51
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
52
|
Zhang X, Bhatt RR, Todorov S, Gupta A. Brain-gut microbiome profile of neuroticism predicts food addiction in obesity: A transdiagnostic approach. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110768. [PMID: 37061021 PMCID: PMC10731989 DOI: 10.1016/j.pnpbp.2023.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Neuroticism is one of the most robust risk factors for addictive behaviors including food addiction (a key contributor to obesity), although the associated mechanisms are not well understood. A transdiagnostic approach was used to identify the neuroticism-related neuropsychological and gut metabolomic patterns associated with food addiction. Predictive modeling of neuroticism was implemented using multimodal features (23 clinical, 13,531 resting-state functional connectivity (rsFC), 336 gut metabolites) in 114 high body mass index (BMI ≥25 kg/m2) (cross-sectional) participants. Gradient boosting machine and logistic regression models were used to evaluate classification performance for food addiction. Neuroticism was significantly associated with food addiction (P < 0.001). Neuroticism-related features predicted food addiction with high performance (89% accuracy). Multimodal models performed better than single-modal models in predicting food addiction. Transdiagnostic alterations corresponded to rsFC involved in the emotion regulation, reward, and cognitive control and self-monitoring networks, and the metabolite 3-(4-hydroxyphenyl) propionate, as well as anxiety symptoms. Neuroticism moderated the relationship between BMI and food addiction. Neuroticism drives neuropsychological and gut microbial signatures implicated in dopamine synthesis and inflammation, anxiety, and food addiction. Such transdiagnostic models are essential in identifying mechanisms underlying food addiction in obesity, as it can help develop multiprong interventions to improve symptoms.
Collapse
Affiliation(s)
- Xiaobei Zhang
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, United States of America; David Geffen School of Medicine at UCLA, United States of America; University of California, Los Angeles, United States of America
| | - Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, United States of America
| | - Svetoslav Todorov
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, United States of America; David Geffen School of Medicine at UCLA, United States of America; Goodman-Luskin Microbiome Center at UCLA, United States of America; University of California, Los Angeles, United States of America.
| |
Collapse
|
53
|
Ahn JS, Choi YJ, Kim HB, Chung HJ, Hong ST. Identification of the Intestinal Microbes Associated with Locomotion. Int J Mol Sci 2023; 24:11392. [PMID: 37511151 PMCID: PMC10380270 DOI: 10.3390/ijms241411392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Given the impact of the gut microbiome on human physiology and aging, it is possible that the gut microbiome may affect locomotion in the same way as the host's own genes. There is not yet any direct evidence linking the gut microbiome to locomotion, though there are some potential connections, such as regular physical activity and the immune system. In this study, we demonstrate that the gut microbiome can contribute differently to locomotion. We remodeled the original gut microbiome of mice through fecal microbiota transplantation (FMT) using human feces and compared the changes in locomotion of the same mice before and three months after FMT. We found that FMT affected locomotion in three different ways: positive, none (the same), and negative. Analysis of the phylogenesis, α-diversities, and β-diversities of the gut microbiome in the three groups showed that a more diverse group of intestinal microbes was established after FMT in each of the three groups, indicating that the human gut microbiome is more diverse than that of mice. The FMT-remodeled gut microbiome in each group was also different from each other. Fold change and linear correlation analyses identified Lacrimispora indolis, Pseudoflavonifractor phocaeensis, and Alistipes senegalensis in the gut microbiome as positive contributors to locomotion, while Sphingobacterium cibi, Prevotellamassilia timonensis, Parasutterella excrementihominis, Faecalibaculum rodentium, and Muribaculum intestinale were found to have negative effects. This study not only confirms the presence of gut microbiomes that contribute differently to locomotion, but also explains the mixed results in research on the association between the gut microbiome and locomotion.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Han-Byeol Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
54
|
Hugon AM, Golos TG. Non-human primate models for understanding the impact of the microbiome on pregnancy and the female reproductive tract†. Biol Reprod 2023; 109:1-16. [PMID: 37040316 PMCID: PMC10344604 DOI: 10.1093/biolre/ioad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
The microbiome has been shown, or implicated to be involved, in multiple facets of human health and disease, including not only gastrointestinal health but also metabolism, immunity, and neurology. Although the predominant focus of microbiome research has been on the gut, other microbial communities such as the vaginal or cervical microbiome are likely involved in physiological homeostasis. Emerging studies also aim to understand the role of different microbial niches, such as the endometrial or placental microbial communities, on the physiology and pathophysiology of reproduction, including their impact on reproductive success and the etiology of adverse pregnancy outcomes (APOs). The study of the microbiome during pregnancy, specifically how changes in maternal microbial communities can lead to dysfunction and disease, can advance the understanding of reproductive health and the etiology of APOs. In this review, we will discuss the current state of non-human primate (NHP) reproductive microbiome research, highlight the progress with NHP models of reproduction, and the diagnostic potential of microbial alterations in a clinical setting to promote pregnancy health. NHP reproductive biology studies have the potential to expand the knowledge and understanding of female reproductive tract microbial communities and host-microbe or microbe-microbe interactions associated with reproductive health through sequencing and analysis. Furthermore, in this review, we aim to demonstrate that macaques are uniquely suited as high-fidelity models of human female reproductive pathology.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
55
|
Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G, Esposito C, Pascale A. The Brain-Gut-Microbiota Interplay in Depression: a key to design innovative therapeutic approaches. Pharmacol Res 2023; 192:106799. [PMID: 37211239 DOI: 10.1016/j.phrs.2023.106799] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy
| | - Beatrice Candiano
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Adelaide Carrara
- Child Neurology and Psychiatric Unit, IRCCS Mondino, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
56
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
57
|
Becerra CY, Wells RK, Kunihiro BP, Lee RH, Umeda L, Allan NP, Rubas NC, McCracken TA, Nunokawa CKL, Lee MH, Pidlaoan FGS, Phankitnirondorn K, Dye CK, Yamamoto BY, Peres R, Juarez R, Maunakea AK. Examining the immunoepigenetic-gut microbiome axis in the context of self-esteem among Native Hawaiians and other Pacific Islanders. Front Genet 2023; 14:1125217. [PMID: 37152987 PMCID: PMC10154580 DOI: 10.3389/fgene.2023.1125217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Native Hawaiian and other Pacific Islander (NHPI) populations experience higher rates of immunometabolic diseases compared to other racial-ethnic groups in Hawaii. As annual NHPI mortality rates for suicide and type 2 diabetes mellitus (T2DM) exceed those of the state as a whole, understanding the social and biological mechanisms underlying these disparities are urgently needed to enable preventive strategies. Methods: A community-based approach was used to investigate the immunoepigenetic-gut microbiome axis in an NHPI-enriched cohort of Oahu residents (N = 68). Self-esteem (SE) data was collected using a modified Rosenberg self-esteem (SE) assessment as a proxy measure for mental wellbeing in consideration for cultural competency. T2DM status was evaluated using point-of-care A1c (%) tests. Stool samples were collected for 16s-based metagenomic sequencing analyses. Plasma from blood samples were isolated by density-gradient centrifugation. Peripheral blood mononuclear cells (PBMCs) were collected from the same samples and enriched for monocytes using negative selection techniques. Flow-cytometry was used for immunoprofiling assays. Monocyte DNA was extracted for Illumina EPIC array-based methylation analysis. Results: Compared to individuals with normal SE (NSE), those with low SE (LSE) exhibited significantly higher plasma concentrations (pg/ml) of proinflammatory cytokines IL-8 (p = 0.051) and TNF-α (p = 0.011). Metagenomic analysis revealed that the relative abundance (%) of specific gut bacteria significantly differed between SE groups - some of which directly correlated with SE scores. Gene ontology analysis revealed that 104 significantly differentially methylated loci (DML) between SE groups were preferentially located at genes involved in immunometabolic processes. Horvath clock analyses indicated epigenetic age (Epi-Age) deceleration in individuals with LSE and acceleration in individuals with NSE (p = 0.042), yet was not reproduced by other clocks. Discussion: These data reveal novel differences in the immunoepigenetic-gut microbiome axis with respect to SE, warranting further investigation into its relationship to brain activity and mental health in NHPI. Unexpected results from Epi-Age analyses warrant further investigation into the relationship between biological age and disparate health outcomes among the NHPI population. The modifiable component of epigenetic processes and the gut microbiome makes this axis an attractive target for potential therapeutics, biomarker discovery, and novel prevention strategies.
Collapse
Affiliation(s)
- Celyna Y Becerra
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
- IDeA Networks of Biomedical Research Excellence (INBRE), University of Hawaii at Manoa, Honolulu, HI, United States
| | - Riley K Wells
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Braden P Kunihiro
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
- IDeA Networks of Biomedical Research Excellence (INBRE), University of Hawaii at Manoa, Honolulu, HI, United States
| | - Rosa H Lee
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Lesley Umeda
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Nina P Allan
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Noelle C Rubas
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Trevor A McCracken
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Chandler K L Nunokawa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Ming-Hao Lee
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Felix Gerard S Pidlaoan
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Krit Phankitnirondorn
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Christian K Dye
- Department of Environmental Health Sciences, Columbia University Irving Medical Center, NY, NY, United States
| | - Brennan Y Yamamoto
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Rafael Peres
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| | - Ruben Juarez
- Department of Economics, University of Hawaii at Manoa, Honolulu, HI, United States
- University of Hawaii Economic Research Organization (UHERO), University of Hawaii at Manoa, Honolulu, HI, United States
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI, United States
| |
Collapse
|
58
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
59
|
Butler MI, Bastiaanssen TFS, Long-Smith C, Morkl S, Berding K, Ritz NL, Strain C, Patangia D, Patel S, Stanton C, O'Mahony SM, Cryan JF, Clarke G, Dinan TG. The gut microbiome in social anxiety disorder: evidence of altered composition and function. Transl Psychiatry 2023; 13:95. [PMID: 36941248 PMCID: PMC10027687 DOI: 10.1038/s41398-023-02325-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 03/23/2023] Open
Abstract
The microbiome-gut-brain axis plays a role in anxiety, the stress response and social development, and is of growing interest in neuropsychiatric conditions. The gut microbiota shows compositional alterations in a variety of psychiatric disorders including depression, generalised anxiety disorder (GAD), autism spectrum disorder (ASD) and schizophrenia but studies investigating the gut microbiome in social anxiety disorder (SAD) are very limited. Using whole-genome shotgun analysis of 49 faecal samples (31 cases and 18 sex- and age-matched controls), we analysed compositional and functional differences in the gut microbiome of patients with SAD in comparison to healthy controls. Overall microbiota composition, as measured by beta-diversity, was found to be different between the SAD and control groups and several taxonomic differences were seen at a genus- and species-level. The relative abundance of the genera Anaeromassillibacillus and Gordonibacter were elevated in SAD, while Parasuterella was enriched in healthy controls. At a species-level, Anaeromassilibacillus sp An250 was found to be more abundant in SAD patients while Parasutterella excrementihominis was higher in controls. No differences were seen in alpha diversity. In relation to functional differences, the gut metabolic module 'aspartate degradation I' was elevated in SAD patients. In conclusion, the gut microbiome of patients with SAD differs in composition and function to that of healthy controls. Larger, longitudinal studies are warranted to validate these preliminary results and explore the clinical implications of these microbiome changes.
Collapse
Affiliation(s)
- Mary I Butler
- Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Sabrina Morkl
- Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Conall Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Programme, Moorepark, Fermoy, Co, Cork, T12 YN60, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Programme, Moorepark, Fermoy, Co, Cork, T12 YN60, Ireland
| | - Shriram Patel
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
60
|
Kazem YI, Mahmoud MH, Essa HA, Azmy O, Kandeel WA, Al-Moghazy M, El-Attar I, Hasheesh A, Mehanna NS. Role of Bifidobacterium spp. intake in improving depressive mood and well-being and its link to kynurenine blood level: an interventional study. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:223-232. [PMID: 34758244 DOI: 10.1515/jcim-2021-0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Evidence for the contribution of the brain-gut-microbiota axis to the depression pathophysiology is increasing nowadays. Disturbed gut microbiota equilibrium along with bad dietary habits both lead to kynurenine pathway abnormalities contributing to the depression pathophysiology. In this respect, many studies are found but the interventional clinical trials are limited. The present interventional study aims to evaluate the impact of Bifidobacterium spp. supplementation together with improving dietary intake on depressive mood and well-being and their correlation with kynurenine blood level in adult Egyptian healthy volunteers. METHODS A number of 98 healthy female volunteers with a mean age of 46.96 ± 1.82 years were selected and enrolled in this study. They were given yogurt enriched with Bifidobacterium spp. daily for eight weeks. Clinical examination as well as questionnaires for the evaluation of psychological well-being and depression were done at base line and after eight weeks of intervention. Fasting blood samples and stool samples were collected from all subjects at baseline and eight weeks after the intervention for the investigation of serum kynurenine concentration, blood hemoglobin, serum transaminases (ALT & AST) serum urea and creatinine as well as fecal Bifidobacterium count. RESULTS Data revealed that both depression and well-being showed highly significant improvement combined with significant drop in kynurenine blood level after intervention. Also, a significant rise in fecal Bifidobacterium count and a significant improvement in hemoglobin level and activity of liver enzymes were recorded. After intervention, a significant negative correlation was recorded between depression and fecal Bifidobacterium count as well as between serum kynurenine level, and well-being. CONCLUSION Bifidobacterium spp. supplementation combined with improvement in dietary intake resulted in improvement of depressive mood and well-being and reduced kynurenine blood level.
Collapse
Affiliation(s)
- Yusr I Kazem
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Maha H Mahmoud
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Hend A Essa
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Osama Azmy
- Reproductive Health & Family Planning Department, Medical Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | | | - Marwa Al-Moghazy
- Dairy Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | | | - Adel Hasheesh
- Children with Special Needs Department, Institute of Human Genetics and Genome Research, National Research Centre, Dokki, Cairo, Egypt
| | - Nayra S Mehanna
- Dairy Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
61
|
Galley JD, Mashburn-Warren L, Blalock LC, Lauber CL, Carroll JE, Ross KM, Hobel C, Coussons-Read M, Dunkel Schetter C, Gur TL. Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain Behav Immun 2023; 107:253-264. [PMID: 36240906 DOI: 10.1016/j.bbi.2022.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Uncovering mechanisms underlying fetal programming during pregnancy is of critical importance. Atypical neurodevelopment during the pre- and immediate postnatal period has been associated with long-term adverse health outcomes, including mood disorders and aberrant cognitive ability in offspring. Maternal factors that have been implicated in anomalous offspring development include maternal inflammation and tress, anxiety, and depression. One potential mechanism through which these factors perturb normal offspring postnatal development is through microbiome disruption. The mother is a primary source of early postnatal microbiome seeding for the offspring, and the transference of a healthy microbiome is key in normal neurodevelopment. Since psychological stress, mood disorders, and inflammation have all been implicated in altering maternal microbiome community structure, passing on aberrant microbial communities to the offspring that may then affect developmental outcomes. Therefore, we examined how maternal stress, anxiety and depression assessed with standardized instruments, and maternal inflammatory cytokine levels in the pre- and postnatal period are associated with the offspring microbiome within the first 13 months of life, utilizing full length 16S sequencing on infant stool samples, that allowed for species-level resolution. Results revealed that infants of mothers who reported higher anxiety and perceived stress had reduced alpha diversity. Additionally, the relative taxonomic quantitative abundances of Bifidobacterium dentium and other species that have been associated with either modulation of the gut-brain axis, or other beneficial health outcomes, were reduced in the offspring of mothers with higher anxiety, perceived stress, and depression. We also found associations between bifidobacteria and prenatal maternal pro-inflammatory cytokines IL-6, IL-8, and IL-10. In summary, specific microbial taxa involved in maintaining proper brain and immune function are lower in offspring born to mothers with anxiety, depression, or stress, providing strong evidence for a mechanism by which maternal factors may affect offspring health through microbiota dysregulation.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Lexie C Blalock
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian L Lauber
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kharah M Ross
- Center for Social Sciences, Athabasca University, Athabasca, Alberta, Canada
| | - Calvin Hobel
- Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Mary Coussons-Read
- Department of Psychology, The University of Colorado, Colorado Springs, CO, USA
| | | | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
62
|
Donati Zeppa S, Agostini D, Ferrini F, Gervasi M, Barbieri E, Bartolacci A, Piccoli G, Saltarelli R, Sestili P, Stocchi V. Interventions on Gut Microbiota for Healthy Aging. Cells 2022; 12:cells12010034. [PMID: 36611827 PMCID: PMC9818603 DOI: 10.3390/cells12010034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the improvement in health and social conditions has led to an increase in the average lifespan. Since aging is the most important risk factor for the majority of chronic human diseases, the development of therapies and intervention to stop, lessen or even reverse various age-related morbidities is an important target to ameliorate the quality of life of the elderly. The gut microbiota, that is, the complex ecosystem of microorganisms living in the gastrointestinal tract, plays an important role, not yet fully understood, in maintaining the host's health and homeostasis, influencing metabolic, oxidative and cognitive status; for this reason, it is also named "the forgotten endocrine organ" or "the second brain". On the other hand, the gut microbiota diversity and richness are affected by unmodifiable factors, such as aging and sex, and modifiable ones, such as diet, pharmacological therapies and lifestyle. In this review, we discuss the changes, mostly disadvantageous, for human health, induced by aging, in microbiota composition and the effects of dietary intervention, of supplementation with probiotics, prebiotics, synbiotics, psychobiotics and antioxidants and of physical exercise. The development of an integrated strategy to implement microbiota health will help in the goal of healthy aging.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Univerity San Raffaele, 00166 Rome, Italy
| |
Collapse
|
63
|
Fecal Microbiota Transplantation and Other Gut Microbiota Manipulation Strategies. Microorganisms 2022; 10:microorganisms10122424. [PMID: 36557677 PMCID: PMC9781458 DOI: 10.3390/microorganisms10122424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is composed of bacteria, archaea, phages, and protozoa. It is now well known that their mutual interactions and metabolism influence host organism pathophysiology. Over the years, there has been growing interest in the composition of the gut microbiota and intervention strategies in order to modulate it. Characterizing the gut microbial populations represents the first step to clarifying the impact on the health/illness equilibrium, and then developing potential tools suited for each clinical disorder. In this review, we discuss the current gut microbiota manipulation strategies available and their clinical applications in personalized medicine. Among them, FMT represents the most widely explored therapeutic tools as recent guidelines and standardization protocols, not only for intestinal disorders. On the other hand, the use of prebiotics and probiotics has evidence of encouraging findings on their safety, patient compliance, and inter-individual effectiveness. In recent years, avant-garde approaches have emerged, including engineered bacterial strains, phage therapy, and genome editing (CRISPR-Cas9), which require further investigation through clinical trials.
Collapse
|
64
|
Qi Y, Gu S, Zhang Y, Guo L, Xu M, Cheng X, Wang O, Sun Y, Chen J, Fang X, Liu X, Deng L, Fan G. MetaTrass: A high-quality metagenome assembler of the human gut microbiome by cobarcoding sequencing reads. IMETA 2022; 1:e46. [PMID: 38867906 PMCID: PMC10989976 DOI: 10.1002/imt2.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/14/2024]
Abstract
Metagenomic evidence of great genetic diversity within the nonconserved regions of the human gut microbial genomes appeals for new methods to elucidate the species-level variability at high resolution. However, current approaches cannot satisfy this methodologically challenge. In this study, we proposed an efficient binning-first-and-assembly-later strategy, named MetaTrass, to recover high-quality species-resolved genomes based on public reference genomes and the single-tube long fragment read (stLFR) technology, which enables cobarcoding. MetaTrass can generate genomes with longer contiguity, higher completeness, and lower contamination than those produced by conventional assembly-first-and-binning-later strategies. From a simulation study on a mock microbial community, MetaTrass showed the potential to improve the contiguity of assembly from kb to Mb without accuracy loss, as compared to other methods based on the next-generation sequencing technology. From four human fecal samples, MetaTrass successfully retrieved 178 high-quality genomes, whereas only 58 ones were provided by the optimal performance of other conventional strategies. Most importantly, these high-quality genomes confirmed the high level of genetic diversity among different samples and unveiled much more. MetaTrass was designed to work with metagenomic reads sequenced by stLFR technology, but is also applicable to other types of cobarcoding libraries. With the high capability of assembling high-quality genomes of metagenomic data sets, MetaTrass seeks to facilitate the study of spatial characters and dynamics of complex microbial communities at enhanced resolution. The open-source code of MetaTrass is available at https://github.com/BGI-Qingdao/MetaTrass.
Collapse
Affiliation(s)
- Yanwei Qi
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Shengqiang Gu
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | - Lidong Guo
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Mengyang Xu
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
- BGI‐ShenzhenBGI‐ShenzhenShenzhenChina
| | - Xiaofang Cheng
- BGI‐ShenzhenBGI‐ShenzhenShenzhenChina
- MGIBGI‐ShenzhenShenzhenChina
| | - Ou Wang
- BGI‐ShenzhenBGI‐ShenzhenShenzhenChina
- MGIBGI‐ShenzhenShenzhenChina
| | - Ying Sun
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
| | | | - Xiaodong Fang
- BGI‐ShenzhenBGI‐ShenzhenShenzhenChina
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Xin Liu
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Li Deng
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Guangyi Fan
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
- BGI‐ShenzhenBGI‐ShenzhenShenzhenChina
| |
Collapse
|
65
|
Johnson KVA, Watson KK, Dunbar RIM, Burnet PWJ. Sociability in a non-captive macaque population is associated with beneficial gut bacteria. Front Microbiol 2022; 13:1032495. [PMID: 36439813 PMCID: PMC9691693 DOI: 10.3389/fmicb.2022.1032495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The relationship between social behaviour and the microbiome is known to be reciprocal. Research in wild animal populations, particularly in primate social groups, has revealed the role that social interactions play in microbial transmission, whilst studies in laboratory animals have demonstrated that the gut microbiome can affect multiple aspects of behaviour, including social behaviour. Here we explore behavioural variation in a non-captive animal population with respect to the abundance of specific bacterial genera. Social behaviour based on grooming interactions is assessed in a population of rhesus macaques (Macaca mulatta), and combined with gut microbiome data. We focus our analyses on microbiome genera previously linked to sociability and autistic behaviours in rodents and humans. We show in this macaque population that some of these genera are also related to an individual's propensity to engage in social interactions. Interestingly, we find that several of the genera positively related to sociability, such as Faecalibacterium, are well known for their beneficial effects on health and their anti-inflammatory properties. In contrast, the genus Streptococcus, which includes pathogenic species, is more abundant in less sociable macaques. Our results indicate that microorganisms whose abundance varies with individual social behaviour also have functional links to host immune status. Overall, these findings highlight the connections between social behaviour, microbiome composition, and health in an animal population.
Collapse
Affiliation(s)
- Katerina V.-A. Johnson
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,*Correspondence: Katerina V.-A. Johnson,
| | - Karli K. Watson
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
66
|
Piancone E, Fosso B, Marzano M, De Robertis M, Notario E, Oranger A, Manzari C, Bruno S, Visci G, Defazio G, D’Erchia AM, Filomena E, Maio D, Minelli M, Vergallo I, Minelli M, Pesole G. Natural and after colon washing fecal samples: the two sides of the coin for investigating the human gut microbiome. Sci Rep 2022; 12:17909. [PMID: 36284112 PMCID: PMC9596478 DOI: 10.1038/s41598-022-20888-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/20/2022] [Indexed: 01/20/2023] Open
Abstract
To date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome. A cohort of 30 volunteers was recruited and paired F and CWF samples were collected from each subject. Alpha diversity analysis confirmed a slightly higher biodiversity of CWF compared to F matched samples. Likewise, beta diversity analysis proved that paired F and CWF microbiomes were quite similar in the same individual, but remarkable inter-individual variability occurred among the microbiomes of all participants. Taxonomic analysis in matched samples was carried out to investigate the intra and inter individual/s variability. Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota were the main phyla in both F and CWF samples. At genus level, Bacteirodetes was the most abundant in F and CWF samples, followed by Faecalibacterium, Blautia and Escherichia-Shigella. Our study highlights an inter-individual variability greater than intra-individual variability for paired F and CWF samples. Indeed, an overall higher similarity was observed across matched F and CWF samples, suggesting, as expected, a remarkable overlap between the microbiomes inferred using the matched F and CWF samples. Notably, absolute quantification of total 16S rDNA by droplet digital PCR (ddPCR) revealed comparable overall microbial load between paired F and CWF samples. We report here the first comparative study on fecal and colon washing fecal samples for investigating the human gut microbiome and show that both types of samples may be used equally for the study of the gut microbiome. The presented results suggest that the combined use of both types of sampling matrices could represent a suitable choice to obtain a more complete overview of the human gut microbiota for addressing different biological and clinical questions.
Collapse
Affiliation(s)
- Elisabetta Piancone
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Bruno Fosso
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Marinella Marzano
- grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Mariangela De Robertis
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Elisabetta Notario
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Annarita Oranger
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Caterina Manzari
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Silvia Bruno
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Grazia Visci
- grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Giuseppe Defazio
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Anna Maria D’Erchia
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.441025.60000 0004 1759 487XConsorzio Interuniversitario Biotecnologie, 34100 Trieste, Italy
| | - Ermes Filomena
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Dominga Maio
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Martina Minelli
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Ilaria Vergallo
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Mauro Minelli
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy ,Centro Direzionale Isola F2, Pegaso Online University, 80132 Naples, Italy
| | - Graziano Pesole
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy ,grid.441025.60000 0004 1759 487XConsorzio Interuniversitario Biotecnologie, 34100 Trieste, Italy
| |
Collapse
|
67
|
Ahmed E, Hens K. Microbiome in Precision Psychiatry: An Overview of the Ethical Challenges Regarding Microbiome Big Data and Microbiome-Based Interventions. AJOB Neurosci 2022; 13:270-286. [PMID: 34379050 DOI: 10.1080/21507740.2021.1958096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There has been a spurt in both fundamental and translational research that examines the underlying mechanisms of the human microbiome in psychiatric disorders. The personalized and dynamic features of the human microbiome suggest the potential of its manipulation for precision psychiatry in ways to improve mental health and avoid disease. However, findings in the field of microbiome also raise philosophical and ethical questions. From a philosophical point of view, they may yet be another attempt at providing a biological cause for phenomena that ultimately cannot be so easily localized. From an ethical point of view, it is relevant that the human gut microbiome comprises data on the individual's lifestyle, disease history, previous medications, and mental health. Massive datasets of microbiome sequences are collected to facilitate comparative studies to identify specific links between the microbiome and mental health. Although this emerging research domain may show promise for psychiatric patients, it is surrounded by ethical challenges regarding patient privacy, health risks, effects on personal identity, and concerns about responsibility. This narrative overview displays the roles and advances of microbiome research in psychiatry and discusses the philosophical and ethical implications of microbiome big data and microbiome-based interventions for psychiatric patients. We also investigate whether these issues are really "new," or "old wine in new bottles."
Collapse
Affiliation(s)
- Eman Ahmed
- University of Antwerp.,Suez Canal University
| | | |
Collapse
|
68
|
Abstract
The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
69
|
Juarez VM, Montalbine AN, Singh A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv Drug Deliv Rev 2022; 188:114400. [PMID: 35718251 PMCID: PMC10751508 DOI: 10.1016/j.addr.2022.114400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
New discoveries in drugs and drug delivery systems are focused on identifying and delivering a pharmacologically effective agent, potentially targeting a specific molecular component. However, current drug discovery and therapeutic delivery approaches do not necessarily exploit the complex regulatory network of an indispensable microbiota that has been engineered through evolutionary processes in humans or has been altered by environmental exposure or diseases. The human microbiome, in all its complexity, plays an integral role in the maintenance of host functions such as metabolism and immunity. However, dysregulation in this intricate ecosystem has been linked with a variety of diseases, ranging from inflammatory bowel disease to cancer. Therapeutics and bacteria have an undeniable effect on each other and understanding the interplay between microbes and drugs could lead to new therapies, or to changes in how existing drugs are delivered. In addition, targeting the human microbiome using engineered therapeutics has the potential to address global health challenges. Here, we present the challenges and cutting-edge developments in microbiome-immune cell interactions and outline novel targeting strategies to advance drug discovery and therapeutics, which are defining a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Valeria M Juarez
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alyssa N Montalbine
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ankur Singh
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
70
|
Delgadillo DR, Pressman SD, Christian LM, Galley JD, Bailey MT. Associations Between Gut Microbes and Social Behavior in Healthy 2-Year-Old Children. Psychosom Med 2022; 84:749-756. [PMID: 35797533 PMCID: PMC9437120 DOI: 10.1097/psy.0000000000001103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Emerging research has connected abundances of specific bacteria to differences in psychosocial behaviors in animals and adult humans. However, research assessing mind-microbiome associations in children is sparse with extant work primarily focused on populations with autism, making it unclear whether links are also present in typically developing children. The current study fills this gap by examining associations between prosocial-self-regulating temperaments (effortful control; EC) and the gut microbiome in typically developing children. METHODS Maternal ratings of temperament were assessed in 77 toddlers 18 to 27 months of age (46.7% female, mean age = 23.14 months). Next-generation pyrosequencing of the V1-V3 region of the 16S rRNA gene was used to classify children's gut microbial composition from fecal samples. EC included the following subcategories: cuddliness, attentional focusing, attentional shifting, inhibitory control, and low-intensity pleasure. RESULTS After adjusting for covariates, EC was positively associated with relative abundances of Akkermansia (Δ R2 = 0.117, b = 0.022, SE = 0.007, p = .002), with cuddliness (i.e., joy and ease of being held) driving the relation. Furthermore, attentional focusing was negatively associated with Alistipes (Δ R2 = 0.062, b = -0.011, SE = 0.005, p = .028). Permutational analysis of variance revealed no significant differences in community structure between high and low EC groups on the phylum level ( R2 = 0.00372, p = .745) or the genus level ( R2 = 0.01559, p = .276). CONCLUSIONS Findings suggest that certain microbes may be linked to prosocial behaviors used to regulate emotion in typically developing children. Further research is needed to test whether these observations replicate in larger samples.
Collapse
Affiliation(s)
| | - Sarah D. Pressman
- Department of Psychological Science, University of
California, Irvine, USA
| | | | - Jeffrey D. Galley
- Institute for Behavioral Medicine Research, The Ohio State
University, College of Medicine
| | - Michael T. Bailey
- Department of Psychiatry, The Ohio State University,
Columbus, USA
- Abigail Wexner Research Institute at Nationwide
Children’s Hospital, Columbus, USA
| |
Collapse
|
71
|
Pinacho-Guendulain B, Montiel-Castro AJ, Ramos-Fernández G, Pacheco-López G. Social complexity as a driving force of gut microbiota exchange among conspecific hosts in non-human primates. Front Integr Neurosci 2022; 16:876849. [PMID: 36110388 PMCID: PMC9468716 DOI: 10.3389/fnint.2022.876849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergent concept of the social microbiome implies a view of a highly connected biological world, in which microbial interchange across organisms may be influenced by social and ecological connections occurring at different levels of biological organization. We explore this idea reviewing evidence of whether increasing social complexity in primate societies is associated with both higher diversity and greater similarity in the composition of the gut microbiota. By proposing a series of predictions regarding such relationship, we evaluate the existence of a link between gut microbiota and primate social behavior. Overall, we find that enough empirical evidence already supports these predictions. Nonetheless, we conclude that studies with the necessary, sufficient, explicit, and available evidence are still scarce. Therefore, we reflect on the benefit of founding future analyses on the utility of social complexity as a theoretical framework.
Collapse
Affiliation(s)
- Braulio Pinacho-Guendulain
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Augusto Jacobo Montiel-Castro
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- *Correspondence: Augusto Jacobo Montiel-Castro,
| | - Gabriel Ramos-Fernández
- Institute for Research on Applied Mathematics and Systems (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- Gustavo Pacheco-López,
| |
Collapse
|
72
|
Bantun F, Singh R, Alkhanani MF, Almalki AH, Alshammary F, Khan S, Haque S, Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154789. [PMID: 35341865 DOI: 10.1016/j.scitotenv.2022.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Rapid growth of nanotechnology has accelerated immense possibility of engineered nanomaterials (ENMs) exposure by human and living organisms. In this context, wide range applications of graphene based nanomaterials (GBNMs) may inevitably cause their release into the environment. Consequently, potential risks to the ecological system and human health is consistently increasing due to the probable ingestion of GBNMs by mean of contaminated water or food sources. Further, gut microbiome is known to play a profound impact on the health status of human being and has been recognized as the most exciting advancement in the biomedical science. Recent studies has shown vital role of ENMs to alter gut microbiome and thereby changed pathological status of organisms. Therefore, in this review results of numerous studies dedicated to explore the impact of GBNMs on gut microbiome and thereby various pathological status have been summarized. Dietary exposure of different types of GBNMs [e.g. graphene, graphene oxide (GO), partially reduced graphene oxide (PRGO), graphene quantum dots (GQDs)] have been evaluated on the gut microbiome through numerous in vitro and in vivo models. Moreover, emphasis has been made to evaluate different physiological responses with the short/long-term exposure of GBNMs, particularly in gastrointestinal tract (GIT) and its correlation with gut microbiome and the health status. It is reviewed that exposure of GBNMs can exert significant impact which alter the composition, diversity and function of gut microbiome. This may further appear in terms of enteric disorder along with numerous pathological changes e.g. IEC (intestinal epithelial cells) colitis, lysosomal dysfunction, inflammation, shortened colon, resorbed embryo, retardation in skeletal development, low weight of fetus, early or late dead of fetus and IBD (inflammatory bowel disease) like symptoms. Finally, potential health risks due to the exposure of GBNMs have been discussed with future perspective.
Collapse
Affiliation(s)
- Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah - 24382, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India.
| | - Mustfa F Alkhanani
- Emergency Medical Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Bursa, Turkey
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
73
|
Johnson KVA, Steenbergen L. Do common antibiotic treatments influence emotional processing? Physiol Behav 2022; 255:113900. [PMID: 35810835 DOI: 10.1016/j.physbeh.2022.113900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Antibiotics are among the most commonly prescribed medications worldwide, yet research in recent years has revealed the detrimental effect they can have on the human microbiome, with implications for health. The community of microorganisms inhabiting the gut has been shown to regulate physiological and neural processes. Since studies in both humans and animal models have revealed that the gut microbiome can affect the brain, influencing emotion and cognition, here we investigate whether antibiotic treatment is associated with changes in emotional processing and mood with a between-subject design in 105 young healthy adult volunteers, using both psychological tests and questionnaires. As both the immune system and vagal signalling can mediate the microbiome-gut-brain axis, we also assess whether there is any evidence of such changes in participant physiology. We find that individuals who have taken antibiotics in the past three months show a stronger emotional bias towards sadness and at a physiological level they have a higher heart rate (though this does not mediate the relationship with negative bias). While we cannot rule out a possible role of prior infection, our findings are in any case highly relevant in light of research revealing that antibiotics are linked to increased susceptibility to depression and anxiety. Our results also have implications for listing antibiotic use as an exclusion criterion in studies on emotional processing and psychophysiology.
Collapse
Affiliation(s)
- Katerina V-A Johnson
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden, 2333 AK, The Netherlands.
| | - Laura Steenbergen
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden, 2333 AK, The Netherlands
| |
Collapse
|
74
|
Hashikawa-Hobara N, Otsuka A, Okujima C, Hashikawa N. Lactobacillus paragasseri OLL2809 Improves Depression-Like Behavior and Increases Beneficial Gut Microbes in Mice. Front Neurosci 2022; 16:918953. [PMID: 35837127 PMCID: PMC9274989 DOI: 10.3389/fnins.2022.918953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Lactobacillus paragasseri OLL2809 is a probiotic bacterial strain isolated from healthy human feces. While OLL2809 has been studied for its immunomodulatory activities, its effect on depressive-like behaviors remains unclear. In this study, we used a mouse model of social defeat stress (SDS) to investigate whether oral administration of OLL2809 ameliorates depressive-like behavior. C57BL6 male mice were administered OLL2809 for 2 weeks following a 4-week period of SDS. Although OLL2809 did not affect serum corticosterone levels, it ameliorated depression-like behaviors, and it induced neurite outgrowth in the hippocampal dentate gyrus. The 16S rRNA amplicon sequence analyses revealed that family level gut microbiota composition was affected by stress and OLL2809 administration. Additionally, Akkermansia muciniphila, Bifidobacterium, and Lactobacillus were significantly increased by OLL2809 treatment. LEfSe analysis suggested that the antidepressive effect of OLL2809 may be mediated by increases in other microorganisms, such as Erysipelotrichaceae uncultured. Our findings suggest that L. paragasseri OLL2809 may have potential in microbiome therapeutics.
Collapse
|
75
|
Doroftei B, Ilie OD, Diaconu R, Hutanu D, Stoian I, Ilea C. An Updated Narrative Mini-Review on the Microbiota Changes in Antenatal and Post-Partum Depression. Diagnostics (Basel) 2022; 12:diagnostics12071576. [PMID: 35885482 PMCID: PMC9315700 DOI: 10.3390/diagnostics12071576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Antenatal depression (AND) and post-partum depression (PPD) are long-term debilitating psychiatric disorders that significantly influence the composition of the gut flora of mothers and infants that starts from the intrauterine life. Not only does bacterial ratio shift impact the immune system, but it also increases the risk of potentially life-threatening disorders. Material and Methods: Therefore, we conducted a narrative mini-review aiming to gather all evidence published between 2018–2022 regarding microflora changes in all three stages of pregnancy. Results: We initially identified 47 potentially eligible studies, from which only 7 strictly report translocations; 3 were conducted on rodent models and 4 on human patients. The remaining studies were divided based on their topic, precisely focused on how probiotics, breastfeeding, diet, antidepressants, exogenous stressors, and plant-derived compounds modulate in a bidirectional way upon behavior and microbiota. Almost imperatively, dysbacteriosis cause cognitive impairments, reflected by abnormal temperament and personality traits that last up until 2 years old. Thankfully, a distinct technique that involves fecal matter transfer between individuals has been perfected over the years and was successfully translated into clinical practice. It proved to be a reliable approach in diminishing functional non- and gastrointestinal deficiencies, but a clear link between depressive women’s gastrointestinal/vaginal microbiota and clinical outcomes following reproductive procedures is yet to be established. Another gut-dysbiosis-driving factor is antibiotics, known for their potential to trigger inflammation. Fortunately, the studies conducted on mice that lack microbiota offer, without a shadow of a doubt, insight. Conclusions: It can be concluded that the microbiota is a powerful organ, and its optimum functionality is crucial, likely being the missing puzzle piece in the etiopathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence:
| | - Roxana Diaconu
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Pârvan Avenue, No. 4, 300115 Timisoara, Romania;
| | - Irina Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
| |
Collapse
|
76
|
Xiang M, Zheng L, Pu D, Lin F, Ma X, Ye H, Pu D, Zhang Y, Wang D, Wang X, Zou K, Chen L, Zhang Y, Sun Z, Zhang T, Wu G. Intestinal Microbes in Patients With Schizophrenia Undergoing Short-Term Treatment: Core Species Identification Based on Co-Occurrence Networks and Regression Analysis. Front Microbiol 2022; 13:909729. [PMID: 35783418 PMCID: PMC9247572 DOI: 10.3389/fmicb.2022.909729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia, a common mental disorder, has a tremendous impact on the health and economy of people worldwide. Evidence suggests that the microbial-gut-brain axis is an important pathway for the interaction between the gut microbiome and the development of schizophrenia. What is not clear is how changes in the gut microbiota composition and structure during antipsychotic treatment improve the symptoms of schizophrenia. In this study, 25 patients with schizophrenia were recruited. Their fecal samples were collected before and after hospital treatment for 14–19 days. The composition and structure of the intestinal microbiota were evaluated by 16S rRNA sequencing analysis, and the results showed significant differences in fecal microbiota before and after treatment. Firmicutes (relative abundances of 82.60 and 86.64%) and Gemminger (relative abundances of 14.17 and 13.57%) were the first dominant species at the phylum and genus levels, respectively. The random forest algorithm and co-occurrence network analysis demonstrated that intestinal flora (especially the core species ASV57) could be used as biomarkers to distinguish different clinical states and match treatment regimens accordingly. In addition, after fecal microbiota transplantation, antibiotic-treated recipient mice showed multiple behavioral improvements. These included decreased psychomotor hyperactivity, increased social interaction, and memory. In conclusion, this study suggests that differences in the composition and structure of gut microbiota after treatment are associated with the development and severity of schizophrenia. Results may provide a potential target for the treatment of this disorder.
Collapse
Affiliation(s)
- Min Xiang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Liqin Zheng
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Daoshen Pu
- The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Feng Lin
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaodong Ma
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Huiqian Ye
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Daoqiong Pu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Ying Zhang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Dong Wang
- Psychiatry Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaoli Wang
- Internal Medicine, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Kaiqing Zou
- The Outpatient Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Linqi Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanjiang Sun
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- Tao Zhang
| | - Guolin Wu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
- *Correspondence: Guolin Wu
| |
Collapse
|
77
|
Johnson KVA, Steenbergen L. Gut feelings: vagal stimulation reduces emotional biases. Neuroscience 2022; 494:119-131. [PMID: 35550161 DOI: 10.1016/j.neuroscience.2022.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
The vagus nerve is a key physical constituent of the gut-brain axis. Increasing attention has recently been paid to the role that the gut, and the microorganisms inhabiting it, play in emotion and cognition. Animal studies have revealed the importance of the vagus nerve in mediating communication between the gut microbiome and the central nervous system, resulting in changes in emotional behaviour. This has renewed interest in understanding the role of vagal signalling in human emotion, particularly since human studies have also shown that alterations in gut microbiome composition can affect emotion. While stimulating the vagus nerve can help treat some cases of severe depression, here we investigate whether vagal afferent signalling can influence emotional processing in healthy subjects. We use the dot-probe task to determine the effect of transcutaneous vagus nerve stimulation on attentional biases towards emotional stimuli in 42 volunteers. Participants received both active and sham treatments using a within-subject design. We show that transcutaneous vagus nerve stimulation reduces the emotional bias towards faces expressing sadness and happiness, indicating a decrease in emotional reactivity. While our novel findings reveal the effect that vagal signalling can have on emotional biases in healthy subjects, future studies should seek to develop our understanding of the ways in which the microbiome interacts with, and stimulates, the vagus nerve. Since we find a reduction in emotional bias, most notably towards sadness, this may partly account for the effective use of vagus nerve stimulation in treatment-resistant depression. While its clinical application currently involves surgical stimulation, our results support the potential benefit of transcutaneous vagus nerve stimulation as a non-invasive, intermittent adjunctive therapy for patients with depression given its frequent association with emotional biases.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden 2333 AK, The Netherlands.
| | - Laura Steenbergen
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden 2333 AK, The Netherlands
| |
Collapse
|
78
|
Trischler R, Roth J, Sorbara MT, Schlegel X, Müller V. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond. Environ Microbiol 2022; 24:3111-3123. [PMID: 35466558 DOI: 10.1111/1462-2920.16029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Species of the genus Blautia are typical inhabitants of the human gut and considered as beneficial gut microbes. However, their role in the gut microbiome and their metabolic features are poorly understood. Blautia schinkii was described as an acetogenic bacterium, characterized by a functional Wood-Ljungdahl pathway (WLP) of acetogenesis from H2 + CO2 . Here we report that two relatives, Blautia luti and Blautia wexlerae do not grow on H2 + CO2 . Inspection of the genome sequence revealed all genes of the WLP except genes encoding a formate dehydrogenase and an electron-bifurcating hydrogenase. Enzyme assays confirmed this prediction. Accordingly, resting cells neither converted H2 + CO2 nor H2 + HCOOH + CO2 to acetate. Carbon monoxide is an intermediate of the WLP and substrate for many acetogens. B. luti and B. wexlerae had an active CO dehydrogenase and resting cells performed acetogenesis from HCOOH + CO2 + CO, demonstrating a functional WLP. Bioinformatic analyses revealed that many Blautia strains as well as other gut acetogens lack formate dehydrogenases and hydrogenases. Thus, the use of formate instead of H2 + CO2 as an interspecies hydrogen and electron carrier seems to be more common in the gut microbiome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Jennifer Roth
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Matthew T Sorbara
- Department Molecular and Cellular Biology, University of Guelph, Ontario, N1G 2W1, Canada
| | - Xenia Schlegel
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| |
Collapse
|
79
|
Zorgetto-Pinheiro VA, Machate DJ, Figueiredo PS, Marcelino G, Hiane PA, Pott A, Guimarães RDCA, Bogo D. Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. J Med Food 2022; 25:341-354. [PMID: 35438557 DOI: 10.1089/jmf.2021.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this article was to review experimental and clinical studies regarding the use of omega-3 fatty acids on the prevention and control of chronic inflammatory diseases with autoimmune background through the gut microbiota modulation. For this, natural omega-3 sources are presented emphasizing the importance of a healthy diet for the body's homeostasis and the enzymatic processes that these fatty acids go through once inside the body. The pathogenesis of ulcerative colitis and rheumatoid arthritis are revisited under the light of the gut microbiota dysbiosis approach and how those fatty acids are able to prevent and control these two pathological conditions that are responsible for the global chronic burden and functional disability and life-threatening comorbidities if not treated properly. As a matter of reflection, as we are living a pandemic crisis owing to COVID-19 infection, we present the potential of omega-3 in preventing a poor prognosis once they contribute to balancing the immune system modulation the inflammatory process.
Collapse
Affiliation(s)
- Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - David Johane Machate
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Graduate Program in Science of Materials, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
80
|
Chuang JY. Stressor-Specific Microbiota Intervention. Front Nutr 2022; 9:870665. [PMID: 35520283 PMCID: PMC9063858 DOI: 10.3389/fnut.2022.870665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
To date, mental disorders are diagnosed and treated by the subjective judgment of psychiatrists based on diagnostic criteria and treatment guidelines, respectively. Mental disorders are heterogeneous illnesses with a substantial treatment-refractory rate. Thus, there is a great need for novel treatment approaches. This article proposes a treatment approach centered on the concept of the gut–brain axis. There is mounting evidence indicating an association between stressors, microbiota, microglia, and mental disorders. Stressors might facilitate dysbiosis, inflammation, and the occurrence of mental disorders. This novel treatment approach is based on the idea that stressor types instead of the heterogeneous psychiatric diagnosis might be closer to the neurobiological underpinnings of mental disorders. First of all, patients with treatment-resistant mental disorders will be asked to describe their major stressors. Then, clinicians will calculate the total threat score and the total deprivation score. Subsequently, treatment tailored to the major stressor type will be administered to restore a healthy gut microbiome. Presumably, treatment will be aimed at increasing microbiota diversity in those who mainly have deprivation stressors and boosting Actinobacteria in those who have mainly threat stressors. Large-scale clinical trials are warranted to test this hypothetical approach.
Collapse
Affiliation(s)
- Jie-Yu Chuang
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- *Correspondence: Jie-Yu Chuang
| |
Collapse
|
81
|
Chenhuichen C, Cabello-Olmo M, Barajas M, Izquierdo M, Ramírez-Vélez R, Zambom-Ferraresi F, Martínez-Velilla N. Impact of probiotics and prebiotics in the modulation of the major events of the aging process: A systematic review of randomized controlled trials. Exp Gerontol 2022; 164:111809. [DOI: 10.1016/j.exger.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
82
|
Sumich A, Heym N, Lenzoni S, Hunter K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
83
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
84
|
Sepp E, Smidt I, Rööp T, Štšepetova J, Kõljalg S, Mikelsaar M, Soidla I, Ainsaar M, Kolk H, Vallas M, Jaagura M, Mändar R. Comparative Analysis of Gut Microbiota in Centenarians and Young People: Impact of Eating Habits and Childhood Living Environment. Front Cell Infect Microbiol 2022; 12:851404. [PMID: 35372105 PMCID: PMC8965453 DOI: 10.3389/fcimb.2022.851404] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022] Open
Abstract
The composition of centenarians’ gut microbiota has consistently been used as a model for healthy aging studies. However, there is an incomplete understanding of how childhood living conditions and eating habits affect the development and composition of gastrointestinal microbiota in centenarians with good cognitive functions. We compared the gut microbiota as well as the living and eating habits of the oldest-old group and the young people group. The richness and diversity of microbiota and the abundance of hereditary and environmental microbes were higher in people with longevity than young people. People with longevity ate more potatoes and cereal products. In their childhood, they had more exposure to farm animals and did not have sewers compared with young people. Young people’s gut microbiota contained more butyrate-producing bacteria and bacteria that characterized an animal-based Western diet. These results expand our understanding of the effects of childhood environment and diet on the development and stability of the microbiota in people with longevity.
Collapse
Affiliation(s)
- Epp Sepp
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
- *Correspondence: Epp Sepp, ; Reet Mändar,
| | - Imbi Smidt
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Tiiu Rööp
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Jelena Štšepetova
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Siiri Kõljalg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Marika Mikelsaar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Indrek Soidla
- Institute of Social Studies, Faculty of Social Sciences, University of Tartu, Tartu, Estonia
| | - Mare Ainsaar
- Institute of Social Studies, Faculty of Social Sciences, University of Tartu, Tartu, Estonia
| | - Helgi Kolk
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Traumatology, Tartu University Hospital, Tartu, Estonia
| | | | - Madis Jaagura
- Center of Food and Fermentation Technologies, Tallinn, Estonia
| | - Reet Mändar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
- *Correspondence: Epp Sepp, ; Reet Mändar,
| |
Collapse
|
85
|
Kelly TR, Vinson AE, King GM, Lattin CR. No guts about it: captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows ( Passer domesticus). Integr Org Biol 2022; 4:obac010. [PMID: 35505795 PMCID: PMC9053947 DOI: 10.1093/iob/obac010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Behavioral traits such as anxiety and depression have been linked to diversity of the gut microbiome in humans, domesticated animals, and lab-bred model species, but the extent to which this link exists in wild animals, and thus its ecological relevance, is poorly understood. We examined the relationship between a behavioral trait (neophobia) and the cloacal microbiome in wild house sparrows (Passer domesticus,n = 22) to determine whether gut microbial diversity is related to personality in a wild animal. We swabbed the cloaca immediately upon capture, assessed neophobia phenotypes in the lab, and then swabbed the cloaca again after several weeks in captivity to additionally test whether the microbiome of different personality types is affected disparately by captivity, and characterized gut microbiomes using 16S rRNA gene amplicon sequencing. We did not detect differences in cloacal alpha or beta microbial diversity between neophobic and non-neophobic house sparrows, and diversity for both phenotypes was negatively impacted by captivity. Although our results suggest that the adult cloacal microbiome and neophobia are not strongly linked in wild sparrows, we did detect specific OTUs that appeared more frequently and at higher abundances in neophobic sparrows, suggesting that links between the gut microbiome and behavior may occur at the level of specific taxa. Further investigations of personality and the gut microbiome are needed in more wild species to reveal how the microbiome-gut-brain axis and behavior interact in an ecological context.
Collapse
Affiliation(s)
- T R Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - A E Vinson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - G M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - C R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
86
|
Isles NS, Mu A, Kwong JC, Howden BP, Stinear TP. Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends Microbiol 2022; 30:853-865. [DOI: 10.1016/j.tim.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
87
|
Abstract
Oscillospira is a class of organism that often appears in high-throughput sequencing data but has not been purely cultured and is widely present in the animal and human intestines. There is a strong association between variation in Oscillospira abundance and obesity, leanness, and human health. In addition, a growing body of studies has shown that Oscillospira is also implicated in other diseases, such as gallstones and chronic constipation, and has shown some correlation with the positive or negative changes in its course. Sequencing data combined with metabolic profiling indicate that Oscillospira is likely to be a genus capable of producing short-chain fatty acids (SCFAs) such as butyrate, which is an important reference indicator for screening "next-generation probiotics ". Considering the positive effects of Oscillospira in some specific diseases, such as obesity-related metabolic diseases, it has already been characterized as one of the next-generation probiotic candidates and therefore has great potential for development and application in the future food, health care, and biopharmaceutical products.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,CONTACT Jingpeng Yang
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,He Huang School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| |
Collapse
|
88
|
Cao X, Dong A, Kang G, Wang X, Duan L, Hou H, Zhao T, Wu S, Liu X, Huang H, Wu R. Modeling spatial interaction networks of the gut microbiota. Gut Microbes 2022; 14:2106103. [PMID: 35921525 PMCID: PMC9351588 DOI: 10.1080/19490976.2022.2106103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
How the gut microbiota is organized across space is postulated to influence microbial succession and its mutualistic relationships with the host. The lack of dynamic or perturbed abundance data poses considerable challenges for characterizing the spatial pattern of microbial interactions. We integrate allometric scaling theory, evolutionary game theory, and prey-predator theory into a unified framework under which quasi-dynamic microbial networks can be inferred from static abundance data. We illustrate that such networks can capture the full properties of microbial interactions, including causality, the sign of the causality, strength, and feedback loop, and are dynamically adaptive along spatial gradients, and context-specific, characterizing variability between individuals and within the same individual across time and space. We design and conduct a gut microbiota study to validate the model, characterizing key spatial determinants of the microbial differences between ulcerative colitis and healthy controls. Our model provides a sophisticated means of unraveling a complete atlas of how microbial interactions vary across space and quantifying causal relationships between such spatial variability and change in health state.
Collapse
Affiliation(s)
- Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Liyun Duan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Huixing Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shuang Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - He Huang
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Rongling Wu
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
89
|
Sharma V, Malla MA, Kori RK, Yadav RS, Azam Z. Applications of Metagenomics for Unrevealing the Extended Horizons of Microbiota Prevalence from Soil to Human Health. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phylogenetic analysis of different ecosystems has shown that the number of microbial communities in a single sample exceeds their cultured counterparts. Microbes have been found throughout nature and can thrive in adverse conditions. Besides inhabiting diverse environments, they also play a key role in the maintenance of the ecosystem. Most of these microbes are either unculturable or difficult to culture with conventional culturing methods. Metagenomics is an emerging field of science that has been in the light for a decade and offers a potential way to assess microbial diversity. The development of metagenomics opens new ways to study genetic material directly from the environmental samples. DNA sequencing and synthesis technologies are making it possible to read and write entire genomes. The huge amount of data obtained from genome sequencing inevitably requires bioinformatics tools to handle and further process them for analysis. Advances in DNA sequencing and high-performance computing have brought about exemplar improvement in metagenomics, allowing in-depth study of the largely unexplored frontier of microbial life. This culture-independent method provides extensive information regarding the structure, composition, and function of the diverse assemblages of the environmental microbes. The current review presents an overview of the technical aspects of metagenomics along with its diverse applications.
Collapse
|
90
|
Diallo D, Somboro AM, Diabate S, Baya B, Kone A, Sarro YS, Kone B, Diarra B, Diallo S, Diakite M, Doumbia S, Toloba Y, Murphy RL, Maiga M. Antituberculosis Therapy and Gut Microbiota: Review of Potential Host Microbiota Directed-Therapies. Front Cell Infect Microbiol 2021; 11:673100. [PMID: 34950603 PMCID: PMC8688706 DOI: 10.3389/fcimb.2021.673100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a major public health concern with millions of deaths every year. The overlap with HIV infections, long treatment duration, and the emergence of drug resistance are significant obstacles to the control of the disease. Indeed, the standard first-line regimen TB treatment takes at least six months and even longer for the second-line therapy, resulting in relapses, drug resistance and re-infections. Many recent reports have also shown prolonged and significant damage of the gut microbial community (dysbiosis) from anti-TB drugs that can detrimentally persist several months after the cessation of treatment and could lead to the impairment of the immune response, and thus re-infections and drug resistance. A proposed strategy for shortening the treatment duration is thus to apply corrective measures to the dysbiosis for a faster bacterial clearance and a better treatment outcome. In this review, we will study the role of the gut microbiota in both TB infection and treatment, and its potential link with treatment duration. We will also discuss, the new concept of "Host Microbiota Directed-Therapies (HMDT)" as a potential adjunctive strategy to improve the treatment effectiveness, reduce its duration and or prevent relapses. These strategies include the use of probiotics, prebiotics, gut microbiota transfer, and other strategies. Application of this innovative solution could lead to HMDT as an adjunctive tool to shorten TB treatment, which will have enormous public health impacts for the End TB Strategy worldwide.
Collapse
Affiliation(s)
- Dramane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Seydou Diabate
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bacar Baya
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Amadou Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yeya S Sarro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bourahima Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mahamadou Diakite
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seydou Doumbia
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yacouba Toloba
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Mamoudou Maiga
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
91
|
Host Factors Affect the Gut Microbiome More Significantly than Diet Shift. Microorganisms 2021; 9:microorganisms9122520. [PMID: 34946120 PMCID: PMC8707884 DOI: 10.3390/microorganisms9122520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023] Open
Abstract
The determining factors of the composition of the gut microbiome are one of the main interests in current science. In this work, we compared the effect of diet shift (DS) from heavily relying on meatatarian diets to vegetarian diets and physical exercise (EX) on the composition of the gut microbiome after 3 months. Although both DS and EX affected the composition of the gut microbiome, the patterns of alteration were different. The α-diversity analyzed by InvSimpson, Shannon, Simpson, and Evenness showed that both EX and DS affected the microbiome, causing it to become more diverse, but EX affected the gut microbiome more significantly than DS. The β-diversity analyses indicated that EX and DS modified the gut microbiome in two different directions. Co-occurrence network analysis confirmed that both EX and DS modified the gut microbiome in different directions, although EX modified the gut microbiome more significantly. Most notably, the abundance of Dialister succinatiphilus was upregulated by EX, and the abundances of Bacteroides fragilis, Phascolarctobacterium faecium, and Megasphaera elsdenii were downregulated by both EX and DS. Overall, EX modulated the composition of the gut microbiome more significantly than DS, meaning that host factors are more important in determining the gut microbiome than diets. This work also provides a new theoretical basis for why physical exercise is more health-beneficial than vegetarian diets.
Collapse
|
92
|
Park E, Yun KE, Kim MH, Kim J, Chang Y, Ryu S, Kim HL, Kim HN, Jung SC. Correlation between Gut Microbiota and Six Facets of Neuroticism in Korean Adults. J Pers Med 2021; 11:1246. [PMID: 34945718 PMCID: PMC8704006 DOI: 10.3390/jpm11121246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
A person high in neuroticism is more likely to experience anxiety, stress, worry, fear, anger, and depression. Previous studies have shown that the gut microbiota can influence personality and mental disorders, including stress, anxiety, and depression, through the gut-brain axis. Here, we investigated the correlations between the sub-facet of neuroticism and gut microbiota using the Revised NEO Personality Inventory and the 16S rRNA gene sequencing data 784 adults. We found that the high anxiety and vulnerability group showed significantly lower richness in microbial diversity than a group with low anxiety and vulnerability. In beta diversity, there was a significant difference between the low and high groups of anxiety, self-consciousness, impulsiveness, and vulnerability. In taxonomic compositions, Haemophilus belonging to Gammaproteobacteria was correlated with the Neuroticism domain as well as N1 anxiety and N6 vulnerability facets. The high N1 anxiety and N6 vulnerability group was correlated with a low abundance of Christensenellaceae belonging to Firmicutes Clostridia. High N4 self-consciousness was correlated with a low abundance of Alistipes and Sudoligranulum. N5 impulsiveness was correlated with a low abundance of Oscillospirales. Our findings will contribute to uncovering the potential link between the gut microbiota and neuroticism, and the elucidation of the correlations of the microbiome-gut-brain axis with behavioral changes and psychiatric cases in the general population.
Collapse
Affiliation(s)
- Eunkyo Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.P.); (H.-L.K.)
| | - Kyung Eun Yun
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 04514, Korea; (K.E.Y.); (M.-H.K.); (J.K.); (Y.C.); (S.R.)
| | - Mi-Hyun Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 04514, Korea; (K.E.Y.); (M.-H.K.); (J.K.); (Y.C.); (S.R.)
| | - Jimin Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 04514, Korea; (K.E.Y.); (M.-H.K.); (J.K.); (Y.C.); (S.R.)
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 04514, Korea; (K.E.Y.); (M.-H.K.); (J.K.); (Y.C.); (S.R.)
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 04514, Korea; (K.E.Y.); (M.-H.K.); (J.K.); (Y.C.); (S.R.)
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.P.); (H.-L.K.)
| | - Han-Na Kim
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Medical Research Institute, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.P.); (H.-L.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
93
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
94
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
95
|
Gut microbiome diversity mediates the association between right dorsolateral prefrontal cortex and anxiety level. Brain Imaging Behav 2021; 16:397-405. [PMID: 34554317 DOI: 10.1007/s11682-021-00513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
Despite the fast growing interest in the impact of microbiome-gut-brain interaction on regulating emotional behavior in animals, the underlying mechanisms on how brain anatomy together with gut microbiotic condition jointly influence emotional state in healthy human volunteers remain largely unknown and hypothetic. Here, high-resolution structural magnetic resonance imaging data, stool samples, and psychological assessment results on anxiety level were collected from 61 healthy adults. Voxel-based morphometry was used to assess gray matter (GM) volumes, whereas 16s rRNA gene sequencing was used for bacterial classification. Correlation and mediation analysis were conducted to quantify the relationships among regional GM volume, gut microbiome diversity, and anxiety level. We observed that anxiety level was negatively correlated with GM volume in the right dorsolateral prefrontal cortex and alpha diversity index of gut microbiome. Additional mediation analysis revealed the indirect effect of dorsolateral prefrontal cortex GM volume on anxiety level via gut microbiome diversity. Our findings provide potential evidence of the microbiome-gut-brain interactions and their association with anxiety, highlighting gut microbiome diversity as a mediator that influences the relationship between brain morphometry and anxiety level.
Collapse
|
96
|
Zhang J, Liu K, Sun L, Yang L, Liu X, Zhu Y, Wei R, Jin Z, Wang L, Ma Y, Wang S, Liu A, Tao F. Exposure to antibiotics and mental disorders in children: a community-based cross-sectional study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3237-3253. [PMID: 33547614 DOI: 10.1007/s10653-021-00840-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Although exposure to antibiotics at a critical developmental time window has been implicated in mental health in observational and experimental studies, very limited bio-monitoring data are available for exposure to antibiotics associated with child mental disorders. The goal of our study was to examine the association between urinary exposure of children to antibiotics and mental health. The participants were 278 children from 256 eligible families in the urban-rural fringe of Fuyang city in China since June in 2017. A single-point urine sample was collected to measure the antibiotic concentrations to characterize the exposure levels. A total of 45 antibiotics from nine classes and their two metabolites were monitored through liquid chromatography electrospray tandem mass spectrometry. We used multivariable regressions to estimate the covariate-adjusted associations between urine-antibiotic concentrations and mental impairments, as assessed using the parent version of Strengths and Difficulties Questionnaire. Among the participants, ciprofloxacin was associated with an increased risk of mental disorders at both lower concentrations (OR = 4.06; 95% CI 1.69-9.78) and higher concentrations OR = 6.04; 95% CI 2.59-14.08). After categorizing the detected antibiotics, the positive associations were observed between abnormal score in total difficulties and higher levels exposure to fluoroquinolones (OR = 2.83, 95% CI 1.38-5.80) and antibiotics preferred for veterinary use (PVAs) (OR = 3.20; 95% CI 1.41-7.27), respectively. Our findings suggest that ciprofloxacin, fluoroquinolones and PVAs, probably from contaminated food or environment, may be associated with child mental disorders.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Anhui, 230032, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Anhui, 230032, China.
| | - Liang Sun
- Fuyang Center of Disease Control and Prevention, Fuyang, 236000, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinji Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yitian Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rong Wei
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhongxiu Jin
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li Wang
- School of Health Management, Anhui Medical University, Hefei, 230032, China
| | - Ying Ma
- School of Health Management, Anhui Medical University, Hefei, 230032, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Annuo Liu
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Anhui, 230032, China
| |
Collapse
|
97
|
Rhouma M, Braley C, Thériault W, Thibodeau A, Quessy S, Fravalo P. Evolution of Pig Fecal Microbiota Composition and Diversity in Response to Enterotoxigenic Escherichia coli Infection and Colistin Treatment in Weaned Piglets. Microorganisms 2021; 9:1459. [PMID: 34361896 PMCID: PMC8306681 DOI: 10.3390/microorganisms9071459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
The intestinal microbiota plays several important roles in pig health and growth. The aim of the current study was to characterize the changes in the fecal microbiota diversity and composition of weaned piglets following an oral challenge with an ETEC: F4 strain and/or a treatment with colistin sulfate (CS). Twenty-eight piglets were used in this experiment and were divided into four groups: challenged untreated, challenged treated, unchallenged treated, and unchallenged untreated. Rectal swab samples were collected at five sampling times throughout the study. Total genomic DNA was used to assess the fecal microbiota diversity and composition using the V4 region of the 16S rRNA gene. The relative abundance, the composition, and the community structure of piglet fecal microbiota was highly affected by the ETEC: F4 challenge throughout the experiment, while the oral treatment with CS, a narrow spectrum antibiotic, resulted in a significant decrease of E. coli/Shigella populations during the treatment period only. This study was the first to identify some gut microbiota subgroups (e.g., Streptococcus, Lachnospiraceae) that are associated with healthy piglets as compared to ETEC: F4 challenged animals. These key findings might contribute to the development of alternative strategies to reduce the use of antimicrobials in the control of post-weaning diarrhea in pigs.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charlotte Braley
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - William Thériault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Thibodeau
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sylvain Quessy
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Conservatoire National des Arts et Métiers (CNAM), 292 rue Saint-Martin, 75003 Paris, France
| |
Collapse
|
98
|
McMahon EK, Cavigelli SA. Gaps to Address in Ecological Studies of Temperament and Physiology. Integr Comp Biol 2021; 61:1917-1932. [PMID: 34097030 DOI: 10.1093/icb/icab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ecology is a diverse field with many researchers interested in drivers and consequences of variability within populations. Two aspects of variability that have been addressed are behavioral and physiological. While these have been shown to separately influence ecological outcomes such as survival, reproductive success and fitness, combined they could better predict within-population variability in survival and fitness. Recently there has been a focus on potential fitness outcomes of consistent behavioral traits that are referred to as personality or temperament (e.g. boldness, sociability, exploration, etc.). Given this recent focus, it is an optimal time to identify areas to supplement in this field, particularly in determining the relationship between temperament and physiological traits. To maximize progress, in this perspective paper we propose that the following two areas be addressed: (1) increased diversity of species, and (2) increased number of physiological processes studied, with an eye toward using more representative and relatively consistent measures across studies. We first highlight information that has been gleaned from species that are frequently studied to determine how animal personality relates to physiology and/or survival/fitness. We then shine a spotlight on important taxa that have been understudied and that can contribute meaningful, complementary information to this area of research. And last, we propose a brief array of physiological processes to relate to temperament, and that can significantly impact fitness, and that may be accessible in field studies.
Collapse
Affiliation(s)
- Elyse K McMahon
- Ecology Graduate Program, Pennsylvania State University, University Park, PA 16802, USA.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Sonia A Cavigelli
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
99
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
100
|
Microbial exposures that establish immunoregulation are compatible with targeted hygiene. J Allergy Clin Immunol 2021; 148:33-39. [PMID: 34033844 DOI: 10.1016/j.jaci.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
It is often suggested that hygiene is not compatible with the microbial exposures that are necessary for establishment of the immune system in early life. However, when we analyze the microbial exposures of modern humans in the context of human evolution and history, it becomes evident that whereas children need exposure to the microbiotas of their mothers, other family members, and the natural environment, exposure to the unnatural microbiota of the modern home is less relevant. In addition, any benefits of exposure to the infections of childhood within their household setting are at least partly replaced by the recently revealed nonspecific effects of vaccines. This article shows how targeting hygiene practices at key risk moments and sites can maximize protection against infection while minimizing any impact on essential microbial exposures. Moreover, this targeting must aim to reduce direct exposure of children to cleaning agents because those agents probably exert TH2-adjuvant effects that trigger allergic responses to normally innocuous antigens. Finally, we need to halt the flow of publications in the scientific literature and the media that blame hygiene for the increases in immunoregulatory disorders. Appropriately targeted hygiene behavior is compatible with a healthy lifestyle that promotes exposure to essential microorganisms.
Collapse
|