51
|
Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev 2020; 40:1200-1219. [PMID: 32112452 DOI: 10.1002/med.21654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases manifesting in early life, with the prevalence increasing worldwide at a rate of approximately 3% per annum. The prolonged hyperglycaemia characteristic of T1D upregulates the receptor for advanced glycation end products (RAGE) and accelerates the formation of RAGE ligands, including advanced glycation end products, high-mobility group protein B1, S100 calcium-binding proteins, and amyloid-beta. Interestingly, changes in the expression of RAGE and these ligands are evident in patients before the onset of T1D. RAGE signals via various proinflammatory cascades, resulting in the production of reactive oxygen species and cytokines. A large number of proinflammatory ligands that can signal via RAGE have been implicated in several chronic diseases, including T1D. Therefore, it is unsurprising that RAGE has become a potential therapeutic target for the treatment and prevention of disease. In this review, we will explore how RAGE might be targeted to prevent the development of T1D.
Collapse
Affiliation(s)
- Selena Le Bagge
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherman S Leung
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mater Clinical School, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
52
|
Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, Haas B, Dufort MJ, Speake C, Greenbaum CJ, Serti E, Nepom GT, Blahnik G, Kus AM, James EA, Linsley PS, Long SA. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J Clin Invest 2020; 130:480-490. [PMID: 31815738 PMCID: PMC6934185 DOI: 10.1172/jci126595] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Although most patients with type 1 diabetes (T1D) retain some functional insulin-producing islet β cells at the time of diagnosis, the rate of further β cell loss varies across individuals. It is not clear what drives this differential progression rate. CD8+ T cells have been implicated in the autoimmune destruction of β cells. Here, we addressed whether the phenotype and function of autoreactive CD8+ T cells influence disease progression. We identified islet-specific CD8+ T cells using high-content, single-cell mass cytometry in combination with peptide-loaded MHC tetramer staining. We applied a new analytical method, DISCOV-R, to characterize these rare subsets. Autoreactive T cells were phenotypically heterogeneous, and their phenotype differed by rate of disease progression. Activated islet-specific CD8+ memory T cells were prevalent in subjects with T1D who experienced rapid loss of C-peptide; in contrast, slow disease progression was associated with an exhaustion-like profile, with expression of multiple inhibitory receptors, limited cytokine production, and reduced proliferative capacity. This relationship between properties of autoreactive CD8+ T cells and the rate of T1D disease progression after onset make these phenotypes attractive putative biomarkers of disease trajectory and treatment response and reveal potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cate Speake
- Diabetes Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, Washington, USA
| | - Carla J. Greenbaum
- Diabetes Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, Washington, USA
| | | | - Gerald T. Nepom
- Translational Research Program
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
53
|
Scherm MG, Daniel C. miRNA-Mediated Immune Regulation in Islet Autoimmunity and Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:606322. [PMID: 33329406 PMCID: PMC7731293 DOI: 10.3389/fendo.2020.606322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The important role of microRNAs as major modulators of various physiological processes, including immune regulation and homeostasis, has been increasingly recognized. Consequently, aberrant miRNA expression contributes to the defective regulation of T cell development, differentiation, and function. This can result in immune activation and impaired tolerance mechanisms, which exert a cardinal function for the onset of islet autoimmunity and the progression to T1D. The specific impact of miRNAs for immune regulation and how miRNAs and their downstream targets are involved in the pathogenesis of islet autoimmunity and T1D has been investigated recently. These studies revealed that increased expression of individual miRNAs is involved in several layers of tolerance impairments, such as inefficient Treg induction and Treg instability. The targeted modulation of miRNAs using specific inhibitors, resulting in improved immune homeostasis, as well as improved methods for the targeting of miRNAs, suggest that miRNAs, especially in T cells, are a promising target for the reestablishment of immune tolerance.
Collapse
Affiliation(s)
- Martin G. Scherm
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Munich-Neuherberg, Germany
| | - Carolin Daniel
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Munich-Neuherberg, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
- *Correspondence: Carolin Daniel,
| |
Collapse
|
54
|
Primavera M, Giannini C, Chiarelli F. Prediction and Prevention of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:248. [PMID: 32670194 PMCID: PMC7326081 DOI: 10.3389/fendo.2020.00248] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Type 1 Diabetes (T1D) is one of the most common chronic autoimmune diseases in children. The disease is characterized by the destruction of beta cells, leading to hyperglycemia, and to a lifelong insulin-dependent state. Although several studies in the last decades have added relevant insights, the complex pathogenesis of the disease is not yet completely understood. Recent studies have been focused on several factors, including family history and genetic predisposition (HLA and non-HLA genes) as well as environmental and metabolic biomarkers, with the aim of predicting the development and progression of T1D. Once a child becomes symptomatic, beta cell mass has already reached a critical threshold (usually a residual of 20-30% of normal amounts), thus representing only the very late phase of the disease. In particular, this final stage follows two preceding asymptomatic stages, which have been precisely identified. In view of the long natural history and complex pathogenesis of the disease, many strategies may be proposed for primary, secondary, and tertiary prevention. Strategies of primary prevention aim to prevent the onset of autoimmunity against beta cells in asymptomatic individuals at high risk for T1D. In addition, the availability of novel humoral and metabolic biomarkers that are able to characterize subjects at high risk of progression, have stimulated several studies on secondary and tertiary prevention, aimed to preserve residual beta cell destruction and/or to prolong the remission phase after the onset of T1D. This review focuses on the major current knowledge on prediction and prevention of T1D in children.
Collapse
|
55
|
Battaglia M, Ahmed S, Anderson MS, Atkinson MA, Becker D, Bingley PJ, Bosi E, Brusko TM, DiMeglio LA, Evans-Molina C, Gitelman SE, Greenbaum CJ, Gottlieb PA, Herold KC, Hessner MJ, Knip M, Jacobsen L, Krischer JP, Long SA, Lundgren M, McKinney EF, Morgan NG, Oram RA, Pastinen T, Peters MC, Petrelli A, Qian X, Redondo MJ, Roep BO, Schatz D, Skibinski D, Peakman M. Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care 2020; 43:5-12. [PMID: 31753960 PMCID: PMC6925574 DOI: 10.2337/dc19-0880] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
Collapse
Affiliation(s)
- Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Dorothy Becker
- Division of Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Polly J Bingley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, and Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Stephen E Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California, San Francisco, San Francisco, CA
| | | | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Clinical and Molecular Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Laura Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - S Alice Long
- Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Markus Lundgren
- Department of Clinical Sciences, Clinical Research Centre, Faculty of Medicine, Lund University, and Skåne University Hospital, Malmö, Sweden
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,University of Exeter Medical School and Royal Devon and Exeter Hospital, Exeter, U.K
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, U.K.,NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, U.K.,Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Tomi Pastinen
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX
| | - Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, National Medical Center, City of Hope, Duarte, CA.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K. .,King's Health Partners Institute of Diabetes, Obesity and Endocrinology, London, U.K
| |
Collapse
|
56
|
Sousa GR, Pober D, Galderisi A, Lv H, Yu L, Pereira AC, Doria A, Kosiborod M, Lipes MA. Glycemic Control, Cardiac Autoimmunity, and Long-Term Risk of Cardiovascular Disease in Type 1 Diabetes Mellitus. Circulation 2019; 139:730-743. [PMID: 30586738 DOI: 10.1161/circulationaha.118.036068] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Poor glycemic control is associated with increased risk of cardiovascular disease (CVD) in type 1 diabetes mellitus (T1DM); however, little is known about mechanisms specific to T1DM. In T1DM, myocardial injury can induce persistent cardiac autoimmunity. Chronic hyperglycemia causes myocardial injury, raising the possibility that hyperglycemia-induced cardiac autoimmunity could contribute to long-term CVD complications in T1DM. METHODS We measured the prevalence and profiles of cardiac autoantibodies (AAbs) in longitudinal samples from the DCCT (Diabetes Control and Complications Trial) in participants with mean hemoglobin A1c (HbA1c) ≥9.0% (n=83) and ≤7.0% (n=83) during DCCT. We assessed subsequent coronary artery calcification (measured once during years 7-9 in the post-DCCT EDIC [Epidemiology of Diabetes Interventions and Complications] observational study), high-sensitivity C-reactive protein (measured during EDIC years 4-6), and CVD events (defined as nonfatal myocardial infarction, stroke, death resulting from CVD, heart failure, or coronary artery bypass graft) over a 26-year median follow-up. Cardiac AAbs were also measured in matched patients with type 2 diabetes mellitus with HbA1c ≥9.0% (n=70) and ≤7.0% (n=140) and, as a control for cardiac autoimmunity, patients with Chagas cardiomyopathy (n=51). RESULTS Apart from HbA1c levels, the DCCT groups shared similar CVD risk factors at the beginning and end of DCCT. The DCCT HbA1c ≥9.0% group showed markedly higher cardiac AAb levels than the HbA1c ≤7.0% group during DCCT, with a progressive increase and decrease in AAb levels over time in the 2 groups, respectively ( P<0.001). In the HbA1c ≥9.0% group, 46%, 22%, and 11% tested positive for ≥1, ≥2, and ≥3 different cardiac AAb types, respectively, similar to patients with Chagas cardiomyopathy, compared with 2%, 1%, and 0% in the HbA1c ≤7.0% group. Glycemic control was not associated with AAb prevalence in type 2 diabetes mellitus. Positivity for ≥2 AAbs during DCCT was associated with increased risk of CVD events (4 of 6; hazard ratio, 16.1; 95% CI, 3.0-88.2) and, in multivariable analyses, with detectable coronary artery calcification (13 of 31; odds ratio, 60.1; 95% CI, 8.4-410.0). Patients with ≥2 AAbs subsequently also showed elevated high-sensitivity C-reactive protein levels (6.0 mg/L versus 1.4 mg/L in patients with ≤1 AAbs; P=0.003). CONCLUSIONS Poor glycemic control is associated with cardiac autoimmunity in T1DM. Furthermore, cardiac AAb positivity is associated with an increased risk of CVD decades later, suggesting a role for autoimmune mechanisms in the development of CVD in T1DM, possibly through inflammatory pathways.
Collapse
Affiliation(s)
- Giovane R Sousa
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| | - David Pober
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.)
| | - Alfonso Galderisi
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Pediatrics, Yale University, New Haven, CT (A.G.).,Department of Women and Children's Health, University of Padova, Italy (A.G.)
| | - HuiJuan Lv
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Anschutz Medical Campus, Aurora (L.Y.)
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Brazil (A.C.P.)
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| | - Mikhail Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City (M.K.)
| | - Myra A Lipes
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| |
Collapse
|
57
|
Begum M, Pilkington R, Chittleborough C, Lynch J, Penno M, Smithers L. Caesarean section and risk of type 1 diabetes: whole-of-population study. Diabet Med 2019; 36:1686-1693. [PMID: 31498920 DOI: 10.1111/dme.14131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
AIM A hypothesized mechanism for increased type 1 diabetes risk among caesarean births is lack of exposure to the vaginal microbiota. Children born by prelabour caesarean are not exposed to the vaginal microbiota, whereas caesarean births during labour (intrapartum) may be exposed. The aim of this study was to estimate type 1 diabetes risk among children born by caesarean compared with normal vaginal delivery. METHODS This whole-of-population study linked routinely collected, de-identified administrative data from the South Australian Early Childhood Data Project for all births from 1999 to 2013. Type 1 diabetes cases were identified using inpatient hospitalizations from 2001 to 2014 (ICD-10-AM codes E10-E109). Type 1 diabetes risk for caesarean was assessed by Cox regression using two models: (i) caesarean vs. vaginal and (ii) prelabour or intrapartum caesarean vs. vaginal. Analyses were adjusted for confounding and multiple imputation was used to address missing data. RESULTS A total of 286 058 children born between 1999 and 2013 contributed to 2 200 252 person-years, of which 557 had type 1 diabetes. Of all births, 90 546 (31.7%) were caesarean, and of these 53.1% were prelabour and 46.9% intrapartum caesarean. Compared with vaginal delivery, the adjusted hazard ratio for type 1 diabetes was 1.05 [95% confidence interval (CI) 0.86-1.28) for caesarean, 1.02 (95% CI 0.79-1.32) for prelabour caesarean and 1.08 (95% CI 0.82-1.41) for intrapartum caesarean. CONCLUSION There may be a small increased type 1 diabetes risk following caesarean, but confidence intervals included the null. The lower estimate for prelabour compared with intrapartum caesarean, and the potential for unmeasured confounding suggest that neonatal vaginal microbiota might not be involved in type 1 diabetes.
Collapse
Affiliation(s)
- M Begum
- School of Public Health, Adelaide, Australia
- Robinson Research Institute, Adelaide, Australia
| | - R Pilkington
- School of Public Health, Adelaide, Australia
- Robinson Research Institute, Adelaide, Australia
| | - C Chittleborough
- School of Public Health, Adelaide, Australia
- Robinson Research Institute, Adelaide, Australia
| | - J Lynch
- School of Public Health, Adelaide, Australia
- Robinson Research Institute, Adelaide, Australia
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - M Penno
- Robinson Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - L Smithers
- School of Public Health, Adelaide, Australia
- Robinson Research Institute, Adelaide, Australia
| |
Collapse
|
58
|
Human Leukocyte Antigen (HLA) and Islet Autoantibodies Are Tools to Characterize Type 1 Diabetes in Arab Countries: Emphasis on Kuwait. DISEASE MARKERS 2019; 2019:9786078. [PMID: 31827651 PMCID: PMC6886320 DOI: 10.1155/2019/9786078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
The incidence rate of type 1 diabetes in Kuwait had been increasing exponentially and has doubled in children ≤ 14 years old within almost two decades. Therefore, there is a dire need for a careful systematic familial cohort study. Several immunogenetic factors affect the pathogenesis of the disease. The human leukocyte antigen (HLA) accounts for the major genetic susceptibility to the disease. The triggering agents initiate disease onset by type 1 destruction of pancreatic β-cells. Both HLA and anti-islet antibodies can be used to characterize, predict susceptibility to the disease, innovate, or delay the β-cell destruction. Evidence from prospective longitudinal studies suggested that the underlying disease process represents a continuum that begins before the symptoms are clinically evident. Autoimmunity of the functional pancreatic β-cells results in symptomatic type 1 diabetes and lifelong insulin dependence. The autoantibodies against glutamic acid decarboxylase (GADA), insulinoma antigen-2 (IA-2A), insulin (IAA), and zinc transporter-8 (ZnT-8A) comprise the most reliable biomarkers for type 1 diabetes in both children and adults. Although Kuwait is the second among the top 10 countries with a high incidence rate of type 1 diabetes, there have been no proper diagnostic and prediction tools as per the World Health Organization. The Kuwaiti Type 1 Diabetes Study (KADS) was initiated to understand the disease pathogenesis as well as the HLA and anti-islet autoantibody profile of type 1 diabetes in Kuwait. Understanding the disease sequela in a homogenous gene pool and highly consanguineous population of Kuwaitis could help solve the challenges and pathogenesis, as well as hasten the prevention, of type 1 diabetes.
Collapse
|
59
|
The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat Genet 2019; 51:1588-1595. [PMID: 31676868 PMCID: PMC7040466 DOI: 10.1038/s41588-019-0524-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/27/2019] [Indexed: 01/31/2023]
Abstract
Early stages of type 1 diabetes (T1D) are characterized by local autoimmune inflammation and progressive loss of insulin-producing pancreatic β cells. We show here that exposure to pro-inflammatory cytokines unmasks a marked plasticity of the β-cell regulatory landscape. We expand the repertoire of human islet regulatory elements by mapping stimulus-responsive enhancers linked to changes in the β-cell transcriptome, proteome and 3D chromatin structure. Our data indicate that the β cell response to cytokines is mediated by the induction of new regulatory regions as well as the activation of primed regulatory elements prebound by islet-specific transcription factors. We find that T1D-associated loci are enriched of the newly mapped cis-regulatory regions and identify T1D-associated variants disrupting cytokine-responsive enhancer activity in human β cells. Our study illustrates how β cells respond to a pro-inflammatory environment and implicate a role for stimulus-response islet enhancers in T1D.
Collapse
|
60
|
Bonifacio E, Achenbach P. Birth and coming of age of islet autoantibodies. Clin Exp Immunol 2019; 198:294-305. [PMID: 31397889 PMCID: PMC6857083 DOI: 10.1111/cei.13360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
This review takes the reader through 45 years of islet autoantibody research, from the discovery of islet‐cell antibodies in 1974 to today’s population‐based screening for presymptomatic early‐stage type 1 diabetes. The review emphasizes the current practical value of, and factors to be considered in, the measurement of islet autoantibodies.
Collapse
Affiliation(s)
- E Bonifacio
- Technische Universität Dresden, DFG Center for Regenerative Therapies Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - P Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Forschergruppe Diabetes, Munich, Germany
| |
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Progression rate from islet autoimmunity to clinical diabetes is unpredictable. In this review, we focus on an intriguing group of slow progressors who have high-risk islet autoantibody profiles but some remain diabetes free for decades. RECENT FINDINGS Birth cohort studies show that islet autoimmunity presents early in life and approximately 70% of individuals with multiple islet autoantibodies develop clinical symptoms of diabetes within 10 years. Some "at risk" individuals however progress very slowly. Recent genetic studies confirm that approximately half of type 1 diabetes (T1D) is diagnosed in adulthood. This creates a conundrum; slow progressors cannot account for the number of cases diagnosed in the adult population. There is a large "gap" in our understanding of the pathogenesis of adult onset T1D and a need for longitudinal studies to determine whether there are "at risk" adults in the general population; some of whom are rapid and some slow adult progressors.
Collapse
Affiliation(s)
- Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB UK
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB UK
| |
Collapse
|
62
|
Beyerlein A, Bonifacio E, Vehik K, Hippich M, Winkler C, Frohnert BI, Steck AK, Hagopian WA, Krischer JP, Lernmark Å, Rewers MJ, She JX, Toppari J, Akolkar B, Rich SS, Ziegler AG. Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors: results from the prospective TEDDY study. J Med Genet 2019; 56:602-605. [PMID: 30287597 PMCID: PMC6690814 DOI: 10.1136/jmedgenet-2018-105532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Progression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown. METHODS In 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression. RESULTS Islet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93). CONCLUSIONS Genetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.
Collapse
Affiliation(s)
- Andreas Beyerlein
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Technical University of Munich, at Klinikum rechts der Isar, Munich-Neuherberg, Germany
| | - Ezio Bonifacio
- DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Forschergruppe Diabetes eV at Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Technical University of Munich, at Klinikum rechts der Isar, Munich-Neuherberg, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Technical University of Munich, at Klinikum rechts der Isar, Munich-Neuherberg, Germany
- Forschergruppe Diabetes eV at Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - Brigitte I Frohnert
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado, USA
| | | | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku University Hospital, Turku, Finland
- Department of Physiology, University of Turku, Turku, Finland
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Technical University of Munich, at Klinikum rechts der Isar, Munich-Neuherberg, Germany
- Forschergruppe Diabetes eV at Helmholtz Zentrum München, Munich-Neuherberg, Germany
| |
Collapse
|
63
|
Winkler C, Haupt F, Heigermoser M, Zapardiel‐Gonzalo J, Ohli J, Faure T, Kalideri E, Hommel A, Delivani P, Berner R, Kordonouri O, Roloff F, von dem Berge T, Lange K, Oltarzewski M, Glab R, Szypowska A, Snape MD, Vatish M, Todd JA, Larsson HE, Ramelius A, Kördel JÅ, Casteels K, Paulus J, Ziegler AG, Bonifacio E, the GPPAD Study Group. Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials-GPPAD-02 study design and first results. Pediatr Diabetes 2019; 20:720-727. [PMID: 31192505 PMCID: PMC6851563 DOI: 10.1111/pedi.12870] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/21/2019] [Indexed: 01/15/2023] Open
Abstract
Primary prevention of type 1 diabetes (T1D) requires intervention in genetically at-risk infants. The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) has established a screening program, GPPAD-02, that identifies infants with a genetic high risk of T1D, enrolls these into primary prevention trials, and follows the children for beta-cell autoantibodies and diabetes. Genetic testing is offered either at delivery, together with the regular newborn testing, or at a newborn health care visits before the age of 5 months in regions of Germany (Bavaria, Saxony, Lower Saxony), UK (Oxford), Poland (Warsaw), Belgium (Leuven), and Sweden (Region Skåne). Seven clinical centers will screen around 330 000 infants. Using a genetic score based on 46 T1D susceptibility single-nucleotide polymorphisms (SNPs) or three SNPS and a first-degree family history for T1D, infants with a high (>10%) genetic risk for developing multiple beta-cell autoantibodies by the age of 6 years are identified. Screening from October 2017 to December 2018 was performed in 50 669 infants. The prevalence of high genetic risk for T1D in these infants was 1.1%. Infants with high genetic risk for T1D are followed up and offered to participate in a randomized controlled trial aiming to prevent beta-cell autoimmunity and T1D by tolerance induction with oral insulin. The GPPAD-02 study provides a unique path to primary prevention of beta-cell autoimmunity in the general population. The eventual benefit to the community, if successful, will be a reduction in the number of children developing beta-cell autoimmunity and T1D.
Collapse
Affiliation(s)
- Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany,Forschergruppe Diabetes e.V. at Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Florian Haupt
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany,Forschergruppe Diabetes e.V. at Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Martin Heigermoser
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Jose Zapardiel‐Gonzalo
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Jasmin Ohli
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Theresa Faure
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Evdokia Kalideri
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Angela Hommel
- Faculty of Medicine, Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
| | - Petrina Delivani
- Faculty of Medicine, Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Olga Kordonouri
- Hannoversche Kinderheilanstalt, Kinder‐ und Jugendkrankenhaus AUF DER BULTHannoverGermany
| | - Frank Roloff
- Hannoversche Kinderheilanstalt, Kinder‐ und Jugendkrankenhaus AUF DER BULTHannoverGermany
| | - Thekla von dem Berge
- Hannoversche Kinderheilanstalt, Kinder‐ und Jugendkrankenhaus AUF DER BULTHannoverGermany
| | - Karin Lange
- Department of Medical PsychologyHannover Medical SchoolHannoverGermany
| | | | | | | | - Matthew D. Snape
- Department of Paediatrics, NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordOxfordUK
| | - John A. Todd
- Nuffield Department of Medicine, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Helena E. Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences MalmöLund UniversityLundSweden,Department of PaediatricsSkåne University HospitalMalmöSweden
| | | | | | - Kristina Casteels
- Department of PediatricsUniversity Hospitals LeuvenLeuvenBelgium,Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Jasmin Paulus
- Department of PediatricsUniversity Hospitals LeuvenLeuvenBelgium
| | - Anette G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany,Forschergruppe Diabetes e.V. at Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany,Forschergruppe DiabetesKlinikum rechts der Isar, Technical University MunichMunichGermany
| | - Ezio Bonifacio
- Faculty of Medicine, Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
| | | |
Collapse
|
64
|
Abstract
BACKGROUND microRNAs (miRNAs) have emerged as critical contributors to immune regulation and homeostasis, and their dysregulation is involved in the aberrant differentiation and function of T cell subsets. In type 1 diabetes (T1D), the clinically overt disease is preceded by a presymptomatic phase which is marked by the presence of islet autoantibodies while the individual is still normoglycemic. Recent analyses revealed impaired regulatory T (Treg) cell induction from naive CD4+ T cells during this early phase of autoimmunity. SCOPE OF THE REVIEW In this review article, we aim to discuss important recent insights into miRNA regulation of immune homeostasis and activation. Specifically, we highlight the role of miRNAs as biomarkers in autoimmunity and T1D as well as the contribution of specific miRNAs and their downstream pathways to the onset and progression of islet immunity. Furthermore, we focus on critical next steps required to establish miRNAs as biomarkers to predict disease onset and progression and as novel targets of future prevention and treatment strategies to control autoimmunity. MAJOR CONCLUSIONS Several recent studies have provided considerable insight into the miRNA regulation of immune homeostasis and how dysregulated miRNAs contribute to onset and progression of islet autoimmunity. Specifically, high levels of individual miRNAs such as miR92a and miR181a are involved in impaired Treg induction during the onset of islet autoimmunity, thereby contributing to disease pathogenesis. The recent advancements in the field suggest miRNAs as potential biomarkers for islet autoimmunity and their direct targeting, especially in a T cell-specific manner, could contribute to the reestablishment of immune homeostasis and ultimately interfere with the onset of islet autoimmunity.
Collapse
Affiliation(s)
- Martin G Scherm
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, 80939, Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), Ingolstaedter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | - Isabelle Serr
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, 80939, Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), Ingolstaedter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Carolin Daniel
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, 80939, Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), Ingolstaedter Landstrasse 1, 85764, Munich-Neuherberg, Germany; Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, 80337, Munich, Germany.
| |
Collapse
|
65
|
Roth R, Lynch K, Hyöty H, Lönnrot M, Driscoll KA, Johnson SB, the TEDDY Study Group. The association between stressful life events and respiratory infections during the first 4 years of life: The Environmental Determinants of Diabetes in the Young study. Stress Health 2019; 35:289-303. [PMID: 30768831 PMCID: PMC6697245 DOI: 10.1002/smi.2861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to conduct a prospective analysis of the association between negative life events (NLEs) and respiratory infections in children genetically at risk for islet autoimmunity (IA) and type 1 diabetes (T1D). Long- and short-term temporal associations between NLEs and rate of respiratory infection episodes (RIEs) in 5,618 children in The Environmental Determinants of Diabetes in the Young study for at least 1 up to 4 years were analysed. All models were adjusted for demographic, day care, season of infection, and psychosocial factors associated with the rate of child RIEs between study visits. The rate of child RIEs was 26% higher in Europe (Sweden, Finland, Germany) than in the United States (rate ratio [RR] = 1.26, p < 0.001). However, the percentage of child NLEs (odds ratio [OR] = 1.18, p < 0.001) and mother NLEs (OR = 1.83, p < 0.001) was higher in the United States compared with Europe. In both continents (Europe, RR = 1.12, p < 0.001; United States, RR = 1.07, p = 0.006), high child cumulative NLEs (>1 NLE per year since study inception) was significantly associated with an increased rate of child RIEs. This large-scale prospective study confirms observations that stress may increase the susceptibility for infections in paediatric populations and suggests at least one mechanism by which stress could increase risk for IA and T1D in genetically at risk children.
Collapse
Affiliation(s)
- Roswith Roth
- Roswith Roth, Ph.D., Forschergruppe Diabetes e.V Helmholtz Zentrum München Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- University of Graz, Institute of Psychology Graz, Universitätsplatz 2/III, Austria, Tel: +43-316-380-5119, Fax: +43-316-380-9808,
| | - Kristian Lynch
- Kristian Lynch, Ph.D., Data Coordinating Center, University of South Florida, FL, USA
| | - Heikki Hyöty
- Heikki Hyöty, M.D., Ph.D., School of Medicine, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Maria Lönnrot
- Maria Lönnrot, M.D., Ph.D., University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Kimberly A. Driscoll
- Kimberly A. Driscoll, Ph.D., University of Colorado Denver Barbara Davis Center for Childhood Diabetes, CO, USA
| | | | | |
Collapse
|
66
|
Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A Preclinical Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1079:151-162. [PMID: 29500792 DOI: 10.1007/5584_2018_172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 1 Diabetes Mellitus (T1DM) is a chronic disease that leads to loss of insulin secreting β-cells, causing high levels of blood glucose. Exogenous insulin administration is not sufficient to mimic the normal function of β-cells and, consequently, diabetes mellitus often progresses and can lead to major chronic complications and morbidity. The physiological control of glucose levels can only be restored by replacing the β-cell mass.We recently developed a new strategy that allows for epigenetic conversion of dermal fibroblasts into insulin-secreting cells (EpiCC), using a brief exposure to the demethylating agent 5-aza-cytidine (5-aza-CR), followed by a pancreatic induction protocol. This method has notable advantages compared to the alternative available procedures and may represent a promising tool for clinical translation as a therapy for T1DM. However, a thought evaluation of its therapeutic safety and efficacy is mandatory to support preclinical studies based on EpiCC treatment.We here report the data obtained using human fibroblasts isolated from diabetic and healthy individuals, belonging the two genders. EpiCC were injected into 650 diabetic severe combined immunodeficiency (SCID) mice and demonstrated to be able to restore and maintain glycemic levels within the physiological range. Cells had the ability to self-regulate and not to cause hypoglycemia, when transplanted in healthy animals. Efficacy tests showed that EpiCC successfully re-established normoglycemia in diabetic mice, using a dose range that appeared clinically relevant to the concentration 0.6 × 106 EpiCC. Necropsy and histopathological investigations demonstrated the absence of malignant transformation and cell migration to organs and lymph nodes.The present preclinical study demonstrates safety and efficacy of human EpiCC in diabetic mice and supports the use of epigenetic converted cells for regenerative medicine of diabetes mellitus.
Collapse
|
67
|
Ziegler AG, Achenbach P, Berner R, Casteels K, Danne T, Gündert M, Hasford J, Hoffmann VS, Kordonouri O, Lange K, Elding Larsson H, Lundgren M, Snape MD, Szypowska A, Todd JA, Bonifacio E. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. BMJ Open 2019; 9:e028578. [PMID: 31256036 PMCID: PMC6609035 DOI: 10.1136/bmjopen-2018-028578] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The POInT study, an investigator initiated, randomised, placebo-controlled, double-blind, multicentre primary prevention trial is conducted to determine whether daily administration of oral insulin, from age 4.0 months to 7.0 months until age 36.0 months to children with elevated genetic risk for type 1 diabetes, reduces the incidence of beta-cell autoantibodies and diabetes. METHODS AND ANALYSIS Infants aged 4.0 to 7.0 months from Germany, Poland, Belgium, UK and Sweden are eligible if they have a >10.0% expected risk for developing multiple beta-cell autoantibodies as determined by genetic risk score or family history and human leucocyte antigen genotype. Infants are randomised 1:1 to daily oral insulin (7.5 mg for 2 months, 22.5 mg for 2 months, 67.5 mg until age 36.0 months) or placebo, and followed for a maximum of 7 years. Treatment and follow-up is stopped if a child develops diabetes. The primary outcome is the development of persistent confirmed multiple beta-cell autoantibodies or diabetes. Other outcomes are: (1) Any persistent confirmed beta-cell autoantibody (glutamic acid decarboxylase (GADA), IA-2A, autoantibodies to insulin (IAA) and zinc transporter 8 or tetraspanin 7), or diabetes, (2) Persistent confirmed IAA, (3) Persistent confirmed GADA and (4) Abnormal glucose tolerance or diabetes. ETHICS AND DISSEMINATION The study is approved by the ethical committees of all participating clinical sites. The results will be disseminated through peer-reviewed journals and conference presentations and will be openly shared after completion of the trial. TRIAL REGISTRATION NUMBER NCT03364868.
Collapse
Affiliation(s)
- Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Medical faculty, Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Medical faculty, Munich, Germany
| | - Reinhard Berner
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristina Casteels
- Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thomas Danne
- Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Melanie Gündert
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joerg Hasford
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Olga Kordonouri
- Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Karin Lange
- Department of Medical Psychology, Hannover Medical School, Hannover, Germany
| | - Helena Elding Larsson
- Unit for Paediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Sweden
- Department of Paediatrics, Skåne University Hospital, Malmö, Sweden
| | - Markus Lundgren
- Unit for Paediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Matthew D Snape
- Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| | | | - John A Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ezio Bonifacio
- Centre for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
68
|
Jacobsen LM, Larsson HE, Tamura RN, Vehik K, Clasen J, Sosenko J, Hagopian WA, She JX, Steck AK, Rewers M, Simell O, Toppari J, Veijola R, Ziegler AG, Krischer JP, Akolkar B, Haller MJ, TEDDY Study Group. Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children. Pediatr Diabetes 2019; 20:263-270. [PMID: 30628751 PMCID: PMC6456374 DOI: 10.1111/pedi.12812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/11/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The capacity to precisely predict progression to type 1 diabetes (T1D) in young children over a short time span is an unmet need. We sought to develop a risk algorithm to predict progression in children with high-risk human leukocyte antigen (HLA) genes followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. METHODS Logistic regression and 4-fold cross-validation examined 38 candidate predictors of risk from clinical, immunologic, metabolic, and genetic data. TEDDY subjects with at least one persistent, confirmed autoantibody at age 3 were analyzed with progression to T1D by age 6 serving as the primary endpoint. The logistic regression prediction model was compared to two non-statistical predictors, multiple autoantibody status, and presence of insulinoma-associated-2 autoantibodies (IA-2A). RESULTS A total of 363 subjects had at least one autoantibody at age 3. Twenty-one percent of subjects developed T1D by age 6. Logistic regression modeling identified 5 significant predictors - IA-2A status, hemoglobin A1c, body mass index Z-score, single-nucleotide polymorphism rs12708716_G, and a combination marker of autoantibody number plus fasting insulin level. The logistic model yielded a receiver operating characteristic area under the curve (AUC) of 0.80, higher than the two other predictors; however, the differences in AUC, sensitivity, and specificity were small across models. CONCLUSIONS This study highlights the application of precision medicine techniques to predict progression to diabetes over a 3-year window in TEDDY subjects. This multifaceted model provides preliminary improvement in prediction over simpler prediction tools. Additional tools are needed to maximize the predictive value of these approaches.
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University, Skåne University Hospital SUS, Malmö, Sweden
| | - Roy N. Tamura
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Joanna Clasen
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jay Sosenko
- Division of Endocrinology, University of Miami, Miami, Florida, USA
| | | | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Andrea K. Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, Colorado, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, Colorado, USA
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, Medical Research Center, PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anette G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes e.V. Neuherberg, Germany
| | - Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | - Michael J. Haller
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
69
|
Hippich M, Beyerlein A, Hagopian WA, Krischer JP, Vehik K, Knoop J, Winker C, Toppari J, Lernmark Å, Rewers MJ, Steck AK, She JX, Akolkar B, Robertson CC, Onengut-Gumuscu S, Rich SS, Bonifacio E, Ziegler AG. Genetic Contribution to the Divergence in Type 1 Diabetes Risk Between Children From the General Population and Children From Affected Families. Diabetes 2019; 68:847-857. [PMID: 30655385 PMCID: PMC6425872 DOI: 10.2337/db18-0882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
The risk for autoimmunity and subsequently type 1 diabetes is 10-fold higher in children with a first-degree family history of type 1 diabetes (FDR children) than in children in the general population (GP children). We analyzed children with high-risk HLA genotypes (n = 4,573) in the longitudinal TEDDY birth cohort to determine how much of the divergent risk is attributable to genetic enrichment in affected families. Enrichment for susceptible genotypes of multiple type 1 diabetes-associated genes and a novel risk gene, BTNL2, was identified in FDR children compared with GP children. After correction for genetic enrichment, the risks in the FDR and GP children converged but were not identical for multiple islet autoantibodies (hazard ratio [HR] 2.26 [95% CI 1.6-3.02]) and for diabetes (HR 2.92 [95% CI 2.05-4.16]). Convergence varied depending upon the degree of genetic susceptibility. Risks were similar in the highest genetic susceptibility group for multiple islet autoantibodies (14.3% vs .12.7%) and diabetes (4.8% vs. 4.1%) and were up to 5.8-fold divergent for children in the lowest genetic susceptibility group, decreasing incrementally in GP children but not in FDR children. These findings suggest that additional factors enriched within affected families preferentially increase the risk of autoimmunity and type 1 diabetes in lower genetic susceptibility strata.
Collapse
Affiliation(s)
- Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
| | - Andreas Beyerlein
- Institute of Diabetes Research, Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jan Knoop
- Institute of Diabetes Research, Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
| | - Christiane Winker
- Institute of Diabetes Research, Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Ezio Bonifacio
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
- DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München (German Research Center for Environmental Health), Munich-Neuherberg, Germany
| |
Collapse
|
70
|
Rasoul MA, Haider MZ, Al-Mahdi M, Al-Kandari H, Dhaunsi GS. Relationship of four vitamin D receptor gene polymorphisms with type 1 diabetes mellitus susceptibility in Kuwaiti children. BMC Pediatr 2019; 19:71. [PMID: 30845908 PMCID: PMC6404350 DOI: 10.1186/s12887-019-1448-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background The incidence of type 1 diabetes mellitus (T1DM) in Kuwait is amongst the highest in the world. Vitamin D is considered to be involved in immune modulation and its deficiency contribute to autoimmune destruction of insulin producing beta cells in T1DM patients. Vitamin D has been shown to exert its effects via a nuclear vitamin D receptor (VDR) and therefore, VDR gene may be considered a candidate for T1DM susceptibility. Methods The genotypes of four VDR gene polymorphisms were determined in 253 Kuwaiti Arab T1DM patients and 214 healthy controls by PCR-RFLP analysis. Serum concentrations of three autoantibodies i.e. ICA (Islet cell autoantibody), GADA (Glutamic acid decarboxylase) and INS (Insulin autoantibody) were determined by radio-immunoassays. Results Statistically significant differences were detected between the genotypes of two VDR gene polymorphisms (FokI, C > T, rs10735810 and TaqI, C > T, rs731236) between T1DM patients and controls (P < 0.0001). In both, the frequency of variant alleles was considerably high in T1DM than in the controls. In contrast, the VDR gene ApaI (G > T, rs7975232) and BsmI (A > G, rs1544410) polymorphisms did not show association with T1DM. The homozygous variant genotypes of FokI, ApaI and TaqI polymorphisms show significant differences between various age-of-onset subgroups while no such association was detected in the case of BsmI polymorphism. Significant differences were also noted between heterozygous genotypes of all four polymorphisms especially between 4-6y and > 6y age-of-onset subgroups of T1DM patients. Three autoantibodies, ICA (Islet cell), GADA (glutamate decarboxylase) and INS (insulin) were positively associated to, varying degrees, with T1DM in Kuwaiti Arabs harboring different VDR gene polymorphism genotypes. Conclusions Our results demonstrate a significant effect of two VDR gene polymorphisms (FokI and TaqI) and three autoantibodies on genetic susceptibility of T1DM in Kuwaiti Arabs along with other factors.
Collapse
Affiliation(s)
- Majedah A Rasoul
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat-13110, Jabriya, Kuwait.,Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Mohammad Z Haider
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat-13110, Jabriya, Kuwait.
| | - Maria Al-Mahdi
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Hessa Al-Kandari
- Department of Pediatrics, Farwania Hospital, Farwania, Kuwait.,Family Medicine and Pediatric Unit, Dasman Diabetes Institute, Dasman, Kuwait
| | - Gursev S Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat-13110, Jabriya, Kuwait.,Medical Laboratories, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
71
|
Harnessing CXCL12 signaling to protect and preserve functional β-cell mass and for cell replacement in type 1 diabetes. Pharmacol Ther 2019; 193:63-74. [DOI: 10.1016/j.pharmthera.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
72
|
Diallo K, Oppong AK, Lim GE. Can 14-3-3 proteins serve as therapeutic targets for the treatment of metabolic diseases? Pharmacol Res 2019; 139:199-206. [DOI: 10.1016/j.phrs.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
|
73
|
Vonberg AD, Acevedo-Calado M, Cox AR, Pietropaolo SL, Gianani R, Lundy SK, Pietropaolo M. CD19+IgM+ cells demonstrate enhanced therapeutic efficacy in type 1 diabetes mellitus. JCI Insight 2018; 3:99860. [PMID: 30518692 DOI: 10.1172/jci.insight.99860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
We describe a protective effect on autoimmune diabetes and reduced destructive insulitis in NOD.scid recipients following splenocyte injections from diabetic NOD donors and sorted CD19+ cells compared with NOD.scid recipients receiving splenocytes alone. This protective effect was age specific (only CD19+ cells from young NOD donors exerted this effect; P < 0.001). We found that the CD19+IgM+ cell is the primary subpopulation of B cells that delayed transfer of diabetes mediated by diabetogenic T cells from NOD mice (P = 0.002). Removal of IgM+ cells from the CD19+ pool did not result in protection. Notably, protection conferred by CD19+IgM+ cotransfers were not dependent on the presence of Tregs, as their depletion did not affect their ability to delay onset of diabetes. Blockade of IL-10 with neutralizing antibodies at the time of CD19+ cell cotransfers also abrogated the therapeutic effect, suggesting that IL-10 secretion was an important component of protection. These results were strengthened by ex vivo incubation of CD19+ cells with IL-5, resulting in enhanced proliferation and IL-10 production and equivalently delayed diabetes progression (P = 0.0005). The potential to expand CD19+IgM+ cells, especially in response to IL-5 stimulation or by pharmacologic agents, may be a new therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Andrew D Vonberg
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Maria Acevedo-Calado
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Aaron R Cox
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Roberto Gianani
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| |
Collapse
|
74
|
Pavlovic S, Petrovic I, Jovicic N, Ljujic B, Miletic Kovacevic M, Arsenijevic N, Lukic ML. IL-33 Prevents MLD-STZ Induction of Diabetes and Attenuate Insulitis in Prediabetic NOD Mice. Front Immunol 2018; 9:2646. [PMID: 30498495 PMCID: PMC6249384 DOI: 10.3389/fimmu.2018.02646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Prevention of type 1 diabetes requires early intervention in the autoimmune process against beta-cells of the pancreatic islets of Langerhans, which is believed to result from disordered immunoregulation. CD4+Foxp3+ regulatory T cells (Tregs) participate as one of the most important cell types in limiting the autoimmune process. The aim of this study was to investigate the effect of exogenous IL-33 in multiple low dose streptozotocin (MLD-STZ) induced diabetes and to delineate its role in the induction of protective Tregs in an autoimmune attack. C57BL/6 mice were treated i. p. with five doses of 40 mg/kg STZ and 0.4 μg rIL-33 four times, starting from day 0, 6, or 12 every second day from the day of disease induction. 16 weeks old NOD mice were treated with 6 injections of 0.4 μg/mouse IL-33 (every second day). Glycemia and glycosuria were measured and histological parameters in pancreatic islets were evaluated at the end of experiments. Cellular make up of the pancreatic lymph nodes and islets were evaluated by flow cytometry. IL-33 given simultaneously with the application of STZ completely prevented the development of hyperglycemia, glycosuria and profoundly attenuated mononuclear cell infiltration. IL-33 treatment was accompanied by higher number of IL-13 and IL-5 producing CD4+ T cells and increased presence of ST2+Foxp3+ regulatory T cells in pancreatic lymph nodes and islets. Elimination of Tregs abrogated protective effect of IL-33. We provide evidence that exogenous IL-33 completely prevents the development of T cell mediated inflammation in pancreatic islets and consecutive development of diabetes in C57BL/6 mice by facilitating the induction Treg cells. To extend this finding for possible relevance in spontaneous diabetes, we showed that IL-33 attenuate insulitis in prediabetic NOD mice.
Collapse
Affiliation(s)
- Sladjana Pavlovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Ivica Petrovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
75
|
Yi L, Swensen AC, Qian WJ. Serum biomarkers for diagnosis and prediction of type 1 diabetes. Transl Res 2018; 201:13-25. [PMID: 30144424 PMCID: PMC6177288 DOI: 10.1016/j.trsl.2018.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes (T1D) culminates in the autoimmune destruction of the pancreatic βcells, leading to insufficient production of insulin and development of hyperglycemia. Serum biomarkers including a combination of glucose, glycated molecules, C-peptide, and autoantibodies have been well established for the diagnosis of T1D. However, these molecules often mark a late stage of the disease when ∼90% of the pancreatic insulin-producing β-cells have already been lost. With the prevalence of T1D increasing worldwide and because of the physical and psychological burden induced by this disease, there is a great need for prognostic biomarkers to predict T1D development or progression. This would allow us to identify individuals at high risk for early prevention and intervention. Therefore, considerable efforts have been dedicated to the understanding of disease etiology and the discovery of novel biomarkers in the last few decades. The advent of high-throughput and sensitive "-omics" technologies for the study of proteins, nucleic acids, and metabolites have allowed large scale profiling of protein expression and gene changes in T1D patients relative to disease-free controls. In this review, we briefly discuss the classical diagnostic biomarkers of T1D but mainly focus on the novel biomarkers that are identified as markers of β-cell destruction and screened with the use of state-of-the-art "-omics" technologies.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
76
|
Zheng P, Li Z, Zhou Z. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev 2018; 34:e3043. [PMID: 29929213 PMCID: PMC6220847 DOI: 10.1002/dmrr.3043] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease, which is characterized by the destruction of islet β cells in the pancreas triggered by genetic and environmental factors. In past decades, extensive familial and genome-wide association studies have revealed more than 50 risk loci in the genome. However, genetic susceptibility cannot explain the increased incidence of T1D worldwide, which is very likely attributed by the growing impact of environmental factors, especially gut microbiome. Recently, the role of gut microbiome in the pathogenesis of T1D has been uncovered by the increasing evidence from both human subjects and animal models, strongly indicating that gut microbiome might be a pivotal hub of T1D-triggering factors, especially environmental factors. In this review, we summarize the current aetiological and mechanism studies of gut microbiome in T1D. A better understanding of the role of gut microbiome in T1D may provide us with powerful prognostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Peilin Zheng
- Department of Metabolism and Endocrinology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaChina
| | - Zhixia Li
- Department of Metabolism and Endocrinology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaChina
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaChina
| |
Collapse
|
77
|
Feasibility and organization of a population-based screening for pre-symptomatic type 1 diabetes in children — evaluation of the Fr1da study. J Public Health (Oxf) 2018. [DOI: 10.1007/s10389-018-0981-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
78
|
Medina CO, Nagy N, Bollyky PL. Extracellular matrix and the maintenance and loss of peripheral immune tolerance in autoimmune insulitis. Curr Opin Immunol 2018; 55:22-30. [PMID: 30248522 DOI: 10.1016/j.coi.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that the extracellular matrix (ECM) contributes to both the maintenance of immune tolerance in healthy tissues and to its loss at sites of autoimmunity. Here, we review recent literature on the role of ECM and particularly the glycosaminoglycans hyaluronan and heparan sulfate in the development of autoimmune, type 1 diabetes (T1D). Data from transplant models suggest that healthy islets are embedded within an intact ECM that supports beta-cell homeostasis and provides physical and immunoregulatory barriers against immune infiltration. However, studies of human insulitis as well as the non-obese diabetic (NOD) and DORmO mouse models of T1D indicate that autoimmune insulitis is associated with the degradation of basement membrane structures, the catabolism of the islet interstitium, and the accumulation of a hyaluronan-rich, pro-inflammatory ECM. Moreover, in these models of autoimmune diabetes, either the pharmacologic inhibition of heparan sulfate catabolism, the reduction of hyaluronan synthesis, or the targeting of the pathways that sense these ECM changes can all prevent beta-cell destruction. Together these data support an emerging paradigm that in healthy islets the local ECM contributes to both immune tolerance and beta-cell homeostasis while in chronic inflammation the islet ECM is permissive to immune infiltration and beta-cell destruction. Therapies that support ECM-mediated 'barrier tolerance' may have potential as adjunctive agents in combination regimens designed to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Carlos O Medina
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305, United States
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305, United States
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305, United States.
| |
Collapse
|
79
|
Premaratne G, Niroula J, Patel MK, Zhong W, Suib SL, Kalkan AK, Krishnan S. Electrochemical and Surface-Plasmon Correlation of a Serum-Autoantibody Immunoassay with Binding Insights: Graphenyl Surface versus Mercapto-Monolayer Surface. Anal Chem 2018; 90:12456-12463. [DOI: 10.1021/acs.analchem.8b01565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jinesh Niroula
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Manoj K. Patel
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wei Zhong
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven L. Suib
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - A. Kaan Kalkan
- Department of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
80
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Blondeau B, Nitschke P, Pasmant E, Vidaud M, Lemonnier F, Boitard C. Humanized Mouse Model to Study Type 1 Diabetes. Diabetes 2018; 67:1816-1829. [PMID: 29967002 DOI: 10.2337/db18-0202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Key requirements in type 1 diabetes (T1D) are in setting up new assays as diagnostic biomarkers that will apply to prediabetes, likely T-cell assays, and in designing antigen-specific therapies to prevent T1D development. New preclinical models of T1D will be required to help with advancing both aims. By crossing mouse strains that lack either murine MHC class I and class II genes and insulin genes, we developed YES mice that instead express human HLA-A*02:01, HLA-DQ8, and insulin genes as transgenes. The metabolic and immune phenotype of YES mice is basically identical to that of the parental strains. YES mice remain insulitis and diabetes free up to 1 year of follow-up, maintain normoglycemia to an intraperitoneal glucose challenge in the long-term range, have a normal β-cell mass, and show normal immune responses to conventional antigens. This new model has been designed to evaluate adaptive immune responses to human insulin on a genetic background that recapitulates a human high-susceptibility HLA-DQ8 genetic background. Although insulitis free, YES mice develop T1D when challenged with polyinosinic-polycytidylic acid. They allow the characterization of preproinsulin epitopes recognized by CD8+ and CD4+ T cells upon immunization against human preproinsulin or during diabetes development.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Aging
- Animals
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Biomarkers/blood
- Biomarkers/metabolism
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Models, Animal
- Disease Progression
- Female
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- HLA-DQ Antigens/blood
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/metabolism
- Humans
- Insulin/blood
- Insulin/genetics
- Insulin/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Poly I-C/toxicity
- Prediabetic State/immunology
- Prediabetic State/metabolism
- Prediabetic State/pathology
- Prediabetic State/physiopathology
- Protein Precursors/blood
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Sandrine Luce
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Sophie Guinoiseau
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Alexis Gadault
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | | | | | - Patrick Nitschke
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Eric Pasmant
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - Michel Vidaud
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - François Lemonnier
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Christian Boitard
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| |
Collapse
|
81
|
Cui J, Li C, Zhang L. Neutropenia in 6 cases of childhood onset type 1 diabetes and its possible mechanisms. Pediatr Diabetes 2018; 19:1034-1038. [PMID: 29484791 DOI: 10.1111/pedi.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Type 1 diabetes (T1D) is a chronic inflammatory disease caused by a selective destruction of the pancreatic β-cells. There are few reports on peripheral neutropenia in T1D for different reasons. We reported 6 cases of childhood onset T1D combined with neutropenia and explored its possible mechanisms. METHODS The clinical diagnosis and treatment course of 6 cases of childhood onset T1D combined with neutropenia, who were hospitalized in our hospital from January 2013 to December 2016, were studied retrospectively. RESULTS We have diagnosed and treated 38 cases of childhood onset T1D during this period, while only 6 cases (15.79%) had neutropenia. The diagnostic ages of the 6 cases ranged from 5 to 12 years. Diabetic ketoacidosis (DKA) was complicated in 5 cases. Neutropenia happened within 14 to 21 days of the onset of disease and 3 to 11 days after using insulin, respectively, and returned spontaneously to normal range within 5 to 9 days. The serum levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) increased slightly before the usage of insulin in all 6 cases, and decreased to normal range after the usage of insulin. CONCLUSION Neutropenia can be seen in childhood onset T1D, and can return spontaneously to normal range without special treatments. The possible mechanisms might be the regulation effects of insulin on G-CSF and GM-CSF.
Collapse
Affiliation(s)
- Jieyuan Cui
- Department of Pediatric, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
- Department of Nephrology and Immunology, Children's Hospital of Heibei Province, Shijiazhuang, China
| | - Chunzhen Li
- Department of Nephrology and Immunology, Children's Hospital of Heibei Province, Shijiazhuang, China
| | - Lin Zhang
- Department of Pediatric, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| |
Collapse
|
82
|
Serr I, Daniel C. Regulation of T Follicular Helper Cells in Islet Autoimmunity. Front Immunol 2018; 9:1729. [PMID: 30083169 PMCID: PMC6064937 DOI: 10.3389/fimmu.2018.01729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (TFH) cells are an integral part of humoral immunity by providing help to B cells to produce high-affinity antibodies. The TFH precursor compartment circulates in the blood and TFH cell dysregulation is implied in various autoimmune diseases including type 1 diabetes (T1D). Symptomatic T1D is preceded by a preclinical phase (indicated by the presence of islet autoantibodies) with a highly variable progression time to the symptomatic disease. This heterogeneity points toward differences in immune activation in children with a fast versus slow progressor phenotype. In the context of T1D, previous studies on TFH cells have mainly focused on the clinically active state of the disease. In this review article, we aim to specifically discuss recent insights on TFH cells in human islet autoimmunity before the onset of symptomatic T1D. Furthermore, we will highlight advances in the field of TFH differentiation and function during human islet autoimmunity. Specifically, we will focus on the regulation of TFH cells by microRNAs (miRNAs), as well as on the potential use of miRNAs as biomarkers to predict disease progression time and as future drug targets to interfere with autoimmune activation.
Collapse
Affiliation(s)
- Isabelle Serr
- Research Group Immune Tolerance in Diabetes, Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), Munich, Germany
| | - Carolin Daniel
- Research Group Immune Tolerance in Diabetes, Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), Munich, Germany
| |
Collapse
|
83
|
Haider MZ, Rasoul MA, Al-Mahdi M, Al-Kandari H, Dhaunsi GS. Association of protein tyrosine phosphatase non-receptor type 22 gene functional variant C1858T, HLA-DQ/DR genotypes and autoantibodies with susceptibility to type-1 diabetes mellitus in Kuwaiti Arabs. PLoS One 2018; 13:e0198652. [PMID: 29924845 PMCID: PMC6010291 DOI: 10.1371/journal.pone.0198652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
Abstract
The incidence of type-1 Diabetes Mellitus (T1DM) has increased steadily in Kuwait during recent years and it is now considered amongst the high-incidence countries. An interaction between susceptibility genes, immune system mediators and environmental factors predispose susceptible individuals to T1DM. We have determined the prevalence of protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene functional variant (C1858T; R620W, rs2476601), HLA-DQ and DR alleles and three autoantibodies in Kuwaiti children with T1DM to evaluate their impact on genetic predisposition of the disease. This study included 253 Kuwaiti children with T1DM and 214 ethnically matched controls. The genotypes of PTPN22 gene functional variant C1858T (R620W; rs2476601) were detected by PCR-RFLP method and confirmed by DNA sequencing. HLA-DQ and DR alleles were determined by sequence-specific PCR. Three autoantibodies were detected in the T1DM patients using radio-immunoassays. A significant association was detected between the variant genotype of the PTPN22 gene (C1858T, rs2476601) and T1DM in Kuwaiti Arabs. HLA-DQ2 and DQ8 alleles showed a strong association with T1DM. In T1DM patients which carried the variant TT-genotype of the PTPN22 gene, 93% had at least one DQ2 allele and 60% carried either a DQ2 or a DQ8 allele. Amongst the DR alleles, the DR3-DRB5, DR3-3, DR3-4 and DR4-4 showed a strong association with T1DM. Majority of T1DM patients who carried homozygous variant (TT) genotype of the PTPN22 gene had either DR3-DRB5 or DRB3-DRB4 genotypes. In T1DM patients who co-inherited the high risk HLA DQ, DR alleles with the variant genotype of PTPN22 gene, the majority were positive for three autoantibodies. Our data demonstrate that the variant T-allele of the PTPN22 gene along with HLA-DQ2 and DQ8 alleles constitute significant determinants of genetic predisposition of T1DM in Kuwaiti children.
Collapse
Affiliation(s)
- Mohammad Z. Haider
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Majedah A. Rasoul
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Maria Al-Mahdi
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | | | - Gursev S. Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Medical Laboratories, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
84
|
Gebe JA, Preisinger A, Gooden MD, D'Amico LA, Vernon RB. Local, Controlled Release In Vivo of Vascular Endothelial Growth Factor Within a Subcutaneous Scaffolded Islet Implant Reduces Early Islet Necrosis and Improves Performance of the Graft. Cell Transplant 2018; 27:531-541. [PMID: 29756517 PMCID: PMC6038045 DOI: 10.1177/0963689718754562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Islet transplantation remains the only alternative to daily insulin therapy for control of type 1 diabetes (T1D) in humans. To avoid the drawbacks of intrahepatic islet transplantation, we are developing a scaffolded islet implant to transplant islets into nonhepatic sites. The implant test bed, sized for mice, consists of a limited (2-mm) thickness, large-pore polymeric sponge scaffold perforated with peripheral cavities that contain islets suspended in a collagen hydrogel. A central cavity in the scaffold holds a 2-mm diameter alginate sphere for controlled release of the angiogenic cytokine vascular endothelial growth factor ( VEGF). Host microvessels readily penetrate the scaffold and collagen gel to vascularize the islets. Here, we evaluate the performance of the implant in a subcutaneous (SC) graft site. Implants incorporating 500 syngeneic islets reversed streptozotocin-induced diabetes in mice approximately 30 d after SC placement. Controlled release of a modest quantity (20 ng) of VEGF within the implant significantly reduced the time to normoglycemia compared to control implants lacking VEGF. Investigation of underlying causes for this effect revealed that inclusion of 20 ng of VEGF in the implants significantly reduced central necrosis of islets 24 h after grafting and increased implant vascularization (measured 12 d after grafting). Collectively, our results demonstrate (1) that the scaffolded islet implant design can reverse diabetes in SC sites in the absence of prevascularization of the graft site and (2) that relatively low quantities of VEGF, delivered by controlled release within the implant, can be a useful approach to limit islet stress after grafting.
Collapse
Affiliation(s)
- John A Gebe
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Anton Preisinger
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michel D Gooden
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Leonard A D'Amico
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,2 Cancer Immunotherapy Trials, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert B Vernon
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
85
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
86
|
Serr I, Scherm MG, Zahm AM, Schug J, Flynn VK, Hippich M, Kälin S, Becker M, Achenbach P, Nikolaev A, Gerlach K, Liebsch N, Loretz B, Lehr CM, Kirchner B, Spornraft M, Haase B, Segars J, Küper C, Palmisano R, Waisman A, Willis RA, Kim WU, Weigmann B, Kaestner KH, Ziegler AG, Daniel C. A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Sci Transl Med 2018; 10:eaag1782. [PMID: 29298866 PMCID: PMC5828501 DOI: 10.1126/scitranslmed.aag1782] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 04/07/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023]
Abstract
Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)-mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treg induction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)-mediated NFAT5, which interferes with FoxP3+ Treg induction. Blocking miRNA181a or NFAT5 increases Treg induction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity.
Collapse
Affiliation(s)
- Isabelle Serr
- Group Immune Tolerance in Type 1 Diabetes, Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Martin G Scherm
- Group Immune Tolerance in Type 1 Diabetes, Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Adam M Zahm
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria K Flynn
- Group Immune Tolerance in Type 1 Diabetes, Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Markus Hippich
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefanie Kälin
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Maike Becker
- Group Immune Tolerance in Type 1 Diabetes, Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Peter Achenbach
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Katharina Gerlach
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Nicole Liebsch
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Hemholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Brigitta Loretz
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Hemholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Hemholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Benedikt Kirchner
- Physiology Weihenstephan, Technische Universität München, Munich, Germany
| | - Melanie Spornraft
- Physiology Weihenstephan, Technische Universität München, Munich, Germany
| | - Bettina Haase
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - James Segars
- John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christoph Küper
- Department of Physiology, University of Munich, Munich, Germany
| | - Ralf Palmisano
- Optical Imaging Centre Erlangen, University Erlangen, 91052 Erlangen, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Richard A Willis
- Emory Vaccine Center, NIH Tetramer Core Facility, Atlanta, GA 30329, USA
| | - Wan-Uk Kim
- Postech-Catholic Biomedical Engineering Institute, Catholic University of Korea, Seoul, Republic of Korea
- Korea University of Science and Technology, Seoul, Republic of Korea
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anette-Gabriele Ziegler
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Carolin Daniel
- Group Immune Tolerance in Type 1 Diabetes, Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany.
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| |
Collapse
|
87
|
Nagy N, de la Zerda A, Kaber G, Johnson PY, Hu KH, Kratochvil MJ, Yadava K, Zhao W, Cui Y, Navarro G, Annes JP, Wight TN, Heilshorn SC, Bollyky PL, Butte MJ. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem 2017; 293:567-578. [PMID: 29183997 DOI: 10.1074/jbc.ra117.000148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
We have identified a novel role for hyaluronan (HA), an extracellular matrix polymer, in governing the mechanical properties of inflamed tissues. We recently reported that insulitis in type 1 diabetes of mice and humans is preceded by intraislet accumulation of HA, a highly hygroscopic polymer. Using the double transgenic DO11.10 × RIPmOVA (DORmO) mouse model of type 1 diabetes, we asked whether autoimmune insulitis was associated with changes in the stiffness of islets. To measure islet stiffness, we used atomic force microscopy (AFM) and developed a novel "bed of nails"-like approach that uses quartz glass nanopillars to anchor islets, solving a long-standing problem of keeping tissue-scale objects immobilized while performing AFM. We measured stiffness via AFM nanoindentation with a spherical indenter and found that insulitis made islets mechanically soft compared with controls. Conversely, treatment with 4-methylumbelliferone, a small-molecule inhibitor of HA synthesis, reduced HA accumulation, diminished swelling, and restored basal tissue stiffness. These results indicate that HA content governs the mechanical properties of islets. In hydrogels with variable HA content, we confirmed that increased HA leads to mechanically softer hydrogels, consistent with our model. In light of recent reports that the insulin production of islets is mechanosensitive, these findings open up an exciting new avenue of research into the fundamental mechanisms by which inflammation impacts local cellular responses.
Collapse
Affiliation(s)
- Nadine Nagy
- From the Department of Medicine, Division of Infectious Diseases,
| | | | - Gernot Kaber
- From the Department of Medicine, Division of Infectious Diseases
| | - Pamela Y Johnson
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Michael J Kratochvil
- From the Department of Medicine, Division of Infectious Diseases.,the Department of Materials Science and Engineering
| | - Koshika Yadava
- From the Department of Medicine, Division of Infectious Diseases
| | - Wenting Zhao
- the Department of Materials Science and Engineering
| | - Yi Cui
- the Department of Materials Science and Engineering
| | | | - Justin P Annes
- the Department of Medicine, Division of Endocrinology, and
| | - Thomas N Wight
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Paul L Bollyky
- From the Department of Medicine, Division of Infectious Diseases
| | - Manish J Butte
- the Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Stanford University, Stanford, California 94305 and
| |
Collapse
|
88
|
Semeraro ML, Glenn LM, Morris MA. The Four-Way Stop Sign: Viruses, 12-Lipoxygenase, Islets, and Natural Killer Cells in Type 1 Diabetes Progression. Front Endocrinol (Lausanne) 2017; 8:246. [PMID: 28993759 PMCID: PMC5622285 DOI: 10.3389/fendo.2017.00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells represent an important effector arm against viral infection, and mounting evidence suggests that viral infection plays a role in the development of type 1 diabetes (T1D) in at least a portion of patients. NK cells recognize their target cells through a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand protects mice from STZ-induced diabetes, but differential expression non-diabetic and diabetic donor samples have not been tested. Additional studies have shown that peripheral blood NK cells from human T1D patients have altered phenotypes that reduce the lytic and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have indicated that the presence of NK cells may be beneficial despite their infrequent detection. In non-obese diabetic (NOD) mice, we have noted that NK cells express high levels of the proinflammatory mediator 12/15-lipoxygenase (12/15-LO), and decreased levels of stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are protected from diabetes development, express significantly higher levels of stimulatory receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 12-lipoxygenase (12-LO), related to mouse 12/15-LO] via Western blotting. Human 12-LO is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing islets, showing a link between 12-LO expression and diabetes progression. Therefore, our hypothesis is that NK cells in those susceptible to developing T1D are unable to function properly during viral infections of pancreatic beta cells due to increased 12-LO expression and activation, which contributes to increased interferon-gamma production and an imbalance in activating and inhibitory NK cell receptors, and may contribute to downstream autoimmune T cell responses. The work presented here outlines evidence from our lab, as well as published literature, supporting our hypothesis, including novel data.
Collapse
Affiliation(s)
- Michele L. Semeraro
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lindsey M. Glenn
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Margaret A. Morris
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
89
|
Paun A, Yau C, Danska JS. The Influence of the Microbiome on Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2017; 198:590-595. [PMID: 28069754 DOI: 10.4049/jimmunol.1601519] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 01/15/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of pancreatic β cells. The rapid rise in T1D incidence during the past 50 y suggests environmental factors contribute to the disease. The trillion symbiotic microorganisms inhabiting the mammalian gastrointestinal tract (i.e., the microbiota) influence numerous aspects of host physiology. In this study we review the evidence linking perturbations of the gut microbiome to pancreatic autoimmunity. We discuss data from rodent models demonstrating the essential role of the gut microbiota on the development and function of the host's mucosal and systemic immune systems. Furthermore, we review findings from human longitudinal cohort studies examining the influence of environmental and lifestyle factors on microbiota composition and pancreatic autoimmunity. Taken together, these data underscore the requirement for mechanistic studies to identify bacterial components and metabolites interacting with the innate and adaptive immune system, which would set the basis for preventative or therapeutic strategies in T1D.
Collapse
Affiliation(s)
- Alexandra Paun
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Christopher Yau
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Jayne S Danska
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
90
|
Is autoimmunity the Achilles' heel of cancer immunotherapy? Nat Med 2017; 23:540-547. [PMID: 28475571 DOI: 10.1038/nm.4321] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
The emergence of immuno-oncology as the first broadly successful strategy for metastatic cancer will require clinicians to integrate this new pillar of medicine with chemotherapy, radiation, and targeted small-molecule compounds. Of equal importance is gaining an understanding of the limitations and toxicities of immunotherapy. Immunotherapy was initially perceived to be a relatively less toxic approach to cancer treatment than other available therapies-and surely it is, when compared to those. However, as the use of immunotherapy becomes more common, especially as first- and second-line treatments, immunotoxicity and autoimmunity are emerging as the Achilles' heel of immunotherapy. In this Perspective, we discuss evidence that the occurrence of immunotoxicity bodes well for the patient, and describe mechanisms that might be related to the induction of autoimmunity. We then explore approaches to limit immunotoxicity, and discuss the future directions of research and reporting that are needed to diminish it.
Collapse
|
91
|
Kunkl M, Porciello N, Mastrogiovanni M, Capuano C, Lucantoni F, Moretti C, Persson JL, Galandrini R, Buzzetti R, Tuosto L. ISA-2011B, a Phosphatidylinositol 4-Phosphate 5-Kinase α Inhibitor, Impairs CD28-Dependent Costimulatory and Pro-inflammatory Signals in Human T Lymphocytes. Front Immunol 2017; 8:502. [PMID: 28491063 PMCID: PMC5405084 DOI: 10.3389/fimmu.2017.00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP2) is a membrane phospholipid that controls the activity of several proteins regulating cytoskeleton reorganization, cytokine gene expression, T cell survival, proliferation, and differentiation. Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are the main enzymes involved in PIP2 biosynthesis by phosphorylating phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring. In human T lymphocytes, we recently found that CD28 costimulatory molecule is pivotal for PIP2 turnover by recruiting and activating PIP5Kα. We also found that PIP5Kα is the main regulator of both CD28 costimulatory signals integrating those delivered by TCR as well as CD28 autonomous signals regulating the expression of pro-inflammatory genes. Given emerging studies linking alterations of PIP2 metabolism to immune-based diseases, PIP5Kα may represent a promising target to modulate immunity and inflammation. Herewith, we characterized a recently discovered inhibitor of PIP5Kα, ISA-2011B, for its inhibitory effects on T lymphocyte functions. We found that the inhibition of PIP5Kα lipid-kinase activity by ISA-2011B significantly impaired CD28 costimulatory signals necessary for TCR-mediated Ca2+ influx, NF-AT transcriptional activity, and IL-2 gene expression as well as CD28 autonomous signals regulating the activation of NF-κB and the transcription of pro-inflammatory cytokine and chemokine genes. Moreover, our data on the inhibitory effects of ISA-2011B on CD28-mediated upregulation of inflammatory cytokines related to Th17 cell phenotype in type 1 diabetes patients suggest ISA-2011B as a promising anti-inflammatory drug.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marta Mastrogiovanni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Chiara Moretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Laboratory Medicine, Clinical Research Center, Lund University, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
92
|
Bougnères P, Le Fur S, Isis-Diab collaborative group, Valtat S, Kamatani Y, Lathrop M, Valleron AJ. Using spatio-temporal surveillance data to test the infectious environment of children before type 1 diabetes diagnosis. PLoS One 2017; 12:e0170658. [PMID: 28152013 PMCID: PMC5289461 DOI: 10.1371/journal.pone.0170658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022] Open
Abstract
The "hygiene hypothesis" postulates that reduced exposure to infections favours the development of autoimmunity and childhood type 1 diabetes (T1D). But on the other side, viruses, notably enteroviruses, are suspected to trigger T1D. The assessment of the possible relationships between infections and T1D still defies the classical tools of epidemiology. We report the methods and results of a geographical approach that maps the addresses of patients to a communicable diseases surveillance database. We mapped the addresses of patients at birth, infancy and T1D diagnosis to the weekly estimates of the regional incidences of 5 frequent communicable diseases routinely collected since 1984 by the French Sentinel network. The pre-diagnostic infectious environment of 3548 patients with T1D diagnosed between 0.5 and 15 years was compared to those of 100 series of age-matched "virtual controls" drawn randomly on the map. Associations were classified as "suggestive" (summer diarrhea, SD, and varicella, V) when p< 0.05, or "significant" (influenza-like infections, ILI) when they passed the Bonferroni correction for FDR. Exposure to ILI and SD were associated with T1D risk, while V seemed protective. In the subset of 2521 patients for which we had genome wide data, we used a case-only approach to search for interactions between SNPs and the infectious environment as defined by the Sentinel database. Two SNPs, rs116624278 and rs77232854, showed significant interaction with exposure to V between 1 and 3 years of life. The infectious associations found should be taken as possible markers of patients' environment, not as direct causative factors of T1D. They require replication in other populations. The increasing public availability of geographical environmental databases will expand the present approach to map thousands of environmental factors to the lifeline of patients affected by various diseases.
Collapse
Affiliation(s)
- Pierre Bougnères
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
- Inserm U1169, Paris Sud University, Le Kremlin Bicêtre, France
- * E-mail:
| | - Sophie Le Fur
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
- Inserm U1169, Paris Sud University, Le Kremlin Bicêtre, France
| | | | - Sophie Valtat
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
| | - Yoichiro Kamatani
- Center for Integrative Medical Sciences, RIKEN, Laboratory for Statistical Analysis, Kanagawa, Japan
| | - Mark Lathrop
- Centre National de Génotypage, Evry, France, and Génome Québec Innovation Centre, McGill University, Montréal (Québec), Canada
| | | |
Collapse
|
93
|
Buzzetti R, Prudente S, Copetti M, Dauriz M, Zampetti S, Garofolo M, Penno G, Trischitta V. Clinical worthlessness of genetic prediction of common forms of diabetes mellitus and related chronic complications: A position statement of the Italian Society of Diabetology. Nutr Metab Cardiovasc Dis 2017; 27:99-114. [PMID: 28063875 DOI: 10.1016/j.numecd.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
AIM We are currently facing several attempts aimed at marketing genetic data for predicting multifactorial diseases, among which diabetes mellitus is one of the more prevalent. The present document primarily aims at providing to practicing physicians a summary of available data regarding the role of genetic information in predicting diabetes and its chronic complications. DATA SYNTHESIS Firstly, general information about characteristics and performance of risk prediction tools will be presented in order to help clinicians to get acquainted with basic methodological information related to the subject at issue. Then, as far as type 1 diabetes is concerned, available data indicate that genetic information and counseling may be useful only in families with many affected individuals. However, since no disease prevention is possible, the utility of predicting this form of diabetes is at question. In the case of type 2 diabetes, available data really question the utility of adding genetic information on top of well performing, easy available and inexpensive non-genetic markers. Finally, the possibility of using the few available genetic data on diabetic complications for improving our ability to predict them will also be presented and discussed. For cardiovascular complication, the addition of genetic information to models based on clinical features does not translate in a substantial improvement in risk discrimination. For all other diabetic complications genetic information are currently very poor and cannot, therefore, be used for improving risk stratification. CONCLUSIONS In all, nowadays the use of genetic testing for predicting diabetes and its chronic complications is definitively of little value in clinical practice.
Collapse
Affiliation(s)
- R Buzzetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - S Prudente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona School of Medicine and Hospital Trust of Verona, Verona, Italy
| | - S Zampetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - M Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - G Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - V Trischitta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Research Unit of Diabetes and Endocrine Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
94
|
Scott FW, Pound LD, Patrick C, Eberhard CE, Crookshank JA. Where genes meet environment-integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179:183-198. [PMID: 27677687 DOI: 10.1016/j.trsl.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
The rise in new cases of type 1 diabetes (T1D) in genetically susceptible individuals over the past half century has been attributed to numerous environmental "triggers" or promoters such as enteroviruses, diet, and most recently, gut bacteria. No single cause has been identified in humans, likely because there are several pathways by which one can develop T1D. There is renewed attention to the role of the gut and its immune system in T1D pathogenesis based largely on recent animal studies demonstrating that altering the gut microbiota affects diabetes incidence. Although T1D patients display dysbiosis in the gut microbiome, it is unclear whether this is cause or effect. The heart of this question involves several moving parts including numerous risk genes, diet, viruses, gut microbiota, timing, and loss of immune tolerance to β-cells. Most clinical trials have addressed only one aspect of this puzzle using some form of immune suppression, without much success. The key location where our genes meet and deal with the environment is the gastrointestinal tract. The influence of all of its major contents, including microbes, diet, and immune system, must be understood as part of the integrative biology of T1D before we can develop durable means of preventing, treating, or curing this disease. In the present review, we expand our previous gut-centric model based on recent developments in the field.
Collapse
Affiliation(s)
- Fraser W Scott
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | - Lynley D Pound
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christopher Patrick
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
95
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
96
|
Evia-Viscarra ML, Guardado-Mendoza R, Rodea-Montero ER. Clinical and Metabolic Characteristics among Mexican Children with Different Types of Diabetes Mellitus. PLoS One 2016; 11:e0168377. [PMID: 27992493 PMCID: PMC5161364 DOI: 10.1371/journal.pone.0168377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current classification of diabetes mellitus (DM) is based on etiology and includes type 1 (T1DM), type 2 (T2DM), gestational, and other. Clinical and pathophysiological characteristics of T1DM and T2DM in the same patient have been designated as type 1.5 DM (T1.5DM). OBJECTIVES The aim of this study was to classify pediatric patients with DM based on pancreatic autoimmunity and the presence or absence of overweight/obesity, and to compare the clinical, anthropometric, and biochemical characteristics between children in the different classes of DM. METHODS A sample of 185 patients, recruited (March 2008-April 2015) as part of the Cohort of Mexican Children with DM (CMC-DM); ClinicalTrials.gov, identifier: NCT02722655. The DM classification was made considering pancreatic autoimmunity (via antibodies GAD-65, IAA, and AICA) and the presence or absence of overweight/obesity. Clinical, anthropometric and biochemical variables, grouped by type of DM were compared (Kruskal-Wallis or chi-squared test). RESULTS The final analysis included 140 children; 18.57% T1ADM, 46.43% T1BDM, 12.14% T1.5DM, and 22.86% T2DM. Fasting C-Peptide (FCP), and hs-CRP levels were higher in T1.5DM and T2DM, and the greatest levels were observed in T1.5DM (p<0.001 and 0.024 respectively). CONCLUSIONS We clearly identified that the etiologic mechanisms of T1DM and T2DM are not mutually exclusive, and we detailed why FCP levels are not critical for the classification system of DM in children. The findings of this study suggest that T1.5DM should be considered during the classification of pediatric DM and might facilitate more tailored approaches to treatment, clinical care and follow-up.
Collapse
Affiliation(s)
- María Lola Evia-Viscarra
- Department of Pediatric Endocrinology, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, México
| | - Rodolfo Guardado-Mendoza
- Department of Research, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, México
| | | |
Collapse
|
97
|
Unnikrishnan R, Shah VN, Mohan V. Challenges in diagnosis and management of diabetes in the young. Clin Diabetes Endocrinol 2016; 2:18. [PMID: 28702252 PMCID: PMC5471766 DOI: 10.1186/s40842-016-0036-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023] Open
Abstract
The prevalence of diabetes in children and adolescents is increasing worldwide, with profound implications on the long-term health of individuals, societies, and nations. The diagnosis and management of diabetes in youth presents several unique challenges. Although type 1 diabetes is more common among children and adolescents, the incidence of type 2 diabetes in youth is also on the rise, particularly among certain ethnic groups. In addition, less common types of diabetes such as monogenic diabetes syndromes and diabetes secondary to pancreatopathy (in some parts of the world) need to be accurately identified to initiate the most appropriate treatment. A detailed patient history and physical examination usually provides clues to the diagnosis. However, specific laboratory and imaging tests are needed to confirm the diagnosis. The management of diabetes in children and adolescents is challenging in some cases due to age-specific issues and the more aggressive nature of the disease. Nonetheless, a patient-centered approach focusing on comprehensive risk factor reduction with the involvement of all concerned stakeholders (the patient, parents, peers and teachers) could help in ensuring the best possible level of diabetes control and prevention or delay of long-term complications.
Collapse
Affiliation(s)
- Ranjit Unnikrishnan
- Madras Diabetes Research Foundation & Dr Mohan’s Diabetes Specialties Centre, Who Collaborating Centre for Non-Communicable Diseases Prevention and Control, 4, Conran Smith Road, Gopalapuram, Chennai, 600 086 India
| | - Viral N. Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Campus, Aurora, CO USA
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation & Dr Mohan’s Diabetes Specialties Centre, Who Collaborating Centre for Non-Communicable Diseases Prevention and Control, 4, Conran Smith Road, Gopalapuram, Chennai, 600 086 India
| |
Collapse
|
98
|
miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A 2016; 113:E6659-E6668. [PMID: 27791035 DOI: 10.1073/pnas.1606646113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant immune activation mediated by T effector cell populations is pivotal in the onset of autoimmunity in type 1 diabetes (T1D). T follicular helper (TFH) cells are essential in the induction of high-affinity antibodies, and their precursor memory compartment circulates in the blood. The role of TFH precursors in the onset of islet autoimmunity and signaling pathways regulating their differentiation is incompletely understood. Here, we provide direct evidence that during onset of islet autoimmunity, the insulin-specific target T-cell population is enriched with a C-X-C chemokine receptor type 5 (CXCR5)+CD4+ TFH precursor phenotype. During onset of islet autoimmunity, the frequency of TFH precursors was controlled by high expression of microRNA92a (miRNA92a). miRNA92a-mediated TFH precursor induction was regulated by phosphatase and tension homolog (PTEN) - phosphoinositol-3-kinase (PI3K) signaling involving PTEN and forkhead box protein O1 (Foxo1), supporting autoantibody generation and triggering the onset of islet autoimmunity. Moreover, we identify Krueppel-like factor 2 (KLF2) as a target of miRNA92a in regulating human TFH precursor induction. Importantly, a miRNA92a antagomir completely blocked induction of human TFH precursors in vitro. More importantly, in vivo application of a miRNA92a antagomir to nonobese diabetic (NOD) mice with ongoing islet autoimmunity resulted in a significant reduction of TFH precursors in peripheral blood and pancreatic lymph nodes. Moreover, miRNA92a antagomir application reduced immune infiltration and activation in pancreata of NOD mice as well as humanized NOD Scid IL2 receptor gamma chain knockout (NSG) human leucocyte antigen (HLA)-DQ8 transgenic animals. We therefore propose that miRNA92a and the PTEN-PI3K-KLF2 signaling network could function as targets for innovative precision medicines to reduce T1D islet autoimmunity.
Collapse
|
99
|
Endesfelder D, Hagen M, Winkler C, Haupt F, Zillmer S, Knopff A, Bonifacio E, Ziegler AG, Zu Castell W, Achenbach P. A novel approach for the analysis of longitudinal profiles reveals delayed progression to type 1 diabetes in a subgroup of multiple-islet-autoantibody-positive children. Diabetologia 2016; 59:2172-80. [PMID: 27400691 DOI: 10.1007/s00125-016-4050-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Progression to type 1 diabetes in children and adolescents is not uniform. Based on individual genetic background and environment, islet autoimmunity may develop at variable age, exhibit different autoantibody profiles and progress to clinical diabetes at variable rates. Here, we aimed to quantify the qualitative dynamics of sequential islet autoantibody profiles in order to identify longitudinal patterns that stratify progression rates to type 1 diabetes in multiple-autoantibody-positive children. METHODS Qualitative changes in antibody status on follow-up and progression rate to diabetes were analysed in 88 children followed from birth in the prospective BABYDIAB study who developed multiple autoantibodies against insulin (IAA), GAD (GADA), insulinoma-associated antigen-2 (IA-2A) and/or zinc transporter 8 (ZnT8A). An algorithm was developed to define similarities in sequential autoantibody profiles and hierarchical clustering was performed to group children with similar profiles. RESULTS We defined nine clusters that distinguished children with respect to their sequential profiles of IAA, GADA, IA-2A and ZnT8A. Progression from first autoantibody appearance to clinical diabetes between clusters ranged from 6% (95% CI [0, 16.4]) to 73% (28.4, 89.6) within 5 years. Delayed progression was observed in children who were positive for only two autoantibodies, and for a cluster of 12 children who developed three or four autoantibodies but were IAA-negative in their last samples, nine of whom lost IAA positivity during follow-up. Among all children who first seroconverted to IAA positivity and developed at least two other autoantibodies (n = 57), the 10 year risk of diabetes was 23% (0, 42.9) in those who became IAA-negative during follow-up compared with 76% (58.7, 85.6) in those who remained IAA-positive (p = 0.004). CONCLUSIONS/INTERPRETATION The novel clustering approach provides a tool for stratification of islet autoantibody-positive individuals that has prognostic relevance, and new opportunities in elucidating disease mechanisms. Our data suggest that losing IAA reactivity is associated with delayed progression to type 1 diabetes in multiple-islet-autoantibody-positive children.
Collapse
Affiliation(s)
- David Endesfelder
- Scientific Computing Research Unit, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Michael Hagen
- Scientific Computing Research Unit, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Florian Haupt
- Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Zillmer
- Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Knopff
- Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Ezio Bonifacio
- Forschergruppe Diabetes e.V., Neuherberg, Germany
- DFG Research Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Technische Universität Dresden, Dresden, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Wolfgang Zu Castell
- Scientific Computing Research Unit, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Department of Mathematics, Technische Universität München, München, Germany.
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Forschergruppe Diabetes e.V., Neuherberg, Germany.
| |
Collapse
|
100
|
Zhang L, Lanzoni G, Battarra M, Inverardi L, Zhang Q. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection. J Proteomics 2016; 150:149-159. [PMID: 27620696 DOI: 10.1016/j.jprot.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/20/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
The etiology of Type 1 Diabetes (T1D) remains elusive. Enzymatically isolated and cultured (EIC) islets cannot fully reflect the natural protein composition and disease process of in vivo islets, because of the stress from isolation procedures. In order to study islet protein composition in conditions close to the natural environment, we performed proteomic analysis of EIC islets, and laser capture microdissected (LCM) human islets and acinar tissue from fresh-frozen pancreas sections of three cadaveric donors. 1104 and 706 proteins were identified from 6 islets equivalents (IEQ) of LCM islets and acinar tissue, respectively. The proteomic profiles of LCM islets were reproducible within and among cadaveric donors. The endocrine hormones were only detected in LCM islets, whereas catalytic enzymes were significantly enriched in acinar tissue. Furthermore, high overlap (984 proteins) and similar function distribution were found between LCM and EIC islets proteomes, except that EIC islets had more acinar contaminants and stress-related signal transducer activity proteins. The comparison among LCM islets, LCM acinar tissue and EIC islets proteomes indicates that LCM combined with proteomic methods enables accurate and unbiased profiling of islet proteome from frozen pancreata. This paves the way for proteomic studies on human islets during the progression of T1D. SIGNIFICANCE The etiological agent triggering autoimmunity against beta cells in Type 1 diabetes (T1D) remains obscure. The in vitro models available (enzymatically isolated and cultured islets, EIC islets) do not accurately reflect what happens in vivo due to lack of the natural environment where islets exist and the preparation-induced changes in cell physiology. The importance of this study is that we investigated the feasibility of laser capture microdissection (LCM) for the isolation of intact islets from frozen cadaveric pancreatic tissue sections. We compared the protein profile of LCM islets (9 replicates from 3 cadaveric donors) with that of both LCM acinar tissues (6 replicates from the same 3 cadaveric donor as LCM islets) and EIC islets (at least 4 replicates for each sample with the same islets equivalents) by using proteomics techniques with advanced instrumentation, nanoLC-Q Exactive HF Orbitrap mass spectrometry (nano LC-MS/MS). The results demonstrate that the LCM method is reliable in isolating islets with an intact environment. LCM-based islet proteomics is a feasible approach to obtain good proteome coverage for assessing the pathology of T1D using cadaveric pancreatic samples, even from very small sample amounts. Future applications of this LCM-based proteomic method may help us understand the pathogenesis of T1D and identify potential biomarkers for T1D diagnosis at an early stage.
Collapse
Affiliation(s)
- Lina Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Matteo Battarra
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|