51
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
52
|
Demion M, Oger C, Vigor C, Thireau J, Guennec JYL, Durand T, Galano JM, Lee JCY. Two sides of the same coin: NEO-PUFAs in Rett syndrome and post-infarction cardiac arrhythmias. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marie Demion
- Inserm U1046-UMR CNRS 9214 Physiologie et Médecine Expérimentale du cœur et des muscles−PHYMEDEX; Université de Montpellier; Montpellier France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM) UMR 5247; CNRS Université de Montpellier, ENSCM; Montpellier France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, (IBMM) UMR 5247; CNRS Université de Montpellier, ENSCM; Montpellier France
| | - Jérôme Thireau
- Inserm U1046-UMR CNRS 9214 Physiologie et Médecine Expérimentale du cœur et des muscles−PHYMEDEX; Université de Montpellier; Montpellier France
| | - Jean-Yves Le Guennec
- Inserm U1046-UMR CNRS 9214 Physiologie et Médecine Expérimentale du cœur et des muscles−PHYMEDEX; Université de Montpellier; Montpellier France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM) UMR 5247; CNRS Université de Montpellier, ENSCM; Montpellier France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM) UMR 5247; CNRS Université de Montpellier, ENSCM; Montpellier France
| | | |
Collapse
|
53
|
Shulyakova N, Andreazza AC, Mills LR, Eubanks JH. Mitochondrial Dysfunction in the Pathogenesis of Rett Syndrome: Implications for Mitochondria-Targeted Therapies. Front Cell Neurosci 2017; 11:58. [PMID: 28352216 PMCID: PMC5348512 DOI: 10.3389/fncel.2017.00058] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
First described over 50 years ago, Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by mutations of the X-linked MECP2 gene. RTT affects predominantly females, and has a prevalence of roughly 1 in every 10,000 female births. Prior to the discovery that mutations of MECP2 are the leading cause of RTT, there were suggestions that RTT could be a mitochondrial disease. In fact, several reports documented altered mitochondrial structure, and deficiencies in mitochondrial enzyme activity in different cells or tissues derived from RTT patients. With the identification of MECP2 as the causal gene, interest largely shifted toward defining the normal function of MeCP2 in the brain, and how its absence affects the neurodevelopment and neurophysiology. Recently, though, interest in studying mitochondrial function in RTT has been reignited, at least in part due to observations suggesting systemic oxidative stress does play a contributing role in RTT pathogenesis. Here we review data relating to mitochondrial alterations at the structural and functional levels in RTT patients and model systems, and present a hypothesis for how the absence of MeCP2 could lead to altered mitochondrial function and elevated levels of cellular oxidative stress. Finally, we discuss the prospects for treating RTT using interventions that target specific aspects of mitochondrial dysfunction and/or oxidative stress.
Collapse
Affiliation(s)
- Natalya Shulyakova
- Division of Genetics and Development, Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Linda R Mills
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada; Institute of Medical Sciences, University of TorontoToronto, ON, Canada; Department of Surgery (Neurosurgery), University of TorontoToronto, ON, Canada
| |
Collapse
|
54
|
Ciaccio C, Di Pierro D, Sbardella D, Tundo GR, Curatolo P, Galasso C, Santarone ME, Casasco M, Cozza P, Cortelazzo A, Rossi M, De Felice C, Hayek J, Coletta M, Marini S. Oxygen exchange and energy metabolism in erythrocytes of Rett syndrome and their relationships with respiratory alterations. Mol Cell Biochem 2017; 426:205-213. [PMID: 28063007 DOI: 10.1007/s11010-016-2893-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder, mainly affecting females, which is associated to a mutation on the methyl-CpG-binding protein 2 gene. In the pathogenesis and progression of classic RTT, red blood cell (RBC) morphology has been shown to be an important biosensor for redox imbalance and chronic hypoxemia. Here we have evaluated the impact of oxidation and redox imbalance on several functional properties of RTT erythrocytes. In particular, we report for the first time a stopped-flow measurement of the kinetics of oxygen release by RBCs and the analysis of the intrinsic affinity of the hemoglobin (Hb). According to our experimental approach, RBCs from RTT patients do not show any intrinsic difference with respect to those from healthy controls neither in Hb's oxygen-binding affinity nor in O2 exchange processes at 37 °C. Therefore, these factors do not contribute to the observed alteration of the respiratory function in RTT patients. Moreover, the energy metabolism of RBCs, from both RTT patients and controls, was evaluated by ion-pairing HPLC method and related to the level of malondialdehyde and to the oxidative radical scavenging capacity of red cells. Results have clearly confirmed significant alterations in antioxidant defense capability, adding important informations concerning the high-energy compound levels in RBCs of RTT subjects, underlying possible correlations with inflammatory tissue alterations.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Donato Di Pierro
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paolo Curatolo
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Cinzia Galasso
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Marta Elena Santarone
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | | | - Paola Cozza
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alessio Cortelazzo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marcello Rossi
- Respiratory Pathophysiology and Rehabilitation Unit, University Hospital, AOUS, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
55
|
Pecorelli A, Cervellati C, Hayek J, Valacchi G. OxInflammation in Rett syndrome. Int J Biochem Cell Biol 2016; 81:246-253. [DOI: 10.1016/j.biocel.2016.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
|
56
|
Manna C, Officioso A, Trojsi F, Tedeschi G, Leoncini S, Signorini C, Ciccoli L, De Felice C. Increased non-protein bound iron in Down syndrome: contribution to lipid peroxidation and cognitive decline. Free Radic Res 2016; 50:1422-1431. [DOI: 10.1080/10715762.2016.1253833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine, Second University of Naples, Naples, Italy
| | - Arbace Officioso
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine, Second University of Naples, Naples, Italy
| | - Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Policlinico “S.M. alle Scotte”, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Policlinico “S. M. alle Scotte”, Siena, Italy
| |
Collapse
|
57
|
Janc OA, Hüser MA, Dietrich K, Kempkes B, Menzfeld C, Hülsmann S, Müller M. Systemic Radical Scavenger Treatment of a Mouse Model of Rett Syndrome: Merits and Limitations of the Vitamin E Derivative Trolox. Front Cell Neurosci 2016; 10:266. [PMID: 27895554 PMCID: PMC5109403 DOI: 10.3389/fncel.2016.00266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder typically arising from spontaneous mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. The almost exclusively female Rett patients show an apparently normal development during their first 6-18 months of life. Subsequently, cognitive- and motor-impairment, hand stereotypies, loss of learned skills, epilepsy and irregular breathing manifest. Early mitochondrial impairment and oxidative challenge are considered to facilitate disease progression. Along this line, we recently confirmed in vitro that acute treatment with the vitamin E-derivative Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, ameliorates cellular redox balance and improves hypoxia tolerance in male MeCP2-deficient (Mecp2-/y ) mouse hippocampus. Pursuing these promising findings, we performed a preclinical study to define the merit of systemic Trolox administration. Blinded, placebo-controlled in vivo treatment of male mice started at postnatal day (PD) 10-11 and continued for ~40 days. Compounds (vehicle only, 10 mg/kg or 40 mg/kg Trolox) were injected intraperitoneally every 48 h. Detailed phenotyping revealed that in Mecp2-/y mice, blood glucose levels, lipid peroxidation, synaptic short-term plasticity, hypoxia tolerance and certain forms of environmental exploration were improved by Trolox. Yet, body weight and size, motor function and the rate and regularity of breathing did not improve. In conclusion, in vivo Trolox treatment partially ameliorated a subset of symptoms of the complex Rett phenotype, thereby confirming a partial merit of the vitamin E-derivative based pharmacotherapy. Yet, it also became evident that frequent animal handling and the route of drug administration are critical issues to be optimized in future trials.
Collapse
Affiliation(s)
- Oliwia A Janc
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Marc A Hüser
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Germany
| | - Katharina Dietrich
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Belinda Kempkes
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Germany
| | - Christiane Menzfeld
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Swen Hülsmann
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Klinik für Anästhesiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| |
Collapse
|
58
|
Peasura N, Laohakunjit N, Kerdchoechuen O, Vongsawasdi P, Chao LK. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. Int J Biol Macromol 2016; 91:269-77. [DOI: 10.1016/j.ijbiomac.2016.05.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/12/2016] [Accepted: 05/15/2016] [Indexed: 11/28/2022]
|
59
|
Hülsmann S, Mesuret G, Dannenberg J, Arnoldt M, Niebert M. GlyT2-Dependent Preservation of MECP2-Expression in Inhibitory Neurons Improves Early Respiratory Symptoms but Does Not Rescue Survival in a Mouse Model of Rett Syndrome. Front Physiol 2016; 7:385. [PMID: 27672368 PMCID: PMC5018520 DOI: 10.3389/fphys.2016.00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in methyl-CpG-binding protein 2 (MECP2) gene have been shown to manifest in a neurodevelopmental disorder that is called Rett syndrome. A typical problem that occurs during development is a disturbance of breathing. To address the role of inhibitory neurons, we generated a mouse line that restores MECP2 in inhibitory neurons in the brainstem by crossbreeding a mouse line that expresses the Cre-recombinase (Cre) in inhibitory neurons under the control of the glycine transporter 2 (GlyT2, slc6a5) promotor (GlyT2-Cre) with a mouse line that has a floxed-stop mutation of the Mecp2 gene (Mecp2stop/y). Unrestrained whole-body-plethysmography at postnatal day P60 revealed a low respiratory rate and prolonged respiratory pauses in Mecp2stop/y mice. In contrast, GlyT2-Cre positive Mecp2stop/y mice (Cre+; Mecp2stop/y) showed greatly improved respiration and were indistinguishable from wild type littermates. These data support the concept that alterations in inhibitory neurons are important for the development of the respiratory phenotype in Rett syndrome.
Collapse
Affiliation(s)
- Swen Hülsmann
- Clinic for Anesthesiology, University Medical CenterGöttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Guillaume Mesuret
- Clinic for Anesthesiology, University Medical CenterGöttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Julia Dannenberg
- Clinic for Anesthesiology, University Medical Center Göttingen, Germany
| | - Mauricio Arnoldt
- Clinic for Anesthesiology, University Medical Center Göttingen, Germany
| | - Marcus Niebert
- Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany; Institute of Neuro- and Sensory Physiology, University Medical Center GöttingenGöttingen, Germany
| |
Collapse
|
60
|
Pintaudi M, Veneselli E, Voci A, Vignoli A, Castiglione D, Calevo MG, Grasselli E, Ragazzoni M, Cogliati F, Calzari L, Scornavacca GF, Russo S, Vergani L. Blood oxidative stress and metallothionein expression in Rett syndrome: Probing for markers. World J Biol Psychiatry 2016; 17:198-209. [PMID: 26469135 DOI: 10.3109/15622975.2015.1077990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Oxidative stress seems to be involved in Rett syndrome (RTT). The aim of this study was to assess the antioxidant status in RTT children with MECP2 gene mutations with respect to healthy controls, and to explore novel blood antioxidant markers for RTT severity. METHODS In erythrocytes from RTT females aged 2-14 years (n = 27) and age-matched controls (n = 27), we measured the levels of malonaldehyde and the activity of two antioxidant enzymes, Cu/Zn-superoxide dismutase and catalase, by spectrophotometric assays. In leukocytes, the expression of metallothioneins, the main non-enzymatic antioxidants, was assessed by real-time RT-PCR. In nine selected RTT children, methylome analysis was also performed. RESULTS Blood of RTT patients showed increased lipid peroxidation and a dysregulated pattern of MT expression, while enzymatic activities did not change significantly with respect to controls. Moreover, we observed no epigenetic dysregulation in CpG-enriched promoter regions of the analysed genes but significant hypomethylation in the random loci. CONCLUSIONS As the haematic level of MT-1A directly correlates with the phenotype severity, this metallothionein can represent a marker for RTT severity. Moreover, the attempt to link the level of blood oxidative stress with MECP2 mutation and specific clinical features led us to draw some interesting conclusions.
Collapse
Affiliation(s)
- Maria Pintaudi
- a DINOGMI, Dipartimento Di Neuroscienze , Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili, Università Di Genova , Genova , Italy .,b Unità Di Neuropsichiatria Infantile, Istituto Giannina Gaslini , Genova , Italy
| | - Edvige Veneselli
- a DINOGMI, Dipartimento Di Neuroscienze , Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili, Università Di Genova , Genova , Italy .,b Unità Di Neuropsichiatria Infantile, Istituto Giannina Gaslini , Genova , Italy
| | - Adriana Voci
- c DISTAV, Dipartimento Di Scienze Della Terra , Dell'ambiente E Della Vita, Università Di Genova , Genova , Italy
| | - Aglaia Vignoli
- d Centro Epilessia, Azienda Ospedaliera San Paolo, Dipartimento Di Scienze Della Salute , Università Degli Studi Di Milano , Milano , Italy
| | | | - Maria Grazia Calevo
- b Unità Di Neuropsichiatria Infantile, Istituto Giannina Gaslini , Genova , Italy .,f Unità Di Epidemiologia E Biostatistica, Istituto Giannina Gaslini , Genova , Italy , and
| | - Elena Grasselli
- c DISTAV, Dipartimento Di Scienze Della Terra , Dell'ambiente E Della Vita, Università Di Genova , Genova , Italy
| | - Milena Ragazzoni
- c DISTAV, Dipartimento Di Scienze Della Terra , Dell'ambiente E Della Vita, Università Di Genova , Genova , Italy
| | - Francesca Cogliati
- g Laboratorio Di Citogenetica E Genetica Molecolare, I.R.C.C.S. Istituto Auxologico Italiano , Milano
| | - Luciano Calzari
- g Laboratorio Di Citogenetica E Genetica Molecolare, I.R.C.C.S. Istituto Auxologico Italiano , Milano
| | - Giulia Federica Scornavacca
- d Centro Epilessia, Azienda Ospedaliera San Paolo, Dipartimento Di Scienze Della Salute , Università Degli Studi Di Milano , Milano , Italy
| | - Silvia Russo
- g Laboratorio Di Citogenetica E Genetica Molecolare, I.R.C.C.S. Istituto Auxologico Italiano , Milano
| | - Laura Vergani
- c DISTAV, Dipartimento Di Scienze Della Terra , Dell'ambiente E Della Vita, Università Di Genova , Genova , Italy
| |
Collapse
|
61
|
García-Flores LA, Medina S, Cejuela R, Martínez-Sanz JM, Oger C, Galano JM, Durand T, Casas-Pina T, Martínez-Hernández P, Ferreres F, Gil-Izquierdo Á. Assessment of oxidative stress biomarkers – neuroprostanes and dihomo-isoprostanes – in the urine of elite triathletes after two weeks of moderate-altitude training. Free Radic Res 2016; 50:485-94. [DOI: 10.3109/10715762.2015.1111514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
62
|
Signorini C, De Felice C, Leoncini S, Møller RS, Zollo G, Buoni S, Cortelazzo A, Guerranti R, Durand T, Ciccoli L, D’Esposito M, Ravn K, Hayek J. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS One 2016; 11:e0150101. [PMID: 26930212 PMCID: PMC4773238 DOI: 10.1371/journal.pone.0150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Rikke S. Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sabrina Buoni
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies,University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
63
|
García-Flores LA, Medina S, Oger C, Galano JM, Durand T, Cejuela R, Martínez-Sanz JM, Ferreres F, Gil-Izquierdo Á. Lipidomic approach in young adult triathletes: effect of supplementation with a polyphenols-rich juice on neuroprostane and F2-dihomo-isoprostane markers. Food Funct 2016; 7:4343-4355. [DOI: 10.1039/c6fo01000h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With adequate training, our juice rich in polyphenolic compounds has been able to influence the excretion values of oxidative stress biomarkers associated with the central nervous system.
Collapse
Affiliation(s)
| | - Sonia Medina
- Dept. of Food Science and Technology. CEBAS-CSIC. Campus de Espinardo 25
- 30100 Espinardo
- Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS-University of Montpellier – ENSCM
- Montpellier
- France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS-University of Montpellier – ENSCM
- Montpellier
- France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS-University of Montpellier – ENSCM
- Montpellier
- France
| | - Roberto Cejuela
- Faculty of Education
- University of Alicante
- Campus de San Vicent del Raspeig
- Alicante
- Spain
| | | | - Federico Ferreres
- Dept. of Food Science and Technology. CEBAS-CSIC. Campus de Espinardo 25
- 30100 Espinardo
- Spain
| | - Ángel Gil-Izquierdo
- Dept. of Food Science and Technology. CEBAS-CSIC. Campus de Espinardo 25
- 30100 Espinardo
- Spain
| |
Collapse
|
64
|
Filosa S, Pecorelli A, D'Esposito M, Valacchi G, Hajek J. Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Free Radic Biol Med 2015; 88:81-90. [PMID: 25960047 DOI: 10.1016/j.freeradbiomed.2015.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/27/2023]
Abstract
Rett syndrome (RTT, MIM 312750) is a rare and orphan progressive neurodevelopmental disorder affecting girls almost exclusively, with a frequency of 1/15,000 live births of girls. The disease is characterized by a period of 6 to 18 months of apparently normal neurodevelopment, followed by early neurological regression, with a progressive loss of acquired cognitive, social, and motor skills. RTT is known to be caused in 95% of the cases by sporadic de novo loss-of-function mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene encoding methyl-CpG binding protein 2 (MeCP2), a nuclear protein able to regulate gene expression. Despite almost two decades of research into the functions and role of MeCP2, little is known about the mechanisms leading from MECP2 mutation to the disease. Oxidative stress (OS) is involved in the pathogenic mechanisms of several neurodevelopmental and neurodegenerative disorders, although in many cases it is not clear whether OS is a cause or a consequence of the pathology. Fairly recently, the presence of a systemic OS has been demonstrated in RTT patients with a strong correlation with the patients' clinical status. The link between MECP2 mutation and the redox imbalance found in RTT is not clear. Animal studies have suggested a possible direct correlation between Mecp2 mutation and increased OS levels. In addition, the restoration of Mecp2 function in astrocytes significantly improves the developmental outcome of Mecp2-null mice and reexpression of Mecp2 gene in the brain of null mice restored oxidative damage, suggesting that Mecp2 loss of function can be involved in oxidative brain damage. Starting from the evidence that oxidative damage in the brain of Mecp2-null mice precedes the onset of symptoms, we evaluated whether, based on the current literature, the dysfunctions described in RTT could be a consequence or, in contrast, could be caused by OS. We also analyzed whether therapies that at least partially treated some RTT symptoms can play a role in defense against OS. At this stage we can propose that OS could be one of the main causes of the dysfunctions observed in RTT. In addition, the major part of the therapies recommended to alleviate RTT symptoms have been shown to interfere with oxidative homeostasis, suggesting that MeCP2 could somehow be involved in the protection of the brain from OS.
Collapse
Affiliation(s)
- Stefania Filosa
- Institute of Biosciences and BioResources-CNR, UOS Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Pecorelli
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati-Traverso"-CNR, Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Joussef Hajek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
65
|
Pecorelli A, Cervellati F, Belmonte G, Montagner G, Waldon P, Hayek J, Gambari R, Valacchi G. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients. Cytokine 2015; 77:180-8. [PMID: 26471937 DOI: 10.1016/j.cyto.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 12/25/2022]
Abstract
A potential role for immune dysfunction in autism spectrum disorders (ASD) has been well established. However, immunological features of Rett syndrome (RTT), a genetic neurodevelopmental disorder closely related to autism, have not been well addressed yet. By using multiplex Luminex technology, a panel of 27 cytokines and chemokines was evaluated in serum from 10 RTT patients with confirmed diagnosis of MECP2 mutation (typical RTT), 12 children affected by classic autistic disorder and 8 control subjects. The cytokine/chemokine gene expression was assessed by real time PCR on mRNA of isolated peripheral blood mononuclear cells (PBMCs). Moreover, ultrastructural analysis of PBMCs was performed using transmission electron microscopy (TEM). Significantly higher serum levels of interleukin-8 (IL-8), IL-9, IL-13 were detected in RTT compared to control subjects, and IL-15 shows a trend toward the upregulation in RTT. In addition, IL-1β and VEGF were the only down-regulated cytokines in autistic patients with respect to RTT. No difference in cytokine/chemokine profile between autistic and control groups was detected. These data were also confirmed by ELISA real time PCR. At the ultrastructural level, the most severe morphological abnormalities were observed in mitochondria of both RTT and autistic PBMCs. In conclusion, our study shows a deregulated cytokine/chemokine profile together with morphologically altered immune cells in RTT. Such abnormalities were not quite as evident in autistic subjects. These findings indicate a possible role of immune dysfunction in RTT making the clinical features of this pathology related also to the immunology aspects, suggesting, therefore, novel possible therapeutic interventions for this disorder.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montagner
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
66
|
Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:421624. [PMID: 26236424 PMCID: PMC4510261 DOI: 10.1155/2015/421624] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.
Collapse
|
67
|
Non-enzymatic cyclic oxygenated metabolites of omega-3 polyunsaturated fatty acid: Bioactive drugs? Biochimie 2015; 120:56-61. [PMID: 26112019 DOI: 10.1016/j.biochi.2015.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/13/2015] [Indexed: 12/21/2022]
Abstract
Non-enzymatic oxygenated metabolites derived from polyunsaturated fatty acids (PUFA) are formed in vivo through free radical reaction under oxidative stress conditions. It has been over twenty-five years since the discovery of cyclic oxygenated metabolites derived from arachidonic acid (20:4 n-6), the isoprostanes, and since then they have become biomarkers of choice for assessing in vivo OS in humans and animals. Chemical synthesis of n-3 PUFA isoprostanoids such as F3-Isoprostanes from eicosapentaenoic acid (20:5 n-3), and F4-Neuroprostanes from docosahexaenoic acid (22:6 n-6) unravelled novel and unexpected biological properties of such omega-3 non-enzymatic cyclic metabolites as highlighted in this review.
Collapse
|
68
|
De Filippis B, Valenti D, de Bari L, De Rasmo D, Musto M, Fabbri A, Ricceri L, Fiorentini C, Laviola G, Vacca RA. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radic Biol Med 2015; 83:167-77. [PMID: 25708779 DOI: 10.1016/j.freeradbiomed.2015.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/19/2022]
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Daniela Valenti
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Mattia Musto
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy.
| |
Collapse
|
69
|
De Felice C, Signorini C, Leoncini S, Durand T, Ciccoli L, Hayek J. Oxidative stress: a hallmark of Rett syndrome. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese (AOUS), Policlinico “S. M. alle Scotte”, I-53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Silvia Leoncini
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247- CNRS-UM -ENSCM, BP 14491, 34093, Montpellier, Cedex 5, France
| | - Lucia Ciccoli
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| |
Collapse
|
70
|
Dysregulation of glutamine transporter SNAT1 in Rett syndrome microglia: a mechanism for mitochondrial dysfunction and neurotoxicity. J Neurosci 2015; 35:2516-29. [PMID: 25673846 DOI: 10.1523/jneurosci.2778-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the gene encoding MeCP2, an epigenetic modulator that binds the methyl CpG dinucleotide in target genes to regulate transcription. Previously, we and others reported a role of microglia in the pathophysiology of RTT. To understand the mechanism of microglia dysfunction in RTT, we identified a MeCP2 target gene, SLC38A1, which encodes a major glutamine transporter (SNAT1), and characterized its role in microglia. We found that MeCP2 acts as a microglia-specific transcriptional repressor of SNAT1. Because glutamine is mainly metabolized in the mitochondria, where it is used as an energy substrate and a precursor for glutamate production, we hypothesize that SNAT1 overexpression in MeCP2-deficient microglia would impair the glutamine homeostasis, resulting in mitochondrial dysfunction as well as microglial neurotoxicity because of glutamate overproduction. Supporting this hypothesis, we found that MeCP2 downregulation or SNAT1 overexpression in microglia resulted in (1) glutamine-dependent decrease in microglial viability, which was corroborated by reduced microglia counts in the brains of MECP2 knock-out mice; (2) proliferation of mitochondria and enhanced mitochondrial production of reactive oxygen species; (3) increased oxygen consumption but decreased ATP production (an energy-wasting state); and (4) overproduction of glutamate that caused NMDA receptor-dependent neurotoxicity. The abnormalities could be rectified by mitochondria-targeted expression of catalase and a mitochondria-targeted peptide antioxidant, Szeto-Schiller 31. Our results reveal a novel mechanism via which MeCP2 regulates bioenergetic pathways in microglia and suggest a therapeutic potential of mitochondria-targeted antioxidants for RTT.
Collapse
|
71
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
72
|
MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction. Nat Commun 2015; 6:6494. [PMID: 25751021 DOI: 10.1038/ncomms7494] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
Haematopoietic progenitor cells show special sensitivity to mitochondrial DNA (mtDNA) mutagenesis, which suggests that increased mtDNA mutagenesis could underlie anemias. Here we show that elevated mtDNA mutagenesis in mice with a proof-reading deficient mtDNA polymerase (PolG) leads to incomplete mitochondrial clearance, with asynchronized iron loading in erythroid precursors, and increased total and free cellular iron content. The resulting Fenton chemistry leads to oxidative damage and premature destruction of erythrocytes by splenic macrophages. Our data indicate that mitochondria actively contribute to their own elimination in reticulocytes and modulate iron loading. Asynchrony of this sequence of events causes severe mitochondrial anaemia by depleting the organism of red blood cells and the bone marrow of iron. Our findings account for the anaemia development in a progeroid mouse model and may have direct relevance to the anemias associated with human mitochondrial disease and ageing.
Collapse
|
73
|
Abstract
RTT (Rett syndrome) is a severe progressive neurodevelopmental disorder with a monogenetic cause, but complex and multifaceted clinical appearance. Compelling evidence suggests that mitochondrial alterations and aberrant redox homoeostasis result in oxidative challenge. Yet, compared with other severe neuropathologies, RTT is not associated with marked neurodegeneration, but rather a chemical imbalance and miscommunication of neuronal elements. Different pharmacotherapies mediate partial improvement of conditions in RTT, and also antioxidants or compounds improving mitochondrial function may be of potential merit. In the present paper, we summarize findings from patients and transgenic mice that point towards the nature of RTT as a mitochondrial disease. Also, open questions are addressed that require clarification to fully understand and successfully target the associated cellular redox imbalance.
Collapse
|
74
|
Redox imbalance and morphological changes in skin fibroblasts in typical Rett syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:195935. [PMID: 24987493 PMCID: PMC4060159 DOI: 10.1155/2014/195935] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
Evidence of oxidative stress has been reported in the blood of patients with Rett syndrome (RTT), a neurodevelopmental disorder mainly caused by mutations in the gene encoding the Methyl-CpG-binding protein 2. Little is known regarding the redox status in RTT cellular systems and its relationship with the morphological phenotype. In RTT patients (n = 16) we investigated four different oxidative stress markers, F2-Isoprostanes (F2-IsoPs), F4-Neuroprostanes (F4-NeuroPs), nonprotein bound iron (NPBI), and (4-HNE PAs), and glutathione in one of the most accessible cells, that is, skin fibroblasts, and searched for possible changes in cellular/intracellular structure and qualitative modifications of synthesized collagen. Significantly increased F4-NeuroPs (12-folds), F2-IsoPs (7.5-folds) NPBI (2.3-folds), 4-HNE PAs (1.48-folds), and GSSG (1.44-folds) were detected, with significantly decreased GSH (-43.6%) and GSH/GSSG ratio (-3.05 folds). A marked dilation of the rough endoplasmic reticulum cisternae, associated with several cytoplasmic multilamellar bodies, was detectable in RTT fibroblasts. Colocalization of collagen I and collagen III, as well as the percentage of type I collagen as derived by semiquantitative immunofluorescence staining analyses, appears to be significantly reduced in RTT cells. Our findings indicate the presence of a redox imbalance and previously unrecognized morphological skin fibroblast abnormalities in RTT patients.
Collapse
|
75
|
Vigor C, Bertrand-Michel J, Pinot E, Oger C, Vercauteren J, Le Faouder P, Galano JM, Lee JCY, Durand T. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:65-78. [PMID: 24856297 DOI: 10.1016/j.jchromb.2014.04.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/12/2023]
Abstract
Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed.
Collapse
Affiliation(s)
- Claire Vigor
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Justine Bertrand-Michel
- Plateau de lipidomique, Bio-Medical Federative Research Institute of Toulouse, INSERM, Plateforme MetaToul, Toulouse, France
| | - Edith Pinot
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Pauline Le Faouder
- Plateau de lipidomique, Bio-Medical Federative Research Institute of Toulouse, INSERM, Plateforme MetaToul, Toulouse, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Jetty Chung-Yung Lee
- The University of Hong Kong, School of Biological Sciences, Hong Kong SAR, China.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France.
| |
Collapse
|
76
|
Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome. Neurobiol Dis 2014; 68:66-77. [PMID: 24769161 PMCID: PMC4076513 DOI: 10.1016/j.nbd.2014.04.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/10/2014] [Accepted: 04/14/2014] [Indexed: 12/03/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. Oxidative damage is demonstrated in the brain, and more specifically in the neurons, of Mecp2 mutant mouse models. A direct evidence between enhanced oxidative stress and Mecp2 deficiency is provided. Oxidative damage precedes the behavioral abnormalities in Mecp2 mutant mice. Mecp2 is likely involved in the protection of the brain from oxidative stress.
Collapse
|
77
|
Cortelazzo A, De Felice C, Pecorelli A, Belmonte G, Signorini C, Leoncini S, Zollo G, Capone A, Giovampaola CD, Sticozzi C, Valacchi G, Ciccoli L, Guerranti R, Hayek J. Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: insights into an altered cytoskeletal organization. PLoS One 2014; 9:e93181. [PMID: 24671107 PMCID: PMC3966888 DOI: 10.1371/journal.pone.0093181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/03/2014] [Indexed: 12/19/2022] Open
Abstract
Beta-actin, a critical player in cellular functions ranging from cell motility and the maintenance of cell shape to transcription regulation, was evaluated in the erythrocyte membranes from patients with typical Rett syndrome (RTT) and methyl CpG binding protein 2 (MECP2) gene mutations. RTT, affecting almost exclusively females with an average frequency of 1∶10,000 female live births, is considered the second commonest cause of severe cognitive impairment in the female gender. Evaluation of beta-actin was carried out in a comparative cohort study on red blood cells (RBCs), drawn from healthy control subjects and RTT patients using mass spectrometry-based quantitative analysis. We observed a decreased expression of the beta-actin isoforms (relative fold changes for spots 1, 2 and 3: −1.82±0.15, −2.15±0.06, and −2.59±0.48, respectively) in pathological RBCs. The results were validated by western blotting and immunofluorescence microscopy. In addition, beta-actin from RTT patients also showed a dramatic increase in oxidative posttranslational modifications (PTMs) as the result of its binding with the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE). Our findings demonstrate, for the first time, a beta-actin down-regulation and oxidative PTMs for RBCs of RTT patients, thus indicating an altered cytoskeletal organization.
Collapse
Affiliation(s)
- Alessio Cortelazzo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
- * E-mail:
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Siena, Italy
| | - Alessandra Pecorelli
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Belmonte
- Department of Medical Sciences Surgical and Neuroscience, University Hospital, AOUS, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gloria Zollo
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Claudia Sticozzi
- Department of Sciences of Life and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Sciences of Life and Biotechnologies, University of Ferrara, Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| |
Collapse
|
78
|
Tonni G, Leoncini S, Signorini C, Ciccoli L, De Felice C. Pathology of perinatal brain damage: background and oxidative stress markers. Arch Gynecol Obstet 2014; 290:13-20. [PMID: 24643805 DOI: 10.1007/s00404-014-3208-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/03/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE To review historical scientific background and new perspective on the pathology of perinatal brain damage. The relationship between birth asphyxia and subsequent cerebral palsy has been extensively investigated. The role of new and promising clinical markers of oxidative stress (OS) is presented. METHODS Electronic search of PubMed-Medline/EMBASE database has been performed. Laboratory and clinical data involving case series from the research group are reported. RESULTS The neuropathology of birth asphyxia and subsequent perinatal brain damage as well as the role of electronic fetal monitoring are reported following a review of the medical literature. CONCLUSIONS This review focuses on OS mechanisms underlying the neonatal brain damage and provides different perspective on the most reliable OS markers during the perinatal period. In particular, prior research work on neurodevelopmental diseases, such as Rett syndrome, suggests the measurement of oxidized fatty acid molecules (i.e., F4-Neuroprostanes and F2-Dihomo-Isoprostanes) closely related to brain white and gray matter oxidative damage.
Collapse
Affiliation(s)
- Gabriele Tonni
- Prenatal Diagnostic Service, Guastalla Civil Hospital, AUSL Reggio Emilia, Via Donatori Sangue, 1, 42016, Guastalla, Reggio Emilia, Italy,
| | | | | | | | | |
Collapse
|
79
|
Inflammatory lung disease in Rett syndrome. Mediators Inflamm 2014; 2014:560120. [PMID: 24757286 PMCID: PMC3976920 DOI: 10.1155/2014/560120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA), upper airway obstruction, and redox status in patients with typical RTT (n = 228) and to examine lung histology in a Mecp2-null mouse model of the disease. GEA was detectable in ~80% (184/228) of patients versus ~18% of healthy controls, with “high” (39.8%) and “low” (34.8%) patterns dominating over “mixed” (19.6%) and “simple mismatch” (5.9%) types. Increased plasma levels of non-protein-bound iron (NPBI), F2-isoprostanes (F2-IsoPs), intraerythrocyte NPBI (IE-NPBI), and reduced and oxidized glutathione (i.e., GSH and GSSG) were evidenced in RTT with consequently decreased GSH/GSSG ratios. Apnea frequency/severity was positively correlated with IE-NPBI, F2-IsoPs, and GSSG and negatively with GSH/GSSG ratio. A diffuse inflammatory infiltrate of the terminal bronchioles and alveoli was evidenced in half of the examined Mecp2-mutant mice, well fitting with the radiological findings previously observed in RTT patients. Our findings indicate that GEA is a key feature of RTT and that terminal bronchioles are a likely major target of the disease.
Collapse
|
80
|
Gold WA, Williamson SL, Kaur S, Hargreaves IP, Land JM, Pelka GJ, Tam PPL, Christodoulou J. Mitochondrial dysfunction in the skeletal muscle of a mouse model of Rett syndrome (RTT): implications for the disease phenotype. Mitochondrion 2014; 15:10-7. [PMID: 24613463 DOI: 10.1016/j.mito.2014.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 02/05/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder, predominantly caused by mutations in the X-linked Methyl-CpG-binding protein 2 (MECP2) gene. Patients present with numerous functional deficits including intellectual disability and abnormalities of movement. Clinical and biochemical features may overlap with those seen in patients with primary mitochondrial respiratory chain disorders. In the late stages of the disorder, patients suffer from motor deterioration and usually require assisted mobility. Using a mouse model of RTT (Mecp2(tm1Tam)), we studied the mitochondrial function in the hind-limb skeletal muscle of these mice. We identified a reduction in cytochrome c oxidase subunit I (MTCO1) at both the transcript and protein level, in accordance with our previous findings in RTT patient brain studies. Mitochondrial respiratory chain (MRC) enzyme activity of complexes II+III (COII+III) and complex IV (COIV), and glutathione (GSH) levels were significantly reduced in symptomatic mice, but not in the pre-symptomatic mice. Our findings suggest that mitochondrial abnormalities in the skeletal muscle may contribute to the progressive deterioration in mobility in RTT through the accumulation of free radicals, as evidenced by the decrease in reduced glutathione (GSH). We hypothesise that a diminution in GSH leads to an accumulation of free radicals and an increase in oxidative stress. This may impact on respiratory chain function and contribute in part to the progressive neurological and motor deterioration seen in the Mecp2-mutant mouse. Treatment strategies aimed at restoring cellular GSH levels may prove to be a novel target area to consider in future approaches to RTT therapies.
Collapse
Affiliation(s)
- W A Gold
- NSW Centre for Rett Syndrome Research, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics & Child Health, University of Sydney, Australia
| | - S L Williamson
- NSW Centre for Rett Syndrome Research, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, Australia
| | - S Kaur
- NSW Centre for Rett Syndrome Research, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, Australia
| | - I P Hargreaves
- Neurometabolic Unit, National Hospital and Department of Molecular Neuroscience, Institute of Neurology, London, United Kingdom
| | - J M Land
- Neurometabolic Unit, National Hospital and Department of Molecular Neuroscience, Institute of Neurology, London, United Kingdom
| | - G J Pelka
- Embryology Unit, Children's Medical Research Institute, Sydney, Australia
| | - P P L Tam
- Embryology Unit, Children's Medical Research Institute, Sydney, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Australia
| | - J Christodoulou
- NSW Centre for Rett Syndrome Research, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics & Child Health, University of Sydney, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Australia
| |
Collapse
|
81
|
Janc OA, Müller M. The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome. Front Cell Neurosci 2014; 8:56. [PMID: 24605086 PMCID: PMC3932407 DOI: 10.3389/fncel.2014.00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/06/2014] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RS) causes severe cognitive impairment, loss of speech, epilepsy, and breathing disturbances with intermittent hypoxia. Also mitochondria are affected; a subunit of respiratory complex III is dysregulated, the inner mitochondrial membrane is leaking protons, and brain ATP levels seem reduced. Our recent assessment of mitochondrial function in MeCP2 (methyl-CpG-binding protein 2)-deficient mouse (Mecp2-/y) hippocampus confirmed early metabolic alterations, an increased oxidative burden, and a more vulnerable cellular redox balance. As these changes may contribute to the manifestation of symptoms and disease progression, we now evaluated whether free radical scavengers are capable of improving neuronal and mitochondrial function in RS. Acute hippocampal slices of adult mice were incubated with the vitamin E derivative Trolox for 3–5 h. In Mecp2-/y slices this treatment dampened neuronal hyperexcitability, improved synaptic short-term plasticity, and fully restored synaptic long-term potentiation (LTP). Furthermore, Trolox specifically attenuated the increased hypoxia susceptibility of Mecp2-/y slices. Also, the anticonvulsive effects of Trolox were assessed, but the severity of 4-aminopyridine provoked seizure-like discharges was not significantly affected. Adverse side effects of Trolox on mitochondria can be excluded, but clear indications for an improvement of mitochondrial function were not found. Since several ion-channels and neurotransmitter receptors are redox modulated, the mitochondrial alterations and the associated oxidative burden may contribute to the neuronal dysfunction in RS. We confirmed in Mecp2-/y hippocampus that Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves the hypoxia tolerance. Therefore, radical scavengers are promising compounds for the treatment of neuronal dysfunction in RS and deserve further detailed evaluation.
Collapse
Affiliation(s)
- Oliwia A Janc
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen Göttingen, Germany ; Zentrum für Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin, Georg-August-Universität Göttingen Göttingen, Germany
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen Göttingen, Germany ; Zentrum für Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin, Georg-August-Universität Göttingen Göttingen, Germany
| |
Collapse
|
82
|
Effects of ω-3 PUFAs supplementation on myocardial function and oxidative stress markers in typical Rett syndrome. Mediators Inflamm 2014; 2014:983178. [PMID: 24526821 PMCID: PMC3913460 DOI: 10.1155/2014/983178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder with a 300-fold increased risk rate for sudden cardiac death. A subclinical myocardial biventricular dysfunction has been recently reported in RTT by our group and found to be associated with an enhanced oxidative stress (OS) status. Here, we tested the effects of the naturally occurring antioxidants ω-3 polyunsaturated fatty acids (ω-3 PUFAs) on echocardiographic parameters and systemic OS markers in a population of RTT patients with the typical clinical form. A total of 66 RTT girls were evaluated, half of whom being treated for 12 months with a dietary supplementation of ω-3 PUFAs at high dosage (docosahexaenoic acid ~71.9 ± 13.9 mg/kg b.w./day plus eicosapentaenoic acid ~115.5 ± 22.4 mg/kg b.w./day) versus the remaining half untreated population. Echocardiographic systolic longitudinal parameters of both ventricles, but not biventricular diastolic measures, improved following ω-3 PUFAs supplementation, with a parallel decrease in the OS markers levels. No significant changes in the examined echocardiographic parameters nor in the OS markers were detectable in the untreated RTT population. Our data indicate that ω-3 PUFAs are able to improve the biventricular myocardial systolic function in RTT and that this functional gain is partially mediated through a regulation of the redox balance.
Collapse
|
83
|
Tsukahara H. Oxidative Stress Biomarkers in Pediatric Medicine – A 2013 Update. SYSTEMS BIOLOGY OF FREE RADICALS AND ANTIOXIDANTS 2014:689-715. [DOI: 10.1007/978-3-642-30018-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
84
|
A plasma proteomic approach in Rett syndrome: classical versus preserved speech variant. Mediators Inflamm 2013; 2013:438653. [PMID: 24453418 PMCID: PMC3884802 DOI: 10.1155/2013/438653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Although over 200 mutations types have been identified so far, nine of which the most frequent ones. A wide phenotypical heterogeneity is a well-known feature of the disease, with different clinical presentations, including the classical form and the preserved speech variant (PSV). Aim of the study was to unveil possible relationships between plasma proteome and phenotypic expression in two cases of familial RTT represented by two pairs of sisters, harbor the same MECP2 gene mutation while being dramatically discrepant in phenotype, that is, classical RTT versus PSV. Plasma proteome was analysed by 2-DE/MALDI-TOF MS. A significant overexpression of six proteins in the classical sisters was detected as compared to the PSV siblings. A total of five out of six (i.e., 83.3%) of the overexpressed proteins were well-known acute phase response (APR) proteins, including alpha-1-microglobulin, haptoglobin, fibrinogen beta chain, alpha-1-antitrypsin, and complement C3. Therefore, the examined RTT siblings pairs proved to be an important benchmark model to test the molecular basis of phenotypical expression variability and to identify potential therapeutic targets of the disease.
Collapse
|
85
|
Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism. Mediators Inflamm 2013; 2013:432616. [PMID: 24453417 PMCID: PMC3880759 DOI: 10.1155/2013/432616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6–26 years), nonautistic neurodevelopmental disorders (i.e., “positive controls”), and healthy controls (i.e., “negative controls”). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs.
Collapse
|
86
|
Hogberg HT, Bressler J, Christian KM, Harris G, Makri G, O'Driscoll C, Pamies D, Smirnova L, Wen Z, Hartung T. Toward a 3D model of human brain development for studying gene/environment interactions. Stem Cell Res Ther 2013; 4 Suppl 1:S4. [PMID: 24564953 PMCID: PMC4029162 DOI: 10.1186/scrt365] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders caused by known mutations and chromosomal aberrations. Notably, such a human brain model will be a versatile tool for more complex testing platforms and strategies as well as research into central nervous system physiology and pathology.
Collapse
Affiliation(s)
- Helena T Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA and University of Konstanz, POB 600, 78457 Konstanz, Germany
| | - Joseph Bressler
- Center for Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA and University of Konstanz, POB 600, 78457 Konstanz, Germany
- Hugo Moser Institute at the Kennedy Krieger, Johns Hopkins University, Bloomberg School of Public Health, 707 N. Broadway, Baltimore, MD 21205, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University, School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA and University of Konstanz, POB 600, 78457 Konstanz, Germany
| | - Georgia Makri
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University, School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Cliona O'Driscoll
- Hugo Moser Institute at the Kennedy Krieger, Johns Hopkins University, Bloomberg School of Public Health, 707 N. Broadway, Baltimore, MD 21205, USA
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA and University of Konstanz, POB 600, 78457 Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA and University of Konstanz, POB 600, 78457 Konstanz, Germany
| | - Zhexing Wen
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University, School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA and University of Konstanz, POB 600, 78457 Konstanz, Germany
| |
Collapse
|
87
|
Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of Rett syndrome patients. Mediators Inflamm 2013; 2013:137629. [PMID: 24453408 PMCID: PMC3876710 DOI: 10.1155/2013/137629] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is mainly caused by mutations in the X-linked methyl-CpG binding protein (MeCP2) gene. By binding to methylated promoters on CpG islands, MeCP2 protein is able to modulate several genes and important cellular pathways. Therefore, mutations in MeCP2 can seriously affect the cellular phenotype. Today, the pathways that MeCP2 mutations are able to affect in RTT are not clear yet. The aim of our study was to investigate the gene expression profiles in peripheral blood lymphomonocytes (PBMC) isolated from RTT patients to try to evidence new genes and new pathways that are involved in RTT pathophysiology. LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses on microarray data from 12 RTT patients and 7 control subjects identified 482 genes modulated in RTT, of which 430 were upregulated and 52 were downregulated. Functional clustering of a total of 146 genes in RTT identified key biological pathways related to mitochondrial function and organization, cellular ubiquitination and proteosome degradation, RNA processing, and chromatin folding. Our microarray data reveal an overexpression of genes involved in ATP synthesis suggesting altered energy requirement that parallels with increased activities of protein degradation. In conclusion, these findings suggest that mitochondrial-ATP-proteasome functions are likely to be involved in RTT clinical features.
Collapse
|
88
|
Ramirez JM, Ward CS, Neul JL. Breathing challenges in Rett syndrome: lessons learned from humans and animal models. Respir Physiol Neurobiol 2013; 189:280-7. [PMID: 23816600 DOI: 10.1016/j.resp.2013.06.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/17/2023]
Abstract
Breathing disturbances are a major challenge in Rett Syndrome (RTT). These disturbances are more pronounced during wakefulness; but irregular breathing occurs also during sleep. During the day patients can exhibit alternating bouts of hypoventilation and irregular hyperventilation. But there is significant individual variability in severity, onset, duration and type of breathing disturbances. Research in mouse models of RTT suggests that different areas in the ventrolateral medulla and pons give rise to different aspects of this breathing disorder. Pre-clinical experiments in mouse models that target different neuromodulatory and neurotransmitter receptors and MeCP2 function within glia cells can partly reverse breathing abnormalities. The success in animal models raises optimism that one day it will be possible to control or potentially cure the devastating symptoms also in human patients with RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
89
|
Isoprostanes and 4-hydroxy-2-nonenal: markers or mediators of disease? Focus on Rett syndrome as a model of autism spectrum disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:343824. [PMID: 23844273 PMCID: PMC3697420 DOI: 10.1155/2013/343824] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation, a process known to induce oxidative damage to key cellular components, has been implicated in several diseases. Following three decades of explorations mainly on in vitro models reproducible in the laboratories, lipid peroxidation has become increasingly relevant for the interpretation of a wide range of pathophysiological mechanisms in the clinical setting. This cumulative effort has led to the identification of several lipid peroxidation end-products meeting the needs of the in vivo evaluation. Among these different molecules, isoprostanes and 4-hydroxy-2-nonenal protein adducts appear to be particularly interesting. This review shows how specific oxidation products, deriving from polyunsaturated fatty acids precursors, are strictly related to the clinical manifestations and the natural history of Rett syndrome, a genetically determined neurodevelopmental pathology, currently classified among the autism spectrum disorders. In our experience, Rett syndrome offers a unique setting for physicians, biologists, and chemists to explore the borders of the lipid mediators concept.
Collapse
|
90
|
Sticozzi C, Belmonte G, Pecorelli A, Cervellati F, Leoncini S, Signorini C, Ciccoli L, De Felice C, Hayek J, Valacchi G. Scavenger receptor B1 post-translational modifications in Rett syndrome. FEBS Lett 2013; 587:2199-204. [DOI: 10.1016/j.febslet.2013.05.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
91
|
Panighini A, Duranti E, Santini F, Maffei M, Pizzorusso T, Funel N, Taddei S, Bernardini N, Ippolito C, Virdis A, Costa M. Vascular dysfunction in a mouse model of Rett syndrome and effects of curcumin treatment. PLoS One 2013; 8:e64863. [PMID: 23705018 PMCID: PMC3660336 DOI: 10.1371/journal.pone.0064863] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mutations in the coding sequence of the X-linked gene MeCP2 (Methyl CpG-binding protein) are present in around 80% of patients with Rett Syndrome, a common cause of intellectual disability in female and to date without any effective pharmacological treatment. A relevant, and so far unexplored feature of RTT patients, is a marked reduction in peripheral circulation. To investigate the relationship between loss of MeCP2 and this clinical aspect, we used the MeCP2 null mouse model B6.129SF1-MeCP2tm1Jae for functional and pharmacological studies. Functional experiments were performed on isolated resistance mesenteric vessels, mounted on a pressurized myograph. Vessels from female MeCP2(+/-) mice show a reduced endothelium-dependent relaxation, due to a reduced Nitric Oxide (NO) availability secondary to an increased Reactive Oxygen Species (ROS) generation. Such functional aspects are associated with an intravascular increase in superoxide anion production, and a decreased vascular eNOS expression. These alterations are reversed by curcumin administration (5% (w/w) dietary curcumin for 21 days), which restores endothelial NO availability, decreases intravascular ROS production and normalizes vascular eNOS gene expression. In conclusion our findings highlight alterations in the vascular/endothelial system in the absence of a correct function of MeCP2, and uncover related cellular/molecular mechanisms that are rescued by an anti-oxidant treatment.
Collapse
MESH Headings
- Animals
- Blood Vessels/drug effects
- Blood Vessels/physiopathology
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Immunohistochemistry
- Malondialdehyde/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rett Syndrome/complications
- Rett Syndrome/drug therapy
- Rett Syndrome/physiopathology
- Superoxides/metabolism
- Time Factors
- Vascular Diseases/complications
- Vascular Diseases/drug therapy
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Anna Panighini
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Department of Endocrinology and Kidney; University-Hospital of Pisa, Pisa, Italy
| | - Margherita Maffei
- Department of Endocrinology and Kidney; University-Hospital of Pisa, Pisa, Italy
- Dulbecco Telethon Institute, Rome, Italy
- Institute of Food Science, CNR, Avellino, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
- Institute of Psychology, University of Florence, Florence, Italy
| | - Niccola Funel
- Department of Surgery, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
92
|
Grillo E, Lo Rizzo C, Bianciardi L, Bizzarri V, Baldassarri M, Spiga O, Furini S, De Felice C, Signorini C, Leoncini S, Pecorelli A, Ciccoli L, Mencarelli MA, Hayek J, Meloni I, Ariani F, Mari F, Renieri A. Revealing the complexity of a monogenic disease: rett syndrome exome sequencing. PLoS One 2013; 8:e56599. [PMID: 23468869 PMCID: PMC3585308 DOI: 10.1371/journal.pone.0056599] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/11/2013] [Indexed: 02/04/2023] Open
Abstract
Rett syndrome (OMIM#312750) is a monogenic disorder that may manifest as a large variety of phenotypes ranging from very severe to mild disease. Since there is a weak correlation between the mutation type in the Xq28 disease-gene MECP2/X-inactivation status and phenotypic variability, we used this disease as a model to unveil the complex nature of a monogenic disorder. Whole exome sequencing was used to analyze the functional portion of the genome of two pairs of sisters with Rett syndrome. Although each pair of sisters had the same MECP2 (OMIM*300005) mutation and balanced X-inactivation, one individual from each pair could not speak or walk, and had a profound intellectual deficit (classical Rett syndrome), while the other individual could speak and walk, and had a moderate intellectual disability (Zappella variant). In addition to the MECP2 mutation, each patient has a group of variants predicted to impair protein function. The classical Rett girls, but not their milder affected sisters, have an enrichment of variants in genes related to oxidative stress, muscle impairment and intellectual disability and/or autism. On the other hand, a subgroup of variants related to modulation of immune system, exclusive to the Zappella Rett patients are driving toward a milder phenotype. We demonstrate that genome analysis has the potential to identify genetic modifiers of Rett syndrome, providing insight into disease pathophysiology. Combinations of mutations that affect speaking, walking and intellectual capabilities may represent targets for new therapeutic approaches. Most importantly, we demonstrated that monogenic diseases may be more complex than previously thought.
Collapse
Affiliation(s)
- Elisa Grillo
- Medical Genetics, University of Siena, Siena, Italy
| | - Caterina Lo Rizzo
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Veronica Bizzarri
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Ottavia Spiga
- Biochemistry and Molecular Biology, University of Siena, Siena, Italy
| | - Simone Furini
- Department of Surgery and Bioengineering University of Siena, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit University Hospital Azienda Ospedaliera Universitaria Senese (AOUS) of Siena, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
| | - Alessandra Pecorelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
| | | | | | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
93
|
Pecorelli A, Leoncini S, De Felice C, Signorini C, Cerrone C, Valacchi G, Ciccoli L, Hayek J. Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism. Brain Dev 2013; 35:146-54. [PMID: 22534237 DOI: 10.1016/j.braindev.2012.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 12/24/2022]
Abstract
A link between oxidative stress and autism spectrum disorders (ASDs) remains controversial with opposing views on its role in the pathogenesis of the disease. We investigated for the first time the levels of non-protein-bound iron (NPBI), a pro-oxidant factor, and 4-hydroxynonenal protein adducts (4-HNE PAs), as a marker of lipid peroxidation-induced protein damage, in classic autism. Patients with classic autism (n=20, mean age 12.0±6.2years) and healthy controls (n=18, mean age 11.7±6.5years) were examined. Intraerythrocyte and plasma NPBI were measured by high performance liquid chromatography (HPLC), and 4-HNE PAs in erythrocyte membranes and plasma were detected by Western blotting. The antioxidant defences were evaluated as erythrocyte glutathione (GSH) levels using a spectrophotometric assay. Intraerythrocyte and plasma NPBI levels were significantly increased (1.98- and 3.56-folds) in autistic patients, as compared to controls (p=0.0019 and p<0.0001, respectively); likewise, 4-HNE PAs were significantly higher in erythrocyte membranes and in plasma (1.58- and 1.6-folds, respectively) from autistic patients than controls (p=0.0043 and p=0.0001, respectively). Erythrocyte GSH was slightly decreased (-10.34%) in patients compared to controls (p=0.0215). Our findings indicate an impairment of the redox status in classic autism patients, with a consequent imbalance between oxidative stress and antioxidant defences. Increased levels of NPBI could contribute to lipid peroxidation and, consequently, to increased plasma and erythrocyte membranes 4-HNE PAs thus amplifying the oxidative damage, potentially contributing to the autistic phenotype.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Pathophysiology, Experimental Medicine & Public Health, University of Siena, Viale M. Bracci 16, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
94
|
F2-Dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome. Biochimie 2013; 95:86-90. [DOI: 10.1016/j.biochi.2012.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/14/2012] [Indexed: 11/22/2022]
|
95
|
De Felice C, Signorini C, Leoncini S, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J. The role of oxidative stress in Rett syndrome: an overview. Ann N Y Acad Sci 2012; 1259:121-35. [PMID: 22758644 DOI: 10.1111/j.1749-6632.2012.06611.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement.
Collapse
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit University Hospital, Azienda Ospedaliera Universitaria Senese of Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Coccini T, Roda E, Barni S, Signorini C, Manzo L. Long-lasting oxidative pulmonary insult in rat after intratracheal instillation of silica nanoparticles doped with cadmium. Toxicology 2012; 302:203-11. [PMID: 22898625 DOI: 10.1016/j.tox.2012.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Silica/cadmium containing nanomaterials are now produced on industrial scale due to their potential for a variety of technological applications. Nevertheless, information on toxicity, exposure and health impact of these nanomaterials is still limited. In this study, in vivo effects of silica nanoparticles (SiNPs) doped with Cd (SiNPs-Cd, 1mg/rat), soluble CdCl(2) (400 μg/rat), or SiNPs (600 μg/rat) have been investigated by evaluating F(2)-isoprostanes (F(2)-IsoPs), superoxide dismutase (SOD1), inducible nitric oxide synthase (iNOS) and cyclooxygenase type 2 (COX-2) enzymes, as markers of oxidative stress, 24h, 7 and 30 days after intra-tracheal (i.t.) instillation to rats. Free and esterified F(2)-IsoPs were evaluated in lung and plasma samples by GC/NICI-MS/MS analysis, and SOD1, iNOS and COX-2 expression in pulmonary tissue by immunocytochemistry. Thirty days after exposure, pulmonary total F(2)-IsoPs were increased by 56% and 43% in CdCl(2) and SiNPs-Cd groups, respectively, compared to controls (32.8 ± 7.8 ng/g). Parallel elevation of free F(2)-IsoPs was observed in plasma samples (by 113% and 95% in CdCl(2) and SiNPs-Cd groups, respectively), compared to controls (28 ± 8 pg/ml). These effects were already detectable at day 7 and lasted until day 30 post-exposure. Pulmonary SOD1-, iNOS-, and COX-2-immunoreactivity was significantly enhanced in a time-dependent manner (7 days <30 days) after both CdCl(2) and SiNPs-Cd treatments. SiNPs did not influence any of the evaluated endpoints. The results indicate the capacity of engineered SiNPs-Cd to cause long-lasting oxidative tissue injury following pulmonary exposure in rat.
Collapse
Affiliation(s)
- Teresa Coccini
- Salvatore Maugeri Foundation IRCCS Institute of Pavia, and University of Pavia, Toxicology Division and European Centre for Nanomedicine, Pavia, Italy.
| | | | | | | | | |
Collapse
|
97
|
Grosser E, Hirt U, Janc OA, Menzfeld C, Fischer M, Kempkes B, Vogelgesang S, Manzke TU, Opitz L, Salinas-Riester G, Müller M. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Neurobiol Dis 2012; 48:102-14. [PMID: 22750529 DOI: 10.1016/j.nbd.2012.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 05/22/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022] Open
Abstract
Rett syndrome is an X chromosome-linked neurodevelopmental disorder associated with cognitive impairment, motor dysfunction and breathing irregularities causing intermittent hypoxia. Evidence for impaired mitochondrial function is also accumulating. A subunit of complex III is among the potentially dys-regulated genes, the inner mitochondrial membrane is leaking protons, brain ATP levels seem reduced, and Rett patient blood samples confirm increased oxidative damage. We therefore screened for mitochondrial dysfunction and impaired redox balance. In hippocampal slices of a Rett mouse model (Mecp2(-/y)) we detected an increased FAD/NADH baseline-ratio indicating intensified oxidization. Cyanide-induced anoxia caused similar decreases in FAD/NADH ratio and mitochondrial membrane potential in both genotypes, but Mecp2(-/y) mitochondria seemed less polarized. Quantifying cytosolic redox balance with the genetically-encoded optical probe roGFP1 confirmed more oxidized baseline conditions, a more vulnerable redox-balance, and more intense responses of Mecp2(-/y) hippocampus to oxidative challenge and mitochondrial impairment. Trolox treatment improved the redox baseline of Mecp2(-/y) hippocampus and dampened its exaggerated responses to oxidative challenge. Microarray analysis of the hippocampal CA1 subfield did not detect alterations of key mitochondrial enzymes or scavenging systems. Yet, quantitative PCR confirmed a moderate upregulation of superoxide dismutase 1 in Mecp2(-/y) hippocampus, which might be a compensatory response to the increased oxidative burden. Since several receptors and ion-channels are redox-modulated, the mitochondrial and redox changes which already manifest in neonates could contribute to the hyperexcitability and diminished synaptic plasticity in MeCP2 deficiency. Therefore, targeting cellular redox balance might qualify as a potential pharmacotherapeutic approach to improve neuronal network function in Rett syndrome.
Collapse
Affiliation(s)
- Emanuel Grosser
- DFG Research Center Molecular Physiology of the Brain (CMPB), Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
ASDs (autism spectrum disorders) are a complex group of neurodevelopment disorders, still poorly understood, steadily rising in frequency and treatment refractory. Extensive research has been so far unable to explain the aetiology of this condition, whereas a growing body of evidence suggests the involvement of environmental factors. Phthalates, given their extensive use and their persistence, are ubiquitous environmental contaminants. They are EDs (endocrine disruptors) suspected to interfere with neurodevelopment. Therefore they represent interesting candidate risk factors for ASD pathogenesis. The aim of this study was to evaluate the levels of the primary and secondary metabolites of DEHP [di-(2-ethylhexyl) phthalate] in children with ASD. A total of 48 children with ASD (male: 36, female: 12; mean age: 11 ± 5 years) and age- and sex-comparable 45 HCs (healthy controls; male: 25, female: 20; mean age: 12 ± 5 years) were enrolled. A diagnostic methodology, based on the determination of urinary concentrations of DEHP metabolites by HPLC-ESI-MS (HPLC electrospray ionization MS), was applied to urine spot samples. MEHP [mono-(2-ethylhexenyl) 1,2-benzenedicarboxylate], 6-OH-MEHP [mono-(2-ethyl-6-hydroxyhexyl) 1,2-benzenedicarboxylate], 5-OH-MEHP [mono-(2-ethyl-5-hydroxyhexyl) 1,2-benzenedicarboxylate] and 5-oxo-MEHP [mono-(2-ethyl-5-oxohexyl) 1,2-benzenedicarboxylate] were measured and compared with unequivocally characterized, pure synthetic compounds (>98%) taken as standard. In ASD patients, significant increase in 5-OH-MEHP (52.1%, median 0.18) and 5-oxo-MEHP (46.0%, median 0.096) urinary concentrations were detected, with a significant positive correlation between 5-OH-MEHP and 5-oxo-MEHP (rs = 0.668, P<0.0001). The fully oxidized form 5-oxo-MEHP showed 91.1% specificity in identifying patients with ASDs. Our findings demonstrate for the first time an association between phthalates exposure and ASDs, thus suggesting a previously unrecognized role for these ubiquitous environmental contaminants in the pathogenesis of autism.
Collapse
|
99
|
Abstract
Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.
Collapse
|
100
|
Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, Belmonte G, Valacchi G, Rossi M, Hayek J. Morphological changes and oxidative damage in Rett Syndrome erythrocytes. Biochim Biophys Acta Gen Subj 2012; 1820:511-20. [DOI: 10.1016/j.bbagen.2011.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022]
|