51
|
La Barbera L, Rizzo C, Camarda F, Miceli G, Tuttolomondo A, Guggino G. The Contribution of Innate Immunity in Large-Vessel Vasculitis: Detangling New Pathomechanisms beyond the Onset of Vascular Inflammation. Cells 2024; 13:271. [PMID: 38334663 PMCID: PMC10854891 DOI: 10.3390/cells13030271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Large-vessel vasculitis (LVV) are autoimmune and autoinflammatory diseases focused on vascular inflammation. The central core of the intricate immunological and molecular network resides in the disruption of the "privileged immune state" of the arterial wall. The outbreak, initially primed by dendritic cells (DC), is then continuously powered in a feed-forward loop by the intimate cooperation between innate and adaptive immunity. If the role of adaptive immunity has been largely elucidated, knowledge of the critical function of innate immunity in LVV is still fragile. A growing body of evidence has strengthened the active role of innate immunity players and their key signaling pathways in orchestrating the complex pathomechanisms underlying LVV. Besides DC, macrophages are crucial culprits in LVV development and participate across all phases of vascular inflammation, culminating in vessel wall remodeling. In recent years, the variety of potential pathogenic actors has expanded to include neutrophils, mast cells, and soluble mediators, including the complement system. Interestingly, new insights have recently linked the inflammasome to vascular inflammation, paving the way for its potential pathogenic role in LVV. Overall, these observations encourage a new conceptual approach that includes a more in-depth study of innate immunity pathways in LVV to guide future targeted therapies.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Federica Camarda
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Giuseppe Miceli
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Antonino Tuttolomondo
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| |
Collapse
|
52
|
Thorolfsdottir RB, Jonsdottir AB, Sveinbjornsson G, Aegisdottir HM, Oddsson A, Stefansson OA, Halldorsson GH, Saevarsdottir S, Thorleifsson G, Stefansdottir L, Pedersen OB, Sørensen E, Ghouse J, Raja AA, Zheng C, Silajdzija E, Rand SA, Erikstrup C, Ullum H, Mikkelsen C, Banasik K, Brunak S, Ivarsdottir EV, Sigurdsson A, Beyter D, Sturluson A, Einarsson H, Tragante V, Helgason H, Lund SH, Halldorsson BV, Sigurpalsdottir BD, Olafsson I, Arnar DO, Thorgeirsson G, Knowlton KU, Nadauld LD, Gretarsdottir S, Helgadottir A, Ostrowski SR, Gudbjartssson DF, Jonsdottir I, Bundgaard H, Holm H, Sulem P, Stefansson K. Variants at the Interleukin 1 Gene Locus and Pericarditis. JAMA Cardiol 2024; 9:165-172. [PMID: 38150231 PMCID: PMC10753444 DOI: 10.1001/jamacardio.2023.4820] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 12/28/2023]
Abstract
Importance Recurrent pericarditis is a treatment challenge and often a debilitating condition. Drugs inhibiting interleukin 1 cytokines are a promising new treatment option, but their use is based on scarce biological evidence and clinical trials of modest sizes, and the contributions of innate and adaptive immune processes to the pathophysiology are incompletely understood. Objective To use human genomics, transcriptomics, and proteomics to shed light on the pathogenesis of pericarditis. Design, Setting, and Participants This was a meta-analysis of genome-wide association studies of pericarditis from 5 countries. Associations were examined between the pericarditis-associated variants and pericarditis subtypes (including recurrent pericarditis) and secondary phenotypes. To explore mechanisms, associations with messenger RNA expression (cis-eQTL), plasma protein levels (pQTL), and CpG methylation of DNA (ASM-QTL) were assessed. Data from Iceland (deCODE genetics, 1983-2020), Denmark (Copenhagen Hospital Biobank/Danish Blood Donor Study, 1977-2022), the UK (UK Biobank, 1953-2021), the US (Intermountain, 1996-2022), and Finland (FinnGen, 1970-2022) were included. Data were analyzed from September 2022 to August 2023. Exposure Genotype. Main Outcomes and Measures Pericarditis. Results In this genome-wide association study of 4894 individuals with pericarditis (mean [SD] age at diagnosis, 51.4 [17.9] years, 2734 [67.6%] male, excluding the FinnGen cohort), associations were identified with 2 independent common intergenic variants at the interleukin 1 locus on chromosome 2q14. The lead variant was rs12992780 (T) (effect allele frequency [EAF], 31%-40%; odds ratio [OR], 0.83; 95% CI, 0.79-0.87; P = 6.67 × 10-16), downstream of IL1B and the secondary variant rs7575402 (A or T) (EAF, 45%-55%; adjusted OR, 0.89; 95% CI, 0.85-0.93; adjusted P = 9.6 × 10-8). The lead variant rs12992780 had a smaller odds ratio for recurrent pericarditis (0.76) than the acute form (0.86) (P for heterogeneity = .03) and rs7575402 was associated with CpG methylation overlapping binding sites of 4 transcription factors known to regulate interleukin 1 production: PU.1 (encoded by SPI1), STAT1, STAT3, and CCAAT/enhancer-binding protein β (encoded by CEBPB). Conclusions and Relevance This study found an association between pericarditis and 2 independent sequence variants at the interleukin 1 gene locus. This finding has the potential to contribute to development of more targeted and personalized therapy of pericarditis with interleukin 1-blocking drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gisli H. Halldorsson
- deCODE genetics, Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics, Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Ole B. Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jonas Ghouse
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anna Axelsson Raja
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Chaoqun Zheng
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Elvira Silajdzija
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Albertsen Rand
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Hafsteinn Einarsson
- deCODE genetics, Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hannes Helgason
- deCODE genetics, Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Bjarni V. Halldorsson
- deCODE genetics, Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Brynja D. Sigurpalsdottir
- deCODE genetics, Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - David O. Arnar
- deCODE genetics, Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Kirk U. Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, Utah
- School of Medicine, University of Utah, Salt Lake City
| | - Lincoln D. Nadauld
- Precision Genomics, Intermountain Healthcare, Saint George, Utah
- School of Medicine, Stanford University, Stanford, California
| | | | | | - Sisse R. Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel F. Gudbjartssson
- deCODE genetics, Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics, Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hilma Holm
- deCODE genetics, Amgen, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics, Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
53
|
Pasquer H, Daltro de Oliveira R, Vasseur L, Soret-Dulphy J, Maslah N, Zhao LP, Marcault C, Cazaux M, Gauthier N, Verger E, Parquet N, Vainchenker W, Raffoux E, Ugo V, Luque Paz D, Roy L, Lambert WC, Ianotto JC, Lippert E, Giraudier S, Cassinat B, Kiladjian JJ, Benajiba L. Distinct clinico-molecular arterial and venous thrombosis scores for myeloproliferative neoplasms risk stratification. Leukemia 2024; 38:326-339. [PMID: 38148396 DOI: 10.1038/s41375-023-02114-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Current recommended risk scores to predict thrombotic events associated with myeloproliferative neoplasms (MPN) do not discriminate between arterial and venous thrombosis despite their different physiopathology. To define novel stratification systems, we delineated a comprehensive landscape of MPN associated thrombosis across a large long-term follow-up MPN cohort. Prior arterial thrombosis, age >60 years, cardiovascular risk factors and presence of TET2 or DNMT3A mutations were independently associated with arterial thrombosis in multivariable analysis. ARTS, an ARterial Thrombosis Score, based on these four factors, defined low- (0.37% patients-year) and high-risk (1.19% patients-year) patients. ARTS performance was superior to the two-tiered conventional risk stratification in our training cohort, across all MPN subtypes, as well as in two external validation cohorts. Prior venous thrombosis and presence of a JAK2V617F mutation with a variant allelic frequency ≥50% were independently associated with venous thrombosis. The discrimination potential of VETS, a VEnous Thrombosis Score based on these two factors, was poor, similar to the two-tiered conventional risk stratification. Our study pinpoints arterial and venous thrombosis clinico-molecular differences and proposes an arterial risk score for more accurate patients' stratification. Further improvement of venous risk scores, accounting for additional factors and considering venous thrombosis as a heterogeneous entity is warranted.
Collapse
Affiliation(s)
- Hélène Pasquer
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
- INSERM UMR 944, Institut de Recherche Saint-Louis, Paris, France
| | - Rafael Daltro de Oliveira
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | - Loic Vasseur
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | - Juliette Soret-Dulphy
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | - Nabih Maslah
- Université Paris Cité, APHP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Paris, France
| | - Lin-Pierre Zhao
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | - Clémence Marcault
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | - Marine Cazaux
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | - Nicolas Gauthier
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | - Emmanuelle Verger
- Université Paris Cité, APHP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Paris, France
| | - Nathalie Parquet
- Université Paris Cité, APHP, Hôpital Saint-Louis, Département d'hématologie et d'Immunologie, Paris, France
| | - William Vainchenker
- APHP, Hôpital Saint-Louis, Département d'hématologie et d'Immunologie, Paris, France
| | - Emmanuel Raffoux
- Université Paris Cité, APHP, Hôpital Saint-Louis, Département d'hématologie et d'Immunologie, Paris, France
| | - Valérie Ugo
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Lydia Roy
- Université Paris Est Créteil, APHP, Hôpital Henri Mondor, Service d'hématologie, Créteil, France
| | - Wayne-Corentin Lambert
- Université de Bretagne Occidentale, CHU de Brest, Service d'Hématologie Biologique, Brest, France
| | - Jean-Christophe Ianotto
- Université de Bretagne Occidentale, CHU de Brest, Service d'Hématologie et d'Hémostase Clinique, Brest, France
| | - Eric Lippert
- Université de Bretagne Occidentale, CHU de Brest, Service d'Hématologie Biologique, Brest, France
| | - Stéphane Giraudier
- Université Paris Cité, APHP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Paris, France
| | - Bruno Cassinat
- Université Paris Cité, APHP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Paris, France
| | - Jean-Jacques Kiladjian
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Paris, France
| | - Lina Benajiba
- Université Paris Cité, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France.
- INSERM UMR 944, Institut de Recherche Saint-Louis, Paris, France.
| |
Collapse
|
54
|
Anand G, Clark-Dinovo C, Perry AM, Goodwin VM, St. Raymond E, Sakleshpur S, Steed AL. Aromatic amino acid metabolites alter interferon signaling and influenza pathogenesis. Front Mol Biosci 2024; 10:1232573. [PMID: 38322710 PMCID: PMC10844567 DOI: 10.3389/fmolb.2023.1232573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
The ability of gut microbial metabolites to influence the host is increasingly recognized. The microbiota extensively metabolizes the three aromatic amino acids, tryptophan, tyrosine, and phenylalanine. Previously we have found that a metabolite of tyrosine, 4-OH-phenylpropionic acid, can enhance type I interferon (IFN) signaling and protect from influenza pathogenesis in a murine model. Herein we screened 17 related aromatic amino acid metabolites for effects on IFN signaling in human lung epithelial cells and monocytes alone and in the presence of IFN-β, influenza, and LPS. While the tryptophan family metabolites reduced IFN signaling in both cell types, the tyrosine and phenylalanine metabolites had varied effects, which were cell-type dependent. Pooled treatment of all these metabolites reduced IFN signaling in both cell types and suggested a tryptophan metabolite effect dominance. Strikingly, when all the metabolites were pooled together, we found reduced influenza recovery in both cell types. RNA sequencing further validated reduced viral loads and decreased IFN signaling. Single gene silencing of significantly upregulated genes identified by RNA sequencing (EGR2, ATP6VD02, SPOCK1, and IL31RA) did not completely abrogate the metabolite induced decrease in IFN signaling. However, these upregulated targets suggested a mechanistic link to TGF-beta signaling. Treatment with a TGF-beta inhibitor and combined targeted gene silencing led to a significant reversal of metabolite induced IFN signaling suppression. Finally, we demonstrated that intranasal administration of these metabolites prior to influenza infection led to reduced animal morbidity, viral titers, and inflammation. Our work implies that microbial metabolites can alter IFN signaling mechanistically through TGF-beta and promote beneficial outcomes during influenza infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashley L. Steed
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
55
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
56
|
Achleitner M, Mair NK, Dänhardt J, Kardashi R, Puhan MA, Abela IA, Toepfner N, de With K, Kanczkowski W, Jarzebska N, Rodionov RN, Wolf C, Lee-Kirsch MA, Steenblock C, Hale BG, Bornstein SR. Absence of Type I Interferon Autoantibodies or Significant Interferon Signature Alterations in Adults With Post-COVID-19 Syndrome. Open Forum Infect Dis 2024; 11:ofad641. [PMID: 38179103 PMCID: PMC10766412 DOI: 10.1093/ofid/ofad641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-β, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS.
Collapse
Affiliation(s)
- Martin Achleitner
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nina K Mair
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Juliane Dänhardt
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Romina Kardashi
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Toepfner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja de With
- Division of Infectious Diseases, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Natalia Jarzebska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Del Negro I, Pez S, Versace S, Marziali A, Gigli GL, Tereshko Y, Valente M. Impact of Disease-Modifying Therapies on Gut-Brain Axis in Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:6. [PMID: 38276041 PMCID: PMC10818907 DOI: 10.3390/medicina60010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Multiple sclerosis is a chronic, autoimmune-mediated, demyelinating disease whose pathogenesis remains to be defined. In past years, in consideration of a constantly growing number of patients diagnosed with multiple sclerosis, the impacts of different environmental factors in the pathogenesis of the disease have been largely studied. Alterations in gut microbiome composition and intestinal barrier permeability have been suggested to play an essential role in the regulation of autoimmunity. Thus, increased efforts are being conducted to demonstrate the complex interplay between gut homeostasis and disease pathogenesis. Numerous results confirm that disease-modifying therapies (DMTs) used for the treatment of MS, in addition to their immunomodulatory effect, could exert an impact on the intestinal microbiota, contributing to the modulation of the immune response itself. However, to date, the direct influence of these treatments on the microbiota is still unclear. This review intends to underline the impact of DMTs on the complex system of the microbiota-gut-brain axis in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Sara Pez
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Salvatore Versace
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Alessandro Marziali
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|
58
|
Mazzarella L, Santoro F, Ravasio R, Fumagalli V, Massa PE, Rodighiero S, Gavilán E, Romanenghi M, Duso BA, Bonetti E, Manganaro L, Pallavi R, Trastulli D, Pallavicini I, Gentile C, Monzani S, Leonardi T, Pasqualato S, Buttinelli G, Di Martino A, Fedele G, Schiavoni I, Stefanelli P, Meroni G, de Francesco R, Steinkuhler C, Fossati G, Iannacone M, Minucci S, Pelicci PG. Inhibition of the lysine demethylase LSD1 modulates the balance between inflammatory and antiviral responses against coronaviruses. Sci Signal 2023; 16:eade0326. [PMID: 38113337 DOI: 10.1126/scisignal.ade0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Santoro
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Paul E Massa
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Gavilán
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mauro Romanenghi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno A Duso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Emanuele Bonetti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Lara Manganaro
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Deborah Trastulli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Gentile
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Monzani
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Meroni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Raffaele de Francesco
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Christian Steinkuhler
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Gianluca Fossati
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Biosciences, University of Milan, Milan 20123, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan 20122, Italy
| |
Collapse
|
59
|
Fragoulis GE, Ntouros PA, Nezos A, Vlachogiannis NI, McInnes IB, Tektonidou MG, Skarlis C, Souliotis VL, Mavragani CP, Sfikakis PP. Type-I interferon pathway and DNA damage accumulation in peripheral blood of patients with psoriatic arthritis. Front Immunol 2023; 14:1274060. [PMID: 38124740 PMCID: PMC10731026 DOI: 10.3389/fimmu.2023.1274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives The abnormal DNA damage response is associated with upregulation of the type-1 interferon (IFN-I) pathway in certain rheumatic diseases. We investigated whether such aberrant mechanisms operate in psoriatic arthritis (PsA). Methods DNA damage levels were measured by alkaline comet assay in peripheral blood mononuclear cells from 52 PsA patients and age-sex-matched healthy individuals. RNA expression of IFIT1, MX1 and IFI44, which are selectively induced by IFN-I, was quantitated by real-time polymerase chain reaction and their composite normalized expression resulted in IFN-I score calculation. RNA expression of IL1β, IL6, TNF, IL17A and IL23A was also assessed in PsA and control subgroups. Results In PsA, DNA damage accumulation was increased by almost two-fold compared to healthy individuals (olive tail moment arbitrary units, mean ± SD; 9.42 ± 2.71 vs 4.88 ± 1.98, p<0.0001). DNA damage levels significantly correlated with serum C-Reactive-protein and IL6 RNA expression in PBMCs. Despite increased DNA damage, the IFN-I score was strikingly lower in PsA patients compared to controls (-0.49 ± 6.99 vs 4.24 ± 4.26; p<0.0001). No correlation was found between IFN-I pathway downregulation and DNA damage. However, the IFN-I score in a PsA subgroup was lower in those patients with higher IL1β expression, as well as in those with higher TNF/IL23A PBMCs expression. Conclusion DNA damage in PsA correlates with measures of inflammation but is not associated with the IFN-I pathway induction. The unexpected IFN-I downregulation, albeit reminiscent to findings in experimental models of spondyloarthritis, may be implicated in PsA pathogenesis and explained by operation of other cytokines.
Collapse
Affiliation(s)
- George E. Fragoulis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Panagiotis A. Ntouros
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos I. Vlachogiannis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Iain B. McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maria G. Tektonidou
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L. Souliotis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Clio P. Mavragani
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Petros P. Sfikakis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
60
|
Cacace R, Zhou L, Hendrickx Van de Craen E, Buist A, Hoogmartens J, Sieben A, Cras P, Vandenberghe R, De Deyn PP, Oehlrich D, De Bondt A, Engelborghs S, Moechars D, Van Broeckhoven C. Mutated Toll-like receptor 9 increases Alzheimer's disease risk by compromising innate immunity protection. Mol Psychiatry 2023; 28:5380-5389. [PMID: 37433968 PMCID: PMC11041692 DOI: 10.1038/s41380-023-02166-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
The development of Alzheimer's disease (AD) involves central and peripheral immune deregulation. Gene identification and studies of AD genetic variants of peripheral immune components may aid understanding of peripheral-central immune crosstalk and facilitate new opportunities for therapeutic intervention. In this study, we have identified in a Flanders-Belgian family a novel variant p.E317D in the Toll-like receptor 9 gene (TLR9), co-segregating with EOAD in an autosomal dominant manner. In human, TLR9 is an essential innate and adaptive immune component predominantly expressed in peripheral immune cells. The p.E317D variant caused 50% reduction in TLR9 activation in the NF-κB luciferase assay suggesting that p.E317D is a loss-of-function mutation. Cytokine profiling of human PBMCs upon TLR9 activation revealed a predominantly anti-inflammatory response in contrast to the inflammatory responses from TLR7/8 activation. The cytokines released upon TLR9 activation suppressed inflammation and promoted phagocytosis of Aβ42 oligomers in human iPSC-derived microglia. Transcriptome analysis identified upregulation of AXL, RUBICON and associated signaling pathways, which may underline the effects of TLR9 signaling-induced cytokines in regulating the inflammatory status and phagocytic property of microglia. Our data suggest a protective role of TLR9 signaling in AD pathogenesis, and we propose that TLR9 loss-of-function may disrupt a peripheral-central immune crosstalk that promotes dampening of inflammation and clearance of toxic protein species, leading to the build-up of neuroinflammation and pathogenic protein aggregates in AD development.
Collapse
Affiliation(s)
- Rita Cacace
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lujia Zhou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisabeth Hendrickx Van de Craen
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Edegem, Belgium
| | - Arjan Buist
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Julie Hoogmartens
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne Sieben
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Patrick Cras
- Department of Neurology, University Hospital Antwerp, Edegem, Belgium
- Institute Born-Bunge, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, and Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Peter P De Deyn
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
| | - Daniel Oehlrich
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
61
|
Zhang H, Gao J, Tang Y, Jin T, Tao J. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J Adv Res 2023; 54:181-193. [PMID: 36681114 DOI: 10.1016/j.jare.2023.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui 323000, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
62
|
Jones LO, Willms RJ, Xu X, Graham RDV, Eklund M, Shin M, Foley E. Single-cell resolution of the adult zebrafish intestine under conventional conditions and in response to an acute Vibrio cholerae infection. Cell Rep 2023; 42:113407. [PMID: 37948182 DOI: 10.1016/j.celrep.2023.113407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Vibrio cholerae is an aquatic bacterium that causes severe and potentially deadly diarrheal disease. Despite the impact on global health, our understanding of host mucosal responses to Vibrio remains limited, highlighting a knowledge gap critical for the development of effective prevention and treatment strategies. Using a natural infection model, we combine physiological and single-cell transcriptomic studies to characterize conventionally reared adult zebrafish guts and guts challenged with Vibrio. We demonstrate that Vibrio causes a mild mucosal immune response characterized by T cell activation and enhanced antigen capture; Vibrio suppresses host interferon signaling; and ectopic activation of interferon alters the course of infection. We show that the adult zebrafish gut shares similarities with mammalian counterparts, including the presence of Best4+ cells, tuft cells, and a population of basal cycling cells. These findings provide important insights into host-pathogen interactions and emphasize the utility of zebrafish as a natural model of Vibrio infection.
Collapse
Affiliation(s)
- Lena O Jones
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reegan J Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xinyue Xu
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ralph Derrick V Graham
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mckenna Eklund
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
63
|
Yang C, Yuan R, Brauner C, Du Y, Ah Kioon MD, Barrat FJ, Ivashkiv LB. Dichotomous roles of RIPK3 in regulating the IFN response and NLRP3 inflammasome in human monocytes. J Leukoc Biol 2023; 114:615-629. [PMID: 37648661 PMCID: PMC10723620 DOI: 10.1093/jleuko/qiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Regulation of the profile and magnitude of toll-like receptor (TLR) responses is important for effective host defense against infections while minimizing inflammatory toxicity. The chemokine CXCL4 regulates the TLR8 response to amplify inflammatory gene and inflammasome activation while attenuating the interferon (IFN) response in primary monocytes. In this study, we describe an unexpected role for the kinase RIPK3 in suppressing the CXCL4 + TLR8-induced IFN response and providing signal 2 to activate the NLRP3 inflammasome and interleukin (IL)-1 production in primary human monocytes. RIPK3 also amplifies induction of inflammatory genes such as TNF, IL6, and IL1B while suppressing IL12B. Mechanistically, RIPK3 inhibits STAT1 activation and activates PI3K-Akt-dependent and XBP1- and NRF2-mediated stress responses to regulate downstream genes in a dichotomous manner. These findings identify new functions for RIPK3 in modulating TLR responses and provide potential mechanisms by which RIPK3 plays roles in inflammatory diseases and suggest targeting RIPK3 and XBP1- and NRF2-mediated stress responses as therapeutic strategies to suppress inflammation while preserving the IFN response for host defense.
Collapse
Affiliation(s)
- Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Ruoxi Yuan
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Caroline Brauner
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, NY 10065, United States
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, NY 10065, United States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 1300 York Avenue, Box 65, New York, NY 10065, United States
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 1300 York Avenue, Box 65, New York, NY 10065, United States
- Department of Medicine, Weill Cornell Medicine, 530 East 70th Street, M-522, New York, NY 10021, United States
| |
Collapse
|
64
|
Napodano C, Carnazzo V, Basile V, Pocino K, Stefanile A, Gallucci S, Natali P, Basile U, Marino M. NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases-A Lesson from Cytokine Storm Syndrome. Int J Mol Sci 2023; 24:16556. [PMID: 38068879 PMCID: PMC10706560 DOI: 10.3390/ijms242316556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1β and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.
Collapse
Affiliation(s)
- Cecilia Napodano
- Department of Laboratory of Medicine and Pathology, S. Agostino Estense Hospital, 41126 Modena, Italy;
| | - Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Annunziata Stefanile
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy;
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
65
|
Xu Y, Yang Y, Chen X, Jiang D, Zhang F, Guo Y, Hu B, Xu G, Peng S, Wu L, Hu J. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl Neurodegener 2023; 12:49. [PMID: 37915104 PMCID: PMC10621314 DOI: 10.1186/s40035-023-00381-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cognitive impairment is a multifactorial and multi-step pathological process that places a heavy burden on patients and the society. Neuroinflammation is one of the main factors leading to cognitive impairment. The inflammasomes are multi-protein complexes that respond to various microorganisms and endogenous danger signals, helping to initiate innate protective responses in inflammatory diseases. NLRP3 inflammasomes produce proinflammatory cytokines (interleukin IL-1β and IL-18) by activating caspase-1. In this review, we comprehensively describe the structure and functions of the NLRP3 inflammasome. We also explore the intrinsic relationship between the NLRP3 inflammasome and cognitive impairment, which involves immune cell activation, cell apoptosis, oxidative stress, mitochondrial autophagy, and neuroinflammation. Finally, we describe NLRP3 inflammasome antagonists as targeted therapies to improve cognitive impairment.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Xi Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yao Guo
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
66
|
Hao W, Feng C. Research progress on pyroptosis and its effect on the central nervous system. Neurobiol Dis 2023; 188:106333. [PMID: 39491175 DOI: 10.1016/j.nbd.2023.106333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024] Open
Abstract
Pyroptosis is an inflammatory and lysis type of programmed cell death. In the canonical pyroptosis signaling pathway, the NLRP3 inflammasome activates inflammatory caspase-1, which then shears cut the executor protein GSDMD. The N domains of GSDMD move to heterogeneous membranes, form pores, and release inflammatory cytokines IL-1β and IL-18, causing cell membrane swelling and rupture. Pyroptosis is mainly regulated by the key proteins in the signaling pathway, including inflammasome, caspase-1, GSDMD, IL-1β, and IL-18, as well as their agonists and inhibitors. Appropriate pyroptosis can improve host defense mechanisms, while excessive pyroptosis would derive pathological effects on central nervous system, leding to neuroinflammatory response, blood-brain barrier damage, and cognitive disfunction.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Cong Feng
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Science Institute, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
67
|
Qin Y, Meng X, Wang M, Liang W, Xu R, Chen J, Song H, Fu Y, Li J, Gao C, Jia M, Zhao C, Zhao W. Posttranslational ISGylation of NLRP3 by HERC enzymes facilitates inflammasome activation in models of inflammation. J Clin Invest 2023; 133:e161935. [PMID: 37651190 PMCID: PMC10575725 DOI: 10.1172/jci161935] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system that initiates inflammatory responses. Posttranslational modifications (PTMs) of NLRP3, including ubiquitination and phosphorylation, control inflammasome activation and determine the intensity of inflammation. However, the role of other PTMs in controlling NLRP3 inflammasome activation remains unclear. This study found that TLR priming induced NLRP3 ISGylation (a type of PTM in which ISG15 covalently binds to the target protein) to stabilize the NLRP3 protein. Viral infection, represented by SARS-COV-2 infection, and type I IFNs induced expression of ISG15 and the predominant E3 ISGylation ligases HECT domain- and RCC1-like domain-containing proteins (HERCs; HERC5 in humans and HERC6 in mice). HERCs promoted NLRP3 ISGylation and inhibited K48-linked ubiquitination and proteasomal degradation, resulting in the enhancement of NLRP3 inflammasome activation. Concordantly, Herc6 deficiency ameliorated NLRP3-dependent inflammation as well as hyperinflammation caused by viral infection. The results illustrate the mechanism by which type I IFNs responses control inflammasome activation and viral infection-induced aberrant NLRP3 activation. This work identifies ISGylation as a PTM of NLRP3, revealing a priming target that modulates NLRP3-dependent immunopathology.
Collapse
|
68
|
Creisher PS, Perry JL, Zhong W, Lei J, Mulka KR, Ryan WH, Zhou R, Akin EH, Liu A, Mitzner W, Burd I, Pekosz A, Klein SL. Adverse outcomes in SARS-CoV-2-infected pregnant mice are gestational age-dependent and resolve with antiviral treatment. J Clin Invest 2023; 133:e170687. [PMID: 37581940 PMCID: PMC10575736 DOI: 10.1172/jci170687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
SARS-CoV-2 infection during pregnancy is associated with severe COVID-19 and adverse fetal outcomes, but the underlying mechanisms remain poorly understood. Moreover, clinical studies assessing therapeutics against SARS-CoV-2 in pregnancy are limited. To address these gaps, we developed a mouse model of SARS-CoV-2 infection during pregnancy. Outbred CD1 mice were infected at E6, E10, or E16 with a mouse-adapted SARS-CoV-2 (maSCV2) virus. Outcomes were gestational age-dependent, with greater morbidity, reduced antiviral immunity, greater viral titers, and impaired fetal growth and neurodevelopment occurring with infection at E16 (third trimester equivalent) than with infection at either E6 (first trimester equivalent) or E10 (second trimester equivalent). To assess the efficacy of ritonavir-boosted nirmatrelvir, which is recommended for individuals who are pregnant with COVID-19, we treated E16-infected dams with mouse-equivalent doses of nirmatrelvir and ritonavir. Treatment reduced pulmonary viral titers, decreased maternal morbidity, and prevented offspring growth restriction and neurodevelopmental impairments. Our results highlight that severe COVID-19 during pregnancy and fetal growth restriction is associated with heightened virus replication in maternal lungs. Ritonavir-boosted nirmatrelvir mitigated maternal morbidity along with fetal growth and neurodevelopment restriction after SARS-CoV-2 infection. These findings prompt the need for further consideration of pregnancy in preclinical and clinical studies of therapeutics against viral infections.
Collapse
Affiliation(s)
- Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie L. Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weizhi Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathleen R. Mulka
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - W. Hurley Ryan
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elgin H. Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anguo Liu
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
69
|
Cakir-Aktas C, Bodur E, Yemisci M, van Leyen K, Karatas H. 12/15-lipoxygenase inhibition attenuates neuroinflammation by suppressing inflammasomes. Front Cell Neurosci 2023; 17:1277268. [PMID: 37822799 PMCID: PMC10562712 DOI: 10.3389/fncel.2023.1277268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Lipoxygenases (LOXs) have essential roles in stroke, atherosclerosis, diabetes, and hypertension. 12/15-LOX inhibition was shown to reduce infarct size and brain edema in the acute phase of experimental stroke. However, the significance of 12/15-LOX on neuroinflammation, which has an essential role in the pathophysiology of stroke, has not been clarified yet. Methods In this study, ischemia/recanalization (I/R) was performed by occluding the proximal middle cerebral artery (pMCAo) in mice. Either the 12/15-LOX inhibitor (ML351, 50 mg/kg) or its solvent (DMSO) was injected i.p. at recanalization after 1 h of occlusion. Mice were sacrificed at 6, 24, and 72-h after ischemia induction. Infarct volumes were calculated on Nissl-stained sections. Neurological deficit scoring was used for functional analysis. Lipid peroxidation was determined by the MDA assay, and the inflammatory cytokines IL-6, TNF-alpha, IL-1beta, IL-10, and TGF-beta were quantified by ELISA. The inflammasome proteins NLRP1 and NLRP3, 12/15-LOX, and caspase-1 were detected with immunofluorescence staining. Results Infarct volumes, neurological deficit scores, and lipid peroxidation were significantly attenuated in ML351-treated groups at 6, 24, and 72-h. ELISA results revealed that the pro-inflammatory cytokines IL-1beta, IL-6, and TNF-alpha were significantly decreased at 6-h and/or 24-h of I/R, while the anti-inflammatory cytokines IL-10 and TNF-alpha were increased at 24-h or 72-h of ML351 treatment. NLRP1 and NLRP3 immunosignaling were enhanced at three time points after I/R, which were significantly diminished by the ML351 application. Interestingly, NLRP3 immunoreactivity was more pronounced than NLRP1. Hence, we proceeded to study the co-localization of NLRP3 immunoreactivity with 12/15-LOX and caspase-1, which indicated that NLRP3 was co-localized with 12/15-LOX and caspase-1 signaling. Additionally, NLRP3 was found in neurons at all time points but in non-neuronal cells 72 h after I/R. Discussion These results suggest that 12/15-LOX inhibition suppresses ischemia-induced inflammation in the acute and subacute phases of stroke via suppressing inflammasome activation. Understanding the mechanisms underlying lipid peroxidation and its associated pathways, like inflammasome activation, may have broader implications for the treatment of stroke and other neurological diseases characterized by neuroinflammation.
Collapse
Affiliation(s)
- Canan Cakir-Aktas
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Ebru Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Hulya Karatas
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
70
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
71
|
Blanco FC, Bigi MM, García EA, Elola MT, Vázquez CL, Bigi F. A Transcriptional Analysis of Cattle Immune Cells Reveals a Central Role of Type 1 Interferon in the In Vitro Innate Immune Response against Mycobacterium bovis. Pathogens 2023; 12:1159. [PMID: 37764968 PMCID: PMC10536033 DOI: 10.3390/pathogens12091159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bovine tuberculosis is a chronic infectious disease primarily caused by Mycobacterium bovis, a bacterium that affects cattle and other mammals, including humans. Despite the availability of vast research about the immune response mechanisms of human tuberculosis caused by Mycobacterium tuberculosis, the knowledge of bovine tuberculosis's immunology, particularly regarding the innate immune response, still remains scarce. In this study, we compared the transcriptome of cell cultures containing lymphocytes and M. bovis infected-macrophages with two strains of variable virulence, the virulent Mb04-303 strain and the attenuated Mb534. To that end, we infected bovine macrophages at a multiplicity of infection of one, and co-cultured the infections with autologous lymphocytes. RNA obtained from the co-cultures was sequenced to identify differentially expressed gene pathways by using the database Reactome. The RNA-seq analysis showed that the Mb04-303 infection upregulated the type 1 interferon signalling pathway, while it downregulated the KEAP1-NFE2L2 pathway. According to the literature, this last pathway is involved in the activation of antioxidant genes and inflammasome. In addition, the macrophages infected with Mb04-303 recruited more Galectin 8 than those infected with Mb534. This result indicates that Mb04-303 induced higher phagosome membrane damage, with the possible concomitant release of bacterial compounds into the cytoplasm that activates the type I signalling pathway. Altogether, Mb04-303 repressed the antioxidant and anti-inflammatory responses, likely impairing interleukin-1β activation, and trigged the canonical type 1 interferon signalling. Although these responses led to the control of bacterial replication during early infection, the virulent strain eventually managed to establish a successful infection.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina; (F.C.B.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina
| | - María Mercedes Bigi
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1417, Argentina;
| | - Elizabeth Andrea García
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina; (F.C.B.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina
| | - María Teresa Elola
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Cristina Lourdes Vázquez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina; (F.C.B.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina; (F.C.B.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Buenos Aires 1686, Argentina
| |
Collapse
|
72
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
73
|
Haybar H, Bandar B, Torfi E, Mohebbi A, Saki N. Cytokines and their role in cardiovascular diseases. Cytokine 2023; 169:156261. [PMID: 37413877 DOI: 10.1016/j.cyto.2023.156261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
The evaluation of diagnostic and prognostic biomarkers has always been a hot topic in various diseases. Considering that cardiovascular diseases (CVDs) have the highest mortality and morbidity rates in the world, various studies have been conducted so far to find CVD associated biomarkers, including cardiac troponin (cTn) and NT-proBNP. Cytokines are components of the immune system that are involved in the pathogenesis of CVD due to their contribution to the inflammation process. The level of cytokines varies in many cardiovascular diseases. For instance, the plasma level of IL-1α, IL-18, IL-33, IL-6 and IL-8 is positively correlated with atherosclerosis and that of some other interleukins such as IL-35 is negatively correlated with acute myocardial infarction or cardiac angina. Due to its pivotal role in the inflammation process, IL-1 super family is involved in many CVDs, including atherosclerosis. IL-20 among the interleukins of IL-10 family has a pro-atherogenic role, while others, such as IL-10 and IL-19, play an anti-atherogenic role. In the present review, we have collected the latest published evidence in this respect to discuss valuable cytokines from the diagnostic and prognostic stand point in CVDs.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bita Bandar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ekhlas Torfi
- Department of Cardiovascular Disease, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mohebbi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
74
|
Stuckey R, Bilbao-Sieyro C, Segura-Díaz A, Gómez-Casares MT. Molecular Studies for the Early Detection of Philadelphia-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:12700. [PMID: 37628880 PMCID: PMC10454334 DOI: 10.3390/ijms241612700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
JAK2 V617F is the predominant driver mutation in patients with Philadelphia-negative myeloproliferative neoplasms (MPN). JAK2 mutations are also frequent in clonal hematopoiesis of indeterminate potential (CHIP) in otherwise "healthy" individuals. However, the period between mutation acquisition and MPN diagnosis (known as latency) varies widely between individuals, with JAK2 mutations detectable several decades before diagnosis and even from birth in some individuals. Here, we will review the current evidence on the biological factors, such as additional mutations and chronic inflammation, which influence clonal expansion and may determine why some JAK2-mutated individuals will progress to an overt neoplasm during their lifetime while others will not. We will also introduce several germline variants that predispose individuals to CHIP (as well as MPN) identified from genome-wide association studies. Finally, we will explore possible mutation screening or interventions that could help to minimize MPN-associated cardiovascular complications or even delay malignant progression.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - Cristina Bilbao-Sieyro
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Morphology Department, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Adrián Segura-Díaz
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - María Teresa Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
75
|
Gander-Bui HTT, Schläfli J, Baumgartner J, Walthert S, Genitsch V, van Geest G, Galván JA, Cardozo C, Graham Martinez C, Grans M, Muth S, Bruggmann R, Probst HC, Gabay C, Freigang S. Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal Candida albicans sepsis. Immunity 2023; 56:1743-1760.e9. [PMID: 37478856 DOI: 10.1016/j.immuni.2023.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Invasive fungal infections are associated with high mortality rates, and the lack of efficient treatment options emphasizes an urgency to identify underlying disease mechanisms. We report that disseminated Candida albicans infection is facilitated by interleukin-1 receptor antagonist (IL-1Ra) secreted from macrophages in two temporally and spatially distinct waves. Splenic CD169+ macrophages release IL-1Ra into the bloodstream, impeding early neutrophil recruitment. IL-1Ra secreted by monocyte-derived tissue macrophages further impairs pathogen containment. Therapeutic IL-1Ra neutralization restored the functional competence of neutrophils, corrected maladapted hyper-inflammation, and eradicated the otherwise lethal infection. Conversely, augmentation of macrophage-secreted IL-1Ra by type I interferon severely aggravated disease mortality. Our study uncovers how a fundamental immunoregulatory mechanism mediates the high disease susceptibility to invasive candidiasis. Furthermore, interferon-stimulated IL-1Ra secretion may exacerbate fungal dissemination in human patients with secondary candidemia. Macrophage-secreted IL-1Ra should be considered as an additional biomarker and potential therapeutic target in severe systemic candidiasis.
Collapse
Affiliation(s)
- Hang Thi Thuy Gander-Bui
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Joëlle Schläfli
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Johanna Baumgartner
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Sabrina Walthert
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Vera Genitsch
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - José A Galván
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Carmen Cardozo
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | | | - Mona Grans
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sabine Muth
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | | | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Stefan Freigang
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
76
|
Torices S, Daire L, Simon S, Mendoza L, Daniels D, Joseph JA, Fattakhov N, Naranjo O, Teglas T, Toborek M. The NLRP3 inflammasome and gut dysbiosis as a putative link between HIV-1 infection and ischemic stroke. Trends Neurosci 2023; 46:682-693. [PMID: 37330380 PMCID: PMC10554647 DOI: 10.1016/j.tins.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
HIV-associated comorbidities, such as ischemic stroke, are prevalent in people with HIV (PWH). Several studies both in animal models and humans have revealed an association between activation of the inflammasome in HIV-1 infection and stroke. The gut microbiota is an important component in controlling neuroinflammation in the CNS. It has also been proposed to be involved in the pathobiology of HIV-1 infection, and has been associated with an increase in activation of the inflammasome. In this review, we provide an overview of the microbiota-gut-inflammasome-brain axis, focusing on the NLRP3 inflammasome and dysregulation of the microbiome as risk factors that may contribute to the outcome of ischemic stroke and recovery in PWH. We also focus on the potential of targeting the NLRP3 inflammasome as a novel therapeutic approach for PWH who are at risk of developing cerebrovascular diseases.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Destiny Daniels
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
77
|
Bernard Q, Goumeidane M, Chaumond E, Robbe-Saule M, Boucaud Y, Esnault L, Croué A, Jullien J, Marsollier L, Marion E. Type-I interferons promote innate immune tolerance in macrophages exposed to Mycobacterium ulcerans vesicles. PLoS Pathog 2023; 19:e1011479. [PMID: 37428812 PMCID: PMC10358927 DOI: 10.1371/journal.ppat.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.
Collapse
Affiliation(s)
- Quentin Bernard
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | | | - Emmanuel Chaumond
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Marie Robbe-Saule
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Yan Boucaud
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Lucille Esnault
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Anne Croué
- Laboratoire d'anatomo-pathologie, CHU Angers, Angers, France
| | | | - Laurent Marsollier
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Estelle Marion
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| |
Collapse
|
78
|
Loevenich S, Montaldo NP, Wickenhagen A, Sherstova T, van Loon B, Boyartchuk V, Anthonsen MW. Human metapneumovirus driven IFN-β production antagonizes macrophage transcriptional induction of IL1-β in response to bacterial pathogens. Front Immunol 2023; 14:1173605. [PMID: 37435074 PMCID: PMC10330783 DOI: 10.3389/fimmu.2023.1173605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Human metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied. Type I interferons (IFNs), while critical for antiviral defenses, may often have detrimental effects by skewing the host immune response and cytokine output of immune cells. It is currently unknown if HMPV skews the inflammatory response in human macrophages triggered by bacterial stimuli. Here we report that HMPV pre-infection impacts production of specific cytokines. HMPV strongly suppresses IL-1β transcription in response to LPS or heat-killed Pseudomonas aeruginosa and Streptococcus pneumonia, while enhancing mRNA levels of IL-6, TNF-α and IFN-β. We demonstrate that in human macrophages the HMPV-mediated suppression of IL-1β transcription requires TANK-binding kinase 1 (TBK1) and signaling via the IFN-β-IFNAR axis. Interestingly, our results show that HMPV pre-infection did not impair the LPS-stimulated activation of NF-κB and HIF-1α, transcription factors that stimulate IL-1β mRNA synthesis in human cells. Furthermore, we determined that sequential HMPV-LPS treatment resulted in accumulation of the repressive epigenetic mark H3K27me3 at the IL1B promoter. Thus, for the first time we present data revealing the molecular mechanisms by which HMPV shapes the cytokine output of human macrophages exposed to bacterial pathogens/LPS, which appears to be dependent on epigenetic reprogramming at the IL1B promoter leading to reduced synthesis of IL-1β. These results may improve current understanding of the role of type I IFNs in respiratory disease mediated not only by HMPV, but also by other respiratory viruses that are associated with superinfections.
Collapse
Affiliation(s)
- Simon Loevenich
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Nicola P. Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arthur Wickenhagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Tatyana Sherstova
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Victor Boyartchuk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St Olav Hospital HF, Trondheim, Norway
| | - Marit W. Anthonsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
79
|
Zhong Y, Wang S, Yin Y, Yu J, Liu Y, Gao H. Dexmedetomidine suppresses hippocampal astrocyte pyroptosis in cerebral hypoxic-ischemic neonatal rats by upregulating microRNA-148a-3p to inactivate the STAT/JMJD3 axis. Int Immunopharmacol 2023; 121:110440. [PMID: 37327511 DOI: 10.1016/j.intimp.2023.110440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Dexmedetomidine (DEX), a selective α2-adrenoceptor agonist, is an anesthetic and sedative agent and has been reported to confer neuroprotective effects after cerebral hypoxic ischemia (CHI). This study was undertaken to elucidate the mechanisms by which microRNA (miR)-148a-3p is involved in the neuroprotective effect of DEX on hypoxic-ischemic brain damage in neonatal rats. METHODS Neonatal rats were exposed to CHI conditions, a miR-148a-3p inhibitor, and DEX. Hippocampal astrocytes were isolated to construct an oxygen-glucose deprivation (OGD) model. qRT-PCR and western blot were utilized to inspect miR-148a-3p, STAT1, STAT3, JMJD3, cleaved-Caspase-1, ASC, NLRP3, GSDMD, and GSDMD-N expression in rats and astrocytes. TUNEL staining was employed to measure astrocyte apoptosis rate, immunofluorescence to inspect cleaved-Caspase-1 and ASC levels, and ELISA to determine IL-1β and IL-18 expression. The target genes of miR-148a-3p were predicted using online software and verified by a dual-luciferase reporter gene assay. RESULTS A prominent increase in astrocyte apoptosis rate and the expression of pyroptosis- and inflammation-related factors were found in rats with CHI and OGD-treated astrocytes. DEX suppressed astrocyte apoptosis rate and decreased expression of pyroptosis- and inflammation-related factors. Knockdown of miR-148a-3p facilitated astrocyte pyroptosis, indicating that DEX exerted its protective effect by upregulating miR-148a-3p. miR-148a-3p negatively mediated STAT to inactivate JMJD3. Overexpression of STAT1 and STAT3 facilitated pyroptosis in astrocytes, which was negated by the overexpression of miR-148a-3p. CONCLUSION DEX inhibited hippocampal astrocyte pyroptosis by upregulating miR-148a-3p to inactivate the STAT/JMJD3 axis, thereby alleviating cerebral damage in neonatal rats with CHI.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Shengzhao Wang
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yongqiang Yin
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jialu Yu
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yang Liu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Hong Gao
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou 558000, PR China.
| |
Collapse
|
80
|
Feng WD, Wang Y, Luo T, Jia X, Cheng CQ, Wang HJ, Zhang MQ, Li QQ, Wang XJ, Li YY, Wang JY, Huang GR, Wang T, Xu AL. Scoparone suppresses mitophagy-mediated NLRP3 inflammasome activation in inflammatory diseases. Acta Pharmacol Sin 2023; 44:1238-1251. [PMID: 36522512 PMCID: PMC10203299 DOI: 10.1038/s41401-022-01028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Recent evidence shows that targeting NLRP3 inflammasome activation is an important means to treat inflammasome-driven diseases. Scoparone, a natural compound isolated from the Chinese herb Artemisia capillaris Thunb, has anti-inflammatory activity. In this study we investigated the effect of scoparone on NLRP3 inflammasome activation in inflammatory diseases. In LPS-primed, ATP or nigericin-stimulated mouse macrophage J774A.1 cells and bone marrow-derived macrophages (BMDMs), pretreatment with scoparone (50 μM) markedly restrained canonical and noncanonical NLRP3 inflammasome activation, evidenced by suppressed caspase-1 cleavage, GSDMD-mediated pyroptosis, mature IL-1β secretion and the formation of ASC specks. We then conducted a transcriptome analysis in scoparone-pretreated BMDMs, and found that the differentially expressed genes were significantly enriched in mitochondrial reactive oxygen species (ROS) metabolic process, mitochondrial translation and assembly process, as well as in inflammatory response. We demonstrated in J774A.1 cells and BMDMs that scoparone promoted mitophagy, a well-characterized mechanism to control mitochondrial quality and reduce ROS production and subsequent NLRP3 inflammasome activation. Mitophagy blockade by 3-methyladenine (3-MA, 5 mM) reversed the protective effects of scoparone on mitochondrial damage and inflammation in the murine macrophages. Moreover, administration of scoparone (50 mg/kg) exerted significant preventive effects via inhibition of NLRP3 activation in mouse models of bacterial enteritis and septic shock. Collectively, scoparone displays potent anti-inflammatory effects via blocking NLRP3 inflammasome activation through enhancing mitophagy, highlighting a potential action mechanism in treating inflammasome-related diseases for further clinical investigation.
Collapse
Affiliation(s)
- Wan-di Feng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tong Luo
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Jia
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cui-Qin Cheng
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hao-Jia Wang
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mei-Qi Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi-Qi Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Jiao Wang
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi-Ying Li
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin-Yong Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guang-Rui Huang
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - An-Long Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
- Department of Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
81
|
Fetter T, de Graaf DM, Claus I, Wenzel J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front Immunol 2023; 14:1190388. [PMID: 37325658 PMCID: PMC10266227 DOI: 10.3389/fimmu.2023.1190388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Autoimmune skin diseases are understood as conditions in which the adaptive immune system with autoantigen-specific T cells and autoantibody-producing B cells reacting against self-tissues plays a crucial pathogenic role. However, there is increasing evidence that inflammasomes, which are large multiprotein complexes that were first described 20 years ago, contribute to autoimmune disease progression. The inflammasome and its contribution to the bioactivation of interleukins IL-1β and IL-18 play an essential role in combating foreign pathogens or tissue damage, but may also act as a pathogenic driver of myriad chronic inflammatory diseases when dysfunctionally regulated. Inflammasomes containing the NOD-like receptor family members NLRP1 and NLRP3 as well as the AIM2-like receptor family member AIM2 have been increasingly investigated in inflammatory skin conditions. In addition to autoinflammatory diseases, which are often associated with skin involvement, the aberrant activation of the inflammasome has also been implied in autoimmune diseases that can either affect the skin besides other organs such as systemic lupus erythematosus and systemic sclerosis or are isolated to the skin in humans. The latter include, among others, the T-cell mediated disorders vitiligo, alopecia areata, lichen planus and cutaneous lupus erythematosus as well as the autoantibody-driven blistering skin disease bullous pemphigoid. Some diseases are characterized by both autoinflammatory and autoimmune responses such as the chronic inflammatory skin disease psoriasis. Further insights into inflammasome dysregulation and associated pathways as well as their role in forming adaptive immune responses in human autoimmune skin pathology could potentially offer a new field of therapeutic options in the future.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Isabelle Claus
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
82
|
Xu J, Zhou Z, Zheng Y, Yang S, Huang K, Li H. Roles of inflammasomes in viral myocarditis. Front Cell Infect Microbiol 2023; 13:1149911. [PMID: 37256114 PMCID: PMC10225676 DOI: 10.3389/fcimb.2023.1149911] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Viral myocarditis (VMC), characterized by viral infection-induced inflammation, is a life-threatening disease associated with dilated cardiomyopathy or heart failure. Innate immunity plays a crucial role in the progression of inflammation, in which inflammasomes provide a platform for the secretion of cytokines and mediate pyroptosis. Inflammasomes are rising stars gaining increasing attention. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome, and the caspase-11 inflammasome are three inflammasomes that were reported to affect the process and prognosis of VMC. These inflammasomes can be activated by a wide range of cellular events. Accumulating evidence has suggested that inflammasomes are involved in different stages of VMC, including the trigger and progression of myocardial injury and remodeling after infection. In this review, we summarized the pathways involving inflammasomes in VMC and discussed the potential therapies targeting inflammasomes and related pathways.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
83
|
Boraschi D, Italiani P, Migliorini P, Bossù P. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases. Front Immunol 2023; 14:1128190. [PMID: 37223102 PMCID: PMC10200871 DOI: 10.3389/fimmu.2023.1128190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cytokines and receptors of the IL-1 family are key mediators in innate immune and inflammatory reactions in physiological defensive conditions, but are also significantly involved in immune-mediated inflammatory diseases. Here, we will address the role of cytokines of the IL-1 superfamily and their receptors in neuroinflammatory and neurodegenerative diseases, in particular Multiple Sclerosis and Alzheimer's disease. Notably, several members of the IL-1 family are present in the brain as tissue-specific splice variants. Attention will be devoted to understanding whether these molecules are involved in the disease onset or are effectors of the downstream degenerative events. We will focus on the balance between the inflammatory cytokines IL-1β and IL-18 and inhibitory cytokines and receptors, in view of future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuro-psychobiology, Department of Clinical and Behavioral Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
84
|
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 2023; 141:1909-1921. [PMID: 36347013 PMCID: PMC10646774 DOI: 10.1182/blood.2022017578] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal diseases originating from a single hematopoietic stem cell that cause excessive production of mature blood cells. The 3 subtypes, that is, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are diagnosed according to the World Health Organization (WHO) and international consensus classification (ICC) criteria. Acquired gain-of-function mutations in 1 of 3 disease driver genes (JAK2, CALR, and MPL) are the causative events that can alone initiate and promote MPN disease without requiring additional cooperating mutations. JAK2-p.V617F is present in >95% of PV patients, and also in about half of the patients with ET or PMF. ET and PMF are also caused by mutations in CALR or MPL. In ∼10% of MPN patients, those referred to as being "triple negative," none of the known driver gene mutations can be detected. The common theme between the 3 driver gene mutations and triple-negative MPN is that the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is constitutively activated. We review the recent advances in our understanding of the early events after the acquisition of a driver gene mutation. The limiting factor that determines the frequency at which MPN disease develops with a long latency is not the acquisition of driver gene mutations, but rather the expansion of the clone. Factors that control the conversion from clonal hematopoiesis to MPN disease include inherited predisposition, presence of additional mutations, and inflammation. The full extent of knowledge of the mutational landscape in individual MPN patients is now increasingly being used to predict outcome and chose the optimal therapy.
Collapse
Affiliation(s)
- Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
85
|
López-Nevado M, Sevilla J, Almendro-Vázquez P, Gil-Etayo FJ, Garcinuño S, Serrano-Hernández A, Paz-Artal E, González-Granado LI, Allende LM. Inborn Error of STAT2-Dependent IFN-I Immunity in a Patient Presented with Hemophagocytic Lymphohistiocytosis and Multisystem Inflammatory Syndrome in Children. J Clin Immunol 2023:10.1007/s10875-023-01488-6. [PMID: 37074537 PMCID: PMC10113994 DOI: 10.1007/s10875-023-01488-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
Human inborn errors of immunity (IEI) affecting the type I interferon (IFN-I) induction pathway have been associated with predisposition to severe viral infections. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory syndrome that has been increasingly associated with inborn errors of IFN-I-mediated innate immunity. Here is reported a novel case of complete deficiency of STAT2 in a 3-year-old child that presented with typical features of HLH after mumps, measles, and rubella vaccination at the age of 12 months. Due to the life-threatening risk of viral infection, she received SARS-CoV-2 mRNA vaccination. Unfortunately, she developed multisystem inflammatory syndrome in children (MIS-C) after SARS-CoV-2 infection, 4 months after the last dose. Functional studies showed an impaired IFN-I-induced response and a defective IFNα expression at later stages of STAT2 pathway induction. These results suggest a possible more complex mechanism for hyperinflammatory reactions in this type of patients involving a possible defect in the IFN-I production. Understanding the cellular and molecular links between IFN-I-induced signaling and hyperinflammatory syndromes can be critical for the diagnosis and tailored management of these patients with predisposition to severe viral infection.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
| | - Julián Sevilla
- Hematology and Hemotherapy Unit, University Children's Hospital Niño Jesus, Madrid, Spain
| | - Patricia Almendro-Vázquez
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Francisco J Gil-Etayo
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Sara Garcinuño
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Antonio Serrano-Hernández
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis I González-Granado
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Department of Pediatrics, Immunodeficiency Unit, University Hospital, 12 de Octubre, Madrid, Spain
| | - Luis M Allende
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
- School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
86
|
Rousseau BA, Bhaduri-McIntosh S. Inflammation and Epstein-Barr Virus at the Crossroads of Multiple Sclerosis and Post-Acute Sequelae of COVID-19 Infection. Viruses 2023; 15:949. [PMID: 37112929 PMCID: PMC10141000 DOI: 10.3390/v15040949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have strengthened the evidence for Epstein-Barr Virus (EBV) as an important contributing factor in the development of multiple sclerosis (MS). Chronic inflammation is a key feature of MS. EBV+ B cells can express cytokines and exosomes that promote inflammation, and EBV is known to be reactivated through the upregulation of cellular inflammasomes. Inflammation is a possible cause of the breakdown of the blood-brain barrier (BBB), which allows the infiltration of lymphocytes into the central nervous system. Once resident, EBV+ or EBV-specific B cells could both plausibly exacerbate MS plaques through continued inflammatory processes, EBV reactivation, T cell exhaustion, and/or molecular mimicry. Another virus, SARS-CoV-2, the cause of COVID-19, is known to elicit a strong inflammatory response in infected and immune cells. COVID-19 is also associated with EBV reactivation, particularly in severely ill patients. Following viral clearance, continued inflammation may be a contributor to post-acute sequelae of COVID-19 infection (PASC). Evidence of aberrant cytokine activation in patients with PASC supports this hypothesis. If unaddressed, long-term inflammation could put patients at risk for reactivation of EBV. Determining mechanisms by which viruses can cause inflammation and finding treatments for reducing that inflammation may help reduce the disease burden for patients suffering from PASC, MS, and EBV diseases.
Collapse
Affiliation(s)
- Beth A. Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
87
|
Kalantari P, Shecter I, Hopkins J, Pilotta Gois A, Morales Y, Harandi BF, Sharma S, Stadecker MJ. The balance between gasdermin D and STING signaling shapes the severity of schistosome immunopathology. Proc Natl Acad Sci U S A 2023; 120:e2211047120. [PMID: 36943884 PMCID: PMC10068786 DOI: 10.1073/pnas.2211047120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
There is significant disease heterogeneity among mouse strains infected with the helminth Schistosoma mansoni. Here, we uncover a unique balance in two critical innate pathways governing the severity of disease. In the low-pathology setting, parasite egg-stimulated dendritic cells (DCs) induce robust interferon (IFN)β production, which is dependent on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway and results in a Th2 response with suppression of proinflammatory cytokine production and Th17 cell activation. IFNβ induces signal transducer and activator of transcription (STAT)1, which suppresses CD209a, a C-type lectin receptor associated with severe disease. In contrast, in the high-pathology setting, enhanced DC expression of the pore-forming protein gasdermin D (Gsdmd) results in reduced expression of cGAS/STING, impaired IFNβ, and enhanced pyroptosis. Our findings demonstrate that cGAS/STING signaling represents a unique mechanism inducing protective type I IFN, which is counteracted by Gsdmd.
Collapse
Affiliation(s)
- Parisa Kalantari
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA16802
| | - Ilana Shecter
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Jacob Hopkins
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Andrea Pilotta Gois
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Yoelkys Morales
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Bijan F. Harandi
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Miguel J. Stadecker
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| |
Collapse
|
88
|
Pan T, Cao G, Tang E, Zhao Y, Penaloza-MacMaster P, Fang Y, Huang J. A single-cell atlas reveals shared and distinct immune responses and metabolic profiles in SARS-CoV-2 and HIV-1 infections. Front Genet 2023; 14:1105673. [PMID: 36992700 PMCID: PMC10040851 DOI: 10.3389/fgene.2023.1105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Within the inflammatory immune response to viral infection, the distribution and cell type-specific profiles of immune cell populations and the immune-mediated viral clearance pathways vary according to the specific virus. Uncovering the immunological similarities and differences between viral infections is critical to understanding disease progression and developing effective vaccines and therapies. Insight into COVID-19 disease progression has been bolstered by the integration of single-cell (sc)RNA-seq data from COVID-19 patients with data from related viruses to compare immune responses. Expanding this concept, we propose that a high-resolution, systematic comparison between immune cells from SARS-CoV-2 infection and an inflammatory infectious disease with a different pathophysiology will provide a more comprehensive picture of the viral clearance pathways that underscore immunological and clinical differences between infections. Methods: Using a novel consensus single-cell annotation method, we integrate previously published scRNA-seq data from 111,566 single PBMCs from 7 COVID-19, 10 HIV-1+, and 3 healthy patients into a unified cellular atlas. We compare in detail the phenotypic features and regulatory pathways in the major immune cell clusters. Results: While immune cells in both COVID-19 and HIV-1+ cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activity, and downregulated mitophagy. Discussion: Our results indicate that differential IFN-I signaling regulates the distinct immune responses in the two diseases, revealing insight into fundamental disease biology and potential therapeutic candidates.
Collapse
Affiliation(s)
- Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Yu Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | | | - Yun Fang
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
89
|
Yim HCH, Chakrabarti A, Kessler S, Morimoto H, Wang D, Sooraj D, Ahmed AU, de la Motte C, Silverman RH, Williams BRG, Sadler AJ. The protein kinase R modifies gut physiology to limit colitis. Front Immunol 2023; 14:1106737. [PMID: 36875104 PMCID: PMC9981792 DOI: 10.3389/fimmu.2023.1106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Here we investigate the function of the innate immune molecule protein kinase R (PKR) in intestinal inflammation. To model a colitogenic role of PKR, we determine the physiological response to dextran sulfate sodium (DSS) of wild-type and two transgenic mice strains mutated to express either a kinase-dead PKR or to ablate expression of the kinase. These experiments recognize kinase-dependent and -independent protection from DSS-induced weight loss and inflammation, against a kinase-dependent increase in the susceptibility to DSS-induced injury. We propose these effects arise through PKR-dependent alteration of gut physiology, evidenced as altered goblet cell function and changes to the gut microbiota at homeostasis that suppresses inflammasome activity by controlling autophagy. These findings establish that PKR functions as both a protein kinase and a signaling molecule in instituting immune homeostasis in the gut.
Collapse
Affiliation(s)
- Howard Chi Ho Yim
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Arindam Chakrabarti
- Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, United States
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, United States
| | - Hiroyuki Morimoto
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy, School of Medicine, the University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Die Wang
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Carol de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, United States
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, United States
| | - Bryan RG. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Anthony J. Sadler
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
90
|
Zach M, Greslehner GP. Understanding immunity: an alternative framework beyond defense and strength. BIOLOGY & PHILOSOPHY 2023; 38:7. [PMID: 36819127 PMCID: PMC9929241 DOI: 10.1007/s10539-023-09893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/10/2023] [Indexed: 05/25/2023]
Abstract
In this paper we address the issue of how to think about immunity. Many immunological writings suggest a straightforward option: the view that the immune system is primarily a system of defense, which naturally invites the talk of strong immunity and strong immune response. Despite their undisputable positive role in immunology, such metaphors can also pose a risk of establishing a narrow perspective, omitting from consideration phenomena that do not neatly fit those powerful metaphors. Building on this analysis, we argue two things. First, we argue that the immune system is involved not only in defense. Second, by disentangling various possible meanings of 'strength' and 'weakness' in immunology, we also argue that such a construal of immunity generally contributes to the distortion of the overall picture of what the immune system is, what it does, and why it sometimes fails. Instead, we propose to understand the nature of the immune system in terms of contextuality, regulation, and trade-offs. We suggest that our approach provides lessons for a general understanding of the organizing principles of the immune system in health and disease. For all this to work, we discuss a wide range of immunological phenomena.
Collapse
Affiliation(s)
- Martin Zach
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 352/1, 110 00 Prague, Czech Republic
| | - Gregor P. Greslehner
- Department of Philosophy, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
| |
Collapse
|
91
|
Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res 2023; 252:21-33. [PMID: 35952982 PMCID: PMC10614656 DOI: 10.1016/j.trsl.2022.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. This is likely due to the related challenges of predicting and mitigating off-target effects impacting the normal immune response while detecting inflammatory signatures that are specific to the progression of neurological disorders. Inflammasomes are pro-inflammatory cytosolic pattern recognition receptors functioning in the innate immune system. Compelling pre-clinical data has prompted an intense interest in the role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in neurodegenerative disease. NLRP3 is typically inactive but can respond to sterile triggers commonly associated with neurodegenerative disorders including protein misfolding and aggregation, mitochondrial and oxidative stress, and exposure to disease-associated environmental toxicants. Clear evidence of enhanced NLRP3 inflammasome activity in common neurodegenerative diseases has coincided with rapid advancement of novel small molecule therapeutics making the NLRP3 inflammasome an attractive target for near-term interventional studies. In this review, we highlight evidence from model systems and patients indicating inflammasome activity in neurodegenerative disease associated with the NLRP3 inflammasome's ability to recognize pathologic forms of amyloid-β, tau, and α-synuclein. We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Karl E Biggs
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Brynn E Rankin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
92
|
The NLRP3 Inflammasome in Age-Related Cerebral Small Vessel Disease Manifestations: Untying the Innate Immune Response Connection. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010216. [PMID: 36676165 PMCID: PMC9866483 DOI: 10.3390/life13010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
In this narrative review, we present the evidence on nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome activation for its putative roles in the elusive pathomechanism of aging-related cerebral small vessel disease (CSVD). Although NLRP3 inflammasome-interleukin (IL)-1β has been implicated in the pathophysiology of coronary artery disease, its roles in cerebral arteriothrombotic micro-circulation disease such as CSVD remains unexplored. Here, we elaborate on the current manifestations of CSVD and its' complex pathogenesis and relate the array of activators and aberrant activation involving NLRP3 inflammasome with this condition. These neuroinflammatory insights would expand on our current understanding of CSVD clinical (and subclinical) heterogenous manifestations whilst highlighting plausible NLRP3-linked therapeutic targets.
Collapse
|
93
|
Tsujimoto K, Jo T, Nagira D, Konaka H, Park JH, Yoshimura S, Ninomiya A, Sugihara F, Hirayama T, Itotagawa E, Matsuzaki Y, Takaichi Y, Aoki W, Saita S, Nakamura S, Ballabio A, Nada S, Okada M, Takamatsu H, Kumanogoh A. The lysosomal Ragulator complex activates NLRP3 inflammasome in vivo via HDAC6. EMBO J 2023; 42:e111389. [PMID: 36444797 PMCID: PMC9811619 DOI: 10.15252/embj.2022111389] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
The cellular activation of the NLRP3 inflammasome is spatiotemporally orchestrated by various organelles, but whether lysosomes contribute to this process remains unclear. Here, we show the vital role of the lysosomal membrane-tethered Ragulator complex in NLRP3 inflammasome activation. Deficiency of Lamtor1, an essential component of the Ragulator complex, abrogated NLRP3 inflammasome activation in murine macrophages and human monocytic cells. Myeloid-specific Lamtor1-deficient mice showed marked attenuation of NLRP3-associated inflammatory disease severity, including LPS-induced sepsis, alum-induced peritonitis, and monosodium urate (MSU)-induced arthritis. Mechanistically, Lamtor1 interacted with both NLRP3 and histone deacetylase 6 (HDAC6). HDAC6 enhances the interaction between Lamtor1 and NLRP3, resulting in NLRP3 inflammasome activation. DL-all-rac-α-tocopherol, a synthetic form of vitamin E, inhibited the Lamtor1-HDAC6 interaction, resulting in diminished NLRP3 inflammasome activation. Further, DL-all-rac-α-tocopherol alleviated acute gouty arthritis and MSU-induced peritonitis. These results provide novel insights into the role of lysosomes in the activation of NLRP3 inflammasomes by the Ragulator complex.
Collapse
Affiliation(s)
- Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
| | - Tatsunori Jo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
| | - Daiki Nagira
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
| | - Hachiro Konaka
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
| | - Jeong Hoon Park
- Department of Internal MedicineDaini Osaka Police HospitalOsakaJapan
| | | | - Akinori Ninomiya
- Central Instrumentation Laboratory, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
| | - Takehiro Hirayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
| | - Eri Itotagawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
| | - Yusei Matsuzaki
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Yuki Takaichi
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Wataru Aoki
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Shotaro Saita
- Department of Genetics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of MedicineOsaka UniversityOsakaJapan
- Institute for Advanced Co‐Creation StudiesOsaka UniversityOsakaJapan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
- Scuola Superiore Meridionale (SSM), School for Advanced StudiesFederico II UniversityNaplesItaly
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- The Japan Science and Technology – Core Research for Evolutional Science and Technology (JST–CREST)Osaka UniversityOsakaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTIR)Osaka UniversityOsakaJapan
- Center for Advanced Modalities and DDS (CAMaD)Osaka UniversityOsakaJapan
- Center for Infectious Diseases for Education and Research (CiDER)Osaka UniversitySuitaJapan
| |
Collapse
|
94
|
Abstract
Innate immunity acts as the first line of defense against pathogen invasion. During Toxoplasma gondii infection, multiple innate immune sensors are activated by invading microbes or pathogen-associated molecular patterns (PAMPs). However, how inflammasome is activated and its regulatory mechanisms during T. gondii infection remain elusive. Here, we showed that the infection of PRU, a lethal type II T. gondii strain, activates inflammasome at the early stage of infection. PRU tachyzoites, RNA and soluble tachyzoite antigen (STAg) mainly triggered the NLRP3 inflammasome, while PRU genomic DNA (gDNA) specially activated the AIM2 inflammasome. Furthermore, mice deficient in AIM2, NLRP3, or caspase-1/11 were more susceptible to T. gondii PRU infection, and the ablation of inflammasome signaling impaired antitoxoplasmosis immune responses by enhancing type I interferon (IFN-I) production. Blockage of IFN-I receptor fulfilled inflammasome-deficient mice competent immune responses as WT mice. Moreover, we have identified that the suppressor of cytokine signaling 1 (SOCS1) is a key negative regulator induced by inflammasome-activated IL-1β signaling and inhibits IFN-I production by targeting interferon regulatory factor 3 (IRF3). In general, our study defines a novel protective role of inflammasome activation during toxoplasmosis and identifies a critical regulatory mechanism of the cross talk between inflammasome and IFN-I signaling for understanding infectious diseases. IMPORTANCE As a key component of innate immunity, inflammasome is critical for host antitoxoplasmosis immunity, but the underlying mechanisms are still elusive. In this study, we found that inflammasome signaling was activated by PAMPs of T. gondii, which generated a protective immunity against T. gondii invasion by suppressing type I interferon (IFN-I) production. Mechanically, inflammasome-coupled IL-1β signaling triggered the expression of negative regulator SOCS1, which bound to IRF3 to inhibit IFN-I production. The role of IFN-I in anti-T. gondii immunity is little studied and controversial, and here we also found IFN-I is harmful to host antitoxoplasmosis immunity by using knockout mice and recombinant proteins. In general, our study identifies a protective role of inflammasomes to the host during T. gondii infection and a novel mechanism by which inflammasome suppresses IFN-I signaling in antitoxoplasmosis immunity, which will likely provide new insights into therapeutic targets for toxoplasmosis and highlight the cross talk between innate immune signaling in infectious diseases prevention.
Collapse
|
95
|
Illig D, Kotlarz D. Dysregulated inflammasome activity in intestinal inflammation - Insights from patients with very early onset IBD. Front Immunol 2022; 13:1027289. [PMID: 36524121 PMCID: PMC9744759 DOI: 10.3389/fimmu.2022.1027289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disorder triggered by imbalances of the microbiome and immune dysregulations in genetically susceptible individuals. Several mouse and human studies have demonstrated that multimeric inflammasomes are critical regulators of host defense and gut homeostasis by modulating immune responses to pathogen- or damage-associated molecular patterns. In the context of IBD, excessive production of pro-inflammatory Interleukin-1β has been detected in patient-derived intestinal tissues and correlated with the disease severity or failure to respond to anti-tumor necrosis factor therapy. Correspondingly, genome-wide association studies have suggested that single nucleotide polymorphisms in inflammasome components might be associated with risk of IBD development. The relevance of inflammasomes in controlling human intestinal homeostasis has been further exemplified by the discovery of very early onset IBD (VEO-IBD) patients with monogenic defects affecting different molecules in the complex regulatory network of inflammasome activity. This review provides an overview of known causative monogenic entities of VEO-IBD associated with altered inflammasome activity. A better understanding of the molecular mechanisms controlling inflammasomes in monogenic VEO-IBD may open novel therapeutic avenues for rare and common inflammatory diseases.
Collapse
Affiliation(s)
- David Illig
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,*Correspondence: Daniel Kotlarz,
| |
Collapse
|
96
|
Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers (Basel) 2022; 14:5495. [PMID: 36428587 PMCID: PMC9688061 DOI: 10.3390/cancers14225495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
About 30 years ago, the first clinical trials of the safety and efficacy of recombinant interferon-α2 (rIFN-α2) were performed. Since then, several single-arm studies have shown rIFN-α2 to be a highly potent anticancer agent against several cancer types. Unfortunately, however, a high toxicity profile in early studies with rIFN-α2 -among other reasons likely due to the high dosages being used-disqualified rIFN-α2, which was accordingly replaced with competitive drugs that might at first glance look more attractive to clinicians. Later, pegylated IFN-α2a (Pegasys) and pegylated IFN-α2b (PegIntron) were introduced, which have since been reported to be better tolerated due to reduced toxicity. Today, treatment with rIFN-α2 is virtually outdated in non-hematological cancers, where other immunotherapies-e.g., immune-checkpoint inhibitors-are routinely used in several cancer types and are being intensively investigated in others, either as monotherapy or in combination with immunomodulatory agents, although only rarely in combination with rIFN-α2. Within the hematological malignancies, rIFN-α2 has been used off-label for decades in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs)-i.e., essential thrombocythemia, polycythemia vera, and myelofibrosis-and in recent years rIFN-α2 has been revived with the marketing of ropeginterferon-α2b (Besremi) for the treatment of polycythemia vera patients. Additionally, rIFN-α2 has been revived for the treatment of chronic myelogenous leukemia in combination with tyrosine kinase inhibitors. Another rIFN formulation-recombinant interferon-β (rIFN-β)-has been used for decades in the treatment of multiple sclerosis but has never been studied as a potential agent to be used in patients with MPNs, although several studies and reviews have repeatedly described rIFN-β as an effective anticancer agent as well. In this paper, we describe the rationales and perspectives for launching studies on the safety and efficacy of rIFN-β in patients with MPNs.
Collapse
Affiliation(s)
- Hans Hasselbalch
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | | | - Trine A. Knudsen
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Marko Lucijanić
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Rajko Kusec
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
97
|
Heinz R, Schneider UC. TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage (SAH): Potential Targets for Future Anti-Inflammatory Therapies. Int J Mol Sci 2022; 23:ijms232012618. [PMID: 36293468 PMCID: PMC9603851 DOI: 10.3390/ijms232012618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
Subarachnoid hemorrhage is associated with severe neurological deficits for survivors. Among survivors of the initial bleeding, secondary brain injury leads to additional brain damage. Apart from cerebral vasospasm, secondary brain injury mainly results from cerebral inflammation taking place in the brain parenchyma after bleeding. The brain’s innate immune system is activated, which leads to disturbances in brain homeostasis, cleavage of inflammatory cytokines and, subsequently, neuronal cell death. The toll-like receptor (TLR)4 signaling pathway has been found to play an essential role in the pathophysiology of acute brain injuries such as subarachnoid hemorrhage (SAH). TLR4 is expressed on the cell surface of microglia, which are key players in the cellular immune responses of the brain. The participants in the signaling pathway, such as TLR4-pathway-like ligands, the receptor itself, and inflammatory cytokines, can act as biomarkers, serving as clues regarding the inflammatory status after SAH. Moreover, protein complexes such as the NLRP3 inflammasome or receptors such as TREM1 frame the TLR4 pathway and are indicative of inflammation. In this review, we focus on the activity of the TLR4 pathway and its contributors, which can act as biomarkers of neuroinflammation or even offer potential new treatment targets for secondary neuronal cell death after SAH.
Collapse
Affiliation(s)
- Rebecca Heinz
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Ulf C. Schneider
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurosurgery, Cantonal Hospital of Lucerne, 6000 Lucerne, Switzerland
- Correspondence:
| |
Collapse
|
98
|
Bencze D, Fekete T, Pfliegler W, Szöőr Á, Csoma E, Szántó A, Tarr T, Bácsi A, Kemény L, Veréb Z, Pázmándi K. Interactions between the NLRP3-Dependent IL-1β and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells. Int J Mol Sci 2022; 23:12154. [PMID: 36293012 PMCID: PMC9602791 DOI: 10.3390/ijms232012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1β during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1β requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1β production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1β production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1β secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Antónia Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
99
|
Zhuang W, Zhang L, Zheng Y, Liu B, Ma C, Zhao W, Liu S, Liu F, Gao C. USP3 deubiquitinates and stabilizes the adapter protein ASC to regulate inflammasome activation. Cell Mol Immunol 2022; 19:1141-1152. [PMID: 36050480 PMCID: PMC9508167 DOI: 10.1038/s41423-022-00917-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasomes are essential components of the innate immune system and its defense against infections, whereas the dysregulation of inflammasome activation has a detrimental effect on human health. The activation of inflammasomes is subjected to tight regulation to maintain immune homeostasis, yet the underlying mechanism remains elusive. Here, we identify USP3 as a direct deubiquitinating enzyme (DUB) for ASC, the central adapter mediating the assembly and activation of most inflammasomes. USP3 removes the K48-linked ubiquitination on ASC and strengthens its stability by blocking proteasomal degradation. Additionally, USP3 promotes inflammasome activation, and this function was confirmed in mouse models of aluminum (Alum)-induced peritonitis, F. novicida infection and flagellin-induced pneumonia in vivo. Our work unveils that USP3 functions as a key regulator of ASC ubiquitination and maintains the physiological role of ASC in mediating inflammasome activation, and we propose a new mechanism by which the ubiquitination of ASC regulates inflammasome activation.
Collapse
Affiliation(s)
- Wanxin Zhuang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chunhong Ma
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Suxia Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
100
|
Tu Q, Li Y, Zhu J, Guo L, Liu C, Liu L, Yuan Y, Zou Y, Chen F, Yao L, Li J. Mitochondrial
DNA
mediates immunoparalysis of dendritic cells in sepsis via
STING
signalling. Cell Prolif 2022; 55:e13328. [DOI: 10.1111/cpr.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/09/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Qing Tu
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yi Li
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiali Zhu
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Long Guo
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chenchen Liu
- School of Anesthesiology Weifang Medical University Weifang China
| | - Lu Liu
- School of Anesthesiology Weifang Medical University Weifang China
| | - Yuan Yuan
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yun Zou
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Feng Chen
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Liangfang Yao
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jinbao Li
- Department of Anesthesiology Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|