51
|
Rab GTPases: Switching to Human Diseases. Cells 2019; 8:cells8080909. [PMID: 31426400 PMCID: PMC6721686 DOI: 10.3390/cells8080909] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.
Collapse
|
52
|
Taguchi T, Mukai K. Innate immunity signalling and membrane trafficking. Curr Opin Cell Biol 2019; 59:1-7. [DOI: 10.1016/j.ceb.2019.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
|
53
|
Miyake K, Saitoh S, Sato R, Shibata T, Fukui R, Murakami Y. Endolysosomal compartments as platforms for orchestrating innate immune and metabolic sensors. J Leukoc Biol 2019; 106:853-862. [DOI: 10.1002/jlb.mr0119-020r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Shin‐ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Yusuke Murakami
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| |
Collapse
|
54
|
Phagocytosis of live and dead Escherichia coli and Staphylococcus aureus in human whole blood is markedly reduced by combined inhibition of C5aR1 and CD14. Mol Immunol 2019; 112:131-139. [PMID: 31102985 DOI: 10.1016/j.molimm.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sepsis is a dysregulated host response to infection. The aim of this study was to investigate the effects of complement- and CD14 inhibition on phagocytosis of live and dead Gram-negative and Gram-positive bacteria in human whole blood. METHODS Lepirudin-anticoagulated blood was incubated with live or dead E. coli or S. aureus at 37 °C for 120 min with or without the C5aR1 antagonist PMX53 and/or anti-CD14. Granulocyte and monocyte phagocytosis were measured by flow cytometry, and five plasma cytokines by multiplex, yielding a total of 28 mediators of inflammation tested for. RESULTS 16/28 conditions were reduced by PMX53, 7/28 by anti-CD14, and 24/28 by combined PMX53 and CD14 inhibition. The effect of complement inhibition was quantitatively more pronounced, in particular for the responses to S. aureus. The effect of anti-CD14 was modest, except for a marked reduction in INF-β. The responses to live and dead S. aureus were equally inhibited, whereas the responses to live E. coli were inhibited less than those to dead E. coli. CONCLUSION C5aR1 inhibited phagocytosis-induced inflammation by live and dead E. coli and S. aureus. CD14 blockade potentiated the effect of C5aR1 blockade, thus attenuating inflammation.
Collapse
|
55
|
The Small GTPase Arf6: An Overview of Its Mechanisms of Action and of Its Role in Host⁻Pathogen Interactions and Innate Immunity. Int J Mol Sci 2019; 20:ijms20092209. [PMID: 31060328 PMCID: PMC6539230 DOI: 10.3390/ijms20092209] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
The small GTase Arf6 has several important functions in intracellular vesicular trafficking and regulates the recycling of different types of cargo internalized via clathrin-dependent or -independent endocytosis. It activates the lipid modifying enzymes PIP 5-kinase and phospholipase D, promotes actin polymerization, and affects several functionally distinct processes in the cell. Arf6 is used for the phagocytosis of pathogens and can be directly or indirectly targeted by various pathogens to block phagocytosis or induce the uptake of intracellular pathogens. Arf6 is also used in the signaling of Toll-like receptors and in the activation of NADPH oxidases. In this review, we first give an overview of the different roles and mechanisms of action of Arf6 and then focus on its role in innate immunity and host–pathogen interactions.
Collapse
|
56
|
Koike S, Yamasaki K, Yamauchi T, Shimada-Omori R, Tsuchiyama K, Aiba S. Toll-like receptor 2 utilizes RAB11A for melanosome transfer from melanocytes to keratinocytes. J Dermatol Sci 2019; 94:310-312. [PMID: 31079998 DOI: 10.1016/j.jdermsci.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022]
Affiliation(s)
- Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryoko Shimada-Omori
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kenichiro Tsuchiyama
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
57
|
Skjesol A, Yurchenko M, Bösl K, Gravastrand C, Nilsen KE, Grøvdal LM, Agliano F, Patane F, Lentini G, Kim H, Teti G, Kumar Sharma A, Kandasamy RK, Sporsheim B, Starheim KK, Golenbock DT, Stenmark H, McCaffrey M, Espevik T, Husebye H. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog 2019; 15:e1007684. [PMID: 30883606 PMCID: PMC6438586 DOI: 10.1371/journal.ppat.1007684] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/28/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phagocytosis is a complex process that eliminates microbes and is performed by specialised cells such as macrophages. Toll-like receptor 4 (TLR4) is expressed on the surface of macrophages and recognizes Gram-negative bacteria. Moreover, TLR4 has been suggested to play a role in the phagocytosis of Gram-negative bacteria, but the mechanisms remain unclear. Here we have used primary human macrophages and engineered THP-1 monocytes to show that the TLR4 sorting adapter, TRAM, is instrumental for phagocytosis of Escherichia coli as well as Staphylococcus aureus. We find that TRAM forms a complex with Rab11 family interacting protein 2 (FIP2) that is recruited to the phagocytic cups of E. coli. This promotes activation of the actin-regulatory GTPases Rac1 and Cdc42. Our results show that FIP2 guided TRAM recruitment orchestrates actin remodelling and IRF3 activation, two events that are both required for phagocytosis of Gram-negative bacteria. The Gram-negative bacteria E. coli is the most common cause of severe human pathological conditions like sepsis. Sepsis is a clinical syndrome defined by pathological changes due to systemic inflammation, resulting in paralysis of adaptive T-cell immunity with IFN-β as a critical factor. TLR4 is a key sensing receptor of lipopolysaccharide on Gram-negative bacteria. Inflammatory signalling by TLR4 is initiated by the use of alternative pair of TIR-adapters, MAL-MyD88 or TRAM-TRIF. MAL-MyD88 signaling occurs mainly from the plasma membrane giving pro-inflammatory cytokines like TNF, while TRAM-TRIF signaling occurs from vacuoles like endosomes and phagosomes to give type I interferons like IFN-β. It has previously been shown that TLR4 can control phagocytosis and phagosomal maturation through MAL-MyD88 in mice, however, these data have been disputed and published before the role of TRAM was defined in the induction of IFN-β. A role for TRAM or TRIF in phagocytosis has not previously been reported. Here we describe a novel mechanism where TRAM and its binding partner Rab11-FIP2 control phagocytosis of E. coli and regulate IRF3 dependent production of IFN-β. The significance of these results is that we define Rab11-FIP2 as a potential target for modulation of TLR4-dependent signalling in different pathological states.
Collapse
Affiliation(s)
- Astrid Skjesol
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caroline Gravastrand
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kaja Elisabeth Nilsen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene Melsæther Grøvdal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federica Agliano
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Patane
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Germana Lentini
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hera Kim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Aditya Kumar Sharma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian K. Starheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Douglas T. Golenbock
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Harald Stenmark
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo Norway
| | - Mary McCaffrey
- Molecular Cell Biology Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
- * E-mail:
| |
Collapse
|
58
|
Kinoshita D, Sakurai C, Morita M, Tsunematsu M, Hori N, Hatsuzawa K. Syntaxin 11 regulates the stimulus-dependent transport of Toll-like receptor 4 to the plasma membrane by cooperating with SNAP-23 in macrophages. Mol Biol Cell 2019; 30:1085-1097. [PMID: 30811271 PMCID: PMC6724512 DOI: 10.1091/mbc.e18-10-0653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syntaxin 11 (stx11) is a soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) that is selectively expressed in immune cells; however, its precise role in macrophages is unclear. We showed that stx11 knockdown reduces the phagocytosis of Escherichia coli in interferon-γ–activated macrophages. stx11 knockdown decreased Toll-like receptor 4 (TLR4) localization on the plasma membrane without affecting total expression. Plasma membrane–localized TLR4 was primarily endocytosed within 1 h by lipopolysaccharide (LPS) stimulation and gradually relocalized 4 h after removal of LPS. This relocalization was significantly impaired by stx11 knockdown. The lack of TLR4 transport to the plasma membrane is presumably related to TLR4 degradation in acidic endosomal organelles. Additionally, an immunoprecipitation experiment suggested that stx11 interacts with SNAP-23, a plasma membrane–localized SNARE protein, whose depletion also inhibits TLR4 replenishment in LPS-stimulated cells. Using an intramolecular Förster resonance energy transfer (FRET) probe for SNAP-23, we showed that the high FRET efficiency caused by LPS stimulation is reduced by stx11 knockdown. These findings suggest that stx11 regulates the stimulus-dependent transport of TLR4 to the plasma membrane by cooperating with SNAP-23 in macrophages. Our results clarify the regulatory mechanisms underlying intracellular transport of TLR4 and have implications for microbial pathogenesis and immune responses.
Collapse
Affiliation(s)
- Daiki Kinoshita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Chiye Sakurai
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Maya Morita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Masashi Tsunematsu
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Naohiro Hori
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
59
|
Zhang Y, Wang L, Lv Y, Jiang C, Wu G, Dull RO, Minshall RD, Malik AB, Hu G. The GTPase Rab1 Is Required for NLRP3 Inflammasome Activation and Inflammatory Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:194-206. [PMID: 30455398 PMCID: PMC6345506 DOI: 10.4049/jimmunol.1800777] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Uncontrolled inflammatory response during sepsis predominantly contributes to the development of multiorgan failure and lethality. However, the cellular and molecular mechanisms for excessive production and release of proinflammatory cytokines are not clearly defined. In this study, we show the crucial role of the GTPase Ras-related protein in brain (Rab)1a in regulating the nucleotide binding domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and lung inflammatory injury. Expression of dominant negative Rab1 N124I plasmid in bone marrow-derived macrophages prevented the release of IL-1β and IL-18, NLRP3 inflammasome activation, production of pro-IL-1β and pro-IL-18, and attenuated TLR4 surface expression and NF-кB activation induced by bacterial LPS and ATP compared with control cells. In alveolar macrophage-depleted mice challenged with cecal ligation and puncture, pulmonary transplantation of Rab1a-inactivated macrophages by expression of Rab1 N124I plasmid dramatically reduced the release of IL-1β and IL-18, neutrophil count in bronchoalveolar lavage fluid, and inflammatory lung injury. Rab1a activity was elevated in alveolar macrophages from septic patients and positively associated with severity of sepsis and respiratory dysfunction. Thus, inhibition of Rab1a activity in macrophages resulting in the suppression of NLRP3 inflammasome activation may be a promising target for the treatment of patients with sepsis.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Lijun Wang
- Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Yang Lv
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chunling Jiang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612;
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221008, China
| |
Collapse
|
60
|
Park O, Choi ES, Yu G, Kim JY, Kang YY, Jung H, Mok H. Efficient Delivery of Tyrosinase Related Protein-2 (TRP2) Peptides to Lymph Nodes using Serum-Derived Exosomes. Macromol Biosci 2018; 18:e1800301. [PMID: 30407735 DOI: 10.1002/mabi.201800301] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Exosomes (EXO) are considered to be versatile carriers for biomolecules; however, the delivery of therapeutic peptides using EXOs poses several challenges. In this study, the efficiency of serum-derived EXOs in delivering tyrosinase-related protein-2 (TRP2) peptides to lymph nodes is determined. TRP2 peptides are successfully incorporated into EXOs, which show a uniform and narrow size distribution of around 45 nm. The TRP2-incorporated exosomes (EXO-TRP2) are efficiently internalized into macrophages and dendritic cells, and are seen to display a punctate distribution. EXOs loaded with TRP2 together with MPLA, (EXO-MPLA-TRP2) result in a strong release of proinflammatory cytokines (TNF-α and IL-6) from both RAW264.7 and DC2.4 cells. Finally, subcutaneous injection of fluorescently labeled EXO-TRP2 followed by ex vivo imaging using in vivo imaging system (IVIS) show a strong fluorescent signal in the lymph nodes after only 1 h, which is maintained until at least 4 h after injection. Taken together, the findings suggest that serum-derived EXOs can serve as promising carriers to deliver therapeutic peptides to lymph nodes for immunotherapy.
Collapse
Affiliation(s)
- Ok Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun Seo Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeonghui Yu
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jun Yeong Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
61
|
Perkins DJ, Richard K, Hansen AM, Lai W, Nallar S, Koller B, Vogel SN. Autocrine-paracrine prostaglandin E 2 signaling restricts TLR4 internalization and TRIF signaling. Nat Immunol 2018; 19:1309-1318. [PMID: 30397349 PMCID: PMC6240378 DOI: 10.1038/s41590-018-0243-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal transduction cascades: a Mal (TIRAP)–MyD88-dependent signal from the cell surface that regulates proinflammatory cytokines and a TRAM–TRIF-dependent signal from endosomes that drives type I interferon production. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine-paracrine prostaglandin E2 (PGE2), and the PGE2 receptor, EP4, which restricted TRIF-dependent signals and IFN-β induction through regulation of TLR4 trafficking. Inhibition of PGE2 production or EP4 antagonism increased the rate of TLR4 endosomal translocation, and amplified TRIF-dependent IRF3 and caspase 8 activation. This PGE2-driven mechanism restricted TLR4-TRIF signaling in vitro upon infection of macrophages by Gram-negative pathogens Escherichia coli and Citrobacter rodentium and protected mice against Salmonella enteritidis serovar Typhimurium (ST)-induced mortality. Thus, PGE2 restricts TLR4-TRIF signaling specifically in response to lipopolysaccharide.
Collapse
Affiliation(s)
- Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Beverly Koller
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
62
|
Chai M, Su L, Hao X, Zhang M, Zheng L, Bi J, Han X, Yu B. Identification of genes and signaling pathways associated with arthrogryposis‑renal dysfunction‑cholestasis syndrome using weighted correlation network analysis. Int J Mol Med 2018; 42:2238-2246. [PMID: 30015832 DOI: 10.3892/ijmm.2018.3768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to identify the molecular basis of the arthrogryposis‑renal dysfunction‑cholestasis (ARC) syndrome, which is caused by mutations in the vacuolar protein sorting 33 homolog B (VPS33B) gene. The microarray dataset GSE83192, which contained six liver tissue samples from VPS33B knockout mice and four liver tissue samples from control mice, was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were screened by the Limma package in R software. The DEGs most relevant to ARC were selected via weighted gene co‑expression network analysis to construct a protein‑protein interaction (PPI) network. In addition, module analysis was performed for the PPI network using the Molecular Complex Detection function. Functional and pathway enrichment analyses were also performed for DEGs in the PPI network. Potential drugs for ARC treatment were predicted using the Connectivity Map database. In total, 768 upregulated and 379 downregulated DEGs were detected in the VPS33B knockout mice, while three modules were identified from the PPI network constructed. The DEGs in module 1 (CD83, IL1B and TLR2) were mainly involved in the positive regulation of cytokine production and the Toll‑like receptor (TLR) signaling pathway. The DEGs in module 2 (COL1A1 and COL1A2) were significantly enriched with respect to cellular component organization, extracellular matrix‑receptor interactions and focal adhesion. The DEGs in module 3 (ABCG8 and ABCG3) were clearly associated with sterol absorption and transport. Furthermore, mercaptopurine was identified to be a potential drug (connectivity score=‑0.939) for ARC treatment. In conclusion, the results of the current study may help to further understand the pathology of ARC, and the DEGs identified in these modules may serve as therapeutic targets.
Collapse
Affiliation(s)
- Miao Chai
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Liju Su
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiaolei Hao
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Meng Zhang
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Lihui Zheng
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Jiabing Bi
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiao Han
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Bohai Yu
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
63
|
Brennan K, O'Leary BD, Mc Laughlin D, Breen EP, Connolly E, Ali N, O'Driscoll DN, Ozaki E, Mahony R, Mulfaul K, Ryan AM, Ni Chianain A, McHugh A, Molloy EJ, Hogan AE, Paran S, McAuliffe FM, Doyle SL. Type 1 IFN Induction by Cytosolic Nucleic Acid Is Intact in Neonatal Mononuclear Cells, Contrasting Starkly with Neonatal Hyporesponsiveness to TLR Ligation Due to Independence from Endosome-Mediated IRF3 Activation. THE JOURNAL OF IMMUNOLOGY 2018; 201:1131-1143. [PMID: 29980613 DOI: 10.4049/jimmunol.1700956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 06/10/2018] [Indexed: 12/25/2022]
Abstract
Two million infants die each year from infectious diseases before they reach 12 mo; many of these diseases are vaccine preventable in older populations. Pattern recognition receptors represent the critical front-line defense against pathogens. Evidence suggests that the innate immune system does not fully develop until puberty, contributing to impaired response to infection and impaired vaccine responses in neonates, infants, and children. The activity of the pattern recognition receptor family of cytosolic nucleic acid (CNA) sensors in this pediatric population has not been reported. We show that in direct contrast to weak TLR-induced type I IFN in human cord blood mononuclear cells, cord blood mononuclear cells are capable of initiating a potent response to CNA, inducing both antiviral type I IFN and, unexpectedly, proinflammatory TNF-α. A deficiency in Rab11-GTPase endosome formation and consequent lack of IRF3 activation in neonatal monocytes is at least in part responsible for the marked disparity in TLR-induced IFN production between neonatal and adult monocytes. CNA receptors do not rely on endosome formation, and therefore, these responses remain intact in neonates. Heightened neonatal responses to CNA challenge are maintained in children up to 2 y of age and, in marked contrast to TLR4/9 agonists, result in IL-12p70 and IFN-γ generation. CNA sensors induce robust antiviral and proinflammatory pathways in neonates and children and possess great potential for use as immunostimulants or vaccine adjuvants for targeted neonatal and pediatric populations to promote cell-mediated immunity against invasive infectious disease.
Collapse
Affiliation(s)
- Kiva Brennan
- National Children's Research Centre, Crumlin, Dublin 12, Ireland.,School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | - Danielle Mc Laughlin
- Department of Paediatric Surgery, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Eamon P Breen
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Emma Connolly
- National Children's Research Centre, Crumlin, Dublin 12, Ireland.,School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Nusrat Ali
- National Maternity Hospital, Dublin 2, Ireland
| | | | - Ema Ozaki
- National Children's Research Centre, Crumlin, Dublin 12, Ireland.,School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Rebecca Mahony
- National Children's Research Centre, Crumlin, Dublin 12, Ireland.,School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Kelly Mulfaul
- National Children's Research Centre, Crumlin, Dublin 12, Ireland.,School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife M Ryan
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| | | | | | - Eleanor J Molloy
- National Children's Research Centre, Crumlin, Dublin 12, Ireland.,School of Medicine, Trinity College Dublin, Dublin 2, Ireland.,Women and Infants University Hospital, Dublin 8, Ireland
| | - Andrew E Hogan
- National Children's Research Centre, Crumlin, Dublin 12, Ireland.,Education and Research Centre and Conway Institute, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland; and
| | - Sri Paran
- Department of Paediatric Surgery, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Fionnuala M McAuliffe
- National Maternity Hospital, Dublin 2, Ireland.,Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Sarah L Doyle
- National Children's Research Centre, Crumlin, Dublin 12, Ireland; .,School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
64
|
Takahama M, Fukuda M, Ohbayashi N, Kozaki T, Misawa T, Okamoto T, Matsuura Y, Akira S, Saitoh T. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses. Cell Rep 2018; 20:2944-2954. [PMID: 28930687 DOI: 10.1016/j.celrep.2017.08.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/19/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.
Collapse
Affiliation(s)
- Michihiro Takahama
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Tatsuya Kozaki
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takuma Misawa
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
65
|
Abstract
In humans and other mammals, recognition of endotoxins—abundant surface lipopolysaccharides (LPS) of Gram-negative bacteria—provides a potent stimulus for induction of inflammation and mobilization of host defenses. The structurally unique lipid A region of LPS is the principal determinant of this pro-inflammatory activity. This region of LPS is normally buried within the bacterial outer membrane and aggregates of purified LPS, making even more remarkable its picomolar potency and the ability of discrete variations in lipid A structure to markedly alter the pro-inflammatory activity of LPS. Two recognition systems—MD-2/TLR4 and “LPS-sensing” cytosolic caspases—together confer LPS responsiveness at the host cell surface, within endosomes, and at sites physically accessible to the cytosol. Understanding how the lipid A of LPS is delivered and recognized at these diverse sites is crucial to understanding how the magnitude and character of the inflammatory responses are regulated.
Collapse
Affiliation(s)
- Jerrold Weiss
- Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Jason Barker
- Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
66
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
67
|
Yurchenko M, Skjesol A, Ryan L, Richard GM, Kandasamy RK, Wang N, Terhorst C, Husebye H, Espevik T. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol 2018; 217:1411-1429. [PMID: 29440514 PMCID: PMC5881497 DOI: 10.1083/jcb.201707027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Yurchenko et al. discover that the Ig-like receptor molecule SLAMF1 enhances production of type I interferon induced by Gram-negative bacteria through modulation of MyD88-independent TLR4 signaling. This makes SLAMF1 a potential target for controlling inflammatory responses against Gram-negative bacteria. Signaling lymphocytic activation molecule family 1 (SLAMF1) is an Ig-like receptor and a costimulatory molecule that initiates signal transduction networks in a variety of immune cells. In this study, we report that SLAMF1 is required for Toll-like receptor 4 (TLR4)-mediated induction of interferon β (IFNβ) and for killing of Gram-negative bacteria by human macrophages. We found that SLAMF1 controls trafficking of the Toll receptor–associated molecule (TRAM) from the endocytic recycling compartment (ERC) to Escherichia coli phagosomes. In resting macrophages, SLAMF1 is localized to ERC, but upon addition of E. coli, it is trafficked together with TRAM from ERC to E. coli phagosomes in a Rab11-dependent manner. We found that endogenous SLAMF1 protein interacted with TRAM and defined key interaction domains as amino acids 68 to 95 of TRAM as well as 15 C-terminal amino acids of SLAMF1. Interestingly, the SLAMF1–TRAM interaction was observed for human but not mouse proteins. Overall, our observations suggest that SLAMF1 is a new target for modulation of TLR4–TRAM–TRIF inflammatory signaling in human cells.
Collapse
Affiliation(s)
- Maria Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway .,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Astrid Skjesol
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gabriel Mary Richard
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard Kumaran Kandasamy
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| |
Collapse
|
68
|
Yu G, Jung H, Kang YY, Mok H. Comparative evaluation of cell- and serum-derived exosomes to deliver immune stimulators to lymph nodes. Biomaterials 2018; 162:71-81. [PMID: 29438882 DOI: 10.1016/j.biomaterials.2018.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022]
Abstract
To determine whether exosomes are efficient carriers for immune stimulating molecules into lymph nodes, comparative studies of exosomes (EXOs) derived from different origins (cells and serums) in terms of physicochemical properties and delivery efficiency were performed. Serum-derived EXOs were of a preferable size and generated higher yields than RAW264.7 cell-derived exosomes (RAW-EXO). In particular, fetal bovine serum-derived exosomes (bo-EXO), with a size below 50 nm, were delivered not only to surface zones (subcapsular sinus (SCS) macrophage zone) but also to inner paracortex zones (T cell zone) of lymph nodes, which allowed an efficient delivery of immune stimulating molecules to antigen presenting cells and T cells. The encapsulation of immune stimulating biomolecules (monophosphoryl lipid A (MPLA) and CpG oligodeoxynucleotides (CpG ODN)) within EXOs greatly increased intracellular delivery to macrophages via phagocytic pathways, which induced higher TNF-α and IL-6 secretion than free MPLA and free CpG ODN. MPLA-incorporated exosomes activated and differentiated T cells after subcutaneous injection, which elevated cytokine IFN-γ and TNF-α induction for CD3+ T cells. Taken together, bo-EXOs might serve as efficient carrier systems of immune stimulators to lymph nodes for desired immune responses.
Collapse
Affiliation(s)
- Gyeonghui Yu
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
69
|
Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. Microbiol Spectr 2018; 3. [PMID: 27337278 DOI: 10.1128/microbiolspec.vmbf-0003-2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of intracellular pathogens to subvert the host response, to facilitate invasion and subsequent infection, is the hallmark of microbial pathogenesis. Bacterial pathogens produce and secrete a variety of effector proteins, which are the primary means by which they exert control over the host cell. Secreted effectors work independently, yet in concert with each other, to facilitate microbial invasion, replication, and intracellular survival in host cells. In this review we focus on defined host cell processes targeted by bacterial pathogens. These include phagosome maturation and its subprocesses: phagosome-endosome and phagosome-lysosome fusion events, as well as phagosomal acidification, cytoskeleton remodeling, and lysis of the phagosomal membrane. We further describe the mode of action for selected effectors from six pathogens: the Gram-negative Legionella, Salmonella, Shigella, and Yersinia, the Gram-positive Listeria, and the acid-fast actinomycete Mycobacterium.
Collapse
|
70
|
Chen C, Eldein S, Zhou X, Sun Y, Gao J, Sun Y, Liu C, Wang L. Immune function of a Rab-related protein by modulating the JAK-STAT signaling pathway in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21434. [PMID: 29193252 DOI: 10.1002/arch.21434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Rab-family GTPases mainly regulate intracellular vesicle transport, and play important roles in the innate immune response in invertebrates. However, the function and signal transduction of Rab proteins in immune reactions remain unclear in silkworms. In this study, we analyzed a Rab-related protein of silkworm Bombyx mori (BmRABRP) by raising antibodies against its bacterially expressed recombinant form. Tissue distribution analysis showed that BmRABRP mRNA and protein were high expressed in the Malpighian tubule and fat body, respectively. However, among the different stages, only the fourth instar larvae and pupae showed significant BmRABRP levels. After challenge with four pathogenic microorganisms (Escherichia coli, BmNPV, Beauveria bassiana, Micrococcus luteus), the expression of BmRABRP mRNA in the fat body was significantly upregulated. In contrast, the BmRABRP protein was significantly upregulated after infection with BmNPV, while it was downregulated by E. coli, B. bassiana, and M. luteus. A specific dsRNA was used to explore the immune function and relationship between BmRABRP and the JAK-STAT signaling pathway. After BmRABRP gene interference, significant reduction in the number of nodules and increased mortality suggested that BmRABRP plays an important role in silkworm's response to bacterial challenge. In addition, four key genes (BmHOP, BmSTAT, BmSOCS2, and BmSOCS6) of the JAK-STAT signaling pathway showed significantly altered expressions after BmRABRP silencing. BmHOP and BmSOCS6 expressions were significantly decreased, while BmSTAT and BmSOCS2 were significantly upregulated. Our results suggested that BmRABRP is involved in the innate immune response against pathogenic microorganisms through the JAK-STAT signaling pathway in silkworm.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Salah Eldein
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xiaosan Zhou
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Yu Sun
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Jin Gao
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Yuxuan Sun
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Chaoliang Liu
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
71
|
Sobocińska J, Roszczenko-Jasińska P, Zaręba-Kozioł M, Hromada-Judycka A, Matveichuk OV, Traczyk G, Łukasiuk K, Kwiatkowska K. Lipopolysaccharide Upregulates Palmitoylated Enzymes of the Phosphatidylinositol Cycle: An Insight from Proteomic Studies. Mol Cell Proteomics 2017; 17:233-254. [PMID: 29217618 DOI: 10.1074/mcp.ra117.000050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/28/2022] Open
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria that induces strong proinflammatory reactions of mammals. These processes are triggered upon sequential binding of LPS to CD14, a GPI-linked plasma membrane raft protein, and to the TLR4/MD2 receptor complex. We have found earlier that upon LPS binding, CD14 triggers generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a lipid controlling subsequent proinflammatory cytokine production. Here we show that stimulation of RAW264 macrophage-like cells with LPS induces global changes of the level of fatty-acylated, most likely palmitoylated, proteins. Among the acylated proteins that were up-regulated in those conditions were several enzymes of the phosphatidylinositol cycle. Global profiling of acylated proteins was performed by metabolic labeling of RAW264 cells with 17ODYA, an analogue of palmitic acid functionalized with an alkyne group, followed by detection and enrichment of labeled proteins using biotin-azide/streptavidin and their identification with mass spectrometry. This proteomic approach revealed that 154 fatty-acylated proteins were up-regulated, 186 downregulated, and 306 not affected in cells stimulated with 100 ng/ml LPS for 60 min. The acylated proteins affected by LPS were involved in diverse biological functions, as found by Ingenuity Pathway Analysis. Detailed studies of 17ODYA-labeled and immunoprecipitated proteins revealed that LPS induces S-palmitoylation, hence activation, of type II phosphatidylinositol 4-kinase (PI4KII) β, which phosphorylates phosphatidylinositol to phosphatidylinositol 4-monophosphate, a PI(4,5)P2 precursor. Silencing of PI4KIIβ and PI4KIIα inhibited LPS-induced expression and production of proinflammatory cytokines, especially in the TRIF-dependent signaling pathway of TLR4. Reciprocally, this LPS-induced signaling pathway was significantly enhanced after overexpression of PI4KIIβ or PI4KIIα; this was dependent on palmitoylation of the kinases. However, the S-palmitoylation of PI4KIIα, hence its activity, was constitutive in RAW264 cells. Taken together the data indicate that LPS triggers S-palmitoylation and activation of PI4KIIβ, which generates PI(4)P involved in signaling pathways controlling production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Justyna Sobocińska
- From the ‡Laboratory of Molecular Membrane Biology, Department of Cell Biology
| | | | - Monika Zaręba-Kozioł
- §Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology
| | | | - Orest V Matveichuk
- From the ‡Laboratory of Molecular Membrane Biology, Department of Cell Biology
| | - Gabriela Traczyk
- From the ‡Laboratory of Molecular Membrane Biology, Department of Cell Biology
| | - Katarzyna Łukasiuk
- ¶Laboratory of Epileptogenesis, Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | | |
Collapse
|
72
|
Ehrnström B, Beckwith KS, Yurchenko M, Moen SH, Kojen JF, Lentini G, Teti G, Damås JK, Espevik T, Stenvik J. Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages. Front Immunol 2017; 8:1243. [PMID: 29042860 PMCID: PMC5632357 DOI: 10.3389/fimmu.2017.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
TLR8 is the major endosomal sensor of degraded RNA in human monocytes and macrophages. It has been implicated in the sensing of viruses and more recently also bacteria. We previously identified a TLR8-IFN regulatory factor 5 (IRF5) signaling pathway that mediates IFNβ and interleukin-12 (IL-12) induction by Staphylococcus aureus and is antagonized by TLR2. The relative importance of TLR8 for the sensing of various bacterial species is however still unclear. We here compared the role of TLR8 and IRF5 for the sensing of Group B Streptococcus (GBS), S. aureus, and Escherichia coli in human primary monocytes and monocyte-derived macrophages (MDM). GBS induced stronger IFNβ and TNF production as well as IRF5 nuclear translocation compared to S. aureus grown to the stationary phase, while S. aureus in exponential growth appeared similarly potent to GBS. Cytokine induction in primary human monocytes by GBS was not dependent on hemolysins, and induction of IFNβ and IL-12 as well as IRF5 activation were reduced with TLR2 ligand costimulation. Heat inactivation of GBS reduced IRF5 and NF-kB translocation, while only the viable E. coli activated IRF5. The attenuated stimulation correlated with loss of bacterial RNA integrity. The E. coli-induced IRF5 translocation was not inhibited by TLR2 costimulation, suggesting that IRF5 was activated via a TLR8-independent mechanism. Gene silencing of MDM using siRNA revealed that GBS-induced IFNβ, IL-12-p35, and TNF production was dependent on TLR8 and IRF5. In contrast, cytokine induction by E. coli was TLR8 independent but still partly dependent on IRF5. We conclude that TLR8-IRF5 signaling is more important for the sensing of GBS than for stationary grown S. aureus in human primary monocytes and MDM, likely due to reduced resistance of GBS to phagosomal degradation and to a lower production of TLR2 activating lipoproteins. TLR8 does not sense viable E. coli, while IRF5 still contributes to E. coli-induced cytokine production, possibly via a cytosolic nucleic acid sensing mechanism.
Collapse
Affiliation(s)
- Birgitta Ehrnström
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Kai Sandvold Beckwith
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siv Helen Moen
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - June Frengen Kojen
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Germana Lentini
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Jan Kristian Damås
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Stenvik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
73
|
Kagan JC. Lipopolysaccharide Detection across the Kingdoms of Life. Trends Immunol 2017; 38:696-704. [PMID: 28551077 PMCID: PMC5624813 DOI: 10.1016/j.it.2017.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
Studies in recent years have uncovered a diverse set of eukaryotic receptors that recognize lipopolysaccharide (LPS), the major outer-membrane component of Gram-negative bacteria. Indeed, Toll-like receptors, G-protein-coupled receptors, integrins, receptor-like kinases, and caspases have emerged as important LPS-interacting proteins. In this review, the mammalian receptors that detect LPS are described. I highlight how no host protein is involved in all LPS responses, but a single lipid (phosphatidylinositol-4,5-bisphosphate) regulates many LPS responses, including endocytosis, phagocytosis, inflammation, and pyroptosis. I further describe LPS response systems that operate specifically in plants, and discuss potentially new LPS response systems that await discovery. This diversity of receptors for a single microbial product underscores the importance of host-microbe interactions in multiple kingdoms of life.
Collapse
Affiliation(s)
- Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
74
|
Prashar A, Schnettger L, Bernard EM, Gutierrez MG. Rab GTPases in Immunity and Inflammation. Front Cell Infect Microbiol 2017; 7:435. [PMID: 29034219 PMCID: PMC5627064 DOI: 10.3389/fcimb.2017.00435] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.
Collapse
Affiliation(s)
| | | | | | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
75
|
Miao Y, Wu J, Abraham SN. Ubiquitination of Innate Immune Regulator TRAF3 Orchestrates Expulsion of Intracellular Bacteria by Exocyst Complex. Immunity 2017; 45:94-105. [PMID: 27438768 DOI: 10.1016/j.immuni.2016.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022]
Abstract
Although the intracellular trafficking system is integral to most physiologic activities, its role in mediating immune responses to infection has remained elusive. Here, we report that infected bladder epithelial cells (BECs) mobilized the exocyst complex, a powerful exporter of subcellular vesicles, to rapidly expel intracellular bacteria back for clearance. Toll-like receptor (TLR) 4 signals emanating from bacteria-containing vesicles (BCVs) were found to trigger K33-linked polyubiquitination of TRAF3 at Lys168, which was then detected by RalGDS, a guanine nucleotide exchange factor (GEF) that precipitated the assembly of the exocyst complex. Although this distinct modification of TRAF3 served to connect innate immune signaling to the cellular trafficking apparatus, it crucially ensured temporal and spatial accuracy in determining which among the many subcellular vesicles was recognized and selected for expulsion in response to innate immune signaling.
Collapse
Affiliation(s)
- Yuxuan Miao
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
76
|
Miao Y, Bist P, Wu J, Zhao Q, Li QJ, Wan Y, Abraham SN. Collaboration between Distinct Rab Small GTPase Trafficking Circuits Mediates Bacterial Clearance from the Bladder Epithelium. Cell Host Microbe 2017; 22:330-342.e4. [PMID: 28910634 PMCID: PMC5659305 DOI: 10.1016/j.chom.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
Rab small GTPases control membrane trafficking through effectors that recruit downstream mediators such as motor proteins. Subcellular trafficking typically involves multiple Rabs, with each specific step mediated by a distinct Rab protein. We describe a collaboration between two distinct Rab-protein-orchestrated trafficking circuits in bladder epithelial cells (BECs) that expels intracellular uropathogenic Escherichia coli (UPEC) from their intracellular niche. RAB11a and RAB27b and their trafficking circuitry are simultaneously involved in UPEC expulsion. While RAB11a recruits its effector RAB11FIP3 and cytoskeletal motor Dynein, RAB27b mobilizes the effector MyRIP and motor Myosin VIIa to mediate bacterial expulsion. This collaboration is coordinated by deposition of the exocyst complex on bacteria-containing vesicles, an event triggered by the innate receptor Toll-like receptor 4. Both RAB11a and RAB27b are recruited and activated by the exocyst complex components SEC6/SEC15. Thus, the cell autonomous defense system can mobilize and coalesce multiple subcellular trafficking circuitries to combat infections.
Collapse
Affiliation(s)
- Yuxuan Miao
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qing Zhao
- School of Law, Duke University, Durham, NC 27707, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Soman N Abraham
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
77
|
Blander JM. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunol Rev 2017; 272:65-79. [PMID: 27319343 DOI: 10.1111/imr.12428] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
78
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
79
|
Pauwels AM, Trost M, Beyaert R, Hoffmann E. Patterns, Receptors, and Signals: Regulation of Phagosome Maturation. Trends Immunol 2017; 38:407-422. [PMID: 28416446 PMCID: PMC5455985 DOI: 10.1016/j.it.2017.03.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Recognition of microbial pathogens and dead cells and their phagocytic uptake by specialized immune cells are essential to maintain host homeostasis. Phagosomes undergo fusion and fission events with endosomal and lysosomal compartments, a process called ‘phagosome maturation’, which leads to the degradation of the phagosomal content. However, many phagocytic cells also act as antigen-presenting cells and must balance degradation and peptide preservation. Emerging evidence indicates that receptor engagement by phagosomal cargo, as well as inflammatory mediators and cellular activation affect many aspects of phagosome maturation. Unsurprisingly, pathogens have developed strategies to hijack this machinery, thereby interfering with host immunity. Here, we highlight progress in this field, summarize findings on the impact of immune signals, and discuss consequences for pathogen elimination. Self and non-self immune signals are able to delay or accelerate phagosome maturation, and their effects are dependent on the phagocytic cell type, duration of stimulation, and whether the stimulus is particle bound or present in the cellular environment. Acceleration of phagosome maturation enhances pathogen killing, while a delay in phagosome maturation preserves antigenic peptides for presentation to T cells and to initiate adaptive immune responses. Besides its functions in pathogen killing and antigen presentation, the phagosome also functions as a signaling platform and interacts with other cell organelles. Some pathogens are able to arrest phagosome maturation to enhance their intraphagosomal survival and replication or to promote phagosomal escape. The latex bead phagocytosis model system combined with mass spectrometry is a powerful technique to analyze changes in the phagosomal proteome.
Collapse
Affiliation(s)
- Anne-Marie Pauwels
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthias Trost
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eik Hoffmann
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Current address: Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
80
|
Ishii T, Hosoki K, Nikura Y, Yamashita N, Nagase T, Yamashita N. IFN Regulatory Factor 3 Potentiates Emphysematous Aggravation by Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2017; 198:3637-3649. [PMID: 28363903 DOI: 10.4049/jimmunol.1601069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022]
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (COPD) is often induced by infection and often has a poor prognosis. Bacterial LPS activates innate immune receptor TLR4 followed by activation of a transcriptional factor IFN regulatory factor-3 (IRF3) as well as NF-κB, resulting in upregulation of various inflammatory mediators. To clarify the role of IRF3 in the pathogenesis of LPS-triggered COPD exacerbation, porcine pancreatic elastase (PPE) followed by LPS was administered intranasally to wild-type (WT) or IRF3-/- male mice. Sequential quantitative changes in emphysema were evaluated by microcomputed tomography, and lung histology was evaluated at the sixth week. WT mice treated with PPE and LPS exhibited enlarged alveolar spaces, whereas this feature was attenuated in similarly treated IRF3-/- mice. Moreover, LPS-induced emphysema aggravation was detected only in WT mice. Analysis of acute inflammation induced by PPE plus LPS revealed that the lungs of treated IRF3-/- mice had decreased mRNA transcripts for MCP-1, MIP-1α, TNF-α, and IFN-γ-inducible protein-10 but had increased neutrophils. IRF3 was involved in the production of mediators from macrophages, alveolar epithelial cells, and neutrophils. Furthermore, compared with isolated WT neutrophils from inflamed lung, those of IRF3-/- neutrophils exhibited impaired autophagic activation, phagocytosis, and apoptosis. These results suggest that IRF3 accelerated emphysema formation based on distinct profiles of mediators involved in LPS-induced COPD exacerbation. Regulation of the IRF3 pathway can affect multiple cell types and contribute to ameliorate pathogenesis of infection-triggered exacerbation of COPD.
Collapse
Affiliation(s)
- Takashi Ishii
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan; and
| | - Keisuke Hosoki
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan; and
| | - Yuichi Nikura
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Naohide Yamashita
- Department of Advanced Medical Science, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan; and
| | - Naomi Yamashita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan;
| |
Collapse
|
81
|
Khadilkar RJ, Ray A, Chetan DR, Sinha AR, Magadi SS, Kulkarni V, Inamdar MS. Differential modulation of the cellular and humoral immune responses in Drosophila is mediated by the endosomal ARF1-Asrij axis. Sci Rep 2017; 7:118. [PMID: 28273919 PMCID: PMC5427928 DOI: 10.1038/s41598-017-00118-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
How multicellular organisms maintain immune homeostasis across various organs and cell types is an outstanding question in immune biology and cell signaling. In Drosophila, blood cells (hemocytes) respond to local and systemic cues to mount an immune response. While endosomal regulation of Drosophila hematopoiesis is reported, the role of endosomal proteins in cellular and humoral immunity is not well-studied. Here we demonstrate a functional role for endosomal proteins in immune homeostasis. We show that the ubiquitous trafficking protein ADP Ribosylation Factor 1 (ARF1) and the hemocyte-specific endosomal regulator Asrij differentially regulate humoral immunity. Asrij and ARF1 play an important role in regulating the cellular immune response by controlling the crystal cell melanization and phenoloxidase activity. ARF1 and Asrij mutants show reduced survival and lifespan upon infection, indicating perturbed immune homeostasis. The ARF1-Asrij axis suppresses the Toll pathway anti-microbial peptides (AMPs) by regulating ubiquitination of the inhibitor Cactus. The Imd pathway is inversely regulated- while ARF1 suppresses AMPs, Asrij is essential for AMP production. Several immune mutants have reduced Asrij expression, suggesting that Asrij co-ordinates with these pathways to regulate the immune response. Our study highlights the role of endosomal proteins in modulating the immune response by maintaining the balance of AMP production. Similar mechanisms can now be tested in mammalian hematopoiesis and immunity.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Arindam Ray
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - D R Chetan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | - Srivathsa S Magadi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vani Kulkarni
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Maneesha S Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| |
Collapse
|
82
|
Tan Y, Kagan JC. Microbe-inducible trafficking pathways that control Toll-like receptor signaling. Traffic 2017; 18:6-17. [PMID: 27731905 PMCID: PMC5182131 DOI: 10.1111/tra.12454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
The receptors of the mammalian innate immune system are designed for rapid microbial detection, and are located in organelles that are conducive to serve these needs. However, emerging evidence indicates that the sites of microbial detection are not the sites of innate immune signal transduction. Rather, microbial detection triggers the movement of receptors to regions of the cell where factors called sorting adaptors detect active receptors and promote downstream inflammatory responses. These findings highlight the critical role that membrane trafficking pathways play in the initiation of innate immunity to infection. In this review, we describe pathways that promote the microbe-inducible endocytosis of Toll-like receptors (TLRs), and the microbe-inducible movement of TLRs between intracellular compartments. We highlight a new class of proteins called Transporters Associated with the eXecution of Inflammation (TAXI), which have the unique ability to transport TLRs and their microbial ligands to signaling-competent regions of the cell, and we discuss the means by which the subcellular sites of signal transduction are defined.
Collapse
Affiliation(s)
- Yunhao Tan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Jonathan C. Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
83
|
Husebye H, Doyle SL. Using Confocal Microscopy to Investigate Intracellular Trafficking of Toll-Like Receptors. Methods Mol Biol 2016; 1390:65-77. [PMID: 26803622 DOI: 10.1007/978-1-4939-3335-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Toll-like receptors (TLR) survey the extracellular space, cytoplasm, and endosomal compartments for signs of infection or tissue injury. Over the past decade, it has become evident that TLR activation and signal transduction can be regulated by subcellular compartmentalization of both the receptors and their downstream signaling components. Immunofluorescence and/or overexpression of fluorescently "tagged"' proteins teamed with confocal microscopy presents a powerful technique for studying the spatial organization of TLRs, their signaling mediators, and the dynamic processes they activate. This chapter details the common methods for determining the subcellular location of TLRs in both live and fixed cells.
Collapse
Affiliation(s)
- Harald Husebye
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland. .,The National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin 12, Ireland.
| |
Collapse
|
84
|
Hung WS, Ling P, Cheng JC, Chang SS, Tseng CP. Disabled-2 is a negative immune regulator of lipopolysaccharide-stimulated Toll-like receptor 4 internalization and signaling. Sci Rep 2016; 6:35343. [PMID: 27748405 PMCID: PMC5066213 DOI: 10.1038/srep35343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptor 4 (TLR4) plays a pivotal role in the host response to lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria. Here, we elucidated whether the endocytic adaptor protein Disabled-2 (Dab2), which is abundantly expressed in macrophages, plays a role in LPS-stimulated TLR4 signaling and trafficking. Molecular analysis and transcriptome profiling of RAW264.7 macrophage-like cells expressing short-hairpin RNA of Dab2 revealed that Dab2 regulated the TLR4/TRIF pathway upon LPS stimulation. Knockdown of Dab2 augmented TRIF-dependent interferon regulatory factor 3 activation and the expression of subsets of inflammatory cytokines and interferon-inducible genes. Dab2 acted as a clathrin sponge and sequestered clathrin from TLR4 in the resting stage of macrophages. Upon LPS stimulation, clathrin was released from Dab2 to facilitate endocytosis of TLR4 for triggering the TRIF-mediated pathway. Dab2 functions as a negative immune regulator of TLR4 endocytosis and signaling, supporting a novel role for a Dab2-associated regulatory circuit in controlling the inflammatory response of macrophages to endotoxin.
Collapse
Affiliation(s)
- Wei-Shan Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China
| | - Pin Ling
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, Republic of China.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, Republic of China
| | - Shy-Shin Chang
- Department of Family Medicine, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China
| |
Collapse
|
85
|
Galdino H, Saar Gomes R, Dos Santos JC, Pessoni LL, Maldaner AE, Marques SM, Gomes CM, Dorta ML, de Oliveira MAP, Joosten LAB, Ribeiro-Dias F. Leishmania (Viannia) braziliensis amastigotes induces the expression of TNFα and IL-10 by human peripheral blood mononuclear cells in vitro in a TLR4-dependent manner. Cytokine 2016; 88:184-192. [PMID: 27649507 DOI: 10.1016/j.cyto.2016.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
Abstract
While the role of Toll-like receptors (TLRs) has been investigated in murine models of tegumentary leishmaniasis caused by Leishmania (Viannia) braziliensis, the interaction between TLRs and Leishmania sp. has not been investigated in human cells. The aim of this study was to evaluate the involvement of TLR4 in cytokine production of human peripheral blood mononuclear cells (PBMCs) induced by L. braziliensis, and whether the parasite alters the expression of TLR4 on monocytes/macrophages. Amastigote forms were obtained from mice lesions and PBMCs were isolated from healthy donors. PBMCs were cultured in absence or presence of IFNγ, TLR4 neutralizing antibodies, natural antagonist of TLR4 (Bartonella LPS), TLR4 agonist (E. coli LPS), and amastigote forms. The concentrations of tumor necrosis factor (TNFα) and interleukin 10 (IL-10) were assayed by ELISA and TLR4 expression by flow cytometry. Amastigotes forms of L. braziliensis induced TNFα and IL-10 production only in IFNγ-primed PBMCs. The TNFα and IL-10 production was inhibited by TLR4 neutralization, both with anti-TLR4 antibodies and Bartonella LPS. Interestingly, addition of E. coli LPS further increased TNFα but not IL-10 production induced by L. braziliensis amastigotes. Amastigotes of L. braziliensis strongly reduced membrane TLR4 expression on monocytes/macrophages, apparently by internalization after the infection. The present study reveals that TLR4 drives the production of TNFα and IL-10 induced by L. braziliensis amastigotes and that the parasites decrease TLR4 expression on monocyte surface.
Collapse
Affiliation(s)
- Hélio Galdino
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Jessica Cristina Dos Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Department of Internal Medicine, Radboud University Medical Center and Radboud Center of Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Lívia Lara Pessoni
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Anetícia Eduarda Maldaner
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Stéfanne Madalena Marques
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayson Moura Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Leo A B Joosten
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Department of Internal Medicine, Radboud University Medical Center and Radboud Center of Infectious Diseases (RCI), Nijmegen, The Netherlands.
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
86
|
Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul 2016; 63:132-139. [PMID: 27658318 DOI: 10.1016/j.jbior.2016.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Rab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides.
Collapse
|
87
|
Barratt-Due A, Pischke SE, Nilsson PH, Espevik T, Mollnes TE. Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J Leukoc Biol 2016; 101:193-204. [PMID: 27581539 PMCID: PMC5166441 DOI: 10.1189/jlb.3vmr0316-132r] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Review of how targeting key upstream molecules at the recognition phase of innate immunity exert anti-inflammatory effects; a potential therapeutic regimen for inflammatory diseases. The host is protected by pattern recognition systems, including complement and TLRs, which are closely cross-talking. If improperly activated, these systems might induce tissue damage and disease. Inhibition of single downstream proinflammatory cytokines, such as TNF, IL-1β, and IL-6, have failed in clinical sepsis trials, which might not be unexpected, given the substantial amounts of mediators involved in the pathogenesis of this condition. Instead, we have put forward a hypothesis of inhibition at the recognition phase by “dual blockade” of bottleneck molecules of complement and TLRs. By acting upstream and broadly, the dual blockade could be beneficial in conditions with improper or uncontrolled innate immune activation threatening the host. Key bottleneck molecules in these systems that could be targets for inhibition are the central complement molecules C3 and C5 and the important CD14 molecule, which is a coreceptor for several TLRs, including TLR4 and TLR2. This review summarizes current knowledge of inhibition of complement and TLRs alone and in combination, in both sterile and nonsterile inflammatory processes, where activation of these systems is of crucial importance for tissue damage and disease. Thus, dual blockade might provide a general, broad-acting therapeutic regimen against a number of diseases where innate immunity is improperly activated.
Collapse
Affiliation(s)
- Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Søren Erik Pischke
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway; .,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory Nordland Hospital, Bodø, Norway; and.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
88
|
Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence. Microbiol Mol Biol Rev 2016; 80:891-903. [PMID: 27512100 DOI: 10.1128/mmbr.00028-16] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) in Escherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylum Firmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates.
Collapse
|
89
|
Akbar MA, Mandraju R, Tracy C, Hu W, Pasare C, Krämer H. ARC Syndrome-Linked Vps33B Protein Is Required for Inflammatory Endosomal Maturation and Signal Termination. Immunity 2016; 45:267-79. [PMID: 27496733 DOI: 10.1016/j.immuni.2016.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 03/03/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) and other pattern-recognition receptors (PRRs) sense microbial ligands and initiate signaling to induce inflammatory responses. Although the quality of inflammatory responses is influenced by internalization of TLRs, the role of endosomal maturation in clearing receptors and terminating inflammatory responses is not well understood. Here, we report that Drosophila and mammalian Vps33B proteins play critical roles in the maturation of phagosomes and endosomes following microbial recognition. Vps33B was necessary for clearance of endosomes containing internalized PRRs, failure of which resulted in enhanced signaling and expression of inflammatory mediators. Lack of Vps33B had no effect on trafficking of endosomes containing non-microbial cargo. These findings indicate that Vps33B function is critical for determining the fate of signaling endosomes formed following PRR activation. Exaggerated inflammatory responses dictated by persistence of receptors in aberrant endosomal compartments could therefore contribute to symptoms of ARC syndrome, a disease linked to loss of Vps33B.
Collapse
Affiliation(s)
- Mohammed Ali Akbar
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajakumar Mandraju
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles Tracy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Hu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
90
|
Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol 2016; 100:927-941. [PMID: 27343013 DOI: 10.1189/jlb.2mr0316-117rr] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023] Open
Abstract
TLRs play a critical role in the detection of microbes and endogenous "alarmins" to initiate host defense, yet they can also contribute to the development and progression of inflammatory and autoimmune diseases. To avoid pathogenic inflammation, TLR signaling is subject to multilayer regulatory control mechanisms, including cooperation with coreceptors, post-translational modifications, cleavage, cellular trafficking, and interactions with negative regulators. Nucleic acid-sensing TLRs are particularly interesting in this regard, as they can both recognize host-derived structures and require internalization of their ligand as a result of intracellular sequestration of the nucleic acid-sensing TLRs. This review summarizes the regulatory mechanisms of TLRs, including regulation of their access to ligands, receptor folding, intracellular trafficking, and post-translational modifications, as well as how altered control mechanism could contribute to inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA; and
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Heath Center, Farmington, Connecticut, USA
| |
Collapse
|
91
|
Yeo JC, Wall AA, Luo L, Condon ND, Stow JL. Distinct Roles for APPL1 and APPL2 in Regulating Toll-like Receptor 4 Signaling in Macrophages. Traffic 2016; 17:1014-26. [PMID: 27219021 DOI: 10.1111/tra.12415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
Macrophages are activated by contact with pathogens to mount innate immune defenses against infection. Toll-like receptor 4 (TLR4) at the macrophage surface recognizes and binds bacterial lipopolysaccharide (LPS), setting off signaling and transcriptional events that lead to the secretion of pro- and anti-inflammatory cytokines; these in turn control inflammatory and antimicrobial responses. Although the complex regulatory pathways downstream of TLR4 have been extensively studied, further molecules critical for modulating the resulting cytokine outputs remain to be characterized. Here we establish potential roles for APPL1 and 2 signaling adaptors as regulators of LPS/TLR4-induced signaling, transcription, and cytokine secretion. APPL1 and 2 are differentially localized to distinct signaling-competent membrane domains on the surface and in endocytic compartments of LPS-activated macrophages. By depleting cells of each adaptor respectively we show separate and opposing functions for APPL1 and 2 in Akt and MAPK signaling. Specifically, APPL2 has a dominant role in nuclear translocation of NF-KB p65 and it serves to constrain the secretion of pro- and anti-inflammatory cytokines. The APPLs, and in particular APPL2, are thus revealed as adaptors with important capacity to modulate inflammatory responses mounted by LPS/TLR4 during infection.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
92
|
He Z, Riva M, Björk P, Swärd K, Mörgelin M, Leanderson T, Ivars F. CD14 Is a Co-Receptor for TLR4 in the S100A9-Induced Pro-Inflammatory Response in Monocytes. PLoS One 2016; 11:e0156377. [PMID: 27228163 PMCID: PMC4881898 DOI: 10.1371/journal.pone.0156377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/13/2016] [Indexed: 01/23/2023] Open
Abstract
The cytosolic Ca2+-binding S100A9 and S100A8 proteins form heterodimers that are primarily expressed in human neutrophils and monocytes. We have recently shown that S100A9 binds to TLR4 in vitro and induces TLR4-dependent NF-κB activation and a pro-inflammatory cytokine response in monocytes. In the present report we have further investigated the S100A9-mediated stimulation of TLR4 in monocytes. Using transmission immunoelectron microscopy, we detected focal binding of S100A9 to monocyte membrane subdomains containing the caveolin-1 protein and TLR4. Furthermore, the S100A9 protein was detected in early endosomes of the stimulated cells, indicating that the protein could be internalized by endocytosis. Although stimulation of monocytes with S100A9 was strictly TLR4-dependent, binding of S100A9 to the plasma membrane and endocytosis of S100A9 was still detectable and coincided with CD14 expression in TLR4-deficient cells. We therefore investigated whether CD14 would be involved in the TLR4-dependent stimulation and could show that the S100A9-induced cytokine response was inhibited both in CD14-deficient cells and in cells exposed to CD14 blocking antibodies. Further, S100A9 was not internalized into CD14-deficient cells suggesting a direct role of CD14 in endocytosis of S100A9. Finally, we could detect satiable binding of S100A9 to CD14 in surface plasmon resonance experiments. Taken together, these results indicate that CD14 is a co-receptor of TLR4 in the S100A9-induced cytokine response.
Collapse
Affiliation(s)
- Zhifei He
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matteo Riva
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | | | - Karl Swärd
- Section for Cell and Tissue Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Section for Infection Biology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
93
|
Mol JPS, Pires SF, Chapeaurouge AD, Perales J, Santos RL, Andrade HM, Lage AP. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants. PLoS One 2016; 11:e0154209. [PMID: 27104343 PMCID: PMC4841507 DOI: 10.1371/journal.pone.0154209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation.
Collapse
Affiliation(s)
- Juliana P. S. Mol
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Medicina Veterinária Preventiva, Belo Horizonte, Minas Gerais, Brazil
| | - Simone F. Pires
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander D. Chapeaurouge
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas Perales
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato L. Santos
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Clínica e Cirurgia Veterinárias, Minas Gerais, Brasil
| | - Hélida M. Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brazil
| | - Andrey P. Lage
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Medicina Veterinária Preventiva, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
94
|
Biedroń R, Peruń A, Józefowski S. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide. PLoS One 2016; 11:e0153558. [PMID: 27073833 PMCID: PMC4830570 DOI: 10.1371/journal.pone.0153558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Angelika Peruń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
- * E-mail:
| |
Collapse
|
95
|
Stow JL, Condon ND. The cell surface environment for pathogen recognition and entry. Clin Transl Immunology 2016; 5:e71. [PMID: 27195114 PMCID: PMC4855265 DOI: 10.1038/cti.2016.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection.
Collapse
Affiliation(s)
- Jennifer L Stow
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
96
|
Tatematsu M, Yoshida R, Morioka Y, Ishii N, Funami K, Watanabe A, Saeki K, Seya T, Matsumoto M. Raftlin Controls Lipopolysaccharide-Induced TLR4 Internalization and TICAM-1 Signaling in a Cell Type-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2016; 196:3865-76. [PMID: 27022195 DOI: 10.4049/jimmunol.1501734] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
The clathrin-dependent endocytic pathway is crucial for endosomal TLR3- and TLR4-mediated Toll-IL-1R domain-containing adaptor molecule-1 (TICAM-1) signaling. TLR4 uses a different signaling platform, plasma membrane and endosomes, for activation of TIRAP-MyD88 and TICAM-2-TICAM-1, respectively. LPS-induced endocytosis of TLR4 is mandatory for TICAM-1-mediated signaling including IFN-β production. Several molecules/mechanisms such as CD14, clathrin, and phosphatidylinositol metabolism have been reported to act as inducers of TLR4 translocation. However, the molecular mechanism of spatiotemporal regulation of TLR4 signaling remains unresolved. We have previously shown that Raftlin is essential for clathrin-dependent endocytosis of TLR3 ligand in human epithelial cells and myeloid dendritic cells (DCs). In this article, we demonstrate that Raftlin also mediated LPS-induced TLR4 internalization and TICAM-1 signaling in human monocyte-derived DCs and macrophages (Mo-Mϕs). When Raftlin was knocked down, LPS-induced TLR4-mediated IFN-β promoter activation, but not NF-κB activation, was decreased in HEK293 cells overexpressing TLR4/MD-2 or TLR4/MD-2/CD14. LPS-induced IFN-β production by monocyte-derived DCs and Mo-Mϕs was significantly decreased by knockdown of Raftlin. Upon LPS stimulation, Raftlin moved from the cytoplasm to the plasma membrane in Mo-Mϕs, where it colocalized with TLR4. Raftlin associated with clathrin-associated adaptor protein-2 in resting cells and transiently bound to TLR4 and clathrin at the cell surface in response to LPS. Thus, Raftlin appears to modulate cargo selection as an accessary protein of clathrin-associated adaptor protein-2 in clathrin-mediated endocytosis of TLR3/4 ligands.
Collapse
Affiliation(s)
- Megumi Tatematsu
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Ryuji Yoshida
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Yuka Morioka
- Laboratory of Animal Experiment, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Noriko Ishii
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Kenji Funami
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Ayako Watanabe
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan;
| |
Collapse
|
97
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
98
|
Billings EA, Lee CS, Owen KA, D'Souza RS, Ravichandran KS, Casanova JE. The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Sci Signal 2016; 9:ra14. [PMID: 26838550 PMCID: PMC4894535 DOI: 10.1126/scisignal.aac6250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The detection of microbes and initiation of an innate immune response occur through pattern recognition receptors (PRRs), which are critical for the production of inflammatory cytokines and activation of the cellular microbicidal machinery. In particular, the production of reactive oxygen species (ROS) by the NADPH oxidase complex is a critical component of the macrophage bactericidal machinery. We previously characterized brain-specific angiogenesis inhibitor 1 (BAI1), a member of the adhesion family of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs), as a PRR that mediates the selective phagocytic uptake of Gram-negative bacteria by macrophages. We showed that BAI1 promoted phagosomal ROS production through activation of the Rho family guanosine triphosphatase (GTPase) Rac1, thereby stimulating NADPH oxidase activity. Primary BAI1-deficient macrophages exhibited attenuated Rac GTPase activity and reduced ROS production in response to several Gram-negative bacteria, resulting in impaired microbicidal activity. Furthermore, in a peritoneal infection model, BAI1-deficient mice exhibited increased susceptibility to death by bacterial challenge because of impaired bacterial clearance. Together, these findings suggest that BAI1 mediates the clearance of Gram-negative bacteria by stimulating both phagocytosis and NADPH oxidase activation, thereby coupling bacterial detection to the cellular microbicidal machinery.
Collapse
Affiliation(s)
- Emily A Billings
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Chang Sup Lee
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine A Owen
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ryan S D'Souza
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - James E Casanova
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
99
|
Yeo JC, Wall AA, Luo L, Stow JL. Sequential recruitment of Rab GTPases during early stages of phagocytosis. CELLULAR LOGISTICS 2016; 6:e1140615. [PMID: 27217977 DOI: 10.1080/21592799.2016.1140615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
The phagocytosis and destruction of pathogens and dead cells by macrophages is important for innate immunity and tissue maintenance. Multiple Rab family GTPases engage effector molecules to coordinate the early stages of phagocytosis, which include rapid changes in actin polymerization, membrane phospholipids, trafficking and the activation of receptors. Defining the spatiotemporal, sequential recruitment of these Rabs is critical for insights into how phagocytosis is initiated and coordinated. Here, we screened GFP-tagged Rabs expressed in fixed and live cells to identify and stratify those recruited to early phagocytic membranes at stages defined by phospholipid transitions. We propose a sequence of Rabs 35, 13, 8a, 8b, 27a, 10, and 31 that precedes and accompanies phagocytic cup closure, followed after closure by recruitment of endosomal Rabs 5a, 5b, 5c, 14, and 11. Reducing the expression of individual Rabs by siRNA knockdown, notably Rabs 35 and 13, disrupts phagocytosis prior to phagocytic cup closure, confirming a known role for Rab35 and revealing anew the involvement of Rab13. The results enhance our understanding of innate immune responses in macrophages by revealing the sequence of Rabs that initiates phagocytosis.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland, Australia
| |
Collapse
|
100
|
Endothelial cell tolerance to lipopolysaccharide challenge is induced by monophosphoryl lipid A. Clin Sci (Lond) 2015; 130:451-61. [PMID: 26669797 DOI: 10.1042/cs20150592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Prior exposure to lipopolysaccharide (LPS) produces a reduced or "tolerant" inflammatory response to subsequent challenges with LPS, however the potent pro-inflammatory effects of LPS limit its clinical benefit. The adjuvant monophosphoryl lipid A (MPLA) is a weak toll-like receptor 4 (TLR4) agonist that induces negligible inflammation but retains potent immunomodulatory properties. We postulated that pre-treatment with MPLA would inhibit the inflammatory response of endothelial cells to secondary LPS challenge. Human umbilical vein endothelial cells (HUVECs), were exposed to MPLA (10 μg/ml), LPS (100 ng/ml) or vehicle control. HUVECs were then washed and maintained in culture for 24 h before being challenged with LPS (100 ng/ml). Supernatants were collected and examined for cytokine production in the presence or absence of siRNA inhibitors of critical TLR4 signalling proteins. Pre-treatment with MPLA attenuated interleukin (IL)-6 production to secondary LPS challenge to a similar degree as LPS. The application of myeloid differentiation primary response gene 88 (MyD88) siRNA dramatically reduced MPLA-induced tolerance while TIR-domain-containing adapter-inducing interferon-β (TRIF) siRNA had no effect. The tolerant phenotype in endothelial cells was associated with reduced IκB kinase (IKK), p38 and c-Jun N-terminal kinase (JNK) phosphorylation and enhanced IL-1 receptor associated kinase-M (IRAK-M) expression for LPS-primed HUVECs, but less so in MPLA primed cells. Instead, MPLA-primed HUVECs demonstrated enhanced p-extracellular-signal-regulated kinase (ERK) phosphorylation. In contrast with leucocytes in which tolerance is largely TRIF-dependent, MyD88 signalling mediated endotoxin tolerance in endothelial cells. Most importantly, MPLA, a vaccine adjuvant with a wide therapeutic window, induced tolerance to LPS in endothelial cells.
Collapse
|