51
|
Jia D, Zheng W, Jiang H. Growth hormone facilitates 5'-azacytidine-induced myogenic but inhibits 5'-azacytidine-induced adipogenic commitment in C3H10T1/2 mesenchymal stem cells. Growth Horm IGF Res 2018; 40:9-16. [PMID: 29626795 DOI: 10.1016/j.ghir.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/19/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022]
Abstract
The C3H10T1/2 cells are considered mesenchymal stem cells (MSCs) because they can be induced to become the progenitor cells for myocytes, adipocytes, osteoblasts, and chondrocytes by the DNA methyltransferase inhibitor 5'-azacytidine. In this study, we determined the effect of growth hormone (GH) on the myogenic and adipogenic lineage commitment in C3H10T1/2 cells. The C3H10T1/2 cells were treated with recombinant bovine GH in the presence or absence of 5'-azacytidine for 4 days. The myogenic commitment in C3H10T1/2 cells was assessed by immunostaining them for MyoD, the marker for myoblasts, and by determining their capacity to differentiate into the multinucleated myotubes. The adipogenic commitment in C3H10T1/2 cells was assessed by determining their ability to differentiate into adipocytes. Myotubes and adipocyteswere identified by immunocytochemistry and Oil Red O staining, respectively. C3H10T1/2 cells treated with 5'-azacytidine and GH for 4 days contained a greater percentage of MyoD-positive cells than those treated with 5'-axacytidine alone (P < 0.05). The former generated more myotubes than the latter upon induced myoblast differentiation (P < 0.05). However, C3H10T1/2 cells treated with GH alone did not form any myotubes. C3H10T1/2 cells treated with 5'-azacytidine formed adipocytes upon adipocyte differentiation induction, whereas C3H10T1/2 cells treated with GH alone did not form any adipocytes. C3H10T1/2 cells treated with both 5'-azacytidine and GH formed fewer adipocytes than those treated with 5'-azacytidine alone (P < 0.05). Both GHR and IGF-I mRNA expression in C3H10T1/2 cells were increased by 5'-azacytidine (P < 0.05), but neither was affected by GH. Overall, this study showed that GH enhanced 5'-azacytidine-induced commitment in C3H10T1/2 cells to myoblasts but inhibited 5'-azacytidine-induced commitment to preadipocytes. These results support the possibility that GH stimulates skeletal muscle growth and inhibits adipose tissue growth in part by stimulating the myogenic commitment and inhibiting the adipogenic commitment, respectively, in mesenchymal stem cells.
Collapse
Affiliation(s)
- Dan Jia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Weijiang Zheng
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States; College of Animal Sciences, Nanjing Agricultural University, Nanjing, China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
52
|
Fornari R, Marocco C, Francomano D, Fittipaldi S, Lubrano C, Bimonte VM, Donini LM, Nicolai E, Aversa A, Lenzi A, Greco EA, Migliaccio S. Insulin growth factor-1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects. Eat Weight Disord 2018; 23:375-381. [PMID: 28271457 DOI: 10.1007/s40519-017-0362-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/10/2017] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Obesity is a severe public health problem worldwide, leading to an insulin-resistant state in liver, adipose, and muscle tissue, representing a risk factor for type 2 diabetes mellitus, cardiovascular diseases, and cancer. We have shown that abdominal obesity is associated with homeostasis derangement, linked to several hormonal and paracrine factors. Data regarding potential link between GH/IGF1 axis, bone mineral density, and inflammation in obesity are lacking. Thus, aim of this study was to evaluate correlation among IGF-1, BMD, and inflammation in obese individuals. METHODS The study included 426 obese subjects, mean age 44.8 ± 14 years; BMI 34.9 ± 6.1. Exclusion criteria were chronic medical conditions, use of medications affecting bone metabolism, hormonal and nutritional status, recent weight loss, and prior bariatric surgery. Patients underwent measurements of BMD and body composition by DEXA and were evaluated for hormonal, metabolic profile, and inflammatory markers. RESULTS In this population, IGF-1 was inversely correlated with abdominal FM% (p < 0.001, r 2 = 0.12) and directly correlated with osteocalcin (OSCA) (p < 0.002, r 2 = 0.14). A negative correlation was demonstrated between IGF-1 levels and nonspecific inflammatory index, such as fibrinogen (p < 0.01, r 2 = 0.04) and erythrocyte sedimentation rate (p < 0.0001, r 2 = 0.03). IGF-1 was directly correlated with higher BMD, at both lumbar (p < 0.02, r 2 = 0.03) and femoral site (p < 0.04, r 2 = 0.03). CONCLUSIONS In conclusion, our results show that higher levels of serum IGF-1 in obese patients correlate with lower inflammatory pattern and better skeletal health, as demonstrated by higher BMD and osteocalcin levels. These results lead to speculate the existence of a bone-adipose-muscle interplay modulating energy homeostasis, glucose, bone metabolism, and chronic inflammation in individuals affected by abdominal obesity.
Collapse
Affiliation(s)
- Rachele Fornari
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Chiara Marocco
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Davide Francomano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | | | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Viviana M Bimonte
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico", Largo Lauro De Bosis 6, 00135, Rome, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | | | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Emanuela A Greco
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico", Largo Lauro De Bosis 6, 00135, Rome, Italy.
| |
Collapse
|
53
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
54
|
Householder LA, Comisford R, Duran-Ortiz S, Lee K, Troike K, Wilson C, Jara A, Harberson M, List EO, Kopchick JJ, Berryman DE. Increased fibrosis: A novel means by which GH influences white adipose tissue function. Growth Horm IGF Res 2018; 39:45-53. [PMID: 29279183 PMCID: PMC5858978 DOI: 10.1016/j.ghir.2017.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE White adipose tissue (WAT) fibrosis - the buildup of extracellular matrix (ECM) proteins, primarily collagen - is now a recognized hallmark of tissue dysfunction and is increased with obesity and lipodystrophy. While growth hormone (GH) is known to increase collagen in several tissues, no previous research has addressed its effect on ECM in WAT. Thus, the purpose of this study is to determine if GH influences WAT fibrosis. DESIGN This study examined WAT from four distinct strains of GH-altered mice (bGH and GHA transgenic mice as well as two tissue specific GH receptor gene disrupted lines, fat growth hormone receptor knockout or FaGHRKO and liver growth hormone receptor knockout or LiGHRKO mice). Collagen content and adipocyte size were studied in all cohorts and compared to littermate controls. In addition, mRNA expression of fibrosis-associated genes was assessed in one cohort (6month old male bovine GH transgenic and WT mice) and cultured 3T3-L1 adipocytes treated with GH. RESULTS Collagen stained area was increased in WAT from bGH mice, was depot-dependent, and increased with age. Furthermore, increased collagen content was associated with decreased adipocyte size in all depots but more dramatic changes in the subcutaneous fat pad. Notably, the increase in collagen was not associated with an increase in collagen gene expression or other genes known to promote fibrosis in WAT, but collagen gene expression was increased with acute GH administration in 3T3-LI cells. In contrast, evaluation of 6month old GH antagonist (GHA) male mice showed significantly decreased collagen in the subcutaneous depot. Lastly, to assess if GH induced collagen deposition directly or indirectly (via IGF-1), fat (Fa) and liver (Li) specific GHRKO mice were evaluated. Decreased fibrosis in FaGHRKO and increased fibrosis in LiGHRKO mice suggest GH is primarily responsible for the alterations in collagen. CONCLUSIONS Our results show that GH action is positively associated with an increase in WAT collagen content as well as a decrease in adipocyte size, particularly in the subcutaneous depot. This effect appears to be due to GH and not IGF-1 and reveals a novel means by which GH regulates WAT accumulation.
Collapse
Affiliation(s)
- Lara A Householder
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, United States
| | - Ross Comisford
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, United States
| | - Kevin Lee
- The Diabetes Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Katie Troike
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, United States
| | - Cody Wilson
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Adam Jara
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Mitchell Harberson
- The Diabetes Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - John J Kopchick
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Darlene E Berryman
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
55
|
Hjortebjerg R, Berryman DE, Comisford R, List EO, Oxvig C, Bjerre M, Frystyk J, Kopchick JJ. Depot-specific and GH-dependent regulation of IGF binding protein-4, pregnancy-associated plasma protein-A, and stanniocalcin-2 in murine adipose tissue. Growth Horm IGF Res 2018; 39:54-61. [PMID: 29398370 DOI: 10.1016/j.ghir.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF)-I action through proteolytic cleavage of IGF binding protein-4 (IGFBP-4). Recently, stanniocalcin-2 (STC2) was discovered as an inhibitor of PAPP-A. Most members of the IGF system are expressed in adipose tissue (AT), but there is a relative paucity of information on the distribution of IGFBP-4, PAPP-A, and STC2 in different AT depots. Since IGF-I expression in AT is highly GH-dependent, we used bovine GH transgenic (bGH) and GH receptor knockout (GHR-/-) mice to investigate AT depot-specific expression patterns of IGFBP-4, PAPP-A, and STC2, and whether the regulation is GH-dependent. METHODS Seven-month-old male bGH, GHR-/- and wild type (WT) control mice were used. Body composition was determined, and subcutaneous, epididymal, retroperitoneal, mesenteric and brown adipose tissue (BAT) depots were collected. RNA expression of Igfbp4, Pappa, and Stc2 was assessed by reverse transcription quantitative PCR and IGFBP-4 protein by Western blotting. RESULTS Igfbp4, Pappa, and Stc2 RNA levels were differentially expressed in an AT depot-dependent manner in WT mice. Igfbp4 RNA levels were significantly higher in all white AT depots than in BAT. Pappa was most highly expressed in the mesenteric depot: levels were 7.5-fold higher in mesenteric than in subcutaneous AT (p < .001). Although intraabdominal in origin, epididymal and retroperitoneal Pappa expression levels were 69% and 68% lower, respectively, as compared to mesenteric levels (p < .001). Stc2 RNA expression was significantly higher in all intraabdominal white AT as compared to subcutaneous AT and BAT; levels in epididymal, retroperitoneal, and mesenteric were all more than three-fold higher than in subcutaneous AT (p < .001) and 12-fold higher than in BAT (p < .001). Gene expression patterns in bGH and GHR-/- mice mimicked those in WT mice, suggesting that GH does not affect the transcription of the STC2-PAPP-A-IGFBP-4-axis in AT. However, proteins levels of intact IGFBP-4 were significantly increased in bGH mice and decreased in GHR-/- mice, whereas the PAPP-A-generated IGFBP-4 fragment level was unaltered. CONCLUSION Expression of Igfbp4, Pappa, and Stc2 differ between AT depots and is generally higher in white AT than in BAT. The transcription appears to occur in a GH-independent manner, whereas IGFBP-4 protein levels are highly influenced by altered GH activity.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark; Danish Diabetes Academy, Odense, Denmark; Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Ross Comisford
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark.
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
56
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
57
|
Duran-Ortiz S, Noboa V, Kopchick JJ. Disruption of the GH receptor gene in adult mice and in insulin sensitive tissues. Growth Horm IGF Res 2018; 38:3-7. [PMID: 29198419 DOI: 10.1016/j.ghir.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 01/31/2023]
Abstract
To elucidate whether a specific tissue is responsible for the beneficial health and longevity phenotype seen in growth hormone (GH) receptor (R) knockout (GHRKO) mice, the GHR gene was disrupted specifically in insulin sensitive tissues; namely, liver, adipose, and muscle. Furthermore, to investigate if the health- and life-span effects seen in the germline GHRKO mice were replicated when GH action was ablated after puberty; young, adult onset GHRKO mice were produced and characterized. In this review, we summarized the main findings derived from these mouse lines.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, United States; Department of Biological Sciences, College of Arts and Sciences, United States; Molecular and Cellular Biology Program, United States.
| | - Vanessa Noboa
- School of Medicine, Universidad San Francisco de Quito, Ecuador.
| | - John J Kopchick
- Edison Biotechnology Institute, United States; Molecular and Cellular Biology Program, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, United States.
| |
Collapse
|
58
|
Garratt M, Bower B, Garcia GG, Miller RA. Sex differences in lifespan extension with acarbose and 17-α estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell 2017; 16:1256-1266. [PMID: 28834262 PMCID: PMC5676051 DOI: 10.1111/acel.12656] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/25/2022] Open
Abstract
Interventions that extend lifespan in mice can show substantial sexual dimorphism. Here, we show that male‐specific lifespan extension with two pharmacological treatments, acarbose (ACA) and 17‐α estradiol (17aE2), is associated, in males only, with increased insulin sensitivity and improved glucose tolerance. Females, which show either smaller (ACA) or no lifespan extension (17aE2), do not derive these metabolic benefits from drug treatment. We find that these male‐specific metabolic improvements are associated with enhanced hepatic mTORC2 signaling, increased Akt activity, and phosphorylation of FOXO1a – changes that might promote metabolic health and survival in males. By manipulating sex hormone levels through gonadectomy, we show that sex‐specific changes in these metabolic pathways are modulated, in opposite directions, by both male and female gonadal hormones: Castrated males show fewer metabolic responses to drug treatment than intact males, and only those that are also observed in intact females, while ovariectomized females show some responses similar to those seen in intact males. Our results demonstrate that sex‐specific metabolic benefits occur concordantly with sexual dimorphism in lifespan extension. These sex‐specific effects can be influenced by the presence of both male and female gonadal hormones, suggesting that gonadally derived hormones from both sexes may contribute to sexual dimorphism in responses to interventions that extend mouse lifespan.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
| | - Brian Bower
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
| | - Gonzalo G. Garcia
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
| | - Richard A. Miller
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
- University of Michigan Geriatrics Center Ann Arbor MI 48109 USA
| |
Collapse
|
59
|
Mice overexpressing growth hormone exhibit increased skeletal muscle myostatin and MuRF1 with attenuation of muscle mass. Skelet Muscle 2017; 7:17. [PMID: 28870245 PMCID: PMC5583757 DOI: 10.1186/s13395-017-0133-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background In contrast to the acute effects of growth hormone (GH) on skeletal muscle protein synthesis, long-term GH treatment appears to have negligible effects on muscle mass. Despite this knowledge, little is known regarding the chronic effects of GH on skeletal muscle protein synthesis and atrophy signaling pathways. The purpose of this study was to determine if protein synthesis pathways are attenuated and/or muscle atrophy intracellular signaling pathways are altered in the skeletal muscle of transgenic bovine GH (bGH) mice. Methods The gastrocnemius and soleus from 5-month-old male bGH mice (n = 9) and wild type (WT) controls (n = 9) were harvested and analyzed for proteins involved in the protein synthesis (Akt/mTOR), growth and proliferation (MAPK), and muscle atrophy (MuRF1 and myostatin) pathways. Results Total body mass was significantly increased in bGH mice compared to WT controls (49%, P < 0.0001). When expressed relative to total body mass, the gastrocnemius (− 28%, P < 0.0001), but not the soleus, was significantly lower in mice overexpressing GH, compared to controls. Transgenic bGH mice had elevated phosphorylation levels of protein kinase b (Akt1), 4E-binding protein 1 (4E-BP1), p70 S6 kinase, p42/44, and p38 (P < 0.05) compared to WT littermates. Mature myostatin (26 kDa), premature myostatin (52 kDa), and activin receptor type IIB (AcvR2B) protein levels were increased in bGH mice (P < 0.05), along with elevated phosphorylation levels of mothers against decapentaplegic homolog (Smad2) (59%, P < 0.0001). Mice overexpressing GH had increased MuRF1 expression (30%, P < 0.05) and insulin receptor substrate 1 (IRS1) serine phosphorylation (44%, P < 0.05) in the gastrocnemius, but not the soleus, when compared to controls. Conclusions These findings demonstrate that chronic elevations in circulating GH have a critical impact on signaling pathways involved in skeletal muscle protein synthesis and atrophy, and suggest that MuRF1, myostatin, and IRS1 serine phosphorylation may act to inhibit exaggerated glycolytic muscle growth, in environments of chronic GH/IGF-1 excess.
Collapse
|
60
|
Gesing A, Wiesenborn D, Do A, Menon V, Schneider A, Victoria B, Stout MB, Kopchick JJ, Bartke A, Masternak MM. A Long-lived Mouse Lacking Both Growth Hormone and Growth Hormone Receptor: A New Animal Model for Aging Studies. J Gerontol A Biol Sci Med Sci 2017; 72:1054-1061. [PMID: 27688483 PMCID: PMC5861925 DOI: 10.1093/gerona/glw193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/13/2016] [Indexed: 11/14/2022] Open
Abstract
Disruption of the growth hormone (GH) signaling pathway promotes insulin sensitivity and is associated with both delayed aging and extended longevity. Two kinds of long-lived mice-Ames dwarfs (df/df) and GH receptor gene-disrupted knockouts (GHRKO) are characterized by a suppressed GH axis with a significant reduction of body size and decreased plasma insulin-like growth factor-1 (IGF-1) and insulin levels. Ames dwarf mice are deficient in GH, prolactin, and thyrotropin, whereas GHRKOs are GH resistant and are dwarf with decreased circulating IGF-1 and increased GH. Crossing Ames dwarfs and GHRKOs produced a new mouse line (df/KO), lacking both GH and GH receptor. These mice are characterized by improved glucose tolerance and increased adiponectin level, which could imply that these mice should be also characterized by additional life-span extension when comparing with GHRKOs and Ames dwarfs. Importantly, our longevity experiments showed that df/KO mice maintain extended longevity when comparing with N control mice; however, they do not live longer than GHRKO and Ames df/df mice. These important findings indicate that silencing GH signal is important to extend the life span; however, further decrease of body size in mice with already inhibited GH signal does not extend the life span regardless of improved some health-span markers.
Collapse
Affiliation(s)
- Adam Gesing
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Department of Oncological Endocrinology, Medical University of Lodz, Poland
| | - Denise Wiesenborn
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Andrew Do
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton
| | - Vinal Menon
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia
| | - Augusto Schneider
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Berta Victoria
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
| | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens
| | - Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
61
|
Berryman DE, List EO. Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. Int J Mol Sci 2017; 18:ijms18081621. [PMID: 28933734 PMCID: PMC5578013 DOI: 10.3390/ijms18081621] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is an excessive accumulation or expansion of adipose tissue (AT) due to an increase in either the size and/or number of its characteristic cell type, the adipocyte. As one of the most significant public health problems of our time, obesity and its associated metabolic complications have demanded that attention be given to finding effective therapeutic options aimed at reducing adiposity or the metabolic dysfunction associated with its accumulation. Growth hormone (GH) has therapeutic potential due to its potent lipolytic effect and resultant ability to reduce AT mass while preserving lean body mass. However, AT and its resident adipocytes are significantly more dynamic and elaborate than once thought and require one not to use the reduction in absolute mass as a readout of efficacy alone. Paradoxically, therapies that reduce GH action may ultimately prove to be healthier, in part because GH also possesses potent anti-insulin activities along with concerns that GH may promote the growth of certain cancers. This review will briefly summarize some of the newer complexities of AT relevant to GH action and describe the current understanding of how GH influences this tissue using data from both humans and mice. We will conclude by considering the therapeutic use of GH or GH antagonists in obesity, as well as important gaps in knowledge regarding GH and AT.
Collapse
Affiliation(s)
- Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
62
|
François JC, Aïd S, Chaker Z, Lacube P, Xu J, Fayad R, Côté F, Even P, Holzenberger M. Disrupting IGF Signaling in Adult Mice Conditions Leanness, Resilient Energy Metabolism, and High Growth Hormone Pulses. Endocrinology 2017; 158:2269-2283. [PMID: 28881863 DOI: 10.1210/en.2017-00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Growth hormone (GH) and insulinlike growth factor (IGF) promote aging and age-related pathologies. Inhibiting this pathway by targeting IGF receptor (IGF-1R) is a promising strategy to extend life span, alleviate age-related diseases, and reduce tumor growth. Although anti-IGF-1R agents are being developed, long-term effects of IGF-1R blockade remain unknown. In this study, we used ubiquitous inducible IGF-1R knockout (UBIKOR) to suppress signaling in all adult tissues and screened health extensively. Surprisingly, UBIKOR mice showed no overt defects and presented with rather inconspicuous health, including normal cognition. Endocrine GH and IGF-1 were strongly upregulated without causing acromegaly. UBIKOR mice were strikingly lean with coordinate changes in body composition and organ size. They were insulin resistant but preserved physiological energy expenditure and displayed enhanced fasting metabolic flexibility. Thus, long-term IGF-1R blockade generated beneficial effects on aging-relevant metabolism, but exposed to high GH. This needs to be considered when targeting IGF-1R to protect from neurodegeneration, retard aging, or fight cancer.
Collapse
Affiliation(s)
| | - Saba Aïd
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Zayna Chaker
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | | | - Jie Xu
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Racha Fayad
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | - Francine Côté
- Institut Imagine INSERM Unité 1163/CNRS Equipe 8254, Necker Enfants Malades Hospital, 75015 Paris, France
| | - Patrick Even
- AgroParisTech, INRA, Université Paris Saclay, Nutrition Physiology and Ingestive Behavior Unité 914, 75005 Paris, France
| | - Martin Holzenberger
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| |
Collapse
|
63
|
Basu A, McFarlane HG, Kopchick JJ. Spatial learning and memory in male mice with altered growth hormone action. Horm Behav 2017; 93:18-30. [PMID: 28389277 DOI: 10.1016/j.yhbeh.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Growth hormone (GH) has a significant influence on cognitive performance in humans and other mammals. To understand the influence of altered GH action on cognition, we assessed spatial learning and memory using a Barnes maze (BM) comparing twelve-month old, male, bovine GH (bGH) and GH receptor antagonist (GHA) transgenic mice and their corresponding wild type (WT) littermates. During the acquisition training period in the BM, bGH mice showed increased latency, traveled longer path lengths and made more errors to reach the target than WT mice, indicating significantly poorer learning. Short-term memory (STM) and long-term memory (LTM) trials showed significantly suppressed memory retention in bGH mice when compared to the WT group. Conversely, GHA mice showed significantly better learning parameters (latency, path length and errors) and increased use of an efficient search strategy than WT mice. Our study indicates a negative impact of GH excess and a beneficial effect of the inhibition of GH action on spatial learning and memory and, therefore, cognitive performance in male mice. Further research to elucidate GH's role in brain function will facilitate identifying therapeutic applications of GH or GHA for neuropathological and neurodegenerative conditions.
Collapse
Affiliation(s)
- Amrita Basu
- Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biological Sciences, Edison Biotechnology Insitute, Ohio University, Athens, OH, United States.
| | | | - John J Kopchick
- Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Edison Biotechnology Institute, Ohio University, Athens, OH, United States.
| |
Collapse
|
64
|
Duran-Ortiz S, Brittain AL, Kopchick JJ. The impact of growth hormone on proteomic profiles: a review of mouse and adult human studies. Clin Proteomics 2017; 14:24. [PMID: 28670222 PMCID: PMC5492507 DOI: 10.1186/s12014-017-9160-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022] Open
Abstract
Growth hormone (GH) is a protein that is known to stimulate postnatal growth, counter regulate insulin's action and induce expression of insulin-like growth factor-1. GH exerts anabolic or catabolic effects depending upon on the targeted tissue. For instance, GH increases skeletal muscle and decreases adipose tissue mass. Our laboratory has spent the past two decades studying these effects, including the effects of GH excess and depletion, on the proteome of several mouse and human tissues. This review first discusses proteomic techniques that are commonly used for these types of studies. We then examine the proteomic differences found in mice with excess circulating GH (bGH mice) or mice with disruption of the GH receptor gene (GHR-/-). We also describe the effects of increased and decreased GH action on the proteome of adult patients with either acromegaly, GH deficiency or patients after short-term GH treatment. Finally, we explain how these proteomic studies resulted in the discovery of potential biomarkers for GH action, particularly those related with the effects of GH on aging, glucose metabolism and body composition.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
65
|
Troike KM, Henry BE, Jensen EA, Young JA, List EO, Kopchick JJ, Berryman DE. Impact of Growth Hormone on Regulation of Adipose Tissue. Compr Physiol 2017. [PMID: 28640444 DOI: 10.1002/cphy.c160027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.
Collapse
Affiliation(s)
- Katie M Troike
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Brooke E Henry
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Elizabeth A Jensen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Jonathan A Young
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
66
|
Extensive phenotypic characterization of a new transgenic mouse reveals pleiotropic perturbations in physiology due to mesenchymal hGH minigene expression. Sci Rep 2017; 7:2397. [PMID: 28546545 PMCID: PMC5445072 DOI: 10.1038/s41598-017-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
The human growth hormone (hGH) minigene used for transgene stabilization in mice has been recently identified to be locally expressed in the tissues where transgenes are active and associated with phenotypic alterations. Here we extend these findings by analyzing the effect of the hGH minigene in TgC6hp55 transgenic mice which express the human TNFR1 under the control of the mesenchymal cell-specific CollagenVI promoter. These mice displayed a fully penetrant phenotype characterized by growth enhancement accompanied by perturbations in metabolic, skeletal, histological and other physiological parameters. Notably, this phenotype was independent of TNF-TNFR1 signaling since the genetic ablation of either Tnf or Tradd did not rescue the phenotype. Further analyses showed that the hGH minigene was expressed in several tissues, also leading to increased hGH protein levels in the serum. Pharmacological blockade of GH signaling prevented the development of the phenotype. Our results indicate that the unplanned expression of the hGH minigene in CollagenVI expressing mesenchymal cells can lead through local and/or systemic mechanisms to enhanced somatic growth followed by a plethora of primary and/or secondary effects such as hyperphagia, hypermetabolism, disturbed glucose homeostasis, altered hematological parameters, increased bone formation and lipid accumulation in metabolically critical tissues.
Collapse
|
67
|
Thakur S, Garg N, Zhang N, Hussey SE, Musi N, Adamo ML. IGF-1 receptor haploinsufficiency leads to age-dependent development of metabolic syndrome. Biochem Biophys Res Commun 2017; 486:937-944. [DOI: 10.1016/j.bbrc.2017.03.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
|
68
|
Hjortebjerg R, Berryman DE, Comisford R, Frank SJ, List EO, Bjerre M, Frystyk J, Kopchick JJ. Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot-Specific Manner in Male Mice With Modified GH Action. Endocrinology 2017; 158:1406-1418. [PMID: 28323915 PMCID: PMC5460824 DOI: 10.1210/en.2017-00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/22/2017] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
- Danish Diabetes Academy, 5000 Odense, Denmark
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
- The Diabetes Institute at Ohio University, Ohio University, Athens, Ohio 45701
| | - Ross Comisford
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- The Diabetes Institute at Ohio University, Ohio University, Athens, Ohio 45701
| | - Stuart J. Frank
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35924
- Medical Service, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| |
Collapse
|
69
|
Lewitt MS. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity. BIOCHEMISTRY INSIGHTS 2017; 10:1178626417703995. [PMID: 28469442 PMCID: PMC5404904 DOI: 10.1177/1178626417703995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/19/2017] [Indexed: 12/18/2022]
Abstract
There is substantial evidence that the growth hormone (GH)/insulin-like growth factor (IGF) system is involved in the pathophysiology of obesity. Both GH and IGF-I have direct effects on adipocyte proliferation and differentiation, and this system is involved in the cross-talk between adipose tissue, liver, and pituitary. Transgenic animal models have been of importance in identifying mechanisms underlying these interactions. It emerges that this system has key roles in visceral adiposity, and there is a rationale for targeting this system in the treatment of visceral obesity associated with GH deficiency, metabolic syndrome, and lipodystrophies. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health, Nursing & Midwifery, University of the West of Scotland, Paisley, UK
| |
Collapse
|
70
|
Darcy J, McFadden S, Bartke A. Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte 2017; 6:69-75. [PMID: 28425851 DOI: 10.1080/21623945.2017.1308990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major focus of biogerontology is elucidating the role(s) of the endocrine system in aging and the accumulation of age-related diseases. Endocrine control of mammalian longevity was first reported in Ames dwarf (Prop1df) mice, which are long-lived due to a recessive Prop1 loss-of-function mutation resulting in deficiency of growth hormone (GH), thyroid-stimulating hormone, and prolactin. Following this report, several other GH-related mutants with altered longevity have been described including long-lived Snell dwarf and growth hormone receptor knockout mice, and short-lived GH overexpressing transgenic mice. One of the emerging areas of interest in these mutant mice is the role of adipose tissue in their altered healthspan and lifespan. Here, we provide an overview of the alterations in body composition of GH-related mutants, as well as the altered thermogenic potential of their brown adipose tissue and the altered cellular senescence and adipokine production of their white adipose tissue.
Collapse
Affiliation(s)
- Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
71
|
Clemensson EKH, Clemensson LE, Fabry B, Riess O, Nguyen HP. Further investigation of phenotypes and confounding factors of progressive ratio performance and feeding behavior in the BACHD rat model of Huntington disease. PLoS One 2017; 12:e0173232. [PMID: 28273120 PMCID: PMC5342229 DOI: 10.1371/journal.pone.0173232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/18/2017] [Indexed: 01/29/2023] Open
Abstract
Huntington disease is an inherited neurodegenerative disorder characterized by motor, cognitive, psychiatric and metabolic symptoms. We recently published a study describing that the BACHD rat model of HD shows an obesity phenotype, which might affect their motivation to perform food-based behavioral tests. Further, we argued that using a food restriction protocol based on matching BACHD and wild type rats' food consumption rates might resolve these motivational differences. In the current study, we followed up on these ideas in a longitudinal study of the rats' performance in a progressive ratio test. We also investigated the phenotype of reduced food consumption rate, which is typically seen in food-restricted BACHD rats, in greater detail. In line with our previous study, the BACHD rats were less motivated to perform the progressive ratio test compared to their wild type littermates, although the phenotype was no longer present when the rats' food consumption rates had been matched. However, video analysis of food consumption tests suggested that the reduced consumption rate found in the BACHD rats was not entirely based on differences in hunger, but likely involved motoric impairments. Thus, restriction protocols based on food consumption rates are not appropriate when working with BACHD rats. As an alternative, we suggest that studies where BACHD rats are used should investigate how the readouts of interest are affected by motivational differences, and use appropriate control tests to avoid misleading results. In addition, we show that BACHD rats display distinct behavioral changes in their progressive ratio performance, which might be indicative of striatal dysfunction.
Collapse
Affiliation(s)
- Erik Karl Håkan Clemensson
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Tuebingen, Germany
| | - Laura Emily Clemensson
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Tuebingen, Germany
- QPS Austria, Grambach, Austria
| | | | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Tuebingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Tuebingen, Germany
| |
Collapse
|
72
|
Abstract
The interrelationships of growth hormone (GH) actions and aging are complex and incompletely understood. The very pronounced age-related decline in GH secretion together with benefits of GH therapy in individuals with congenital or adult GH deficiency (GHD) prompted interest in GH as an anti-aging agent. However, the benefits of treatment of normal elderly subjects with GH appear to be marginal and counterbalanced by worrisome side effects. In laboratory mice, genetic GH deficiency or resistance leads to a remarkable extension of longevity accompanied by signs of delayed and/or slower aging. Mechanisms believed to contribute to extended longevity of GH-related mutants include improved anti-oxidant defenses, enhanced insulin sensitivity and reduced insulin levels, reduced inflammation and cell senescence, major shifts in mitochondrial function and energy metabolism, and greater stress resistance. Negative association of the somatotropic signaling and GH/insulin-like growth factor 1 (IGF-1)-dependent traits with longevity has also been shown in other mammalian species. In humans, syndromes of GH resistance or deficiency have no consistent effect on longevity, but can provide striking protection from cancer, diabetes and atherosclerosis. More subtle alterations in various steps of GH and IGF-1 signaling are associated with reduced old-age mortality, particularly in women and with improved chances of attaining extremes of lifespan. Epidemiological studies raise a possibility that the relationship of IGF-1 and perhaps also GH levels with human healthy aging and longevity may be biphasic. However, the impact of somatotropic signaling on neoplastic disease is difficult to separate from its impact on aging, and IGF-1 levels exhibit opposite associations with different chronic, age-related diseases.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| |
Collapse
|
73
|
Brooks NE, Hjortebjerg R, Henry BE, List EO, Kopchick JJ, Berryman DE. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice. Growth Horm IGF Res 2016; 30-31:22-30. [PMID: 27585733 DOI: 10.1016/j.ghir.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Although growth hormone (GH) and fibroblast growth factor 21 (FGF21) have a reported relationship, FGF21 and its receptor, fibroblast growth factor receptor 1 (FGFR1) and cofactor β-Klotho (KLB), have not been analyzed in chronic states of altered GH action. The objective of this study was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. DESIGN Seven-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. RESULTS As expected, bGH mice had increased body weight (p=3.70E-8) but decreased percent fat mass (p=4.87E-4). Likewise, GHR-/- mice had decreased body weight (p=1.78E-10) but increased percent fat mass (p=1.52E-9), due to increased size of the subcutaneous AT depot when normalized to body weight (p=1.60E-10). Serum FGF21 levels were significantly elevated in bGH mice (p=0.041) and unchanged in GHR-/- mice (p=0.88). Expression of Fgf21, Fgfr1, and Klb mRNA in white AT and liver were downregulated or unchanged in both bGH and GHR-/- mice. The only exception was Fgf21 expression in brown AT of GHR-/-, which trended toward increased expression (p=0.075). CONCLUSIONS In accordance with our hypothesis, we provide evidence that circulating FGF21 is increased in bGH animals, but remains unchanged in GHR-/- mice. Downregulation or no change in Fgf21, Fgfr1, and Klb expression are seen in white AT, brown AT, and liver of bGH and GHR-/- mice when compared to their respective controls, except for an increase in brown AT Fgf21 expression in GHR-/- mice, which could suggest a possible link to increased thermogenic potential in these mice. Overall, these results suggest possible modulation of FGF21 by GH resulting in FGF21 resistance or changes in FGF21 levels due to GH induced changes in liver size or kidney function.
Collapse
Affiliation(s)
- Nicole E Brooks
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Rikke Hjortebjerg
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Danish Diabetes Academy, Odense, Denmark
| | - Brooke E Henry
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH 45701, USA; The Diabetes Institute at Ohio University, Ohio University, Athens, OH 45701, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH 45701, USA; The Diabetes Institute at Ohio University, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
74
|
Lecoq AL, Zizzari P, Hage M, Decourtye L, Adam C, Viengchareun S, Veldhuis JD, Geoffroy V, Lombès M, Tolle V, Guillou A, Karhu A, Kappeler L, Chanson P, Kamenický P. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice. J Endocrinol 2016; 231:59-69. [PMID: 27621108 DOI: 10.1530/joe-16-0190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 12/30/2022]
Abstract
Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model.
Collapse
Affiliation(s)
- Anne-Lise Lecoq
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1185Le Kremlin-Bicêtre, France Université Paris-SudFaculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Philippe Zizzari
- Inserm U894Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mirella Hage
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1185Le Kremlin-Bicêtre, France Université Paris-SudFaculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Lyvianne Decourtye
- Sorbonne UniversitésUniv Paris 06 UMRS 938, Inserm U938, CDR Saint-Antoine, Paris, France
| | - Clovis Adam
- Assistance Publique-Hôpitaux de ParisService d'Anatomie et Cytologie Pathologiques, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Say Viengchareun
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1185Le Kremlin-Bicêtre, France Université Paris-SudFaculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Johannes D Veldhuis
- Department of MedicineEndocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Valérie Geoffroy
- Inserm U1132Hôpital Lariboisière, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1185Le Kremlin-Bicêtre, France Université Paris-SudFaculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Virginie Tolle
- Inserm U894Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Guillou
- Unité Mixte de Recherche-5203Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Auli Karhu
- Department of Medical GeneticsGenome-Scale Biology Research Program Biomedicum, University of Helsinki, Helsinki, Finland
| | - Laurent Kappeler
- Sorbonne UniversitésUniv Paris 06 UMRS 938, Inserm U938, CDR Saint-Antoine, Paris, France
| | - Philippe Chanson
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1185Le Kremlin-Bicêtre, France Université Paris-SudFaculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France Assistance Publique-Hôpitaux de ParisService d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Peter Kamenický
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1185Le Kremlin-Bicêtre, France Université Paris-SudFaculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France Assistance Publique-Hôpitaux de ParisService d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
75
|
Stout MB, Swindell WR, Zhi X, Rohde K, List EO, Berryman DE, Kopchick JJ, Gesing A, Fang Y, Masternak MM. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget 2016; 6:26702-15. [PMID: 26436954 PMCID: PMC4694946 DOI: 10.18632/oncotarget.5760] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/29/2015] [Indexed: 12/24/2022] Open
Abstract
Mice lacking the growth hormone receptor (GHRKO) exhibit improved lifespan and healthspan due to loss of growth hormone signaling. Both the distribution and activity of brown and white adipose tissue (BAT and WAT) are altered in GHRKO mice, but the contribution of each tissue to age-related phenotypes has remained unclear. We therefore used whole-genome microarrays to evaluate transcriptional differences in BAT and WAT depots between GHRKO and normal littermates at six months of age. Our findings reveal a unique BAT transcriptome as well as distinctive responses of BAT to Ghr ablation. BAT from GHRKO mice exhibited elevated expression of genes associated with mitochondria and metabolism, along with reduced expression of genes expressed by monocyte-derived cells (dendritic cells [DC] and macrophages). Largely the opposite was observed in WAT, with increased expression of DC-expressed genes and reduced expression of genes associated with metabolism, cellular respiration and the mitochondrial inner envelope. These findings demonstrate divergent response patterns of BAT and WAT to loss of GH signaling in GHRKO mice. These patterns suggest both BAT and WAT contribute in different ways to phenotypes in GHRKO mice, with Ghr ablation blunting inflammation in BAT as well as cellular metabolism and mitochondrial biogenesis in WAT.
Collapse
Affiliation(s)
- Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Kyle Rohde
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Yimin Fang
- Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
76
|
Mitchell SE, Delville C, Konstantopedos P, Hurst J, Derous D, Green C, Chen L, Han JJD, Wang Y, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice. Oncotarget 2016; 6:23213-37. [PMID: 26061745 PMCID: PMC4695113 DOI: 10.18632/oncotarget.4003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022] Open
Abstract
Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR.
Collapse
Affiliation(s)
- Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Camille Delville
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Jane Hurst
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Cara Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jackie J D Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Daniel E L Promislow
- Department of Pathology and Department of Biology, University of Washington, Seattle, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| |
Collapse
|
77
|
TOUSKOVA V, KLOUCKOVA J, DUROVCOVA V, LACINOVA Z, KAVALKOVA P, TRACHTA P, KOSAK M, MRAZ M, HALUZIKOVA D, HANA V, MAREK J, KRSEK M, HALUZIK M. The Possible Role of mRNA Expression Changes of GH/IGF-1/Insulin Axis Components in Subcutaneous Adipose Tissue in Metabolic Disturbances of Patients With Acromegaly. Physiol Res 2016; 65:493-503. [DOI: 10.33549/physiolres.933244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We explored the effect of chronically elevated circulating levels of growth hormone (GH)/insulin-like-growth-factor-1 (IGF-1) on mRNA expression of GH/IGF-1/insulin axis components and p85alpha subunit of phosphoinositide-3-kinase (p85alpha) in subcutaneous adipose tissue (SCAT) of patients with active acromegaly and compared these findings with healthy control subjects in order to find its possible relationships with insulin resistance and body composition changes. Acromegaly group had significantly decreased percentage of truncal and whole body fat and increased homeostasis model assessment-insulin resistance (HOMA-IR). In SCAT, patients with acromegaly had significantly increased IGF-1 and IGF-binding protein-3 (IGFBP-3) expression that both positively correlated with serum GH. P85alpha expression in SCAT did not differ from control group. IGF-1 and IGFBP-3 expression in SCAT were not independently associated with percentage of truncal and whole body fat or with HOMA-IR while IGFBP-3 expression in SCAT was an independent predictor of insulin receptor as well as of p85alpha expression in SCAT. Our data suggest that GH overproduction in acromegaly group increases IGF-1 and IGFBP-3 expression in SCAT while it does not affect SCAT p85alpha expression. Increased IGF-1 or IGFBP-3 in SCAT of acromegaly group do not appear to contribute to systemic differences in insulin sensitivity but may have local regulatory effects in SCAT of patients with acromegaly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - M. HALUZIK
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
78
|
Hill CM, Fang Y, Miquet JG, Sun LY, Masternak MM, Bartke A. Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure. Aging Cell 2016; 15:509-21. [PMID: 26990883 PMCID: PMC4854906 DOI: 10.1111/acel.12467] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH) signaling stimulates the production of IGF‐1; however, increased GH signaling may induce insulin resistance and can reduce life expectancy in both mice and humans. Interestingly, disruption of GH signaling by reducing plasma GH levels significantly improves health span and extends lifespan in mice, as observed in Ames dwarf mice. In addition, these mice have increased adiposity, yet are more insulin sensitive compared to control mice. Metabolic stressors such as high‐fat diet (HFD) promote obesity and may alter longevity through the GH signaling pathway. Therefore, our objective was to investigate the effects of a HFD (metabolic stressor) on genetic mechanisms that regulate metabolism during aging. We show that Ames dwarf mice fed HFD for 12 weeks had an increase in subcutaneous and visceral adiposity as a result of diet‐induced obesity, yet are more insulin sensitive and have higher levels of adiponectin compared to control mice fed HFD. Furthermore, energy expenditure was higher in Ames dwarf mice fed HFD than in control mice fed HFD. Additionally, we show that transplant of epididymal white adipose tissue (eWAT) from Ames dwarf mice fed HFD into control mice fed HFD improves their insulin sensitivity. We conclude that Ames dwarf mice are resistant to the detrimental metabolic effects of HFD and that visceral adipose tissue of Ames dwarf mice improves insulin sensitivity in control mice fed HFD.
Collapse
Affiliation(s)
- Cristal M. Hill
- Department of Medical Microbiology, Immunology and Cell Biology Southern Illinois University School of Medicine Springfield IL USA
- Department of Internal Medicine, Geriatrics Research Southern Illinois University School of Medicine Springfield IL USA
| | - Yimin Fang
- Department of Internal Medicine, Geriatrics Research Southern Illinois University School of Medicine Springfield IL USA
| | - Johanna G. Miquet
- Faculty of Pharmacy and Biochemistry Institute of Chemical and Biological Physical Chemistry Buenos Aires Argentina
| | - Liou Y. Sun
- Department of Biology University of Alabama at Birmingham Birmingham AL USA
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences‐ College of Medicine University of Central Florida Orlando FL USA
| | - Andrzej Bartke
- Department of Medical Microbiology, Immunology and Cell Biology Southern Illinois University School of Medicine Springfield IL USA
- Department of Internal Medicine, Geriatrics Research Southern Illinois University School of Medicine Springfield IL USA
| |
Collapse
|
79
|
Bartke A, List EO, Kopchick JJ. The somatotropic axis and aging: Benefits of endocrine defects. Growth Horm IGF Res 2016; 27:41-45. [PMID: 26925766 PMCID: PMC4792645 DOI: 10.1016/j.ghir.2016.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 12/15/2022]
Abstract
Reduced somatotropic [growth hormone (GH) and insulin-like growth factor-1 (IGF-1)] action has been associated with delayed and slower aging, reduced risk of frailty, reduced age-related disease and functional decline, and with remarkably extended longevity. Recent studies have added to the evidence that these relationships discovered in laboratory populations of mice apply to other mammalian species. However, the relationship of the somatotropic signaling to human aging is less striking, complex and controversial. In mice, targeted deletion of GH receptors (GHR) in the liver, muscle or adipose tissue affected multiple metabolic parameters but failed to reproduce the effects of global GHR deletion on longevity. Continued search for mechanisms of extended longevity in animals with GH deficiency or resistance focused attention on different pathways of mechanistic target of rapamycin (mTOR), energy metabolism, regulation of local IGF-1 levels and resistance to high-fat diet (HFD).
Collapse
Affiliation(s)
- Andrzej Bartke
- SIU School of Medicine, Department of Internal Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL 62794-9628, United States.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
80
|
Berryman DE, Henry B, Hjortebjerg R, List EO, Kopchick JJ. Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Rev Endocrinol Metab 2016; 11:197-207. [PMID: 28435436 PMCID: PMC5397118 DOI: 10.1586/17446651.2016.1147950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adipose tissue (AT) is a well-established target of growth hormone (GH) and is altered in clinical conditions associated with excess, deficiency and absence of GH action. Due to the difficulty in collecting AT from clinical populations, genetically modified mice have been useful in better understanding how GH affects this tissue. Recent findings in mice would suggest that the impact of GH on AT is beyond alterations of lipolysis, lipogenesis or proliferation/ differentiation. AT depot-specific alterations in immune cells, extracellular matrix, adipokines, and senescence indicate an expanded role for GH in AT physiology. This mouse data will guide additional studies necessary to evaluate the therapeutic potential and safety of GH for conditions associated with altering AT, such as obesity. In this review, we introduce several relatively new intricacies of GH's effect on AT, focusing on recent studies in mice. Finally, we summarize the clinical implications of these findings.
Collapse
Affiliation(s)
- Darlene E Berryman
- Executive Director, The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, (740) 593-9661 - phone, (740) 593-4795 - fax
| | - Brooke Henry
- 108 Konneker Research Labs, Ohio University, (740) 593-9665
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Noerrebrogade 44, 8000 Aarhus C, Denmark, +45 6166 8045 - phone, +45 7846 2150 - fax
| | - Edward O List
- Senior Scientist, 218 Konneker Research Labs, Edison Biotechnology Institute, Ohio University, (740) 593-4620 - phone, (740) 593-4795 - fax
| | - John J Kopchick
- Distinguished Professor, Goll Ohio Eminent Scholar, 172 Water Tower Drive, Ohio University, (740) 593-4534 - phone, (740) 593-4795 - fax
| |
Collapse
|
81
|
Bartke A. Healthspan and longevity can be extended by suppression of growth hormone signaling. Mamm Genome 2016; 27:289-99. [PMID: 26909495 DOI: 10.1007/s00335-016-9621-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Average and maximal lifespan are important biological characteristics of every species, but can be modified by mutations and by a variety of genetic, dietary, environmental, and pharmacological interventions. Mutations or disruption of genes required for biosynthesis or action of growth hormone (GH) produce remarkable extension of longevity in laboratory mice. Importantly, the long-lived GH-related mutants exhibit many symptoms of delayed and/or slower aging, including preservation of physical and cognitive functions and resistance to stress and age-related disease. These characteristics could be collectively described as "healthy aging" or extension of the healthspan. Extension of both the healthspan and lifespan in GH-deficient and GH-resistant mice appears to be due to multiple interrelated mechanisms. Some of these mechanisms have been linked to healthy aging and genetic predisposition to extended longevity in humans. Enhanced insulin sensitivity combined with reduced insulin levels, reduced adipose tissue, central nervous system inflammation, and increased levels of adiponectin represent such mechanisms. Further progress in elucidation of mechanisms that link reduced GH action to delayed and healthy aging should identify targets for lifestyle and pharmacological interventions that could benefit individuals as well as society.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois School of Medicine, Springfield, IL, USA.
| |
Collapse
|
82
|
Ratnappan R, Ward JD, Yamamoto KR, Ghazi A. Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations. WORM 2016; 5:e1151609. [PMID: 27073739 DOI: 10.1080/21624054.2016.1151609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/13/2023]
Abstract
Previously, we identified a group of nuclear hormone receptors (NHRs) that promote longevity in the nematode Caenorhabditis elegans following germline-stem cell (GSC) loss. This group included NHR-49, the worm protein that performs functions similar to vertebrate PPARα, a key regulator of lipid metabolism. We showed that NHR-49/PPARα enhances mitochondrial β-oxidation and fatty acid desaturation upon germline removal, and through the coordinated enhancement of these processes allows the animal to retain lipid homeostasis and undergo lifespan extension. NHR-49/PPARα expression is elevated in GSC-ablated animals, in part, by DAF-16/FOXO3A and TCER-1/TCERG1, two other conserved, pro-longevity transcriptional regulators that are essential for germline-less longevity. In exploring the roles of the other pro-longevity NHRs, we discovered that one of them, NHR-71/HNF4, physically interacted with NHR-49/PPARα. NHR-71/HNF4 did not have a broad impact on the expression of β-oxidation and desaturation targets of NHR-49/PPARα. But, both NHR-49/PPARα and NHR-71/HNF4 were essential for the increased expression of DAF-16/FOXO3A- and TCER-1/TCERG1-downstream target genes. In addition, nhr-49 inactivation caused a striking membrane localization of KRI-1, the only known common upstream regulator of DAF-16/FOXO3A and TCER-1/TCERG1, suggesting that it may operate in a positive feedback loop to potentiate the activity of this pathway. These data underscore how selective interactions between NHRs that function as nodes in metabolic networks, confer functional specificity in response to different physiological stimuli.
Collapse
Affiliation(s)
- Ramesh Ratnappan
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA
| | - Jordan D Ward
- Department of Cellular and Molecular Pharmacology, University of California , San Francisco, San Francisco, CA, USA
| | - Keith R Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California , San Francisco, San Francisco, CA, USA
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA
| |
Collapse
|
83
|
Growth Hormone Influence on the Morphology and Size of the Mouse Meibomian Gland. J Ophthalmol 2016; 2016:5728071. [PMID: 26981277 PMCID: PMC4769763 DOI: 10.1155/2016/5728071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose. We hypothesize that growth hormone (GH) plays a significant role in the regulation of the meibomian gland. To test our hypothesis, we examined the influence of GH on mouse meibomian gland structure. Methods. We studied four groups of mice, including (1) bovine (b) GH transgenic mice with excess GH; (2) GH receptor (R) antagonist (A) transgenic mice with decreased GH; (3) GHR knockout (−/−) mice with no GH activity; and (4) wild type (WT) control mice. After mouse sacrifice, eyelids were processed for morphological and image analyses. Results. Our results show striking structural changes in the GH-deficient animals. Many of the GHR−/− and GHA meibomian glands featured hyperkeratinized and thickened ducts, acini inserting into duct walls, and poorly differentiated acini. In contrast, the morphology of WT and bGH meibomian glands appeared similar. The sizes of meibomian glands of bGH mice were significantly larger and those of GHA and GHR−/− mice were significantly smaller than glands of WT mice. Conclusions. Our findings support our hypothesis that the GH/IGF-1 axis plays a significant role in the control of the meibomian gland. In addition, our data show that GH modulates the morphology and size of this tissue.
Collapse
|
84
|
White UA, Maier J, Zhao P, Richard AJ, Stephens JM. The modulation of adiponectin by STAT5-activating hormones. Am J Physiol Endocrinol Metab 2016; 310:E129-36. [PMID: 26601851 PMCID: PMC4719028 DOI: 10.1152/ajpendo.00068.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
Abstract
Adiponectin is a hormone secreted from adipocytes that plays an important role in insulin sensitivity and protects against metabolic syndrome. Growth hormone (GH) and prolactin (PRL) are potent STAT5 activators that regulate the expression of several genes in adipocytes. Studies have shown that the secretion of adiponectin from adipose tissue is decreased by treatment with PRL and GH. In this study, we demonstrate that 3T3-L1 adipocytes treated with GH or PRL exhibit a reduction in adiponectin protein levels. Furthermore, we identified three putative STAT5 binding sites in the murine adiponectin promoter and show that only one of these, located at -3,809, binds nuclear protein in a GH- or PRL-dependent manner. Mutation of the STAT5 binding site reduced PRL-dependent protein binding, and supershift analysis revealed that STAT5A and -5B, but not STAT1 and -3, bind to this site in response to PRL. Chromatin immunoprecipitation (IP) analysis demonstrated that only STAT5A, and not STAT1 and -3, bind to the murine adiponectin promoter in a GH-dependent manner in vivo. Adiponectin promoter/reporter constructs were responsive to GH, and chromatin IP analysis reveals that STAT5 binds the adiponectin promoter in vivo following GH stimulation. Overall, these data strongly suggest that STAT5 activators regulate adiponectin transcription through the binding of STAT5 to the -3,809 site that leads to decreased adiponectin expression and secretion. These mechanistic observations are highly consistent with studies in mice and humans that have high GH or PRL levels that are accompanied by lower circulating levels of adiponectin.
Collapse
Affiliation(s)
- Ursula A White
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Joel Maier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Peng Zhao
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Allison J Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
85
|
Young JA, List EO, Kopchick JJ. Deconstructing the Growth Hormone Receptor(GHR): Physical and Metabolic Phenotypes of Tissue-Specific GHR Gene-Disrupted Mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 138:27-39. [PMID: 26940385 DOI: 10.1016/bs.pmbts.2015.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Growth hormone (GH)-induced signaling results in numerous effects in multiple tissues throughout the body. Elucidation of several of these effects has come from studies observing the various phenotypes of the GH receptor (GHR) gene-disrupted (GHR-/-) mouse. These mice are dwarf and obese with increased insulin sensitivity, are resistant to cancer and diabetes, and have an extended lifespan. While these mice have proven to be a valuable tool for understanding the pleiotropic effects of GH, we and others have generated novel tissue-specific GHR gene-disrupted mouse lines that are now helping to further dissect the actions of GH on specific cells/tissues. In this chapter, we summarize the various phenotypes observed in these mice.
Collapse
Affiliation(s)
- Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
86
|
Dal J, List EO, Jørgensen JOL, Berryman DE. Glucose and Fat Metabolism in Acromegaly: From Mice Models to Patient Care. Neuroendocrinology 2016; 103:96-105. [PMID: 25925240 DOI: 10.1159/000430819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
Abstract
Patients with active acromegaly are frequently insulin resistant, glucose intolerant, and at risk for developing overt type 2 diabetes. At the same time, these patients have a relatively lean phenotype associated with mobilization and oxidation of free fatty acids. These features are reversed by curative surgical removal of the growth hormone (GH)-producing adenoma. Mouse models of acromegaly share many of these characteristics, including a lean phenotype and proneness to type 2 diabetes. There are, however, also species differences with respect to oxidation rates of glucose and fat as well as the specific mechanisms underlying GH-induced insulin resistance. The impact of acromegaly treatment on insulin sensitivity and glucose tolerance depends on the treatment modality (e.g. somatostatin analogs also suppress insulin secretion, whereas the GH antagonist restores insulin sensitivity). The interplay between animal research and clinical studies has proven useful in the field of acromegaly and should be continued in order to understand the metabolic actions of GH.
Collapse
Affiliation(s)
- Jakob Dal
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
87
|
Xie TY, Ngo ST, Veldhuis JD, Jeffery PL, Chopin LK, Tschöp M, Waters MJ, Tolle V, Epelbaum J, Chen C, Steyn FJ. Effect of Deletion of Ghrelin-O-Acyltransferase on the Pulsatile Release of Growth Hormone in Mice. J Neuroendocrinol 2015; 27:872-86. [PMID: 26442444 DOI: 10.1111/jne.12327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat(-/-) mice.
Collapse
Affiliation(s)
- T Y Xie
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - S T Ngo
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- The Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| | - J D Veldhuis
- Endocrine Research Unit, Department of Medicine, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - P L Jeffery
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - L K Chopin
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - M Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - M J Waters
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - V Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - J Epelbaum
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - F J Steyn
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
88
|
Li F, Li Y, Liu H, Zhang X, Liu C, Tian K, Bolund L, Dou H, Yang W, Yang H, Staunstrup NH, Du Y. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway. Transgenic Res 2015; 24:1029-42. [PMID: 26510874 DOI: 10.1007/s11248-015-9912-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/16/2015] [Indexed: 11/24/2022]
Abstract
Growth hormone (GH) is an anabolic mitogen with widespread influence on cellular growth and differentiation as well as on glucose and lipid metabolism. GH binding to the growth hormone receptor (GHR) on hepatocytes prompts expression of insulin growth factor I (IGF-1) involved in nutritionally induced compensatory hyperplasia of pancreatic β-cell islets and insulin release. A prolonged hyperactivity of the IGF-1/insulin axis in the face of insulinotropic nutrition, on the other hand, can lead to collapse of the pancreatic islets and glucose intolerance. Individuals with Laron syndrome carry mutations in the GHR gene resulting in severe congenital IGF-1 deficiency and elevated GH serum levels leading to short stature as well as perturbed lipid and glucose metabolism. However, these individuals enjoy a reduced prevalence of acne, cancer and possibly diabetes. Minipigs have become important biomedical models for human conditions due to similarities in organ anatomy, physiology, and metabolism relative to humans. The purpose of this study was to generate transgenic Wuzhishan minipigs by handmade cloning with impaired systemic GHR activity and assess their growth profile and glucose metabolism. Transgenic minipigs featuring overexpression of a dominant-negative porcine GHR (GHR(dm)) presented postnatal growth retardation and proportionate dwarfism. Molecular changes included elevated GH serum levels and mild hyperglycemia. We believe that this model may prove valuable in the study of GH functions in relation to cancer, diabetes and longevity.
Collapse
Affiliation(s)
- Feida Li
- BGI-Shenzhen, Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Yong Li
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Ark Biotechnology (BAB), Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Xingju Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Chuxin Liu
- BGI-Shenzhen, Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Kai Tian
- BGI-Shenzhen, Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Lars Bolund
- BGI-Shenzhen, Shenzhen, 518083, China.,Department of Biomedicine, Aarhus University, Wilhelm Meyers allé 1240, 8000, Aarhus C, Denmark
| | - Hongwei Dou
- BGI Ark Biotechnology (BAB), Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Wenxian Yang
- BGI Ark Biotechnology (BAB), Shenzhen, 518083, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | | | - Nicklas Heine Staunstrup
- Department of Biomedicine, Aarhus University, Wilhelm Meyers allé 1240, 8000, Aarhus C, Denmark.
| | - Yutao Du
- BGI-Shenzhen, Shenzhen, 518083, China. .,BGI Ark Biotechnology (BAB), Shenzhen, 518083, China. .,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, 8F Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China.
| |
Collapse
|
89
|
Comisford R, Lubbers ER, Householder LA, Suer O, Tchkonia T, Kirkland JL, List EO, Kopchick JJ, Berryman DE. Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence. Gerontology 2015; 62:163-72. [PMID: 26372907 DOI: 10.1159/000439050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of WAT senescent cells in GHA and control mice suggests that any protection against generation of senescent cells afforded by decreased GH action, low insulin-like growth factor 1 and/or improved insulin sensitivity in the GHA mice may be offset by their severe adiposity, since obesity is known to increase senescence.
Collapse
Affiliation(s)
- Ross Comisford
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Piotrowska K, Sluczanowska-Glabowska S, Kucia M, Bartke A, Laszczynska M, Ratajczak MZ. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and insulin-like growth factor-1. Folia Histochem Cytobiol 2015; 53:249-58. [PMID: 26348370 DOI: 10.5603/fhc.a2015.0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 09/08/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Overexpression of growth hormone (GH) leads to increase in insulin-like growth factor-1 (IGF-1) plasma level, stimulation of growth and increase in body size, organomegaly and reduced body fat. The action of GH affects all the organs and transgenic mice that overexpress bovine GH (bGH mice) serve as convenient model to study somatotropic axis. Male mice overexpressing GH are fertile, however, they show reduced overall lifespan as well as reproductive life span. The aim of the study was to evaluate the morphology and expression of androgen receptor (AR) and luteinizing hormone receptor (LHR) of bGH mice testes. MATERIAL AND METHODS The experiment was performed on 6 and 12 month-old bGH male mice and 6 and 12 month-old wild type (WT) littermates (8 animals in each group). The morphology of testes was evaluated on deparaffinized sections stained by the periodic acid-Schiff (PAS) method. Expression of AR and LHR was investigated by immunohistochemistry and diameters of seminiferous tubules (ST) were measured on round cross sections of ST. RESULTS We noted larger testes in 6-month bGH mice as compared to normal WT littermates. The morpho-logical observations revealed essentially normal structure of Leydig cells, seminiferous epithelium and other morphological structures. However, some changes like tubules containing only Sertoli cells, tubules with arrested spermatogenesis or vacuoles in seminiferous epithelium could be attributed to the overexpression of GH. In contrast to WT mice, 12 month-old bGH mice displayed first symptoms of testicular aging. The immunoexpres-sion of AR and LHR was decreased in 12 month-old bGH males as compared to 12 month-old WT mice and younger animals. CONCLUSION Chronic exposure to elevated GH level accelerates testicular aging and thus potentially may change response of Leydig cells to LH and Sertoli and germ cells to testosterone.
Collapse
|
91
|
Murray PG, Higham CE, Clayton PE. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-GH axis: the past 60 years. J Endocrinol 2015; 226:T123-40. [PMID: 26040485 DOI: 10.1530/joe-15-0120] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/19/2022]
Abstract
At the time of the publication of Geoffrey Harris's monograph on 'Neural control of the pituitary gland' 60 years ago, the pituitary was recognised to produce a growth factor, and extracts administered to children with hypopituitarism could accelerate growth. Since then our understanding of the neuroendocrinology of the GH axis has included identification of the key central components of the GH axis: GH-releasing hormone and somatostatin (SST) in the 1970s and 1980s and ghrelin in the 1990s. Characterisation of the physiological control of the axis was significantly advanced by frequent blood sampling studies in the 1980s and 1990s; the pulsatile pattern of GH secretion and the factors that influenced the frequency and amplitude of the pulses have been defined. Over the same time, spontaneously occurring and targeted mutations in the GH axis in rodents combined with the recognition of genetic causes of familial hypopituitarism demonstrated the key factors controlling pituitary development. As the understanding of the control of GH secretion advanced, developments of treatments for GH axis disorders have evolved. Administration of pituitary-derived human GH was followed by the introduction of recombinant human GH in the 1980s, and, more recently, by long-acting GH preparations. For GH excess disorders, dopamine agonists were used first followed by SST analogues, and in 2005 the GH receptor blocker pegvisomant was introduced. This review will cover the evolution of these discoveries and build a picture of our current understanding of the hypothalamo-GH axis.
Collapse
Affiliation(s)
- P G Murray
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - C E Higham
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - P E Clayton
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| |
Collapse
|
92
|
Olarescu NC, Berryman DE, Householder LA, Lubbers ER, List EO, Benencia F, Kopchick JJ, Bollerslev J. GH action influences adipogenesis of mouse adipose tissue-derived mesenchymal stem cells. J Endocrinol 2015; 226:13-23. [PMID: 25943560 PMCID: PMC4560118 DOI: 10.1530/joe-15-0012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/15/2022]
Abstract
GH influences adipocyte differentiation, but both stimulatory and inhibitory effects have been described. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are multipotent and are able to differentiate into adipocytes, among other cells. Canonical Wnt/β-catenin signaling activation impairs adipogenesis. The aim of the present study was to elucidate the role of GH on AT-MSC adipogenesis using cells isolated from male GH receptor knockout (GHRKO), bovine GH transgenic (bGH) mice, and wild-type littermate control (WT) mice. AT-MSCs from subcutaneous (sc), epididiymal (epi), and mesenteric (mes) AT depots were identified and isolated by flow cytometry (Pdgfrα+ Sca1+ Cd45- Ter119- cells). Their in vitro adipogenic differentiation capacity was determined by cell morphology and real-time RT-PCR. Using identical in vitro conditions, adipogenic differentiation of AT-MSCs was only achieved in the sc depot, and not in epi and mes depots. Notably, we observed an increased differentiation in cells isolated from sc-GHRKO and an impaired differentiation of sc-bGH cells as compared to sc-WT cells. Axin2, a marker of Wnt/β-catenin activation, was increased in mature sc-bGH adipocytes, which suggests that activation of this pathway may be responsible for the decreased adipogenesis. Thus, the present study demonstrates that (i) adipose tissue in mice has a well-defined population of Pdgfrα+ Sca1+ MSCs; (ii) the differentiation capacity of AT-MSCs varies from depot to depot regardless of GH genotype; (iii) the lack of GH action increases adipogenesis in the sc depot; and iv) activation of the Wnt/β-catenin pathway might mediate the GH effect on AT-MSCs. Taken together, the present results suggest that GH diminishes fat mass in part by altering adipogenesis of MSCs.
Collapse
Affiliation(s)
- Nicoleta C Olarescu
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| | - Darlene E Berryman
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| | - Lara A Householder
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| | - Ellen R Lubbers
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| | - Edward O List
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| | - Fabian Benencia
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| | - John J Kopchick
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| | - Jens Bollerslev
- Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
| |
Collapse
|
93
|
Arum O, Dawson JA, Smith DL, Kopchick JJ, Allison DB, Bartke A. Do altered energy metabolism or spontaneous locomotion 'mediate' decelerated senescence? Aging Cell 2015; 14:483-90. [PMID: 25720347 PMCID: PMC4406677 DOI: 10.1111/acel.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/01/2022] Open
Abstract
That one or multiple measures of metabolic rate may be robustly associated with, or possibly even causative of, the progression of aging-resultant phenotypes such as lifespan is a long-standing, well-known mechanistic hypothesis. To broach this hypothesis, we assessed metabolic function and spontaneous locomotion in two genetic and one dietary mouse models for retarded aging, and subjected the data to mediation analyses to determine whether any metabolic or locomotor trait could be identified as a mediator of the effect of any of the interventions on senescence. We do not test the hypothesis of causality (which would require some experiments), but instead test whether the correlation structure of certain variables is consistent with one possible pathway model in which a proposed mediating variable has a causal role. Results for metabolic measures, including oxygen consumption and respiratory quotient, failed to support this hypothesis; similar negative results were obtained for three behavioral motion metrics. Therefore, our mediation analyses did not find support that any of these correlates of decelerated senescence was a substantial mediator of the effect of either of these genetic alterations (with or without caloric restriction) on longevity. Further studies are needed to relate the examined phenotypic characteristics to mechanisms of aging and control of longevity.
Collapse
Affiliation(s)
- Oge Arum
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794 USA
| | - John Alexander Dawson
- Section on Statistical Genetics Department of Biostatistics School of Public Health University of Alabama at Birmingham 1665 University Blvd RPHB 140J Birmingham AL 35294‐0022 USA
| | - Daniel Larry Smith
- Nutrition Obesity Research Center Department of Nutrition Sciences University of Alabama at Birmingham Birmingham AL 35294‐0022 USA
| | - John J. Kopchick
- Department of Biomedical Sciences Edison Biotechnology Institute Heritage College of Osteopathic Medicine Ohio University Athens OH 45701 USA
| | - David B. Allison
- Section on Statistical Genetics Department of Biostatistics School of Public Health University of Alabama at Birmingham 1665 University Blvd RPHB 140J Birmingham AL 35294‐0022 USA
- Nutrition Obesity Research Center Department of Nutrition Sciences University of Alabama at Birmingham Birmingham AL 35294‐0022 USA
| | - Andrzej Bartke
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794 USA
| |
Collapse
|
94
|
Benencia F, Harshman S, Duran-Ortiz S, Lubbers ER, List EO, Householder L, Al-Naeeli M, Liang X, Welch L, Kopchick JJ, Berryman DE. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations. Endocrinology 2015; 156:1794-803. [PMID: 25521584 PMCID: PMC4398765 DOI: 10.1210/en.2014-1794] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.
Collapse
Affiliation(s)
- Fabian Benencia
- Department of Biomedical Sciences (F.B., J.J.K., D.E.B.), Heritage College of Osteopathic Medicine; Russ College of Engineering and Technology (F.B.); Diabetes Institute (F.B., E.O.L., M.A.-N., J.J.K., D.E.B.); Edison Biotechnology Institute (S.H., S.D.-O., E.R.L., E.O.L., L.H., J.J.K., D.E.B.); School of Applied Health Sciences and Wellness (S.H., S.D.-O., D.E.B.), College of Health Sciences and Professions; Department of Biological Sciences (M.A.-N.), Ohio University Zanesville; School of Electrical Engineering and Computer Science (X.L., L.W.); and Biomedical Engineering Program (L.W.), Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Leone S, Chiavaroli A, Shohreh R, Ferrante C, Ricciuti A, Manippa F, Recinella L, Di Nisio C, Orlando G, Salvatori R, Vacca M, Brunetti L. Increased locomotor and thermogenic activity in mice with targeted ablation of the GHRH gene. Growth Horm IGF Res 2015; 25:80-84. [PMID: 25588992 DOI: 10.1016/j.ghir.2014.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Growth hormone (GH) deficiency (GHD) leads to growth failure and changes in body composition, including increased fat accumulation and reduced lean body mass in both humans and rodents. The aim of this study was to examine the factors that contribute to energy imbalance in the GH releasing hormone knock out (GHRHKO) mice, a well established model of GHD. DESIGN We evaluated food intake (of standard laboratory chow), total body weight (TBW), locomotor activity, body temperature and interscapular brown adipose tissue (BAT) weight in 8 adult male mice homozygous for the GHRHKO allele (-/-) and 8 heterozygous (+/-) animals as controls. The gene expression of uncoupling protein-1 (UCP-1) in BAT and the levels of norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine, 5-HT) in the ventral striatum were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) and high performance liquid chromatography (HPLC) analysis, respectively. RESULTS Throughout 2 months of observation -/- mice consumed approximately 40% more food (normalized to TBW; P<0.001), and showed increased locomotor activity in 24h time compared to controls (P<0.05). Moreover, -/- animals showed increased body temperature (P<0.001), BAT weight (P<0.001), and UCP-1 gene expression (P<0.001), while NE levels in the striatum area were lower (P<0.05) than controls. CONCLUSIONS The present study demonstrates that the increased food intake observed in GHRH ablated animals is associated with increased locomotor and thermogenic activity.
Collapse
Affiliation(s)
- Sheila Leone
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | - Rugia Shohreh
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | | | - Fabio Manippa
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Chiara Di Nisio
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michele Vacca
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
96
|
Lim SV, Marenzana M, Hopkinson M, List EO, Kopchick JJ, Pereira M, Javaheri B, Roux JP, Chavassieux P, Korbonits M, Chenu C. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength. Endocrinology 2015; 156:1362-71. [PMID: 25646711 PMCID: PMC4399323 DOI: 10.1210/en.2014-1572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.
Collapse
Affiliation(s)
- S V Lim
- Department of Comparative and Biomedical Sciences (S.V.L., M.H., M.P., B.J., C.C.), Royal Veterinary College, London NW1 0TU, United Kingdom; Imperial College (M.M.), London SW7 2AZ, United Kingdom; Edison Biotechnology Institute (E.O.L., J.J.K.), Ohio University, Ohio 45701; INSERM Unité Mixte de Recherche 1033 and Université de Lyon (J.P.R., P.C.), 69372 Lyon Cedex 08, France; and Department of Endocrinology (M.K.), Barts and the London School of Medicine, Queen Mary University of London, London EC1A 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY) 2015; 6:575-86. [PMID: 25063774 PMCID: PMC4153624 DOI: 10.18632/aging.100681] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible.
Collapse
|
98
|
Yang T, Householder LA, Lubbers ER, List EO, Troike K, Vesel C, Duran-Ortiz S, Kopchick JJ, Berryman DE. Growth hormone receptor antagonist transgenic mice are protected from hyperinsulinemia and glucose intolerance despite obesity when placed on a HF diet. Endocrinology 2015; 156:555-64. [PMID: 25406017 PMCID: PMC4298328 DOI: 10.1210/en.2014-1617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduced GH levels have been associated with improved glucose metabolism and increased longevity despite obesity in multiple mouse lines. However, one mouse line, the GH receptor antagonist (GHA) transgenic mouse, defies this trend because it has reduced GH action and increased adiposity, but glucose metabolism and life span are similar to controls. Slight differences in glucose metabolism and adiposity profiles can become exaggerated on a high-fat (HF) diet. Thus, in this study, male and female GHA and wild-type (WT) mice in a C57BL/6 background were placed on HF and low-fat (LF) diets for 11 weeks, starting at 10 weeks of age, to assess how GHA mice respond to additional metabolic stress of HF feeding. On a HF diet, all mice showed significant weight gain, although GHA gained weight more dramatically than WT mice, with males gaining more than females. Most of this weight gain was due to an increase in fat mass with WT mice increasing primarily in the white adipose tissue perigonadal depots, whereas GHA mice gained in both the sc and perigonadal white adipose tissue regions. Notably, GHA mice were somewhat protected from detrimental glucose metabolism changes on a HF diet because they had only modest increases in serum glucose levels, remained glucose tolerant, and did not develop hyperinsulinemia. Sex differences were observed in many measures with males reacting more dramatically to both a reduction in GH action and HF diet. In conclusion, our findings show that GHA mice, which are already obese, are susceptible to further adipose tissue expansion with HF feeding while remaining resilient to alterations in glucose homeostasis.
Collapse
Affiliation(s)
- Tianxu Yang
- Edison Biotechnology Institute (T.Y., L.A.H., E.R.L., E.O.L., K.T., C.V., S.D.-O., J.J.K., D.E.B.), School of Applied Health Sciences and Wellness, College of Health Sciences and Professions (T.Y., L.A.H., K.T., S.D.-O., D.E.B.), and Department of Biomedical Sciences (J.K., D.E.B.), Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Boparai RK, Arum O, Miquet JG, Masternak MM, Bartke A, Khardori RK. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice. Int J Endocrinol 2015; 2015:282375. [PMID: 26089880 PMCID: PMC4451995 DOI: 10.1155/2015/282375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH) intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.
Collapse
Affiliation(s)
- Ravneet K. Boparai
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9636, USA
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Oge Arum
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- *Oge Arum:
| | - Johanna G. Miquet
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michal M. Masternak
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
| | - Romesh K. Khardori
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9636, USA
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA 23510, USA
| |
Collapse
|
100
|
Savastano S, Di Somma C, Barrea L, Colao A. The complex relationship between obesity and the somatropic axis: the long and winding road. Growth Horm IGF Res 2014; 24:221-226. [PMID: 25315226 DOI: 10.1016/j.ghir.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/08/2023]
Abstract
Despite the considerable body of evidence pointing to a possible relationship between the state of the adipose tissue depots and regulation of the somatotropic axis, to date the relationship between obesity and low growth hormone (GH) status remains incompletely understood. The low GH status in obesity is mainly considered as a functional condition, largely reversible after a sustained weight loss. Moreover, due to the effects of the adiposity on the regulation of the somatotropic axis, the application of GH stimulation tests in obesity may also lead to an incorrect diagnosis of GH deficieny (GHD). On the other hand, similar to patients with GHD unrelated to obesity, the reduced GH response to stimulation testing in obese individuals is associated with increased prevalence of cardiovascular risk factors and detrimental alterations of body composition, which contribute to worsening their cardio-metabolic risk profile. In addition, the reduced GH secretion may result in reduced serum insulin-like growth factor (IGF)-1 levels, and the concordance of low peak GH and low IGF-1 identifies a subset of obese individuals with high cardiovascular risk. Furthermore, after weight loss, the normalization of the GH response and IGF-1 levels may or may not occur, and in patients undergoing bariatric surgery the persistence of a low GH status may affect the post-operative outcomes. In this review, we will provide an overview on some clinically relevant aspects of the relationship between obesity axis and the somatotropic axis in the light of the recently published research.
Collapse
Affiliation(s)
- Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, Naples, Italy.
| | | | | | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, Naples, Italy
| |
Collapse
|