiotics (e.g., streptomycin, kanamycin, gentamicin, and vancomycin). Out of the 17 strains, 9 were sensitive to most of the antibiotics and had no cytotoxic activity on human colorectal adenocarcinoma cell line (HT-29) cells. The isolated AWP4 exhibited antibacterial activity against four indicator pathogen strains (ATCC8099: Escherichia coli, ATCC6538: Staphylococcus aureus, ATCC9120: Salmonella enteric, and BNCC192105: Shigella sonnei). Based on the phylogenetic analysis of the 16S rRNA gene, AWP4 belonged to Lactiplantibacillus plantarum. This study indicated that the Wuwei local PLM could be a potential resource to isolate beneficial LAB as probiotics. The data provide theoretical guidance for further animal experiments to estimate the probiotic effect and safety of Lpb. plantarum AWP4 in vivo.
Collapse
Affiliation(s)
- Changjun Wu
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Xiaopei Lin
- Department of General Pediatrics, Women and Child Health Care Hospital affiliated to Anhui Medical University (Anhui Women and Child Health Care Hospital) , Hefei 230001 , Anhui Province , China
| | - Lin Tong
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Han Lv
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences , Hefei 230031 , Anhui Province , China
| |
Collapse
|
55
|
Trukhachev VI, Chmykhalo VK, Belanova AA, Beseda DK, Chikindas ML, Bren AB, Ermakov AM, Donnik IM, Belousova MM, Zolotukhin PV. Probiotic biomarkers and models upside down: From humans to animals. Vet Microbiol 2021; 261:109156. [PMID: 34388682 DOI: 10.1016/j.vetmic.2021.109156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
Probiotics development for animal farming implies thorough testing of a vast variety of properties, including adhesion, toxicity, host cells signaling modulation, and immune effects. Being diverse, these properties are often tested individually and using separate biological models, with great emphasis on the host organism. Although being precise, this approach is cost-ineffective, limits the probiotics screening throughput and lacks informativeness due to the 'one model - one test - one property' principle. There is а solution coming from human-derived cells and in vitro systems, an extraordinary example of human models serving animal research. In the present review, we focus on the current outlooks of employing human-derived in vitro biological models in probiotics development for animal applications, examples of such studies and the analysis of concordance between these models and host-derived in vivo data. In our opinion, human-cells derived screening systems allow to test several probiotic properties at once with reasonable precision, great informativeness and less expenses and labor effort.
Collapse
Affiliation(s)
- Vladimir I Trukhachev
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya st., 49, Moscow, 127550, Russia.
| | - Victor K Chmykhalo
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Anna A Belanova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Darya K Beseda
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA; I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Str., 19с1, Moscow, 119146, Russia.
| | - Anzhelika B Bren
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia.
| | - Irina M Donnik
- Russian Academy of Sciences, Leninskii Ave., 14, Moscow, 119991, Russia.
| | - Marya M Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, 5 Zorge Str., Rostov-on-Don, 344090, Russia.
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
56
|
Benameur Q, Gervasi T, Pellizzeri V, Pľuchtová M, Gruľová D, Cicero N, Meriem-Hind B. Comparison of sensitivity to a commercial Origanum vulgare essential oil between extended-spectrum β-lactamases (ESBL-) and non-ESBL-producing Enterobacteriaceae isolates. Nat Prod Res 2021; 36:2830-2835. [PMID: 34121535 DOI: 10.1080/14786419.2021.1933969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the antibacterial effect of Origanum vulgare essential oil (OVEO) against ESBL- and non-ESBL-producing multidrug-resistant (MDR) Enterobacteriaceae isolates. OVEO composition was determined using Gas chromatograph-mass spectrometer (GC/MS). In the current study, the effect of OVEO was studied on seven MDR Enterobacteriaceae isolates. Antibacterial activity of OVEO was investigated by the disc diffusion assay and twofold serial dilution method. GC/MS analysis identified thymol (78.21%) as the single major component present in the OVEO. This EO showed an unexpectedly high antibacterial activity against all the studied MDR Enterobacteriaceae isolates, with inhibition zone diameters and minimum inhibitory concentration (MIC) values ranging from 28 ± 0.6 to 35 ± 0.6 mm and 0.31 ± 0.0 to 5 ± 0.0 μL/mL, respectively. However, ESBL-producing isolates were more susceptible to OVEO than non-ESBL producing isolates. This study compared, for the first time, the sensitivity to OVEO between ESBL and non-ESBL-producing Enterobacteriaceae isolates.
Collapse
Affiliation(s)
- Qada Benameur
- Nursing Department, Faculty of Nature and Life Sciences, University of Abdelhamid Ibn Badis of Mostaganem, Mostaganem, Algeria.,Research Laboratory 'Health and Animal Productions', Higher National Veterinary School, Algiers, Algeria
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Vito Pellizzeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Mária Pľuchtová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Slovakia
| | - Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Slovakia
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Benmahdi Meriem-Hind
- Research Laboratory 'Health and Animal Productions', Higher National Veterinary School, Algiers, Algeria
| |
Collapse
|
57
|
Apiwatsiri P, Pupa P, Yindee J, Niyomtham W, Sirichokchatchawan W, Lugsomya K, Shah AA, Prapasarakul N. Anticonjugation and Antibiofilm Evaluation of Probiotic Strains Lactobacillus plantarum 22F, 25F, and Pediococcus acidilactici 72N Against Escherichia coli Harboring mcr-1 Gene. Front Vet Sci 2021; 8:614439. [PMID: 34179153 PMCID: PMC8225926 DOI: 10.3389/fvets.2021.614439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Several species of lactic acid bacteria (LAB) are commonly used as probiotics and as an alternative to antibiotics in various industries, especially in the livestock industry. This study aimed to investigate the anticonjugation and antibiofilm activity of cell-free supernatant (CFS) of Thai LAB strains (Lactobacillus plantarum 22F, 25F, and Pediococcus acidilactici 72N) against colistin-resistant Escherichia coli isolates. A total of six colistin-resistant E. coli strains were isolated from different sources, including pigs, farmers, and farmhouse environments. The E. coli were characterized by plasmid profiling, PCR detection of mcr-1 gene, and antibiotic susceptibility patterns. The CFS at dilutions ≥1:16 was chosen as the proper dilution for anticonjugation assay. Besides, it could significantly reduce the transfer frequencies of resistance gene mcr-1 up to 100 times compared to the neutralizing CFS (pH 6.5). The biofilm production in the planktonic stage was reduced by non-neutralizing and neutralizing CFS determining with crystal violet staining assay up to 82 and 60%, respectively. Moreover, the non-neutralizing CFS also inhibited the biofilm formation in the sessile stage up to 52%. The biofilm illustration was confirmed by scanning electron microscopy (SEM). These results agreed with the findings of the crystal violet technique, which showed a significant reduction in cell density, aggregation, and extracellular polysaccharide (EPS) matrix. The application of Thai LAB may serve as an attractive alternative to antibiotics for reducing biofilm formation and limiting the proliferation of antibiotic-resistant genes.
Collapse
Affiliation(s)
- Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Waree Niyomtham
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Kittitat Lugsomya
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Asad Ali Shah
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Diagnosis and Monitoring of Animal Pathogens Research Unit (DMAP), Bangkok, Thailand
| |
Collapse
|
58
|
Alizadeh A. Mango nectar as a substrate for L. Plantarum: effect of stevia and inulin on probiotic viability and physico-chemical properties of the synbiotic product. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00998-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
60
|
Rodríguez-Sánchez S, Fernández-Pacheco P, Seseña S, Pintado C, Palop ML. Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as biocontrol agents in food industry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
61
|
Fernández-Pacheco P, García-Béjar B, Jiménez-Del Castillo M, Carreño-Domínguez J, Briones Pérez A, Arévalo-Villena M. Potential probiotic and food protection role of wild yeasts isolated from pistachio fruits (Pistacia vera). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2201-2209. [PMID: 32978783 DOI: 10.1002/jsfa.10839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The biotechnological potential of yeasts from nuts such as pistachio, not only for health applications but also for industry use, has been scarcely studied. Interest in the probiotic capability of yeasts has increased in the past years as well as their utilization as food or feed preservatives. Their capabilities as biocontrol against problematic (spoilage or toxigenic) microorganisms or as antioxidants have been revalued. As a result, both abilities would be desirable to develop a new potential probiotic microorganism which could be added to food or feed to improve their properties. RESULTS Molecular techniques allowed the identification of a total of seven different species and 15 strains. A screening of the probiotic potential of these strains was carried out. It was found that 65% of the strains resisted the gastrointestinal conditions as well as presented a generation time of < 22 h. Additionally, some strains showed better kinetic parameters than Saccharomyces boulardii (positive control). Complementary tests were done to determine their auto-aggregation capacity, cell surface hydrophobicity, behaviour in a sequential simulated digestion, biofilm formation capability and carbon source assimilation. Finally, 67% and 13% of the studied yeasts showed biocontrol and antioxidant activities, respectively. CONCLUSIONS Diutina rugosa 14 followed by Diutina rugosa 8 were the best wild yeast from Pistacia vera as potential probiotic and in carbon source utilization. However, Hanseniaspora guilliermondii 6 and Aureobasidium proteae 5 could be used to improve food or feed product preservation because of their notable biocontrol and antioxidant capabilities. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pilar Fernández-Pacheco
- Analytical Chemistry and Food Technology Department/Faculty of Environmental Science and Biochemistry, Castilla-La Mancha University, Toledo, Spain
| | - Beatriz García-Béjar
- Analytical Chemistry and Food Technology Department/Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - Marina Jiménez-Del Castillo
- Analytical Chemistry and Food Technology Department/Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - Javier Carreño-Domínguez
- Analytical Chemistry and Food Technology Department/Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - Ana Briones Pérez
- Analytical Chemistry and Food Technology Department/Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - María Arévalo-Villena
- Analytical Chemistry and Food Technology Department/Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| |
Collapse
|
62
|
Hossain MI, Kim K, Rahaman Mizan MF, Toushik SH, Ashrafudoulla M, Roy PK, Nahar S, Jahid IK, Choi C, Park SH, Ha SD. Comprehensive molecular, probiotic, and quorum-sensing characterization of anti-listerial lactic acid bacteria, and application as bioprotective in a food (milk) model. J Dairy Sci 2021; 104:6516-6534. [PMID: 33741164 DOI: 10.3168/jds.2020-19034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a major foodborne pathogen that adversely affects the food industry. In this study, 6 anti-listerial lactic acid bacteria (LAB) isolates were screened. These anti-listerial LAB isolates were identified via 16S rRNA gene sequencing and analyzed via repetitive extragenic palindromic-PCR. Probiotic assessment of these isolates, comprising an evaluation of the antibiotic susceptibility, tolerance to lysozyme, simulated gastric and intestinal juices, and gut conditions (low pH, bile salts, and 0.4% phenol), was carried out. Most of the isolates were resistant to streptomycin, vancomycin, gentamycin, kanamycin, and ciprofloxacin. All of the isolates were negative for virulence genes, including agg, ccf, cylA, cylB, cylLL, cylLS, cylM, esp, and gelE, and hemolytic activity. Furthermore, autoinducer-2 (a quorum-sensing molecule) was detected and quantified via HPLC with fluorescence detection after derivatization with 2,3-diaminonaphthalene. Metabolites profiles of the Lactobacillus sakei D.7 and Lactobacillus plantarum I.60 were observed and presented various organic acids linked with antibacterial activity. Moreover, freeze-dried cell-free supernatants from Lb. sakei (55 mg/mL) and Lb. plantarum (40 mg/mL) showed different minimum effective concentration (MEC) against L. monocytogenes in the food model (whole milk). In summary, these anti-listerial LAB isolates do not pose a risk to consumer health, are eco-friendly, and may be promising candidates for future use as bioprotective cultures and new probiotics to control contamination by L. monocytogenes in the food and dairy industries.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Kyeongjun Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea.
| |
Collapse
|
63
|
Gingerich E, Frana T, Logue CM, Smith DP, Pavlidis HO, Chaney WE. Effect of Feeding a Postbiotic Derived from Saccharomyces cerevisiae Fermentation as a Preharvest Food Safety Hurdle for Reducing Salmonella Enteritidis in the Ceca of Layer Pullets. J Food Prot 2021; 84:275-280. [PMID: 32977331 DOI: 10.4315/jfp-20-330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Salmonella Enteritidis is responsible for a significant proportion of foodborne salmonellosis in the United States and continues to be attributable to table eggs despite increased federal oversight. Technologies, including feed additives, continue to be evaluated for preharvest application and their potential food safety benefits. Diamond V Original XPC, a Saccharomyces cerevisiae fermentation-based postbiotic (SCFP), was evaluated for its effectiveness in reducing Salmonella Enteritidis (SE) colonization in young layer pullets. A total of 40 day-old Hy-Line W-36 layer pullets were equally divided and randomly assigned to one of two dietary treatments, with SCFP or without SCFP (PCON), and orally gavaged on day 28 with SE at 106 CFU/mL. Another 20 day-old pullets were fed the same control feed without SCFP and blank inoculated on day 28 with 1 mL of sterile phosphate-buffered saline to serve as a negative control. Qualitative and quantitative analyses of cecal contents for Salmonella were performed for all birds on day 32. The prevalence of SE in the ceca of all directly challenged birds was 100%; however, the SE concentration in birds fed SCFP diet (3.35 log CFU/g) was significantly lower (P < 0.0001) than that of the PCON birds not fed SCFP (4.49 log CFU/g). The proportion of birds with enumerable SE concentrations was lower in SCFP-fed pullets (57.9%) than in the PCON pullets (95.0%). These data suggest that inclusion of SCFP in the diet may aid in the reduction of SE within the ceca of commercial laying hens and could serve as an additional preharvest food safety hurdle. HIGHLIGHTS
Collapse
Affiliation(s)
- E Gingerich
- Diamond V, Cargill Health Technologies, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404
| | - T Frana
- Department of Veterinary Diagnostic and Production Animal Medicine, 2203 Lloyd Veterinary Medical Center, Iowa State University, Ames, Iowa 50011
| | - C M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, Georgia 30605, USA
| | - D P Smith
- Diamond V, Cargill Health Technologies, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404
| | - H O Pavlidis
- Diamond V, Cargill Health Technologies, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404
| | - W E Chaney
- Diamond V, Cargill Health Technologies, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404
- (ORCID: https://orcid.org/0000-0002-4707-4854 [W.E.C.])
| |
Collapse
|
64
|
Laroute V, Mazzoli R, Loubière P, Pessione E, Cocaign-Bousquet M. Environmental Conditions Affecting GABA Production in Lactococcus lactis NCDO 2118. Microorganisms 2021; 9:microorganisms9010122. [PMID: 33430203 PMCID: PMC7825684 DOI: 10.3390/microorganisms9010122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/19/2023] Open
Abstract
GABA (γ-aminobutyric acid) production has been widely described as an adaptive response to abiotic stress, allowing bacteria to survive in harsh environments. This work aimed to clarify and understand the relationship between GABA production and bacterial growth conditions, with particular reference to osmolarity. For this purpose, Lactococcus lactis NCDO 2118, a GABA-producing strain, was grown in glucose-supplemented chemically defined medium containing 34 mM L-glutamic acid, and different concentrations of salts (chloride, sulfate or phosphate ions) or polyols (sorbitol, glycerol). Unexpectedly, our data demonstrated that GABA production was not directly related to osmolarity. Chloride ions were the most significant factor influencing GABA yield in response to acidic stress while sulfate ions did not enhance GABA production. We demonstrated that the addition of chloride ions increased the glutamic acid decarboxylase (GAD) synthesis and the expression of the gadBC genes. Finally, under fed-batch conditions in a complex medium supplemented with 0.3 M NaCl and after a pH shift to 4.6, L. lactis NCDO 2118 was able to produce up to 413 mM GABA from 441 mM L-glutamic acid after only 56 h of culture, revealing the potential of L. lactis strains for intensive production of this bioactive molecule.
Collapse
Affiliation(s)
- Valérie Laroute
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Pascal Loubière
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Muriel Cocaign-Bousquet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| |
Collapse
|
65
|
Deng W, Dittoe DK, Pavilidis HO, Chaney WE, Yang Y, Ricke SC. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front Microbiol 2020; 11:583429. [PMID: 33414767 PMCID: PMC7782433 DOI: 10.3389/fmicb.2020.583429] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Poultry has been one of the major contributors of Campylobacter related human foodborne illness. Numerous interventions have been applied to limit Campylobacter colonization in poultry at the farm level, but other strategies are under investigation to achieve more efficient control. Probiotics are viable microbial cultures that can establish in the gastrointestinal tract (GIT) of the host animal and elicit health and nutrition benefits. In addition, the early establishment of probiotics in the GIT can serve as a barrier to foodborne pathogen colonization. Thus, probiotics are a potential feed additive for reducing and eliminating the colonization of Campylobacter in the GIT of poultry. Screening probiotic candidates is laborious and time-consuming, requiring several tests and validations both in vitro and in vivo. The selected probiotic candidate should possess the desired physiological characteristics and anti-Campylobacter effects. Probiotics that limit Campylobacter colonization in the GIT rely on different mechanistic strategies such as competitive exclusion, antagonism, and immunomodulation. Although numerous research efforts have been made, the application of Campylobacter limiting probiotics used in poultry remains somewhat elusive. This review summarizes current research progress on identifying and developing probiotics against Campylobacter and presenting possible directions for future research efforts.
Collapse
Affiliation(s)
- Wenjun Deng
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
66
|
Mohammadi M, Shadnoush M, Sohrabvandi S, Yousefi M, Khorshidian N, Mortazavian AM. Probiotics as potential detoxification tools for mitigation of pesticides: a mini review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mehrdad Mohammadi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt) Semnan University of Medical Sciences Semnan Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt) Semnan University of Medical Sciences Semnan Iran
| | - Amir M. Mortazavian
- Food Safety Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
67
|
Maes S, De Reu K, Van Weyenberg S, Lories B, Heyndrickx M, Steenackers H. Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses. BMC Microbiol 2020; 20:373. [PMID: 33308162 PMCID: PMC7731557 DOI: 10.1186/s12866-020-02046-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Environmental biofilms can induce attachment and protection of other microorganisms including pathogens, but can also prevent them from invasion and colonization. This opens the possibility for so-called biocontrol strategies, wherein microorganisms are applied to control the presence of other microbes. The potential for both positive and negative interactions between microbes, however, raises the need for in depth characterization of the sociobiology of candidate biocontrol agents (BCAs). The inside of the drinking water system (DWS) of broiler houses is an interesting niche to apply BCAs, because contamination of these systems with pathogens plays an important role in the infection of broiler chickens and consequently humans. In this study, Pseudomonas putida, which is part of the natural microbiota in the DWS of broiler houses, was evaluated as BCA against the broiler pathogen Salmonella Java. Results To study the interaction between these species, an in vitro model was developed simulating biofilm formation in the drinking water system of broilers. Dual-species biofilms of P. putida strains P1, P2, and P3 with S. Java were characterized by competitive interactions, independent of P. putida strain, S. Java inoculum density and application order. When equal inocula of S. Java and P. putida strains P1 or P3 were simultaneously applied, the interaction was characterized by mutual inhibition, whereas P. putida strain P2 showed an exploitation of S. Java. Lowering the inoculum density of S. Java changed the interaction with P. putida strain P3 also into an exploitation of S. Java. A further increase in S. Java inhibition was established by P. putida strain P3 forming a mature biofilm before applying S. Java. Conclusions This study provides the first results showing the potential of P. putida as BCA against S. Java in the broiler environment. Future work should include more complex microbial communities residing in the DWS, additional Salmonella strains as well as chemicals typically used to clean and disinfect the system. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02046-5.
Collapse
Affiliation(s)
- Sharon Maes
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Stephanie Van Weyenberg
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Bram Lories
- Faculty of Bioscience Engineering, Department of Microbial and Molecular Systems (M2S), Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Leuven, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.,Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans Steenackers
- Faculty of Bioscience Engineering, Department of Microbial and Molecular Systems (M2S), Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Leuven, Belgium.
| |
Collapse
|
68
|
Begunova AV, Rozhkova IV, Shirshova TI, Glazunova OA, Fedorova TV. Optimization of Cultivation Conditions for the Lactobacillus reuteri LR1 Strain to Improve the Biosynthesis of Bacteriocin-Like Substances. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820090033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
69
|
Bravo Santano N, Juncker Boll E, Catrine Capern L, Cieplak TM, Keleszade E, Letek M, Costabile A. Comparative Evaluation of the Antimicrobial and Mucus Induction Properties of Selected Bacillus Strains against Enterotoxigenic Escherichia coli. Antibiotics (Basel) 2020; 9:antibiotics9120849. [PMID: 33261022 PMCID: PMC7760508 DOI: 10.3390/antibiotics9120849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/02/2022] Open
Abstract
Probiotics have been shown to bind to host receptors, which are important for pathogen adhesion and induce the host’s production of defence factors. They can activate the goblet-cell-derived production of mucins, a major component of the mucus layer and a physical barrier participating in limiting the proximity of microorganisms to the epithelial layer. In the last decade, Bacillus spp. strains have gained interest in human and animal health due to their tolerance and stability under gastrointestinal tract conditions. Moreover, Bacillus spp. strains can also produce various antimicrobial peptides that can support their use as commercial probiotic supplements and functional foods. The present study aimed to evaluate and determine the ability of selected Bacillus spp. strains to inhibit the growth of enterotoxigenic Escherichia coli (ETEC) F4 and to reduce binding of ETEC F4 to HT29-16E (mucus-secreting and goblet-like) human intestinal cells. Moreover, mucus production in the HT29 cells in the presence of the Bacillus spp. strains was quantified by ELISA. Bacillus spp. strains (CHCC 15076, CHCC 15516, CHCC 15541, and CHCC 16872) significantly inhibited the growth of ETEC F4. Moreover, the ability of the probiotic Bacillus spp. strains to stimulate mucin release was highly strain dependent. The treatment with Bacillus subtilis CHCC 15541 resulted in a significant increase of both MUC2 and MUC3 in HT29-16E cells. Therefore, this strain could be an up-and-coming candidate for developing commercial probiotic supplements to prevent infections caused by ETEC F4 and, potentially, other pathogens.
Collapse
Affiliation(s)
- Natalia Bravo Santano
- Department of Life Sciences, University of Roehampton, London SW154JD, UK; (N.B.S.); (E.K.)
| | - Erik Juncker Boll
- Animal Health Innovation, Chr. Hansen A/S, 2970 Hørsholm, Denmark; (E.J.B.); (L.C.C.); (T.M.C.)
| | - Lena Catrine Capern
- Animal Health Innovation, Chr. Hansen A/S, 2970 Hørsholm, Denmark; (E.J.B.); (L.C.C.); (T.M.C.)
| | - Tomasz Maciej Cieplak
- Animal Health Innovation, Chr. Hansen A/S, 2970 Hørsholm, Denmark; (E.J.B.); (L.C.C.); (T.M.C.)
| | - Enver Keleszade
- Department of Life Sciences, University of Roehampton, London SW154JD, UK; (N.B.S.); (E.K.)
| | - Michal Letek
- Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain;
| | - Adele Costabile
- Department of Life Sciences, University of Roehampton, London SW154JD, UK; (N.B.S.); (E.K.)
- Correspondence: ; Tel.: +44-(0)-20-8392-3571
| |
Collapse
|
70
|
Baráti-Deák B, Mohácsi-Farkas C, Belák Á. Searching for Antagonistic Activity of Bacterial Isolates Derived from Food Processing Environments on Some Food-Borne Pathogenic Bacteria. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial strains with inhibitory effect on Salmonella Hartford, Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli, respectively, were isolated. Out of the 64 bacteria originated from food processing environments, 20 could inhibit at least one of the tested pathogens, and it was proved that growth decline of the pathogenic bacteria was more remarkable by co-culturing than by using cell-free supernatants of the isolates. Seven different genera (Pseudomonas, Bacillus, Paenibacillus, Macrococcus, Staphylococcus, Serratia, and Rothia) reduced the pathogens’ growth during the time period of analysis, and the strongest inhibitory effect was observed after 24 h between 15 and 30 °C. Sensitivity of the tested human pathogenic bacteria against the inhibitory strains was distinct, as Y. enterocolitica could be inhibited by numerous isolates, while S. Hartford proved to be the most resistant. Our results reveal that the isolated bacteria or their excreted metabolites could hinder pathogen growth when used in sufficient quantities.
Collapse
Affiliation(s)
- B. Baráti-Deák
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University,H-1118 Budapest, Somlói út 14–16. Hungary
| | - Cs. Mohácsi-Farkas
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University,H-1118 Budapest, Somlói út 14–16. Hungary
| | - Á. Belák
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University,H-1118 Budapest, Somlói út 14–16. Hungary
| |
Collapse
|
71
|
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Crit Rev Food Sci Nutr 2020; 62:1105-1118. [DOI: 10.1080/10408398.2020.1835818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | |
Collapse
|
72
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Qattan SYA, Batiha GE, Khafaga AF, Abdel-Moneim AME, Alagawany M. Probiotics in poultry feed: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2020; 104:1835-1850. [PMID: 32996177 DOI: 10.1111/jpn.13454] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
The use of antibiotics to maintain animal well-being, promote growth and improve efficiency has been practised for more than 50 years. However, as early as the 1950s, researchers identified concern on the development of resistant bacteria for the antibiotics streptomycin and tetracycline used in turkeys and broilers respectively. These findings laid the groundwork for agricultural officials to impose stricter regulatory parameters on the use of antibiotics in poultry feeds. Probiotics are live micro-organisms included in the diet of animals as feed additives or supplements. Commonly known as a direct-fed microbial, probiotics provide beneficial properties to the host, primarily through action in the gastrointestinal tract (GIT) of the animal. Supplementation of probiotics in the diet can improve animal health and performance, through contributions to gut health and nutrient use. For instance, supplementation of probiotics has been demonstrated to benefit farm animals in immune modulation, structural modulation and increased cytokine production, which positively affect the intestinal mucosal lining against pathogens. Bacillus subtilis has been a popular bacterium used within the industry and was shown to improve intestinal villus height. Increasing the villus height and structure of the crypts in the GIT allows for the improvement of nutrient digestion and absorption. Tight junctions maintain important defences against pathogenic bacteria and cellular homeostasis. Heat stress can be a major environmental challenge in the poultry industry. Heat stress causes the bird to fluctuate its internal core temperature beyond their comfort zone. To overcome such challenges, poultry will attempt to balance its heat production and dissipation through behavioural and physiological adaptation mechanisms.
Collapse
Affiliation(s)
| | - Mohamed T El-Saadony
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaza Y A Qattan
- Department of Biological Sciences, Microbiology, Faculty of Science, Abdulaziz University, Jeddah, Saudi Arabia
| | - Gaber E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | | | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
73
|
Nemo R, Bacha K. Microbial, physicochemical and proximate analysis of selected Ethiopian traditional fermented beverages. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Chen JH, Xiang W, Cao KX, Lu X, Yao SC, Hung D, Huang RS, Li LB. Characterization of Volatile Organic Compounds Emitted from Endophytic Burkholderia cenocepacia ETR-B22 by SPME-GC-MS and Their Inhibitory Activity against Various Plant Fungal Pathogens. Molecules 2020; 25:E3765. [PMID: 32824884 PMCID: PMC7504634 DOI: 10.3390/molecules25173765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
The use of antagonistic microorganisms and their volatile organic compounds (VOCs) to control plant fungal pathogens is an eco-friendly and promising substitute for chemical fungicides. In this work, endophytic bacterium ETR-B22, isolated from the root of Sophora tonkinensis Gagnep., was found to exhibit strong antagonistic activity against 12 fungal pathogens found in agriculture. Strain ETR-B22 was identified as Burkholderia cenocepacia based on 16S rRNA and recA sequences. We evaluated the antifungal activity of VOCs emitted by ETR-B22. The VOCs from strain ETR-B22 also showed broad-spectrum antifungal activity against 12 fungal pathogens. The composition of the volatile profiles was analyzed based on headspace solid phase microextraction (HS-SPME) gas chromatography coupled to mass spectrometry (GC-MS). Different extraction strategies for the SPME process significantly affected the extraction efficiency of the VOCs. Thirty-two different VOCs were identified. Among the VOC of ETR-B22, dimethyl trisulfide, indole, methyl anthranilate, methyl salicylate, methyl benzoate, benzyl propionate, benzyl acetate, 3,5-di-tert-butylphenol, allyl benzyl ether and nonanoic acid showed broad-spectrum antifungal activity, and are key inhibitory compounds produced by strain ETR-B22 against various fungal pathogens. Our results suggest that the endophytic strain ETR-B22 and its VOCs have high potential for use as biological controls of plant fungal pathogens.
Collapse
Affiliation(s)
- Jian-Hua Chen
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
| | - Wei Xiang
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
| | - Ke-Xin Cao
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
| | - Xuan Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Shao-Chang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Ding Hung
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Rong-Shao Huang
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Liang-Bo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| |
Collapse
|
75
|
Romano I, Ventorino V, Ambrosino P, Testa A, Chouyia FE, Pepe O. Development and Application of Low-Cost and Eco-Sustainable Bio-Stimulant Containing a New Plant Growth-Promoting Strain Kosakonia pseudosacchari TL13. Front Microbiol 2020; 11:2044. [PMID: 33013749 PMCID: PMC7461993 DOI: 10.3389/fmicb.2020.02044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/03/2020] [Indexed: 01/26/2023] Open
Abstract
The use of beneficial microbes as inoculants able to improve fitness, growth and health of plants also in stress conditions is an attractive low-cost and eco-friendly alternative strategy to harmful chemical inputs. Thirteen potential plant growth-promoting bacteria were isolated from the rhizosphere of wheat plants cultivated under drought stress and nitrogen deficiency. Among these, the two isolates TL8 and TL13 showed multiple plant growth promotion activities as production of indole-3-acetic acid (IAA), siderophores, ammonia, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production, the ability to solubilize phosphate as well as exerted antimicrobial activity against plant pathogens as Botrytis spp. and Phytophthora spp. The two selected strains were identified as Kosakonia pseudosacchari by sequencing of 16S rRNA gene. They resulted also tolerant to abiotic stress and were able to efficiently colonize plant roots as observed in vitro assay under fluorescence microscope. Based on the best PGP properties, the strain K. pseudosacchari TL13 was selected to develop a new microbial based formulate. A sustainable and environmentally friendly process for inoculant production was developed using agro-industrial by-products for microbial growth. Moreover, the application of K. pseudosacchari TL13- based formulates in pot experiment improved growth performance of maize plants.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Patrizia Ambrosino
- Agriges S.r.l. - Nutrizione Speciale per L'Agricoltura Biologica e Integrata, San Salvatore Telesino, Italy
| | - Antonino Testa
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Fatima Ezzahra Chouyia
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Department of Biology, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
76
|
Role of Lactobacillus biofilms in Listeria monocytogenes adhesion to glass surfaces. Int J Food Microbiol 2020; 334:108804. [PMID: 32818764 DOI: 10.1016/j.ijfoodmicro.2020.108804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes can form long-lasting biofilms on food-contact surfaces. Lactic acid bacteria (LAB) have shown promise in antagonizing this microorganism in liquid media. However, the ecological relationships differ when cells are forming biofilms. In this work, we propose the use of Lactobacillus biofilms as surface "conditioners" to modulate the adhesion of L. monocytogenes. For this, the biofilm formation ability of Lactobacillus fermentum MP26 and Lactobacillus salivarius MP14 (human milk origin), fluorescently labeled by transfer of the mCherry-encoding pRCR12 plasmid, was first evaluated. Then, mature biofilms of these strains transformed with pRCR12 for expressing the fluorescent protein mCherry were used as adhesion substrate for GFP-tagged L. monocytogenes Scott A. The resulting biofilms were studied in terms of cellular population and attached biomass (cells plus matrix). Species distribution inside the biofilm structure was revealed by confocal laser scanning microscopy (CLSM). Although none of the Lactobacillus spp. strains reduced the adhesion of L. monocytogenes Scott A, species interactions seem to interfere with the synthesis of extracellular polymeric substances and species distribution inside the biofilms. In dual-species biofilms, CLSM images revealed that Lactobacillus cells were trapping those of L. monocytogenes Scott A. When surfaces were conditioned with Lactobacillus biofilms, the spatial distribution of L. monocytogenes Scott A cells was species-specific, suggesting these interactions are governing the ultimate biofilm structure. The results here obtained open new possibilities for controlling L. monocytogenes dispersal using these Lactobacillus spp. biofilms as a "natural" immobilization way. Whether species interactions could modify the virulence of L. monocytogenes still remains unclear.
Collapse
|
77
|
Development of a bioactive synbiotic edible film based on cassava starch, inulin, and Lactobacillus casei. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105754] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
78
|
Derome N, Filteau M. A continuously changing selective context on microbial communities associated with fish, from egg to fork. Evol Appl 2020; 13:1298-1319. [PMID: 32684960 PMCID: PMC7359827 DOI: 10.1111/eva.13027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fast increase of fish aquaculture production to meet consumer demands is accompanied by important ecological concerns such as disease outbreaks. Meanwhile, food waste is an important concern with fish products since they are highly perishable. Recent aquaculture and fish product microbiology, and more recently, microbiota research, paved the way to a highly integrated approach to understand complex relationships between host fish, product and their associated microbial communities at health/disease and preservation/spoilage frontiers. Microbial manipulation strategies are increasingly validated as promising tools either to replace or to complement traditional veterinary and preservation methods. In this review, we consider evolutionary forces driving fish microbiota assembly, in particular the changes in the selective context along the production chain. We summarize the current knowledge concerning factors governing assembly and dynamics of fish hosts and food microbial communities. Then, we discuss the current microbial community manipulation strategies from an evolutionary standpoint to provide a perspective on the potential for risks, conflict and opportunities. Finally, we conclude that to harness evolutionary forces in the development of sustainable microbiota manipulation applications in the fish industry, an integrated knowledge of the controlling abiotic and especially biotic factors is required.
Collapse
Affiliation(s)
- Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieUniversité LavalQuébecQCCanada
| | - Marie Filteau
- Département de BiologieUniversité LavalQuébecQCCanada
- Département des Sciences des alimentsInstitut sur la nutrition et les aliments fonctionnels (INAF)Université LavalQuébecQCCanada
| |
Collapse
|
79
|
Zhang L, Chichlowski M, Gross G, Holle MJ, Lbarra-Sánchez LA, Wang S, Miller MJ. Milk Fat Globule Membrane Protects Lactobacillus rhamnosus GG from Bile Stress by Regulating Exopolysaccharide Production and Biofilm Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6646-6655. [PMID: 32396007 DOI: 10.1021/acs.jafc.0c02267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The milk fat globule membrane (MFGM) is a complex, highly conserved structure surrounding fat droplets secreted into mammalian milk. This study evaluated the impact of MFGM on Lactobacillus rhamnosus GG (LGG). MFGM-10 (2.5 g/L, 5 g/L, and 10 g/L) did not affect LGG growth in MRS medium but enhanced the ability of LGG to survive in the presence of 0.5% porcine bile. In the presence of MFGM-10 (5 g/L) and bile (0.5%), there were less complex polysaccharides in the media and less capsular polysaccharides associated with the LGG cells compared to the bile exposure alone (p < 0.05). The expression of four EPS genes was modulated by bile stress and MFGM. Biofilm thickness was increased (p < 0.05) during bile stress with MFGM compared to other treatments. Furthermore, MFGM increased LGG survival during transit in the murine GI tract. Future experiments will determine the impact of MFGM on LGG probiotic functionality.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Maciej Chichlowski
- Mead Johnson Nutrition, Evansville, Indiana 47721, United States
- Mead Johnson Nutrition, Nijmegen 6545 CJ, The Netherlands
| | - Gabriele Gross
- Mead Johnson Nutrition, Evansville, Indiana 47721, United States
- Mead Johnson Nutrition, Nijmegen 6545 CJ, The Netherlands
| | - Maxwell J Holle
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Luis A Lbarra-Sánchez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Shumei Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
80
|
Hadidi Zavareh AH, Haji Khani R, Pakpour B, Soheili M, Salami M. Probiotic treatment differentially affects the behavioral and electrophysiological aspects in ethanol exposed animals. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:776-780. [PMID: 32695294 PMCID: PMC7351434 DOI: 10.22038/ijbms.2020.41685.9846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Harmful effects of alcohol on brain function including cognitive phenomena are well known. Damage to gut microbiota is linked to neurological disorders. Evidence indicates that intestinal flora can be strengthened by probiotic bacteria. In this study, we evaluated the effect of probiotics administration on LTP induction in rats receiving ethanol. MATERIALS AND METHODS To assess if probiotic treatment influences toxic effect of ethanol, vehicle (CON) and probiotic treated (CON+PRO) control rats, and chronic ethanol (CE) exposed and CE probiotic treated (CE+PRO) animals were entered into the experiments. Shuttle box test and in vivo electrophysiological recordings were accomplished to evaluate memory and hippocampal baseline filed excitatory postsynaptic potentials (fEPSPs) and long term potentiation (LTP), respectively. RESULTS Ethanol impaired memory in the CE rats. It also diminished the slope size of fEPSPs and prevented LTP induction. While the probiotic supplementation improved memory in the CE+PRO rats, it did not influence synaptic transmission in these animals. CONCLUSION Conclusively, behavioral but not electrophysiological aspect of cognition is sensitive to probiotic treatment in the ethanol exposed animals.
Collapse
Affiliation(s)
| | - Ramin Haji Khani
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahareh Pakpour
- Department of Biology, Faculty of Sciences Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of medical sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of medical sciences, Kashan, Iran
| |
Collapse
|
81
|
ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl Microbiol Biotechnol 2020; 104:6363-6373. [DOI: 10.1007/s00253-020-10703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
|
82
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|
83
|
Sabo SDS, Mendes MA, Araújo EDS, Muradian LBDA, Makiyama EN, LeBlanc JG, Borelli P, Fock RA, Knöbl T, Oliveira RPDS. Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Sci Rep 2020; 10:7235. [PMID: 32350311 PMCID: PMC7190695 DOI: 10.1038/s41598-020-64038-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/19/2019] [Indexed: 01/20/2023] Open
Abstract
The demand for animal protein for human consumption has been risen exponentially. Modern animal production practices are associated with the regular use of antibiotics, potentially increasing the emerging multi-resistant bacteria, which may have a negative impact on public health. In poultry production, substances capable of maximizing the animals’ performance and displaying an antimicrobial activity against pathogens are very well desirable features. Probiotic can be an efficient solution for such a task. In the present work, lactic acid bacteria (LAB) were isolated from chicken cecum and screened for their antagonistic effect towards many pathogens. Their capacity of producing the B-complex vitamins folate and riboflavin were also evaluated. From 314 isolates, three (C43, C175 and C195) produced Bacteriocin-Like Inhibitory Substances (BLIS) against Staphylococcus aureus (inhibition zones of 18.9, 21.5, 19.5 mm, respectively) and also inhibited the growth of Salmonella Heidelberg. The isolate C43 was identified as Enterococcus faecium, while C173 and C195 were both identified as Lactococcus lactis subsp. lactis. Moreover, the isolates L. lactis subsp. lactis strains C173 and C195 demonstrated high potential to be used as probiotic in poultry feed, in addition to their advantage of producing folate (58.0 and 595.5 ng/mL, respectively) and riboflavin (223.3 and 175.0 ng/mL, respectively).
Collapse
Affiliation(s)
- Sabrina da Silva Sabo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Anita Mendes
- Chemical Engineering Department, University of São Paulo, São Paulo, Brazil
| | - Elias da Silva Araújo
- Department of Food and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Terezinha Knöbl
- Department of Pathology, School of Veterinary Medicine and Animal Science, São Paulo, Brazil, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
84
|
Chen Y, Wang X, Zhang X, Xu D, Zhang W, Qiu J, Liu Q, Dong Q. Modeling the interactions among
Salmonella
enteritidis,
Pseudomonas aeruginosa
, and
Lactobacillus plantarum. J Food Saf 2020. [DOI: 10.1111/jfs.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanmei Chen
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Xiang Wang
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Xibin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and EngineeringShandong Agricultural University Taian Shandong China
- New Hope Liuhe Co., Ltd. Beijing China
| | - Dongpo Xu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Wenmin Zhang
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Jingxuan Qiu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Qing Liu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Qingli Dong
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
85
|
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: conceptualization from a new approach. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Probiotics in Animal Husbandry: Applicability and Associated Risk Factors. SUSTAINABILITY 2020. [DOI: 10.3390/su12031087] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probiotics have been emerging as a safe and viable alternative to antibiotics for increasing performance in livestock. Literature was collated via retrieved information from online databases, viz, PubMed, MEDLINE, ScienceDirect, Scopus, Web of Science and Google Scholar. Besides improved immunomodulation and nutrient digestibility, in-feed probiotics have shown drastic reductions in gastrointestinal tract-invading pathogens. However, every novel probiotic strain cannot be assumed to share historical safety with conventional strains. Any strain not belonging to the wild-type distributions of relevant antimicrobials, or found to be harbouring virulence determinants, should not be developed further. Modes of identification and the transmigration potential of the strains across the gastrointestinal barrier must be scrutinized. Other potential risk factors include the possibility of promoting deleterious metabolic effects, excessive immune stimulation and genetic stability of the strains over time. Adverse effects of probiotics could be strain specific, depending on the prevailing immunological and physiological condition of the host. The most crucial concern is the stability of the strain. Probiotics stand a good chance of replacing antibiotics in animal husbandry. The possibility of the probiotics used in animal feed cross-contaminating the human food chain cannot be downplayed. Thus, the established safety measures in probiotic development must be adhered to for a successful global campaign on food safety and security.
Collapse
|
87
|
Šikić Pogačar M, Langerholc T, Mičetić-Turk D, Možina SS, Klančnik A. Effect of Lactobacillus spp. on adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines. BMC Vet Res 2020; 16:34. [PMID: 32013961 PMCID: PMC6998324 DOI: 10.1186/s12917-020-2238-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Campylobacter spp. are a major cause of bacterial food-borne diarrhoeal disease. This mainly arises through contamination of meat products during processing. For infection, Campylobacter spp. must adhere to epithelial cells of the mucus layer, survive conditions of the gastrointestinal tract, and colonise the intestine of the host. Addition of probiotic bacteria might promote competitive adhesion to epithelial cells, consequently reducing Campylobacter jejuni colonisation. Effect of Lactobacillus spp. (PCS20, PCS22, PCS25, LGG, PCK9) on C. jejuni adhesion, invasion and translocation in pig (PSI cl.1) and chicken (B1OXI) small-intestine cell lines, as well as pig enterocytes (CLAB) was investigated. RESULTS Overall, in competitive adhesion assays with PSI cl.1 and CLAB cell monolayers, the addition of Lactobacillus spp. reduced C. jejuni adherence to the cell surface, and negatively affected the C. jejuni invasion. Interestingly, Lactobacillus spp. significantly impaired C. jejuni adhesion in three-dimensional functional PSI cl.1 and B1OXI cell models. Also, C. jejuni did not translocate across PSI cl.1 and B1OXI cell monolayers when co-incubated with probiotics. Among selected probiotics, Lactobacillus rhamnosus LGG was the strain that reduced adhesion efficacy of C. jejuni most significantly under co-culture conditions. CONCLUSION The addition of Lactobacillus spp. to feed additives in livestock nutrition might be an effective novel strategy that targets Campylobacter adhesion to epithelial cells, and thus prevents colonisation, reduces the transmission, and finally lowers the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, 2311, Hoče, Slovenia
| | | | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
88
|
Mousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
89
|
Dong Q, Zhang W, Guo L, Niu H, Liu Q, Wang X. Influence of Lactobacillus plantarum individually and in combination with low O2-MAP on the pathogenic potential of Listeria monocytogenes in cabbage. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
90
|
Hossain MI, Mizan MFR, Ashrafudoulla M, Nahar S, Joo HJ, Jahid IK, Park SH, Kim KS, Ha SD. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108864] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
91
|
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019; 11:E1591. [PMID: 31337060 PMCID: PMC6683253 DOI: 10.3390/nu11071591] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Preserving the efficacy of probiotic bacteria exhibits paramount challenges that need to be addressed during the development of functional food products. Several factors have been claimed to be responsible for reducing the viability of probiotics including matrix acidity, level of oxygen in products, presence of other lactic acid bacteria, and sensitivity to metabolites produced by other competing bacteria. Several approaches are undertaken to improve and sustain microbial cell viability, like strain selection, immobilization technologies, synbiotics development etc. Among them, cell immobilization in various carriers, including composite carrier matrix systems has recently attracted interest targeting to protect probiotics from different types of environmental stress (e.g., pH and heat treatments). Likewise, to successfully deliver the probiotics in the large intestine, cells must survive food processing and storage, and withstand the stress conditions encountered in the upper gastrointestinal tract. Hence, the appropriate selection of probiotics and their effective delivery remains a technological challenge with special focus on sustaining the viability of the probiotic culture in the formulated product. Development of synbiotic combinations exhibits another approach of functional food to stimulate the growth of probiotics. The aim of the current review is to summarize the strategies and the novel techniques adopted to enhance the viability of probiotics.
Collapse
Affiliation(s)
- Antonia Terpou
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Loulouda A Bosnea
- Hellenic Agricultural Organization DEMETER, Institute of Technology of Agricultural Products, Dairy Department, Katsikas, 45221 Ioannina, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
92
|
Yuan L, Hansen MF, Røder HL, Wang N, Burmølle M, He G. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Crit Rev Food Sci Nutr 2019; 60:2277-2293. [PMID: 31257907 DOI: 10.1080/10408398.2019.1632790] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Attachment of microorganisms to food contact surfaces and the subsequent formation of biofilms may cause equipment damage, food spoilage and even diseases. Mixed-species biofilms are ubiquitous in the food industry and they generally exhibit higher resistance to disinfectants and antimicrobials compared to single-species biofilms. The physiology and metabolic activity of microorganisms in mixed-species biofilms are however rather complicated to study, and despite targeted research efforts, the potential role of mixed-species biofilms in food industry is still rather unexplored. In this review, we summarize recent studies in the context of bacterial social interactions in mixed-species biofilms, resistance to disinfectants, detection methods, and potential novel strategies to control the formation of mixed-species biofilms for enhanced food safety and food quality.
Collapse
Affiliation(s)
- Lei Yuan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
93
|
Peng Y, Shi Q, Wang Y, Zhang F, Ji Z, Zhang J. Dietary probiotics have different effects on the composition of fecal microbiota in farmed raccoon dog (Nyctereutes procyonoides) and silver fox (Vulpes vulpes fulva). BMC Microbiol 2019; 19:109. [PMID: 31126241 PMCID: PMC6534910 DOI: 10.1186/s12866-019-1491-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The abuse of antibiotics in animal husbandry imposes a serious threat to both animal health and the environment. As a replacement for antibiotics, probiotic products have been widely used in livestock farming to promote growth of animals. However, no products specifically developed for farmed raccoon dogs and foxes are commercially available at the moment. This study was conducted to investigate the effects of mixed probiotics on farmed raccoon dogs and foxes. RESULTS Two feeding trials on farmed raccoon dogs and foxes were performed. A mixed probiotic preparation composed of Bifidobacterium bifidum, Clostridium butyricum, Bacillus subtilis and Bacillus licheniformis was fed to these two canine species in order to assess whether such a mixed probiotics can be an alternative to antibiotics (control group). The body weight of raccoon dogs exhibited an increasing tendency with mixed probiotics administration, while that of foxes did not. The serum antioxidant activity was evaluated, and a significantly increase of total antioxidative capacity (T-AOC) was observed in both species. Illumina MiSeq was used for the sequencing of 16S rRNA genes to compare the composition of fecal microbiota between the control and mixed probiotics groups. Although α-diversity did not change, β-diversity of the fecal microbiota showed a distinct dissimilarity between the control and probiotics groups of both raccoon dogs and foxes. Dietary mixed probiotics increased the abundance of the genus Bifidobacterium in the fecal samples of raccoon dogs, and the genus Bacillus in the fecal samples of foxes. The different responses of raccoon dogs and foxes to probiotics might be the result of differences in the composition of the native gut microbiota of the two species. CONCLUSIONS The mixed probiotics preparation composed of Bifidobacterium bifidum, Clostridium butyricum, Bacillus subtilis and Bacillus licheniformis could be an effective feed additive for the improvement of the health of farmed raccoon dogs, but it may not be suitable for foxes.
Collapse
Affiliation(s)
- Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, People's Republic of China.
| | - Qiumei Shi
- Hebei Normal University of Science and Technology, 360 Hebei Street, Qin Huangdao, 066004, People's Republic of China
| | - Yujie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, People's Republic of China
| | - Fan Zhang
- Hebei Normal University of Science and Technology, 360 Hebei Street, Qin Huangdao, 066004, People's Republic of China
| | - Zhixin Ji
- Hebei Normal University of Science and Technology, 360 Hebei Street, Qin Huangdao, 066004, People's Republic of China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
94
|
Martinez MN, Watts JL, Gilbert JM. Questions associated with the development of novel drugs intended for the treatment of bacterial infections in veterinary species. Vet J 2019; 248:79-85. [PMID: 31113568 DOI: 10.1016/j.tvjl.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/17/2022]
Abstract
The emergence of multi-drug resistant bacteria has limited therapeutic options for the treatment of bacterial diseases in both human and veterinary medicine. This has resulted in an urgent need for novel agents to treat infectious diseases. Veterinary medicine is further constrained by the need to ensure that our emerging therapeutics have minimal or no impact on resistance in human pathogens. Thus, there has recently been increased attention given to the development of alternative treatments for infectious disease in animals. The domain of alternative therapies, which includes antimicrobial peptides, bacteriophages, probiotics, and immunomodulators, provides a means to directly inhibit the ability of a pathogen to damage the host while optimally, not imposing a selective pressure favouring antibiotic resistance. However, it is recognized that bacterial pathogens have the capability of expressing a variety of virulence factors, necessitating a clear understanding of the specific target for that therapeutic intervention. This manuscript explores the various virulence mechanisms, the potential utility of developing novel anti-virulence agents for counteracting the expression of diseases associated with veterinary species, and some of the unique regulatory hurdles to be addressed within the framework of a new animal drug application. We conclude with the public health concerns to be considered as these agents are integrated into the veterinary therapeutic arsenal. Our hope is that this manuscript will provide a platform to stimulate discussions on the critical questions that need to be addressed.
Collapse
Affiliation(s)
- Marilyn N Martinez
- US FDA Center for Veterinary Medicine, Rockville, MD 20855, United States.
| | - Jeffrey L Watts
- Zoetis, Inc., 333 Portage Street, Kalamazoo, MI 49007, United States
| | - Jeffrey M Gilbert
- US FDA Center for Veterinary Medicine, Rockville, MD 20855, United States
| |
Collapse
|
95
|
Jiang B, Li Z, Ou B, Duan Q, Zhu G. Targeting ideal oral vaccine vectors based on probiotics: a systematical view. Appl Microbiol Biotechnol 2019; 103:3941-3953. [PMID: 30915504 DOI: 10.1007/s00253-019-09770-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Probiotics have great potential to be engineered into oral vaccine delivery systems, which can facilitate elicitation of mucosal immunity without latent risks of pathogenicity. Combined with the progressive understanding of probiotics and the mucosal immune system as well as the advanced biotechniques of genetic engineering, the development of promising oral vaccine vectors based on probiotics is available while complicated and demanding. Therefore, a systematical view on the design of practical probiotic vectors is necessary, which will help to logically analyze and resolve the problems that might be neglected during our exploration. Here, we attempt to systematically summarize several fundamental issues vital to the effectiveness of the vector of probiotics, including the stability of the engineered vectors, the optimization of antigen expression, the improvement of colonization, and the enhancement of immunoreactivity. We also compared the existent strategies and some developing ones, attempting to figure out an optimal strategy that might deserve to be referred in the future development of oral vaccine vectors based on probiotics.
Collapse
Affiliation(s)
- Boyu Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Zhendong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.,College of Life Science, Zhaoqing University, Zhaoqing, 526061, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| |
Collapse
|
96
|
Xue Y, Jiang DL, Hu Q, Rao SQ, Gao L, Yang ZQ. Electrochemical Magnetic Bead-Based Immunosensor for Rapid and Quantitative Detection of Probiotic Lactobacillus rhamnosus in Dairy Products. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01457-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Abstract
The NOVA food categorisation recommends 'avoiding processed foods (PF), especially ultra-processed foods (UPF)' and selecting minimally PF to address obesity and chronic disease. However, NOVA categories are drawn using non-traditional views of food processing with additional criteria including a number of ingredients, added sugars, and additives. Comparison of NOVA's definition and categorisation of PF with codified and published ones shows limited congruence with respect to either definition or food placement into categories. While NOVA studies associate PF with decreased nutrient density, other classifications find nutrient-dense foods at all levels of processing. Analyses of food intake data using NOVA show UPF provide much added sugars. Since added sugars are one criterion for designation as UPF, such a proof demonstrates a tautology. Avoidance of foods deemed as UPF, such as wholegrain/enriched bread and cereals or flavoured milk, may not address obesity but could decrease intakes of folate, calcium and dietary fibre. Consumer understanding and implementation of NOVA have not been tested. Neither have outcomes been compared with vetted patterns, such as Dietary Approaches to Stop Hypertension, which base food selection on food groups and nutrient contribution. NOVA fails to demonstrate the criteria required for dietary guidance: understandability, affordability, workability and practicality. Consumers' confusion about definitions and food categorisations, inadequate cooking and meal planning skills and scarcity of resources (time, money), may impede adoption and success of NOVA. Research documenting that NOVA can be implemented by consumers and has nutrition and health outcomes equal to vetted patterns is needed.
Collapse
Affiliation(s)
- Julie Miller Jones
- Exercise Science and Nutrition, St. Catherine University, 2004 Randolph Ave. St. Paul, MN 55105, USA
| |
Collapse
|
98
|
Patrignani F, Siroli L, Parolin C, Serrazanetti DI, Vitali B, Lanciotti R. Use of Lactobacillus crispatus to produce a probiotic cheese as potential gender food for preventing gynaecological infections. PLoS One 2019; 14:e0208906. [PMID: 30625157 PMCID: PMC6326422 DOI: 10.1371/journal.pone.0208906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
This research is aimed to evaluate the suitability of Squacquerone cheese to support the viability of Lactobacillus crispatus BC4, a vaginal strain endowed with a strong antimicrobial activity against urogenital pathogens and foodborne microorganisms, in order to recommend a gender food for woman wellbeing. The viability of L. crispatus BC4, used as adjunct culture, was evaluated during the refrigerated storage of Squacquerone cheese, as well as when the cheese was subjected to simulated stomach-duodenum passage tested by the patented Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Moreover, the effects of L. crispatus BC4 addition were evaluated on product hydrolytic patterns, in terms of proteolysis, lipolysis and volatile molecule profiles. The data showed that L. crispatus BC4 maintained high viability, also in presence of physiological stress conditions, until the end of the refrigerated storage. Moreover, the inclusion of L. crispatus BC4 gave rise to cheese product with higher score of overall acceptability when compared to control cheese. In addition, the survival of L. crispatus BC4, carried in test cheese, in gastro intestinal conditions was confirmed by SHIME. The results showed that the vaginal Lactobacillus strain was more affected by the low pH of the stomach, simulated by the SHIME reactor, rather than to bile salts and pancreatic juices. Although only in vivo trials will be able to confirm the functionality of the cheese in the vaginal environment, these data represent a first step towards the employment of the Squacquerone cheese as probiotic food able to promote the woman’s health by preventing gynaecological infections.
Collapse
Affiliation(s)
- Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
- * E-mail:
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Diana I. Serrazanetti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| |
Collapse
|
99
|
Sukhikh A, Sukhikh A, Zakharova Y, Zakharova Y, Yuzhalin A, Yuzhalin A, Bykov A, Bykov A, Kotova T, Kotova T, Poznyakovskiy V, Poznyakovskiy V. Criteria for standartization of probiotic components in functional food products. FOODS AND RAW MATERIALS 2018. [DOI: 10.21603/2308-4057-2018-2-457-466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increasing volume of consumption of probiotics and functional food products requires determination of standardized criteria for cultures and their exometabolites used in functional products manufacturing. The study was aimed at developing criteria for the estimation and standardization of exometabolites and the colony-forming ability of probiotic strains for functional food production. The work included such microbiological and physicochemical methods as GC-MS, GPC, UV, and FT-IR-spectroscopy. Based on the results of the study, the comparative analysis of the microbiological properties of probiotic Bifidobacterium strains was provided, the fatty acid composition of the cell wall was described, and the physical and chemical study of the exopolymers produced by them was carried out. According to the data of FT-IR- spectroscopy, the characteristic features of the components of the cell wall of Bifidobacterium strains were established. Bifidobacteria form the unique composition of organophosphorus structures of lipoteichoic acids, which determines the adhesive ability of strains. The authors studied the molecular weight distribution of the samples of exometabolites isolated from the nutrient medium after the cultivation of bifidobacteria, under conditions of gel-permeation chromatography. The spectral (UV, FT-IR) characteristics of the produced metabolites and their chromatographic fractions were compared. The fatty acids of the Bifidobacterium cell membrane were analyzed using the GC/MS method. The fatty acids were extracted from bacterial cells with different hydrophobicity with a mixture of chloroform and hexane. It has been established that the hydrophobicity is determined by different contents of unsaturated and branched fatty acids in the bacterial membrane. Hydrophobic bifidobacteria are the only that contain the isopentadecane (isoC15:0) and methyl-tetradecanoic (13Me-C14:0) acids. With the mean hydrophobicity, a high content of the isopalmitic (isoC16:0) and stearic (C18:0) acids was established. Low-hydrophobic strains are characterized by a low content of monounsaturated fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Arseniy Yuzhalin
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford
| | - Arseniy Yuzhalin
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford
| | | | | | - Tatʹyana Kotova
- Kemerovo Institute (branch) of Plekhanov Russian University of Economics
| | - Tatʹyana Kotova
- Kemerovo Institute (branch) of Plekhanov Russian University of Economics
| | | | | |
Collapse
|
100
|
The potential use of probiotic and beneficial bacteria in the Brazilian dairy industry. J DAIRY RES 2018; 85:487-496. [DOI: 10.1017/s0022029918000845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scientific studies demonstrate the importance of intestinal microbiota to human health and how probiotic microorganisms can positively affect health when administered regularly and in adequate amounts. Probiotic bacteria can be part of fermented products and their functional importance is associated mainly with their metabolism. They are thought to benefit individuals to maintain their health and also to strengthen resistance against various types of diseases. The acceptance of probiotic cultures and products by consumers increased when these bacteria were marketed as natural cultures that help in digestion and health. Considering this, the food industry has an increasing demand for new candidates as probiotic cultures, and the dairy industry has a particular interest for fermented milks and other dairy products, since these are the most common food vehicles for probiotic cultures. Therefore, the dairy industries are increasingly seeking to improve their products with these beneficial bacteria. However, the legal peculiarities and excess of control agencies in Brazil makes the registration of these products and the collection of data very complex. Prospective analysis suggests that probiotic foods have the potential to effect a considerable expansion of the dairy industry, allowing the dairy sector to grow and for these products to be increasingly sought by consumers globally. For this, not only actions on research and innovation are necessary, but also official clarifications on the claims for considerations of microbiological security and functionality of these products. This review aims to elucidate important probiotic research regarding the isolation and characterization of beneficial cultures in Brazil, and to demonstrate the relevance of the dairy chain as a potential source of novel cultures for the development of new probiotic products to expand the Brazilian dairy industry.
Collapse
|