51
|
Weber F, Quach HQ, Reiersen M, Sarraj SY, Bakir DN, Jankowski VA, Nilsson PH, Tiainen H. Characterization of the foreign body response of titanium implants modified with polyphenolic coatings. J Biomed Mater Res A 2022; 110:1341-1355. [PMID: 35218127 PMCID: PMC9305744 DOI: 10.1002/jbm.a.37377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
Abstract
The foreign body response is dictating the outcome of wound healing around any implanted materials. Patients who suffer from chronic inflammatory diseases and impaired wound healing often face a higher risk for implant failure. Therefore, functional surfaces need to be developed to improve tissue integration. For this purpose, we evaluated the impact of surface coatings made of antioxidant polyphenolic molecules tannic acid (TA) and pyrogallol (PG) on the host response in human blood. Our results showed that although the polyphenolic surface modifications impact the initial blood protein adsorption compared to Ti, the complement and coagulation systems are triggered. Despite complement activation, monocytes and granulocytes remained inactivated, which was manifested in a low pro-inflammatory cytokine expression. Under oxidative stress, both coatings were able to reduce intracellular reactive oxygen species in human gingival fibroblasts (hGFs). However, no anti-inflammatory effects of polyphenolic coatings could be verified in hGFs stimulated with lipopolysaccharide and IL-1β. Although polyphenols reportedly inhibit the NF-κB signaling pathway, phosphorylation of NF-κB p65 was observed. In conclusion, our results indicated that TA and PG coatings improved the hemocompatibility of titanium surfaces and have the potential to reduce oxidative stress during wound healing.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Huy Quang Quach
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Reiersen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Sadaf Yosef Sarraj
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Dyala Nidal Bakir
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Per H Nilsson
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
52
|
Borges Rosa de Moura F, Antonio Ferreira B, Helena Muniz E, Benatti Justino A, Gabriela Silva A, de Azambuja Ribeiro RIM, Oliveira Dantas N, Lisboa Ribeiro D, de Assis Araújo F, Salmen Espindola F, Christine Almeida Silva A, Carla Tomiosso T. Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites. Int J Pharm 2022; 617:121620. [PMID: 35219826 DOI: 10.1016/j.ijpharm.2022.121620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (Ag-NPs), silver oxide nanoparticles (AgO-NPs), and zinc oxide nanoparticles (ZnO-NPs) have healing, antibacterial, and antioxidant properties. Furthermore, Ag-NPs and ZnO-NPs also have anti-inflammatory properties. In this study, we synthesized a nanocomposite using Ag-ZnO and AgO-NPs (Ag-ZnO/AgO NPs). The structural and morphological properties of nanocrystals and nanocomposite were investigated by X-ray diffraction and scanning electronics microscopic. The wurtzite crystalline structure of Ag-ZnO and two morphologies for the nanocomposite (nanorods and nanoplatelets) were determined. Topical treatment with 1% Ag-ZnO/AgO NPs was compared to untreated wounds (control group). Wounds were induced in the dorsal region of BALB/c mice and evaluated after 3, 7, 14, and 21 days of treatment. The nanocomposite demonstrated anti-inflammatory and antioxidant capacities. In addition, wounds treated with Ag-ZnO/AgO NPs showed accelerated closure, non-cytotoxicity, especially on keratinocytes and collagen deposition, and increased metalloproteinases 2 and 9 activity. The nanocomposite improved healing by reducing the inflammatory process, protecting tissues from damage caused by free radicals, and increasing collagen deposition in the extracellular matrix. These characteristics contributed to the accelerated wound closure process. Thus, Ag-ZnO/AgO NPs show potential for can be a strategy for topical use in formulations of new drugs to treat wounds.
Collapse
Affiliation(s)
- Francyelle Borges Rosa de Moura
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil; Biology Institute, State University of Campinas, 13083-862, Campinas-SP, Brazil
| | - Bruno Antonio Ferreira
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | - Elusca Helena Muniz
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | | | - Ana Gabriela Silva
- Laboratory of Experimental Pathology, Federal University of São João del-Rei, 35501-296, Divinópolis-MG, Brazil
| | | | - Noelio Oliveira Dantas
- Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, 57072-900, Maceió-AL, Brazil
| | - Daniele Lisboa Ribeiro
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | - Fernanda de Assis Araújo
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | - Foued Salmen Espindola
- Biotechnology Institute, Federal University of Uberlândia, 38405-319, Uberlândia-MG, Brazil
| | - Anielle Christine Almeida Silva
- Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, 57072-900, Maceió-AL, Brazil; Post-Graduation Program in Northeast Network in Biotechnology, Federal University of Alagoas, 57072-970 Maceió, AL, Brazil.
| | - Tatiana Carla Tomiosso
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil; Biology Institute, State University of Campinas, 13083-862, Campinas-SP, Brazil.
| |
Collapse
|
53
|
Wang W, Xiong L, Li Y, Song Z, Sun D, Li H, Chen L. Synthesis of lathyrane diterpenoid nitrogen-containing heterocyclic derivatives and evaluation of their anti-inflammatory activities. Bioorg Med Chem 2022; 56:116627. [DOI: 10.1016/j.bmc.2022.116627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
|
54
|
Park S. Building vs. Rebuilding Epidermis: Comparison Embryonic Development and Adult Wound Repair. Front Cell Dev Biol 2022; 9:796080. [PMID: 35145968 PMCID: PMC8822150 DOI: 10.3389/fcell.2021.796080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Wound repair is essential to restore tissue function through the rebuilding of pre-existing structures. The repair process involves the re-formation of tissue, which was originally generated by embryonic development, with as similar a structure as possible. Therefore, these two processes share many similarities in terms of creating tissue architecture. However, fundamental differences still exist, such as differences in the cellular components, the status of neighboring tissues, and the surrounding environment. Recent advances in single-cell transcriptomics, in vivo lineage tracing, and intravital imaging revealed subpopulations, long-term cell fates, and dynamic cellular behaviors in live animals that were not detectable previously. This review highlights similarities and differences between adult wound repair and embryonic tissue development with a particular emphasis on the epidermis of the skin.
Collapse
Affiliation(s)
- Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
55
|
Ting Hao W, Huang L, Pan W, Ren YL. Antioxidant glutathione inhibits inflammation in synovial fibroblasts via PTEN/PI3K/AKT pathway: An in vitro study. Arch Rheumatol 2021; 37:212-222. [PMID: 36017213 PMCID: PMC9377173 DOI: 10.46497/archrheumatol.2022.9109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives
In this study, we aimed to investigate whether glutathione (GSH) could decrease the secretion of reactive oxygen species (ROS), reduce inflammation, and modulate the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/AKT (PTEN/PI3K/AKT) in synovial fibroblasts (SFs). Patients and methods
A total of 30 DBA/1J female mice were used in this study. The release of ROS in MH7A cells was examined using a ROS assay kit. The effects of GSH on the messenger ribonucleic acid (mRNA) expression and protein levels of inflammatory cytokines were determined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) in mouse SFs and MH7A cells, respectively. The PTEN/PI3K/AKT pathway was investigated via Western blotting. The effects of buthionine-sulfoximine (BSO), as an inhibitor of GSH, on these molecules were examined. Results
The ROS were decreased after GSH treatment, and the mRNA levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)-1, MMP-3, were also significantly inhibited after GSH stimulation. However, the IL-10 levels were enhanced, and GSH increased the expression of PTEN. The GSH suppressed the activation of phosphorylated (p)-PI3K and p-AKT. The supplementation of the BSO restored the activation of PI3K/AKT pathway with a high production of ROS. The levels of TNF-α, IL-1β and IL-6 were also elevated, when the BSO was added. Conclusion
These findings suggest that GSH can act as an inflammatory suppressor by downregulating the PTEN/PI3K/AKT pathway in MH7A cells. These data indicated a novel function of GSH for improving the inflammation of RA SFs and may help to alleviate the pathological process of RA.
Collapse
Affiliation(s)
- Wen Ting Hao
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Lu Huang
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu
| | - Yi Le Ren
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
56
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
57
|
Bassoy EY, Walch M, Martinvalet D. Reactive Oxygen Species: Do They Play a Role in Adaptive Immunity? Front Immunol 2021; 12:755856. [PMID: 34899706 PMCID: PMC8653250 DOI: 10.3389/fimmu.2021.755856] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the host from a plethora of microorganisms and toxins through its unique ability to distinguish self from non-self. To perform this delicate but essential task, the immune system relies on two lines of defense. The innate immune system, which is by nature fast acting, represents the first line of defense. It involves anatomical barriers, physiological factors as well as a subset of haematopoietically-derived cells generically call leukocytes. Activation of the innate immune response leads to a state of inflammation that serves to both warn about and combat the ongoing infection and delivers the antigenic information of the invading pathogens to initiate the slower but highly potent and specific second line of defense, the adaptive immune system. The adaptive immune response calls on T lymphocytes as well as the B lymphocytes essential for the elimination of pathogens and the establishment of the immunological memory. Reactive oxygen species (ROS) have been implicated in many aspects of the immune responses to pathogens, mostly in innate immune functions, such as the respiratory burst and inflammasome activation. Here in this mini review, we focus on the role of ROS in adaptive immunity. We examine how ROS contribute to T-cell biology and discuss whether this activity can be extrapolated to B cells.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- International Society of Liver Surgeons (ISLS), Cankaya Ankara, Turkey.,Departments of Immunology and Cancer Biology, College of Medicine and Science, Mayo Clinic, Scottsdale, AZ, United States
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, University of Padua, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
58
|
Zawani M, Fauzi MB. Epigallocatechin Gallate: The Emerging Wound Healing Potential of Multifunctional Biomaterials for Future Precision Medicine Treatment Strategies. Polymers (Basel) 2021; 13:3656. [PMID: 34771213 PMCID: PMC8587897 DOI: 10.3390/polym13213656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Immediate treatment for cutaneous injuries is a realistic approach to improve the healing rate and minimise the risk of complications. Multifunctional biomaterials have been proven to be a potential strategy for chronic skin wound management, especially for future advancements in precision medicine. Hence, antioxidant incorporated biomaterials play a vital role in the new era of tissue engineering. A bibliographic investigation was conducted on articles focusing on in vitro, in vivo, and clinical studies that evaluate the effect and the antioxidants mechanism exerted by epigallocatechin gallate (EGCG) in wound healing and its ability to act as reactive oxygen species (ROS) scavengers. Over the years, EGCG has been proven to be a potent antioxidant efficient for wound healing purposes. Therefore, several novel studies were included in this article to shed light on EGCG incorporated biomaterials over five years of research. However, the related papers under this review's scope are limited in number. All the studies showed that biomaterials with scavenging ability have a great potential to combat chronic wounds and assist the wound healing process against oxidative damage. However, the promising concept has faced challenges extending beyond the trial phase, whereby the implementation of these biomaterials, when exposed to an oxidative stress environment, may disrupt cell proliferation and tissue regeneration after transplantation. Therefore, thorough research should be executed to ensure a successful therapy.
Collapse
Affiliation(s)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
59
|
Sharapov MG, Gudkov SV, Lankin VZ. Hydroperoxide-Reducing Enzymes in the Regulation of Free-Radical Processes. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1256-1274. [PMID: 34903155 DOI: 10.1134/s0006297921100084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review presents current concepts of the molecular mechanisms of oxidative stress development and describes main stages of the free-radical reactions in oxidative stress. Endogenous and exogenous factors of the oxidative stress development, including dysfunction of cell oxidoreductase systems, as well as the effects of various external physicochemical factors, are discussed. The review also describes the main components of the antioxidant defense system and stages of its evolution, with a special focus on peroxiredoxins, glutathione peroxidases, and glutathione S-transferases, which share some phylogenetic, structural, and catalytic properties. The substrate specificity, as well as the similarities and differences in the catalytic mechanisms of these enzymes, are discussed in detail. The role of peroxiredoxins, glutathione peroxidases, and glutathione S-transferases in the regulation of hydroperoxide-mediated intracellular and intercellular signaling and interactions of these enzymes with receptors and non-receptor proteins are described. An important contribution of hydroperoxide-reducing enzymes to the antioxidant protection and regulation of such cell processes as growth, differentiation, and apoptosis is demonstrated.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
60
|
Butler MW, Stierhoff EN, Carpenetti JM, Bertone MA, Addesso AM, Knutie SA. Oxidative damage increases with degree of simulated bacterial infection, but not ectoparasitism, in tree swallow nestlings. J Exp Biol 2021; 224:272162. [PMID: 34427672 DOI: 10.1242/jeb.243116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
The purpose of mounting an immune response is to destroy pathogens, but this response comes at a physiological cost, including the generation of oxidative damage. However, many studies on the effects of immune challenges employ a single high dose of a simulated infection, meaning that the consequences of more mild immune challenges are poorly understood. We tested whether the degree of immunological challenge in tree swallows (Tachycineta bicolor) affects oxidative physiology and body mass, and whether these metrics correlate with parasitic nest mite load. We injected 14 day old nestlings with 0, 0.01, 0.1 or 1 mg lipopolysaccharide (LPS) per kg body mass, then collected a blood sample 24 h later to quantify multiple physiological metrics, including oxidative damage (i.e. d-ROMs), circulating amounts of triglyceride and glycerol, and levels of the acute phase protein haptoglobin. After birds had fledged, we identified and counted parasitic nest mites (Dermanyssus spp. and Ornithonyssus spp.). We found that only nestlings injected with 1 mg LPS kg-1 body mass, which is a common dosage in ecoimmunological studies, lost more body mass than individuals from other treatment groups. However, every dose of LPS resulted in a commensurate increase in oxidative damage. Parasitic mite abundance had no effect on oxidative damage across treatments. The amount of oxidative damage correlated with haptoglobin levels, suggesting compensatory mechanisms to limit self-damage during an immune response. We conclude that while only the highest-intensity immune challenges resulted in costs related to body mass, even low-intensity immune challenges result in detectable increases in oxidative damage.
Collapse
Affiliation(s)
| | | | | | - Matthew A Bertone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alyssa M Addesso
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
61
|
Jin M, Li S, Wu Y, Li D, Han Y. Construction of Chitosan/Alginate Nano-Drug Delivery System for Improving Dextran Sodium Sulfate-Induced Colitis in Mice. NANOMATERIALS 2021; 11:nano11081884. [PMID: 34443715 PMCID: PMC8402175 DOI: 10.3390/nano11081884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
(1) Background: In the treatment of ulcerative colitis (UC), accurate delivery and release of anti-inflammatory drugs to the site of inflammation can reduce systemic side effects. (2) Methods: We took advantage of this goal to prepare resveratrol-loaded PLGA nanoparticles (RES-PCAC-NPs) by emulsification solvent volatilization. After layer-by-layer self-assembly technology, we deposited chitosan and alginate to form a three-layer polyelectrolyte film. (3) Results: It can transport nanoparticles through the gastric environment to target inflammation sites and slowly release drugs at a specific pH. The resulting RES-PCAC-NPs have an ideal average diameter (~255 nm), a narrow particle size distribution and a positively charged surface charge (~13.5 mV). The Fourier transform infrared spectroscopy showed that resveratrol was successfully encapsulated into PCAC nanoparticles, and the encapsulation efficiency reached 87.26%. In addition, fluorescence imaging showed that RES-PCAC-NPs with positive charges on the surface can effectively target and accumulate in the inflammation site while continuing to penetrate downward to promote mucosal healing. Importantly, oral RES-PCAC-NPs treatment in DSS-induced mice was superior to other results in significantly improved inflammatory markers of UC. (4) Conclusions: Our results strongly prove that RES-PCAC-NPs can target the inflamed colon for maximum efficacy, and this oral pharmaceutical formulation can represent a promising formulation in the treatment of UC.
Collapse
|
62
|
Correlation between human health and reactive oxygen species produced in blood: a long-term chemiluminescence and fluorescence analysis. Sci Rep 2021; 11:14545. [PMID: 34267248 PMCID: PMC8282623 DOI: 10.1038/s41598-021-93887-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
The previous slide-glass type system could simultaneously detect reactive and highly reactive oxygen species, i.e., superoxide radicals (O2−·) and hypochlorite ions (OCl−) elicited from leucocytes in sample blood, but had some drawbacks, i.e., signal noise from air-flow stirring, potential biohazard risks, etc. because of open samples placed on a slide glass. We overcame these drawbacks by adopting a fluidic-chip container in a new system, which resulted in higher sensitivity and more stable measurements. Using the new system, we conducted a pilot study on nominally healthy volunteers to find whether or not the monitored activities of leukocytes can distinguish more or less unhealthy conditions from healthy ones. At first, healthy volunteers of both genders and of various ages showed that the fluctuation magnitudes (%) of O2−· and OCl− were nearly similar to each other and to that of the neutrophil count fluctuation. These parameters sometimes exceeded the healthy fluctuation range. By comparing these large fluctuations with the data of an inflammation marker C-reactive protein (CRP), the neutrophil count fluctuation and the timings/symptoms of abnormalities found in questionnaire, we could gain information suggesting the factors causing the large fluctuations. The new system could detect bodily abnormalities earlier than CRP or self-aware symptoms.
Collapse
|
63
|
Liu C, Hirakawa H, Katsube T, Fang Y, Tanaka K, Nenoi M, Fujimori A, Wang B. Altered Induction of Reactive Oxygen Species by X-rays in Hematopoietic Cells of C57BL/6-Tg (CAG-EGFP) Mice. Int J Mol Sci 2021; 22:6929. [PMID: 34203224 PMCID: PMC8268547 DOI: 10.3390/ijms22136929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.
Collapse
Affiliation(s)
- Cuihua Liu
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Hirokazu Hirakawa
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Takanori Katsube
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Yaqun Fang
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Kaoru Tanaka
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Mitsuru Nenoi
- Human Resources Development Center, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Bing Wang
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| |
Collapse
|
64
|
Nakayama A, Nakamura T, Ara T, Fukuta T, Karanjit S, Harada T, Oda A, Sato H, Abe M, Kogure K, Namba K. Development of a novel antioxidant based on a dimeric dihydroisocoumarin derivative. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
65
|
GLUT-1 Enhances Glycolysis, Oxidative Stress, and Fibroblast Proliferation in Keloid. Life (Basel) 2021; 11:life11060505. [PMID: 34070830 PMCID: PMC8229441 DOI: 10.3390/life11060505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
A keloid is a fibroproliferative skin tumor. Proliferating keloid fibroblasts (KFs) demand active metabolic utilization. The contributing roles of glycolysis and glucose metabolism in keloid fibroproliferation remain unclear. This study aims to determine the regulation of glycolysis and glucose metabolism by glucose transporter-1 (GLUT-1), an essential protein to initiate cellular glucose uptake, in keloids and in KFs. Tissues of keloids and healthy skin were explanted for KFs and normal fibroblasts (NFs), respectively. GLUT-1 expression was measured by immunofluorescence, RT-PCR, and immunoblotting. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured with or without WZB117, a GLUT-1 inhibitor. Reactive oxygen species (ROS) were assayed by MitoSOX immunostaining. The result showed that glycolysis (ECAR) was enhanced in KFs, whereas OCR was not. GLUT-1 expression was selectively increased in KFs. Consistently, GLUT-1 expression was increased in keloid tissue. Treatment with WZB117 abolished the enhanced ECAR, including glycolysis and glycolytic capacity, in KFs. ROS levels were increased in KFs compared to those in NFs. GLUT-1 inhibition suppressed not only the ROS levels but also the cell proliferation in KFs. In summary, the GLUT-1-dependent glycolysis and ROS production mediated fibroblast proliferation in keloids. GLUT1 might be a potential target for metabolic reprogramming to treat keloids.
Collapse
|
66
|
Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, Chen Y, Guo M, Han W, Ye A, Xie T, Chu B, Shi C, Yang S, Chen C. Precision Redox: The Key for Antioxidant Pharmacology. Antioxid Redox Signal 2021; 34:1069-1082. [PMID: 33270507 PMCID: PMC8080931 DOI: 10.1089/ars.2020.8212] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Significance: The redox balance of cells provides a stable microenvironment for biological macromolecules to perform their physiological functions. As redox imbalance is closely related to the occurrence and development of a variety of diseases, antioxidant therapies are an attractive option. However, redox-based therapeutic strategies have not yet shown satisfactory results. To find the key reason is of great significance. Recent Advances: We emphasize the precise nature of redox regulation and elucidate the importance and necessity of precision redox strategies from three aspects: differences in redox status, differences in redox function, and differences in the effects of redox therapy. We then propose the "5R" principle of precision redox in antioxidant pharmacology: "Right species, Right place, Right time, Right level, and Right target." Critical Issues: Redox status must be considered in the context of species, time, place, level, and target. The function of a biomacromolecule and its cellular signaling role are closely dependent on redox status. Accurate evaluation of redox status and specific interventions are critical for the success of redox treatments. Precision redox is the key for antioxidant pharmacology. The precise application of antioxidants as nutritional supplements is also key to the general health of the population. Future Directions: Future studies to develop more accurate methods for detecting redox status and accurately evaluating the redox state of different physiological and pathological processes are needed. Antioxidant pharmacology should consider the "5R" principle rather than continuing to apply global nonspecific antioxidant treatments. Antioxid. Redox Signal. 34, 1069-1082.
Collapse
Affiliation(s)
- Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chuanxin Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuzhe Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wensheng Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Boyu Chu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangpo Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
67
|
Ohl K, Tenbrock K. Oxidative Stress in SLE T Cells, Is NRF2 Really the Target to Treat? Front Immunol 2021; 12:633845. [PMID: 33968025 PMCID: PMC8102865 DOI: 10.3389/fimmu.2021.633845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023] Open
Abstract
Oxidative stress is a major component of cellular damage in T cells from patients with systemic lupus erythematosus (SLE) resulting amongst others in the generation of pathogenic Th17 cells. The NRF2/Keap1 pathway is the most important antioxidant system protecting cells from damage due to oxidative stress. Activation of NRF2 therefore seems to represent a putative therapeutic target in SLE, which is nevertheless challenged by several findings suggesting tissue and cell specific differences in the effect of NRF2 expression. This review focusses on the current understanding of oxidative stress in SLE T cells and its pathophysiologic and therapeutic implications.
Collapse
Affiliation(s)
- Kim Ohl
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
68
|
Arve-Butler S, Schmidt T, Mossberg A, Berthold E, Gullstrand B, Bengtsson AA, Kahn F, Kahn R. Synovial fluid neutrophils in oligoarticular juvenile idiopathic arthritis have an altered phenotype and impaired effector functions. Arthritis Res Ther 2021; 23:109. [PMID: 33836809 PMCID: PMC8034063 DOI: 10.1186/s13075-021-02483-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neutrophils are the most prevalent immune cells in the synovial fluid in inflamed joints of children with oligoarticular juvenile idiopathic arthritis (JIA). Despite this, little is known about neutrophil function at the site of inflammation in JIA and how local neutrophils contribute to disease pathogenesis. This study aimed to characterize the phenotype and function of synovial fluid neutrophils in oligoarticular JIA. Methods Neutrophils obtained from paired blood and synovial fluid from patients with active oligoarticular JIA were investigated phenotypically (n = 17) and functionally (phagocytosis and oxidative burst, n = 13) by flow cytometry. In a subset of patients (n = 6), blood samples were also obtained during inactive disease at a follow-up visit. The presence of CD206-expressing neutrophils was investigated in synovial biopsies from four patients by immunofluorescence. Results Neutrophils in synovial fluid had an activated phenotype, characterized by increased CD66b and CD11b levels, and most neutrophils had a CD16hi CD62Llowaged phenotype. A large proportion of the synovial fluid neutrophils expressed CD206, a mannose receptor not commonly expressed by neutrophils but by monocytes, macrophages, and dendritic cells. CD206-expressing neutrophils were also found in synovial tissue biopsies. The synovial fluid neutrophil phenotype was not dependent on transmigration alone. Functionally, synovial fluid neutrophils had reduced phagocytic capacity and a trend towards impaired oxidative burst compared to blood neutrophils. In addition, the effector functions of the synovial fluid neutrophils correlated negatively with the proportion of CD206+ neutrophils. Conclusions Neutrophils in the inflamed joint in oligoarticular JIA were altered, both regarding phenotype and function. Neutrophils in the synovial fluid were activated, had an aged phenotype, had gained monocyte-like features, and had impaired phagocytic capacity. The impairment in phagocytosis and oxidative burst was associated with the phenotype shift. We speculate that these neutrophil alterations might play a role in the sustained joint inflammation seen in JIA.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anki Mossberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Elisabet Berthold
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Kahn
- Department of Infection Medicine, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Robin Kahn
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
69
|
Mårtensson J, Sundqvist M, Manandhar A, Ieremias L, Zhang L, Ulven T, Xie X, Björkman L, Forsman H. The Two Formyl Peptide Receptors Differently Regulate GPR84-Mediated Neutrophil NADPH Oxidase Activity. J Innate Immun 2021; 13:242-256. [PMID: 33789297 DOI: 10.1159/000514887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Neutrophils express the two formyl peptide receptors (FPR1 and FPR2) and the medium-chain fatty acid receptor GPR84. The FPRs are known to define a hierarchy among neutrophil G protein-coupled receptors (GPCRs), that is, the activated FPRs can either suppress or amplify GPCR responses. In this study, we investigated the position of GPR84 in the FPR-defined hierarchy regarding the activation of neutrophil nicotine adenine dinucleotide phosphate (NADPH) oxidase, an enzyme system designed to generate reactive oxygen species (ROS), which are important regulators in cell signaling and immune regulation. When resting neutrophils were activated by GPR84 agonists, a modest ROS release was induced. However, vast amounts of ROS were induced by these GPR84 agonists in FPR2-desensitized neutrophils, and the response was inhibited not only by a GPR84-specific antagonist but also by an FPR2-specific antagonist. This suggests that the amplified GPR84 agonist response is achieved through a reactivation of desensitized FPR2s. In addition, the GPR84-mediated FPR2 reactivation was independent of β-arrestin recruitment and sensitive to a protein phosphatase inhibitor. In contrast to FPR2-desensitized cells, FPR1 desensitization primarily resulted in a suppressed GPR84 agonist-induced ROS response, indicating a receptor hierarchical desensitization of GPR84 by FPR1-generated signals. In summary, our data show that the two FPRs in human neutrophils control the NADPH oxidase activity with concomitant ROS production by communicating with GPR84 through different mechanisms. While FPR1 desensitizes GPR84 and by that suppresses the release of ROS induced by GPR84 agonists, amplified ROS release is achieved by GPR84 agonists through reactivation of the desensitized FPR2.
Collapse
Affiliation(s)
- Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Loukas Ieremias
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Linjie Zhang
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
70
|
Azova S, Rajabi F, Modi BP, Mansfield L, Jonas MM, Drobysheva A, Boyd TK, Wassner AJ, Smith JR. Graves' disease in a five-month-old boy with an unusual treatment course. J Pediatr Endocrinol Metab 2021; 34:401-406. [PMID: 33675208 PMCID: PMC10653980 DOI: 10.1515/jpem-2020-0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/05/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Graves' disease (GD) is rare in children under age five years. Antithyroid drugs are typically first-line therapy but carry the risks of agranulocytosis and liver dysfunction. CASE PRESENTATION A male infant with multiple congenital anomalies, left ventricular hypertrophy, and neurologic dysfunction developed GD at five months of life. The presence of chronic hepatitis complicated medical management. Potassium iodide was effective temporarily, but urgent thyroidectomy was required at nine months of age. Postoperatively, the patient developed a thyroid function pattern consistent with impaired pituitary sensitivity to thyroid hormone (TH) that responded to the addition of liothyronine. Exome sequencing revealed a heterozygous de novo duplication of the ATAD3 gene cluster, suggesting a possible mitochondrial disorder. CONCLUSIONS This case describes the youngest child to date to be diagnosed with endogenous GD and to successfully undergo definitive treatment with thyroidectomy. An underlying defect in mitochondrial function is suspected, suggesting a potential novel pathophysiologic link to early-onset thyroid autoimmunity. Additionally, this case illustrated the development of impaired pituitary sensitivity to TH following thyrotoxicosis of postnatal onset, which may contribute to our understanding of hypothalamic-pituitary-thyroid (HPT) axis development.
Collapse
Affiliation(s)
- Svetlana Azova
- Division of Endocrinology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Farrah Rajabi
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA; and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Biren P. Modi
- Department of Surgery, Boston Children’s Hospital, Boston, MA, USA; and Thyroid Center, Boston Children’s Hospital, Boston, MA, USA
| | - Laura Mansfield
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; and Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Maureen M. Jonas
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; and Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Anastasia Drobysheva
- Department of Pathology, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Theonia K. Boyd
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Ari J. Wassner
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; and Thyroid Center, Boston Children’s Hospital, Boston, MA, USA
| | - Jessica R. Smith
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; and Thyroid Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
71
|
Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. Biomaterials 2021; 271:120753. [PMID: 33725585 DOI: 10.1016/j.biomaterials.2021.120753] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Oral administration of protein is very challenging for therapeutic applications due to its instability and easy degradation in the gastrointestinal tract. Herein, we reported an approach to encapsulate native anti-inflammatory proteins in wind chimes like cyclodextrin (WCC) for efficient oral protein delivery. The amphiphilic WCC can self-assemble into nanoparticles in aqueous solution and achieve superior encapsulation of two antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) by simply mixing with protein solution, avoiding any extra cumbersome steps that might inactivate protein. WCC nanovehicles can effectively protect enzyme activity and enhance their intracellular delivery. SOD and CAT co-loaded WCC nanoparticles (SC/WCC) can integrate the synergistic effect of SOD and CAT for enhancing the removal of reactive oxygen species (ROS), effectively inhibit the inflammatory response by reducing the secretion of proinflammatory factors and protect cells from ROS-induced oxidative damage. In the mouse colitis model, SC/WCC administered orally was able to efficiently accumulate in the inflamed colon, significantly inhibited the expression of proinflammatory mediators and notably alleviated the symptoms related to colitis. Therefore, we believe that the strategies we described here may provide a convenient and powerful platform for the treatment of other inflammatory diseases.
Collapse
|
72
|
Liaghati A, Pileggi CA, Parmar G, Patten DA, Hadzimustafic N, Cuillerier A, Menzies KJ, Burelle Y, Harper ME. Grx2 Regulates Skeletal Muscle Mitochondrial Structure and Autophagy. Front Physiol 2021; 12:604210. [PMID: 33762963 PMCID: PMC7982873 DOI: 10.3389/fphys.2021.604210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Glutathione is an important antioxidant that regulates cellular redox status and is disordered in many disease states. Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase that plays a pivotal role in redox control by catalyzing reversible protein deglutathionylation. As oxidized glutathione (GSSG) can stimulate mitochondrial fusion, we hypothesized that Grx2 may contribute to the maintenance of mitochondrial dynamics and ultrastructure. Here, we demonstrate that Grx2 deletion results in decreased GSH:GSSG, with a marked increase of GSSG in primary muscle cells isolated from C57BL/6 Grx2-/- mice. The altered glutathione redox was accompanied by increased mitochondrial length, consistent with a more fused mitochondrial reticulum. Electron microscopy of Grx2-/- skeletal muscle fibers revealed decreased mitochondrial surface area, profoundly disordered ultrastructure, and the appearance of multi-lamellar structures. Immunoblot analysis revealed that autophagic flux was augmented in Grx2-/- muscle as demonstrated by an increase in the ratio of LC3II/I expression. These molecular changes resulted in impaired complex I respiration and complex IV activity, a smaller diameter of tibialis anterior muscle, and decreased body weight in Grx2 deficient mice. Together, these are the first results to show that Grx2 regulates skeletal muscle mitochondrial structure, and autophagy.
Collapse
Affiliation(s)
- Ava Liaghati
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nina Hadzimustafic
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Alexanne Cuillerier
- Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
73
|
Bilirubin nanomedicine ameliorates the progression of experimental autoimmune encephalomyelitis by modulating dendritic cells. J Control Release 2021; 331:74-84. [DOI: 10.1016/j.jconrel.2021.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
|
74
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
75
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
76
|
Mehling R, Schwenck J, Lemberg C, Trautwein C, Zizmare L, Kramer D, Müller A, Fehrenbacher B, Gonzalez-Menendez I, Quintanilla-Martinez L, Schröder K, Brandes RP, Schaller M, Ruf W, Eichner M, Ghoreschi K, Röcken M, Pichler BJ, Kneilling M. Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 2021; 11:470-490. [PMID: 33391487 PMCID: PMC7738859 DOI: 10.7150/thno.51462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important regulators of inflammation. The exact impact of ROS/RNS on cutaneous delayed-type hypersensitivity reaction (DTHR) is controversial. The aim of our study was to identify the dominant sources of ROS/RNS during acute and chronic trinitrochlorobenzene (TNCB)-induced cutaneous DTHR in mice with differently impaired ROS/RNS production. Methods: TNCB-sensitized wild-type, NADPH oxidase 2 (NOX2)- deficient (gp91phox-/-), myeloperoxidase-deficient (MPO-/-), and inducible nitric oxide synthase-deficient (iNOS-/-) mice were challenged with TNCB on the right ear once to elicit acute DTHR and repetitively up to five times to induce chronic DTHR. We measured ear swelling responses and noninvasively assessed ROS/RNS production in vivo by employing the chemiluminescence optical imaging (OI) probe L-012. Additionally, we conducted extensive ex vivo analyses of inflamed ears focusing on ROS/RNS production and the biochemical and morphological consequences. Results: The in vivo L-012 OI of acute and chronic DTHR revealed completely abrogated ROS/RNS production in the ears of gp91phox-/- mice, up to 90 % decreased ROS/RNS production in the ears of MPO-/- mice and unaffected ROS/RNS production in the ears of iNOS-/- mice. The DHR flow cytometry analysis of leukocytes derived from the ears with acute DTHR confirmed our in vivo L-012 OI results. Nevertheless, we observed no significant differences in the ear swelling responses among all the experimental groups. The histopathological analysis of the ears of gp91phox-/- mice with acute DTHRs revealed slightly enhanced inflammation. In contrast, we observed a moderately reduced inflammatory immune response in the ears of gp91phox-/- mice with chronic DTHR, while the inflamed ears of MPO-/- mice exhibited the strongest inflammation. Analyses of lipid peroxidation, 8-hydroxy-2'deoxyguanosine levels, redox related metabolites and genomic expression of antioxidant proteins revealed similar oxidative stress in all experimental groups. Furthermore, inflamed ears of wild-type and gp91phox-/- mice displayed neutrophil extracellular trap (NET) formation exclusively in acute but not chronic DTHR. Conclusions: MPO and NOX2 are the dominant sources of ROS/RNS in acute and chronic DTHR. Nevertheless, depletion of one primary source of ROS/RNS exhibited only marginal but conflicting impact on acute and chronic cutaneous DTHR. Thus, ROS/RNS are not a single entity, and each species has different properties at certain stages of the disease, resulting in different outcomes.
Collapse
|
77
|
Jain SK, Parsanathan R, Levine SN, Bocchini JA, Holick MF, Vanchiere JA. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med 2020; 161:84-91. [PMID: 33038530 PMCID: PMC7539020 DOI: 10.1016/j.freeradbiomed.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
There is a marked variation in mortality risk associated with COVID-19 infection in the general population. Low socioeconomic status and other social determinants have been discussed as possible causes for the higher burden in African American communities compared with white communities. Beyond the social determinants, the biochemical mechanism that predisposes individual subjects or communities to the development of excess and serious complications associated with COVID-19 infection is not clear. Virus infection triggers massive ROS production and oxidative damage. Glutathione (GSH) is essential and protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. GSH is also required to maintain the VD-metabolism genes and circulating levels of 25-hydroxyvitamin D (25(OH)VD). Glucose-6-phosphate dehydrogenase (G6PD) is necessary to prevent the exhaustion and depletion of cellular GSH. X-linked genetic G6PD deficiency is common in the AA population and predominantly in males. Acquired deficiency of G6PD has been widely reported in subjects with conditions of obesity and diabetes. This suggests that individuals with G6PD deficiency are vulnerable to excess oxidative stress and at a higher risk for inadequacy or deficiency of 25(OH)VD, leaving the body unable to protect its 'oxidative immune-metabolic' physiological functions from the insults of COVID-19. An association between subclinical interstitial lung disease with 25(OH)VD deficiencies and GSH deficiencies has been previously reported. We hypothesize that the overproduction of ROS and excess oxidative damage is responsible for the impaired immunity, secretion of the cytokine storm, and onset of pulmonary dysfunction in response to the COVID-19 infection. The co-optimization of impaired glutathione redox status and excess 25(OH)VD deficiencies has the potential to reduce oxidative stress, boost immunity, and reduce the adverse clinical effects of COVID-19 infection in the AA population.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Rajesh Parsanathan
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Steve N Levine
- School of Medicine, Section of Endocrinology & Metabolism, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Joseph A Bocchini
- Department of Pediatrics, Tulane University, 2508 Bert Kouns Industrial Loop, Suite 103, Shreveport, LA 71118, USA
| | - Michael F Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Vitamin D, Skin, and Bone Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - John A Vanchiere
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
78
|
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev 2020; 33:298-311. [PMID: 32238213 DOI: 10.1017/s0954422420000104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing clinical and experimental evidence accumulated during the past few decades supports an important role for dietary advanced glycation endproducts (AGE) in the pathogenesis of many chronic non-infectious diseases, such as type 2 diabetes, CVD and others, that are reaching epidemic proportions in the Western world. Although AGE are compounds widely recognised as generated in excess in the body in diabetic patients, the potential importance of exogenous AGE, mostly of dietary origin, has been largely ignored in the general nutrition audience. In the present review we aim to describe dietary AGE, their mechanisms of formation and absorption into the body as well as their main mechanisms of action. We will present in detail current evidence of their potential role in the development of several chronic non-infectious clinical conditions, some general suggestions on how to restrict them in the diet and evidence regarding the potential benefits of lowering their consumption.
Collapse
Affiliation(s)
- M E Garay-Sevilla
- Medical Science Department, University of Guanajuato, Guanajuato, Mexico
| | - M S Beeri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - M P de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - A Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile
| | - S Salazar-Villanea
- Department of Animal Science, Universidad de Costa Rica, San Pedro Montes de Oca, San José, Costa Rica
| | - J Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
79
|
Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21239067. [PMID: 33260629 PMCID: PMC7731249 DOI: 10.3390/ijms21239067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease primarily affecting the joints, and closely related to specific autoantibodies that mostly target modified self-epitopes. Relevant findings in the field of RA pathogenesis have been described. In particular, new insights come from studies on synovial fibroblasts and cells belonging to the innate and adaptive immune system, which documented the aberrant production of inflammatory mediators, oxidative stress and NETosis, along with relevant alterations of the genome and on the regulatory epigenetic mechanisms. In recent years, the advances in the understanding of RA pathogenesis by identifying key cells and cytokines allowed the development of new targeted disease-modifying antirheumatic drugs (DMARDs). These drugs considerably improved treatment outcomes for the majority of patients. Moreover, numerous studies demonstrated that the pharmacological therapy with biologic DMARDs (bDMARDs) promotes, in parallel to their clinical efficacy, significant improvement in all these altered molecular mechanisms. Thus, continuous updating of the knowledge of molecular processes associated with the pathogenesis of RA, and on the specific effects of bDMARDs in the correction of their dysregulation, are essential in the early and correct approach to the treatment of this complex autoimmune disorder. The present review details basic mechanisms related to the physiopathology of RA, along with the core mechanisms of response to bDMARDs.
Collapse
|
80
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|
81
|
Tao H, Ge G, Liang X, Zhang W, Sun H, Li M, Geng D. ROS signaling cascades: dual regulations for osteoclast and osteoblast. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1055-1062. [PMID: 33085739 DOI: 10.1093/abbs/gmaa098] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence indicates that intracellular reactive oxygen species (ROS) production is highly involved in bone homeostasis by intervening osteoclast or osteoblast differentiation. Interestingly, ROS that are known as oxidizing agents exert dose-dependent biphasic properties in bone remodeling, including preventing osteoblast activity but accelerating osteoclast resorption. ROS mainly composed of superoxide anion radical, hydroxyl radical, nitric oxide, and two-electron reduction product hydrogen peroxide, which are important components to regulate bone cell metabolism and function in mammal skeleton. These free radicals can be partly produced in bone and boosted in an inflammation state. Although numerous researches have emphasized the impacts of ROS on bone cell biology and verified the mechanism of ROS signaling cascades, the recapitulatory commentary is necessary. In this review article, we particularly focus on the regulation of the intracellular ROS and its potential mechanism impacting on cell-signaling transduction in osteoclast and osteoblast differentiation for preferable understanding the pathogenesis and searching for novel therapeutic protocols for human bone diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China, and
| | - Gaoran Ge
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China, and
| | - Xiaolong Liang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China, and
| | - Weicheng Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China, and
| | - Houyi Sun
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China, and
| | - Meng Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China, and
- Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230000, China
| | - Dechun Geng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China, and
| |
Collapse
|
82
|
Lind S, Dahlgren C, Holmdahl R, Olofsson P, Forsman H. Functional selective FPR1 signaling in favor of an activation of the neutrophil superoxide generating NOX2 complex. J Leukoc Biol 2020; 109:1105-1120. [PMID: 33040403 PMCID: PMC8246850 DOI: 10.1002/jlb.2hi0520-317r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The formyl peptide receptors FPR1 and FPR2 are abundantly expressed by neutrophils, in which they regulate proinflammatory tissue recruitment of inflammatory cells, the production of reactive oxygen species (ROS), and resolution of inflammatory reactions. The unique dual functionality of the FPRs makes them attractive targets to develop FPR‐based therapeutics as novel anti‐inflammatory treatments. The small compound RE‐04‐001 has earlier been identified as an inducer of ROS in differentiated HL60 cells but the precise target and the mechanism of action of the compound was has until now not been elucidated. In this study, we reveal that RE‐04‐001 specifically targets and activates FPR1, and the concentrations needed to activate the neutrophil NADPH‐oxidase was very low (EC50 ∼1 nM). RE‐04‐001 was also found to be a neutrophil chemoattractant, but when compared to the prototype FPR1 agonist N‐formyl‐Met‐Leu‐Phe (fMLF), the concentrations required were comparably high, suggesting that signaling downstream of the RE‐04‐001‐activated‐FPR1 is functionally selective. In addition, the RE‐04‐001‐induced response was strongly biased toward the PLC‐PIP2‐Ca2+ pathway and ERK1/2 activation but away from β‐arrestin recruitment. Compared to the peptide agonist fMLF, RE‐04‐001 is more resistant to inactivation by the MPO‐H2O2‐halide system. In summary, this study describes RE‐04‐001 as a novel small molecule agonist specific for FPR1, which displays a biased signaling profile that leads to a functional selective activating of human neutrophils. RE‐04‐001 is, therefore, a useful tool, not only for further mechanistic studies of the regulatory role of FPR1 in inflammation in vitro and in vivo, but also for developing FPR1‐specific drug therapeutics.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Olofsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
83
|
Mosca F, Trachtman AR, Hattab J, Marruchella G, Tiscar PG. Effect of hydrogen peroxide on the oxidative burst of neutrophils in pigs and ruminants. Vet World 2020; 13:1934-1939. [PMID: 33132608 PMCID: PMC7566262 DOI: 10.14202/vetworld.2020.1934-1939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Neutrophils represent between 20% and 75% of white blood cells in animals and play a key role in an effective immune response. The generation of reactive oxygen species (ROS) is commonly referred to as an oxidative burst and is crucial under healthy and disease conditions. Interestingly, ROS are emerging as regulators of several neutrophil functions, including their oxidative burst. The present study aimed to investigate the effect of hydrogen peroxide on the oxidative burst of neutrophils, collected from domestic animal species (namely, pig, cattle, and sheep), and exposed to different stimuli. Materials and Methods A total of 65 slaughtered animals were included in the present study: Twenty-two pigs, 21 cattle, and 22 sheep. Blood samples were collected at bleeding and neutrophils were then purified using ad hoc developed and species-specific protocols. Neutrophils were treated with hydrogen peroxide at micromolar-to-millimolar concentrations, alone, or combined with other stimuli (i.e., opsonized yeasts, and phorbol 12-myristate 13-acetate). The generation of ROS was evaluated using a luminol-derived chemiluminescence (CL) assay. For each animal species, data were aggregated and reported as mean area under curve±standard deviation. Finally, data were statistically analyzed by one-way ANOVA, followed by Tukey's post hoc test. Results Exposure of bovine and ovine neutrophils to hydrogen peroxide alone resulted in a dose-dependent enhancement of the CL response, which was significantly stronger at its highest concentration and proved particularly prominent in sheep. Opsonized yeasts and phorbol 12-myristate 13-acetate both proved capable of stimulating the generation of ROS in all animal species under study. Hydrogen peroxide negatively modulated the oxidative burst of neutrophils after exposure to those stimuli, observed response patterns varying between pigs and ruminants. Porcine neutrophils, pre-exposed to micromolar concentrations of hydrogen peroxide, showed a decreased CL response only to opsonized yeasts. Conversely, pre-exposure to hydrogen peroxide reduced the CL response of ruminant neutrophils both to yeasts and phorbol 12-myristate 13-acetate, the effect being most prominent at 1 mM concentration. Conclusion These results indicate that hydrogen peroxide is capable of modulating the oxidative bursts of neutrophils in a species-specific and dose-dependent manner, substantial differences existing between pigs and ruminants. Further investigation is required to fully comprehend such modulation, which is crucial for the proper management of the generation of ROS under healthy and disease conditions.
Collapse
Affiliation(s)
- Francesco Mosca
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Abigail R Trachtman
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Jasmine Hattab
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Giuseppe Marruchella
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Pietro G Tiscar
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| |
Collapse
|
84
|
Li YQ, Yang YH, Zhang GL, Meng Q, Feng XD, Cheng QQ, Nie K. RNA-Seq reveals inflammatory mechanisms of Xiao-Ban-Xia-Tang decoction to ameliorate cisplatin-induced emesis in a rat pica model. Biomed Pharmacother 2020; 131:110699. [PMID: 32890970 DOI: 10.1016/j.biopha.2020.110699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Xiao-Ban-Xia-Tang decoction (XBXT), an antiemetic formula in traditional Chinese medicine, has been proved to be a potential treatment for chemotherapy-induced nausea and vomiting (CINV), but the underlying mechanisms are not adequately understood. This study aimed to investigate changes in the ileum transcriptome after cisplatin and XBXT treatment and to reveal whether the antiemetic mechanisms of XBXT are related to its anti-inflammatory effect. METHODS The pica model was established by a single intraperitoneal injection of 6 mg/kg cisplatin in Wistar rats. Tissues from the gastric antrum and ileum were stained with hematoxylin-eosin to observe gastrointestinal tract pathological changes. Based on the differentially expressed genes (DEGs) which were altered by cisplatin and reversed by XBXT, the transcriptome data of rat ileum were analyzed by GO, KEGG, and PPI analyses. Several inflammatory DEGs were validated by RT-PCR. RESULTS XBXT could reduce kaolin intake up to 72 h after modeling and alleviate the inflammatory damage of gastric antrum and ileum induced by cisplatin. According to the transcriptome profile, there were 75 DEGs down-regulated by cisplatin and up-regulated by XBXT and 343 DEGs up-regulated by cisplatin and down-regulated by XBXT. XBXT could blunt the overexpression of tryptophan hydroxylase 1 (the rate-limiting enzyme of serotonin synthesis) in ileum. Enrichment analysis showed that inhibiting overexpression of several conventional inflammation pathways and pro-inflammation cytokines were related to the antiemetic effectiveness of XBXT. CONCLUSIONS This study implies that inhibiting inflammatory signaling pathways and synthesis of serotonin might be potential mechanisms of XBXT's antiemetic effect against CINV.
Collapse
Affiliation(s)
- Ya-Qi Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan-Hong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Guang-Long Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Meng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-di Feng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Cheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
85
|
Alcaraz MJ, Ferrándiz ML. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol Med 2020; 157:83-93. [PMID: 31830562 DOI: 10.1016/j.freeradbiomed.2019.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 02/08/2023]
Abstract
Joint conditions pose an important public health problem as they are a leading cause of pain, functional limitation and physical disability. Oxidative stress is related to the pathogenesis of many chronic diseases affecting the joints such as rheumatoid arthritis and osteoarthritis. Cells have developed adaptive protection mechanisms to maintain homeostasis such as nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) which regulates the transcription of many genes involved in redox balance, detoxification, metabolism and inflammation. Activation of Nrf2 results in the synthesis of heme oxygenase-1 (HO-1) leading to the formation of a number of bioactive metabolites, mainly CO, biliverdin and bilirubin. Ample evidence supports the notion that Nrf2 and HO-1 can confer protection against oxidative stress and inflammatory and immune responses in joint tissues. As a consequence, this pathway may control the activation and metabolism of articular cells to play a regulatory role in joint destruction thus offering new opportunities for better treatments. Further studies are necessary to identify improved strategies to regulate Nrf2 and HO-1 activation in order to enable the development of drugs with therapeutic applications in joint diseases.
Collapse
Affiliation(s)
- Maria José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100, Burjasot, Valencia, Spain.
| | - María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100, Burjasot, Valencia, Spain
| |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Antiphospholipid syndrome (APS) is a thrombo-inflammatory disease that is primarily treated with anticoagulation. Better understanding the inflammatory aspects of APS could lead to safer, more effective, and more personalized therapeutic options. To this end, we sought to understand recent literature related to the role of neutrophils and, in particular, neutrophil extracellular traps (NETs) in APS. RECENT FINDINGS Expression of genes associated with type I interferons, endothelial adhesion, and pregnancy regulation are increased in APS neutrophils. APS neutrophils have a reduced threshold for NET release, which likely potentiates thrombotic events and perhaps especially large-vein thrombosis. Neutrophil-derived reactive oxygen species also appear to play a role in APS pathogenesis. There are new approaches for preventing and disrupting NETs that could potentially be leveraged to reduce the risk of APS-associated thrombosis. Neutrophils and NETs contribute to APS pathophysiology. More precisely understanding their roles at a mechanistic level should help identify new therapeutic targets for inhibiting NET formation, enhancing NET dissolution, and altering neutrophil adhesion. Such approaches may ultimately lead to better clinical management of APS patients and thereby reduce the chronic burden of this disease.
Collapse
|
87
|
Nguyen GT, Shaban L, Mack M, Swanson KD, Bunnell SC, Sykes DB, Mecsas J. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife 2020; 9:56656. [PMID: 32352382 PMCID: PMC7250567 DOI: 10.7554/elife.56656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCγ2, and PKC. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection. Klebsiella pneumoniae is a type of bacteria that can cause life-threatening infections – including pneumonia, blood stream infections, and urinary tract infections – in hospitalized patients. These infections can be difficult to treat because some K. pneumoniae are resistant to antibiotics. The bacteria are normally found in the human intestine, and they do not usually cause infections in healthy people. This implies that healthy people’s immune systems are better able to fend off K. pneumoniae infections; learning how could help scientists develop new ways to treat or prevent infections in hospitalized patients. In healthy people, a type of immune cell called neutrophils are the first line of defense against bacterial infections. Several different proteins are needed to activate neutrophils, including a protein called SKAP2. But the role of this protein in fighting K. pneumoniae infections is not clear. To find out what role SKAP2 plays in the defense against pneumonia caused by K. pneumoniae, Nguyen et al. compared infections in mice with and without the protein. Mice lacking SKAP2 in their white blood cells had more bacteria in their lungs than normal mice. The experiments showed that neutrophils from mice with SKAP2 produce a burst of chemicals called “reactive oxygen species”, which can kill bacteria. But neutrophils without the protein do not. Without SKAP2, several proteins that help produce reactive oxygen species do not work. Understanding the role of SKAP2 in fighting infections may help scientists better understand the immune system. This could help clinicians to treat conditions that cause it to be hyperactive or ineffective. More studies are needed to determine if SKAP2 works the same way in human neutrophils and if it works against all types of K. pneumoniae. If it does, then scientists might be able use this information to develop therapies that help the immune system fight infections.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kenneth D Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, United States
| | - Stephen C Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Immunology, School of Medicine, Tufts University, Boston, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, United States
| |
Collapse
|
88
|
Armour EM, Bruner TL, Hines JK, Butler MW. Low-dose immune challenges result in detectable levels of oxidative damage. J Exp Biol 2020; 223:jeb220095. [PMID: 32054680 DOI: 10.1242/jeb.220095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 08/26/2023]
Abstract
Infection can result in substantial costs to animals, so they frequently respond by removing infectious agents with an immune response. However, immune responses entail their own costs, including upregulation of processes that destroy pathogens (e.g. the production of reactive oxygen species) and processes that limit the extent of self-damage during the immune response (e.g. production of anti-inflammatory proteins such as haptoglobin). Here, we simulated bacterial infection across a 1000-fold range using lipopolysaccharide (LPS) administered to northern bobwhite quail (Colinus virginianus), and quantified metrics related to pro-inflammatory conditions [i.e. generation of oxidative damage (d-ROMs), depletion of antioxidant capacity], anti-inflammatory mechanisms (i.e. production of haptoglobin, expression of the enzyme heme oxygenase, production of the organic molecule biliverdin) and nutritional physiology (e.g. circulating triglyceride levels, maintenance of body mass). We detected increases in levels of haptoglobin and d-ROMs even at LPS doses that are 1/1000th the concentration of doses frequently used in ecoimmunological studies, while loss of body mass and decreases in circulating triglycerides manifested only in individuals receiving the highest dose of LPS (1 mg LPS kg-1 body mass), highlighting variation among dose-dependent responses. Additionally, individuals that lost body mass during the course of the experiment had lower levels of circulating triglycerides, and those with more oxidative damage had greater levels of heme oxygenase expression, which highlights the complex interplay between pro- and anti-inflammatory processes. Because low doses of LPS may simulate natural infection levels, variation in dose-dependent physiological responses may be particularly important in modeling how free-living animals navigate immune challenges.
Collapse
Affiliation(s)
- Ellen M Armour
- Department of Biology, Lafayette College, Easton, PA 18042, USA
| | - Taylor L Bruner
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA
| | | |
Collapse
|
89
|
Therapeutic benefits of apocynin in mice with lipopolysaccharide/D-galactosamine-induced acute liver injury via suppression of the late stage pro-apoptotic AMPK/JNK pathway. Biomed Pharmacother 2020; 125:110020. [PMID: 32106375 DOI: 10.1016/j.biopha.2020.110020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The excessive generation of reactive oxygen species (ROS) plays crucial roles in the development of acute liver injury. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is responsible for the robust production of ROS under inflammatory circumstance, but the pathological roles of NOX and the pharmacological significance of NOX inhibitor in acute liver injury remains unclear. In the present study, the potential roles of NOX in acute liver injury were investigated in a mouse model with lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury. The results indicated that LPS/D-Gal exposure time-dependently increased the level of ROS in liver tissue. Pretreatment with the NOX inhibitor apocynin suppressed LPS/D-Gal induced upregulation of ROS, 8-hydroxy-2-deoxyguanosine (8-OH-dG), protein carbonyl content and thiobarbituric acid reactive substances (TBARS). Pretreatment with apocynin also suppressed LPS/D-Gal-induced elevation of aminotransferase, alleviated histological abnormalities, inhibited the production of pro-inflammatory cytokine tumor necrosis factor α (TNF-α), blocked the activation of caspase cascade, reduced the count of TUNEL-positive cells and prevented LPS/D-Gal-induced mortality. Interestingly, post insult treatment with apocynin also suppressed LPS/D-Gal-induced oxidative stress, hepatocyte apoptosis, liver damage but improved the survival rate. Mechanistically, posttreatment with apocynin prohibited LPS/D-Gal-induced activation of the late stage pro-apoptotic AMP-activated protein kinase (AMPK)/c-Jun N-terminal kinase (JNK) pathway. Post-insult treatment with the antioxidant N-acetylcysteine also resulted in suppressed activation of AMPK/JNK, mitigated apoptosis and alleviated liver injury. These data suggest that NOX-derived ROS might be a crucial late stage detrimental factor in LPS/D-Gal-induced acute liver injury via promoting the activation of the pro-apoptotic AMPK/JNK pathway, and the NOX inhibitor might have important value in the pharmacological intervention of inflammation-base liver damage.
Collapse
|
90
|
Wang M, Luo L. An Effective NADPH Oxidase 2 Inhibitor Provides Neuroprotection and Improves Functional Outcomes in Animal Model of Traumatic Brain Injury. Neurochem Res 2020; 45:1097-1106. [PMID: 32072445 DOI: 10.1007/s11064-020-02987-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) has become a leading cause of death and disability all over the world. Pharmacological suppression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) can inhibit oxidative stress which is implicated in the pathology of TBI. GSK2795039 was reported to target NOX2 to inhibit [Formula: see text] and ROS production. The present study aimed to investigate the effect of GSK2795039 on NOX2 activity and neurological deficits in a TBI mouse model. TBI mouse model was established by a weight-drop to mouse skull. GSK2795039 at a dose of 100 mg/kg was administrated to mice 30 min before TBI. NOX2 expression and activity were detected by Western blot and biochemical method. Neurological damage and apoptosis were detected by behavioral test and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. GSK2795039 significantly inhibited NOX2 expression and activity in the TBI mouse model. It also attenuated TBI-induced neurological deficits, apoptosis, and neurological recovery. The results indicate that GSK2795039 can be used as a potential drug for TBI treatment.
Collapse
Affiliation(s)
- Mengwei Wang
- Department of Emergency, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| | - Le Luo
- Shanghai Zhuole Biotechnology Center, No. 2066 Wangyuan Road, Shanghai, 201499, China
| |
Collapse
|
91
|
Joutel A. Prospects for Diminishing the Impact of Nonamyloid Small-Vessel Diseases of the Brain. Annu Rev Pharmacol Toxicol 2020; 60:437-456. [PMID: 31425001 DOI: 10.1146/annurev-pharmtox-010818-021712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-vessel diseases (SVDs) of the brain are involved in about one-fourth of ischemic strokes and a vast majority of intracerebral hemorrhages and are responsible for nearly half of dementia cases in the elderly. SVDs are a heavy burden for society, a burden that is expected to increase further in the absence of significant therapeutic advances, given the aging population. Here, we provide a critical appraisal of currently available therapeutic approaches for nonamyloid sporadic SVDs that are largely based on targeting modifiable risk factors. We review what is known about the pathogenic mechanisms of vascular risk factor-related SVDs and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most frequent hereditary SVD, and elaborate on two mechanism-based therapeutic approaches worth exploring in sporadic SVD and CADASIL. We conclude by discussing opportunities and challenges that need to be tackled if efforts to achieve significant therapeutic advances for these diseases are to be successful.
Collapse
Affiliation(s)
- Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, Paris Descartes University, 75014 Paris, France; .,DHU NeuroVasc, Sorbonne Paris Cité, 75010 Paris, France.,Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
92
|
Comparative proteomic analysis of senescence in the freshwater cladoceran Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110352. [DOI: 10.1016/j.cbpb.2019.110352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
|
93
|
Yabana T, Sato K, Shiga Y, Himori N, Omodaka K, Nakazawa T. The relationship between glutathione levels in leukocytes and ocular clinical parameters in glaucoma. PLoS One 2019; 14:e0227078. [PMID: 31887133 PMCID: PMC6936795 DOI: 10.1371/journal.pone.0227078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the effect of mitochondrial dysfunction on the autoregulation of blood flow, by measuring levels of glutathione, an indicator of mitochondrial dysfunction, in glaucoma patients. METHODS Fifty-six OAG patients and 21 age-matched controls underwent a blood assay. Mitochondrial function was measured according to the levels of total glutathione (t-GSH), reduced GSH (GSH), and oxidized GSH (GSSG, glutathione disulfide) in peripheral blood mononuclear cells. Ocular blood flow in the optic nerve head was assessed with laser speckle flowgraphy parameters, including acceleration time index (ATI). We determined correlations between these measurements and other clinical parameters. Furthermore, we investigated the association between glutathione levels and glaucoma with a logistic regression analysis. Finally, we calculated the area under the receiver operating characteristic (ROC) curve in order to determine the power of redox index (the log GSH/GSSG ratio) to distinguish the groups. RESULTS OAG patients demonstrated significantly higher GSSG levels and a lower redox index than the controls (p = 0.01, p = 0.01, respectively), but total GSH and reduced GSH levels were similar in the OAG subjects and controls (p = 0.80, p = 0.94, respectively). Additionally, redox index was significantly correlated with mean deviation (MD) of the visual field (r = 0.29, p = 0.03) and ATI (r = -0.30, p = 0.03). Multiple linear regression analysis showed that redox index contributed to MD (p = 0.02) and ATI (p = 0.04). The receiver operating characteristic curve (AUC) analysis suggested that redox index could differentiate between control eyes and eyes with glaucoma (AUC; 0.70: 95% interval; 0.57-0.84). The cutoff point for redox index to maximize its sensitivity and specificity was 2.0 (sensitivity: 91.1%, specificity: 42.9%). CONCLUSIONS These results suggest that redox index is lower in OAG patients than in controls. Thus, it is possible that mitochondrial dysfunction contributes to glaucoma pathogenesis by causing vascular alterations.
Collapse
Affiliation(s)
- Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
94
|
Wirestam L, Arve S, Linge P, Bengtsson AA. Neutrophils-Important Communicators in Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Front Immunol 2019; 10:2734. [PMID: 31824510 PMCID: PMC6882868 DOI: 10.3389/fimmu.2019.02734] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are two autoimmune diseases that can occur together or separately. Insights into the pathogenesis have revealed similarities, such as development of autoantibodies targeting subcellular antigens as well as a shared increased risk of cardiovascular morbidity, potentially due to mutual pathologic mechanisms. In this review, we will address the evidence implicating neutrophils in the pathogenesis of these conditions, highlighting their shared features. The neutrophil is the most abundant leukocyte, recognized for its role in infectious and inflammatory diseases, but dysregulation of neutrophil effector functions, including phagocytosis, oxidative burst and formation of neutrophil extracellular traps (NETs) may also contribute to an autoimmune process. The phenotype of neutrophils in SLE and APS differs from neutrophils of healthy individuals, where neutrophils in SLE and APS are activated and prone to aggregate. A specific subset of low-density neutrophils with different function compared to normal-density neutrophils can also be found within the peripheral blood mononuclear cell (PBMC) fraction after density gradient centrifugation of whole blood. Neutrophil phagocytosis is required for regular clearance of cell remnants and nuclear material. Reactive oxygen species (ROS) released by neutrophils during oxidative burst are important for immune suppression and impairment of ROS production is seen in SLE. NETs mediate pathology in both SLE and APS via several mechanisms, including exposure of autoantigens, priming of T-cells and activation of autoreactive B-cells. NETs are also involved in cardiovascular events by forming a pro-thrombotic scaffolding surface. Lastly, neutrophils communicate with other cells by producing cytokines, such as Interferon (IFN) -α, and via direct cell-cell contact. Physiological neutrophil effector functions are necessary to prevent autoimmunity, but in SLE and APS these are altered.
Collapse
Affiliation(s)
- Lina Wirestam
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sabine Arve
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Petrus Linge
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
95
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
96
|
Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL. Neutrophils in Psoriasis. Front Immunol 2019; 10:2376. [PMID: 31649677 PMCID: PMC6794444 DOI: 10.3389/fimmu.2019.02376] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant innate immune cells. The pathogenic roles of neutrophils are related to chronic inflammation and autoimmune diseases. Psoriasis is a chronic systemic inflammatory disease affecting ~2–3% of the world population. The abundant presence of neutrophils in the psoriatic skin lesions serves as a typical histopathologic hallmark of psoriasis. Recent reports indicated that oxidative stress, granular components, and neutrophil extracellular traps from psoriatic neutrophils are related to the initial and maintenance phases of psoriasis. This review provides an overview on the recent (up to 2019) advances in understanding the role of neutrophils in the pathophysiology of psoriasis, including the effects of respiratory burst, degranulation, and neutrophil extracellular trap formation on psoriatic immunity and the clinical relationships.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Supervisor Board, Taoyuan Chinese Medicine Association, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
97
|
Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol 2019; 26:101284. [PMID: 31400697 PMCID: PMC6831867 DOI: 10.1016/j.redox.2019.101284] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulated evidence strongly indicates that oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidants in favor of oxidants, plays an important role in disease pathogenesis. However, ROS can act as signaling molecules and fulfill essential physiological functions at basal levels. Each ROS would be different in the extent to stimulate and contribute to different pathophysiological effects. Importantly, multiple ROS generators can be activated either concomitantly or sequentially by relevant signaling molecules for redox biological functions. Here, we summarized the current knowledge related to chemical and biochemical features of primary ROS species and corresponding antioxidants. Metabolic pathways of five major ROS generators and five ROS clearance systems were described, including their ROS products, specific ROS enriched tissue, cell and organelle, and relevant functional implications. We provided an overview of ROS generation and induction at different levels of metabolism. We classified 11 ROS species into three types based on their reactivity and target selectivity and presented ROS homeostasis and functional implications in pathological and physiological status. This article intensively reviewed and refined biochemical basis, metabolic signaling and regulation, functional insights, and provided guidance for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Lixiao Zhang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ramón Cueto
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Comfort Effi
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-sen Memorial Hospital, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, China
| | - Xuebin Qin
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
98
|
IDH2 deficiency impairs cutaneous wound healing via ROS-dependent apoptosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165523. [PMID: 31376482 DOI: 10.1016/j.bbadis.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/21/2023]
Abstract
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue that play a pivotal role in cutaneous wound healing by synthesizing fibronectin (a component of the extracellular matrix), secreting angiogenesis factors, and generating strong contractile forces. In wound healing, low concentrations of reactive oxygen species (ROS) are essential in combating invading microorganisms and in cell-survival signaling. However, excessive ROS production impairs fibroblasts. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is a key enzyme that regulates the mitochondrial redox balance and reduces oxidative stress-induced cell injury through the generation of NADPH. In the present study, the downregulation of IDH2 expression resulted in an increase in cell apoptosis in mouse skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also delayed cutaneous wound healing in mice and impaired dermal fibroblast function. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO alleviated the apoptosis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in cutaneous wound healing in association with mitochondrial ROS.
Collapse
|
99
|
Messina S, De Simone G, Ascenzi P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol 2019; 26:101282. [PMID: 31386964 PMCID: PMC6695279 DOI: 10.1016/j.redox.2019.101282] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) activate the redox-sensitive Ras small GTPases. The three canonical genes (HRAS, NRAS, and KRAS) are archetypes of the superfamily of small GTPases and are the most common oncogenes in human cancer. Oncogenic Ras is intimately linked to redox biology, mainly in the context of tumorigenesis. The Ras protein structure is highly conserved, especially in effector-binding regions. Ras small GTPases are redox-sensitive proteins thanks to the presence of the NKCD motif (Asn116-Lys 117-Cys118-Asp119). Notably, the ROS- and RNS-based oxidation of Cys118 affects protein stability, activity, and localization, and protein-protein interactions. Cys residues at positions 80, 181, 184, and 186 may also help modulate these actions. Moreover, oncogenic mutations of Gly12Cys and Gly13Cys may introduce additional oxidative centres and represent actionable drug targets. Here, the pathophysiological involvement of Cys-redox regulation of Ras proteins is reviewed in the context of cancer and heart and brain diseases.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy.
| | - Giovanna De Simone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| |
Collapse
|
100
|
Hahn J, Euler M, Kilgus E, Kienhöfer D, Stoof J, Knopf J, Hahn M, Harrer T, Hultqvist M, Olofsson P, Mokhir A, Holmdahl R, Herrmann M, Schett G, Muñoz LE, Hoffmann MH. NOX2 mediates quiescent handling of dead cell remnants in phagocytes. Redox Biol 2019; 26:101279. [PMID: 31349119 PMCID: PMC6669319 DOI: 10.1016/j.redox.2019.101279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C−/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.
Collapse
Affiliation(s)
- Jonas Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilien Euler
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Emelie Kilgus
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Deborah Kienhöfer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Stoof
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Madelaine Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Peter Olofsson
- Redoxis/Pronoxis AB, Medicon Village Lund, Sweden; Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Herrmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|