51
|
Martínez-Usatorre A, Donda A, Zehn D, Romero P. PD-1 Blockade Unleashes Effector Potential of Both High- and Low-Affinity Tumor-Infiltrating T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:792-803. [PMID: 29875150 DOI: 10.4049/jimmunol.1701644] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Antitumor T cell responses involve CD8+ T cells with high affinity for mutated self-antigen and low affinity for nonmutated tumor-associated Ag. Because of the highly individual nature of nonsynonymous somatic mutations in tumors, however, immunotherapy relies often on an effective engagement of low-affinity T cells. In this study, we studied the role of T cell affinity during peripheral priming with single-peptide vaccines and during the effector phase in the tumor. To that end, we compared the antitumor responses after OVA257-264 (N4) peptide vaccination of CD8+ T cells carrying TCRs with high (OT-1) and low (OT-3) avidity for the N4 peptide in B16.N4 tumor-bearing C57BL/6 mice. Additionally, we assessed the response of OT-1 cells to either high-affinity (B16.N4) or low-affinity (B16.T4) Ag-expressing tumors after high-affinity (N4) or low-affinity (T4) peptide vaccination. We noticed that although low-affinity tumor-specific T cells expand less than high-affinity T cells, they express lower levels of inhibitory receptors and produce more cytokines. Interestingly, tumor-infiltrating CD8+ T cells show similar in vivo re-expansion capacity to their counterparts in secondary lymphoid organs when transferred to tumor-free hosts, suggesting that T cells in tumors may be rekindled upon relief of tumor immunosuppression. Moreover, our results show that αPD-1 treatment enhances tumor control of high- and low-affinity ligand-expressing tumors, suggesting that combination of high-affinity peripheral priming by altered peptide ligands and checkpoint blockade may enable tumor control upon low-affinity Ag recognition in the tumor.
Collapse
Affiliation(s)
- Amaia Martínez-Usatorre
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Alena Donda
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Dietmar Zehn
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Pedro Romero
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| |
Collapse
|
52
|
Kasprowicz R, Rand E, O'Toole PJ, Signoret N. A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4 + T cell-macrophage immunological synapses. Sci Rep 2018; 8:8003. [PMID: 29789661 PMCID: PMC5964238 DOI: 10.1038/s41598-018-26172-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/08/2018] [Indexed: 11/10/2022] Open
Abstract
Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4+ T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4+ T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.
Collapse
Affiliation(s)
- Richard Kasprowicz
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD, York, United Kingdom
| | - Emma Rand
- Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Peter J O'Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Nathalie Signoret
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD, York, United Kingdom.
| |
Collapse
|
53
|
Andargachew R, Martinez RJ, Kolawole EM, Evavold BD. CD4 T Cell Affinity Diversity Is Equally Maintained during Acute and Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:19-30. [PMID: 29777029 DOI: 10.4049/jimmunol.1800295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
TCR affinity for peptide MHC dictates the functional efficiency of T cells and their propensity to differentiate into effectors and form memory. However, in the context of chronic infections, it is unclear what the overall profile of TCR affinity for Ag is and if it differs from acute infections. Using the comprehensive affinity analysis provided by the two-dimensional micropipette adhesion frequency assay and the common indirect affinity evaluation methods of MHC class II tetramer and functional avidity, we tracked IAb GP61-80-specific cells in the mouse model of acute (Armstrong) and chronic (clone 13) lymphocytic choriomeningitis virus infection. In each response, we show CD4 T cell population affinity peaks at the effector phase and declines with memory. Of interest, the range and average relative two-dimensional affinity was equivalent between acute and chronic infection, indicating chronic Ag exposure did not skew TCR affinity. In contrast, functional and tetramer avidity measurements revealed divergent results and lacked a consistent correlation with TCR affinity. Our findings highlight that the immune system maintains a diverse range in TCR affinity even under the pressures of chronic Ag stimulation.
Collapse
Affiliation(s)
- Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Ryan J Martinez
- School of Medicine, Emory University, Atlanta, GA 30322; and
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
54
|
Sáez PJ, Sáez JC, Lennon-Duménil AM, Vargas P. Role of calcium permeable channels in dendritic cell migration. Curr Opin Immunol 2018; 52:74-80. [PMID: 29715579 DOI: 10.1016/j.coi.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
Abstract
Calcium ion (Ca2+) is an essential second messenger involved in multiple cellular and subcellular processes. Ca2+ can be released and sensed globally or locally within cells, providing complex signals of variable amplitudes and time-scales. The key function of Ca2+ in the regulation of acto-myosin contractility has provided a simple explanation for its role in the regulation of immune cell migration. However, many questions remain, including the identity of the Ca2+ stores, channels and upstream signals involved in this process. Here, we focus on dendritic cells (DCs), because their immune sentinel function heavily relies on their capacity to migrate within tissues and later on between tissues and lymphoid organs. Deciphering the mechanisms by which cytoplasmic Ca2+ regulate DC migration should shed light on their role in initiating and tuning immune responses.
Collapse
Affiliation(s)
- Pablo J Sáez
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005, France; Instittut Pierre-Gilles de Gennes, PSL Research University, F-75005, France.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 6513677, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso 2360103, Chile
| | | | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005, France; Instittut Pierre-Gilles de Gennes, PSL Research University, F-75005, France.
| |
Collapse
|
55
|
Bohineust A, Garcia Z, Beuneu H, Lemaître F, Bousso P. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division. J Exp Med 2018; 215:1481-1492. [PMID: 29588347 PMCID: PMC5940264 DOI: 10.1084/jem.20171708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/31/2018] [Accepted: 03/07/2018] [Indexed: 01/28/2023] Open
Abstract
Bohineust et al. establish that recently activated T cells exhibit a phase of unresponsiveness associated with a defect in calcium entry. This stage was essential to terminate priming, distracting T cells from APCs, and favoring their clonal expansion. T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion.
Collapse
Affiliation(s)
- Armelle Bohineust
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Hélène Beuneu
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France .,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| |
Collapse
|
56
|
|
57
|
Alanio C, Barreira da Silva R, Michonneau D, Bousso P, Ingersoll MA, Albert ML. CXCR3/CXCL10 Axis Shapes Tissue Distribution of Memory Phenotype CD8 + T Cells in Nonimmunized Mice. THE JOURNAL OF IMMUNOLOGY 2017; 200:139-146. [PMID: 29187588 DOI: 10.4049/jimmunol.1700564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022]
Abstract
The preimmune repertoire consists of mature T lymphocytes that have not yet been stimulated in the periphery. Memory phenotype (MP) cells have been reported as part of the preimmune repertoire (i.e., T cells bearing memory markers despite lack of engagement with cognate Ag); however, little is known about their trafficking and function. In this study, we hypothesized that MP cells, naive to TCR stimulation, constitute a transient population that traffics to tissues during development. Using mutant and transgenic animals with a monospecific TCR, we discovered increased numbers of MP CD8+ T cells circulating in nonimmunized Cxcr3-/- and Cxcl10-/- mice compared with wild-type animals. Phenotypic differences included decreased numbers of preimmune MP Ag-specific T cells in the skin and thymus and a distinct pattern of activation upon TCR engagement. Our results show for the first time, to our knowledge, an important role for CXCR3 and CXCL10 in the tissue distribution of preimmune MP cells.
Collapse
Affiliation(s)
- Cécile Alanio
- Laboratory of Dendritic Cell Immunology, Institut Pasteur, 75015 Paris, France.,Inserm U1223, 75015 Paris, France.,Center for Translational Research, Institut Pasteur, 75015 Paris, France
| | | | - David Michonneau
- Inserm U1223, 75015 Paris, France.,Laboratory of Dynamics of Immune Responses, Institut Pasteur, 75015 Paris, France
| | - Philippe Bousso
- Inserm U1223, 75015 Paris, France.,Laboratory of Dynamics of Immune Responses, Institut Pasteur, 75015 Paris, France
| | - Molly A Ingersoll
- Laboratory of Dendritic Cell Immunology, Institut Pasteur, 75015 Paris, France.,Inserm U1223, 75015 Paris, France
| | - Matthew L Albert
- Laboratory of Dendritic Cell Immunology, Institut Pasteur, 75015 Paris, France; .,Inserm U1223, 75015 Paris, France.,Department of Cancer Immunology, Genentech, South San Francisco, CA 94080; and
| |
Collapse
|
58
|
Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res 2017; 189:1-12. [PMID: 28784428 PMCID: PMC5659947 DOI: 10.1016/j.trsl.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Recent developments in automated optical sectioning microscope systems have enabled researchers to conduct high resolution, three-dimensional (3D) microscopy at the scale of millimeters in various types of tissues. This powerful technology allows the exploration of tissues at an unprecedented level of detail, while preserving the spatial context. By doing so, such technology will also enable researchers to explore cellular and molecular signatures within tissue and correlate with disease course. This will allow an improved understanding of pathophysiology and facilitate a precision medicine approach to assess the response to treatment. The ability to perform large-scale imaging in 3D cannot be realized without the widespread availability of accessible quantitative analysis. In this review, we will outline recent advances in large-scale 3D imaging and discuss the available methodologies to perform meaningful analysis and potential applications in translational research.
Collapse
|
59
|
Ackerknecht M, Gollmer K, Germann P, Ficht X, Abe J, Fukui Y, Swoger J, Ripoll J, Sharpe J, Stein JV. Antigen Availability and DOCK2-Driven Motility Govern CD4+ T Cell Interactions with Dendritic Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2017; 199:520-530. [DOI: 10.4049/jimmunol.1601148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 05/09/2017] [Indexed: 01/07/2023]
|
60
|
Saitakis M, Dogniaux S, Goudot C, Bufi N, Asnacios S, Maurin M, Randriamampita C, Asnacios A, Hivroz C. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 2017; 6. [PMID: 28594327 PMCID: PMC5464771 DOI: 10.7554/elife.23190] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/07/2017] [Indexed: 12/26/2022] Open
Abstract
T cells are mechanosensitive but the effect of stiffness on their functions is still debated. We characterize herein how human primary CD4+ T cell functions are affected by stiffness within the physiological Young’s modulus range of 0.5 kPa to 100 kPa. Stiffness modulates T lymphocyte migration and morphological changes induced by TCR/CD3 triggering. Stiffness also increases TCR-induced immune system, metabolism and cell-cycle-related genes. Yet, upon TCR/CD3 stimulation, while cytokine production increases within a wide range of stiffness, from hundreds of Pa to hundreds of kPa, T cell metabolic properties and cell cycle progression are only increased by the highest stiffness tested (100 kPa). Finally, mechanical properties of adherent antigen-presenting cells modulate cytokine production by T cells. Together, these results reveal that T cells discriminate between the wide range of stiffness values found in the body and adapt their responses accordingly. DOI:http://dx.doi.org/10.7554/eLife.23190.001 Our immune system contains many cells that play various roles in defending the body against infection, cancer and other threats. For example, T cells constantly patrol the body ready to detect and respond to dangers. They do so by gathering cues from their surroundings, which can be specific chemical signals or physical properties such as the stiffness of tissues. Once the T cells are active they respond in several different ways including releasing hormones and dividing to produce more T cells. Tissue stiffness varies considerably between different organs. Furthermore, disease can lead to changes in tissue stiffness. For example, tissues become more rigid when they are inflamed. The stiffness and other physical properties of the surfaces that T cells interact with affect how the cells respond when they detect a threat, but few details are known about exactly how these cues tune T cell responses. Saitakis et al. studied how human T cells respond to artificial surfaces of varying stiffness that mimic the range found in the body. The experiments show that T cells that interact with stiff surfaces become more active than T cells that interact with softer surfaces. However, some responses are more sensitive to the stiffness of the surface than others. For example, the ability of the T cells to release hormones was affected by the whole range of stiffnesses tested in the experiments, whereas only very stiff surfaces stimulated the T cells to divide. These findings show that T cells can detect the stiffness of surfaces in the body and use this to adapt how they respond to threats. Future challenges will be to find out how T cells sense the physical properties of their surroundings and investigate whether cell and tissue stiffness affects immune responses in the body. This will help us to understand how T cells fight infections and other threats, and could be used to develop new ways of boosting these cells to fight cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.23190.002
Collapse
Affiliation(s)
- Michael Saitakis
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Stéphanie Dogniaux
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Christel Goudot
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Nathalie Bufi
- Laboratoire Matières et systèmes complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Sophie Asnacios
- Laboratoire Matières et systèmes complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France.,Department of Physics, Sorbonne Universités, UPMC Université Paris, Paris, France
| | - Mathieu Maurin
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Clotilde Randriamampita
- INSERM, U1016, Institut Cochin & UMR8104, CNRS & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Atef Asnacios
- Laboratoire Matières et systèmes complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Claire Hivroz
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| |
Collapse
|
61
|
Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3127908. [PMID: 29097915 PMCID: PMC5612736 DOI: 10.1155/2017/3127908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Purpose We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Procedures Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). Results The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. Conclusions This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.
Collapse
|
62
|
Juvet SC, Moshkelgosha S, Sanderson S, Hester J, Wood KJ, Bushell A. Measurement of T Cell Alloreactivity Using Imaging Flow Cytometry. J Vis Exp 2017. [PMID: 28448002 PMCID: PMC5408926 DOI: 10.3791/55283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The measurement of immunological reactivity to donor antigens in transplant recipients is likely to be crucial for the successful reduction or withdrawal of immunosuppression. The mixed leukocyte reaction (MLR), limiting dilution assays, and trans-vivo delayed-type hypersensitivity (DTH) assay have all been applied to this question, but these methods have limited predictive ability and/or significant practical limitations that reduce their usefulness.Imaging flow cytometry is a technique that combines the multiparametric quantitative powers of flow cytometry with the imaging capabilities of fluorescent microscopy. We recently made use of an imaging flow cytometry approach to define the proportion of recipient T cells capable of forming mature immune synapses with donor antigen-presenting cells (APCs). Using a well-characterized mouse heart transplant model, we have shown that the frequency of in vitro immune synapses among T-APC membrane contact events strongly predicted allograft outcome in rejection, tolerance, and a situation where transplant survival depends on induced regulatory T cells.The frequency of T-APC contacts increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. The addition of regulatory T cells to the in vitro system reduced prolonged T-APC contacts. Critically, this effect was also seen with human polyclonally expanded, naturally occurring regulatory T cells, which are known to control the rejection of human tissues in humanized mouse models. Further development of this approach may allow for a deeper characterization of the alloreactive T-cell compartment in transplant recipients. In the future, further development and evaluation of this method using human cells may form the basis for assays used to select patients for immunosuppression minimization, and it can be used to measure the impact of tolerogenic therapies in the clinic.
Collapse
Affiliation(s)
- Stephen C Juvet
- Division of Respirology, Departments of Medicine and Immunology, Toronto Lung Transplant Program, Multiorgan Transplant Program, Toronto General Research Institute, University of Toronto and University Health Network;
| | - Sajad Moshkelgosha
- Latner Thoracic Surgery Laboratories, Toronto General Research Institute, University Health Network
| | - Sharon Sanderson
- National Institutes of Health Research, Oxford Biomedical Research Centre, Translational Immunology Laboratory, NDORMS, Kennedy Institute of Rheumatology, University of Oxford
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Andrew Bushell
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| |
Collapse
|
63
|
Abstract
T Cells can form very stable (synapses) or very transient and migratory (kinapses) contacts with antigen-presenting cells. Here, we describe how microchannels can be used to conveniently study the distinct dynamics of T cells during antigen recognition. Microchannels provide a controlled confined environment that promotes T cell migration and recapitulates kinapse and synapse behaviors when coated with appropriate pMHC molecules. We also depict the advantages of this in vitro approach for addressing mechanistic issues and for analysis.
Collapse
|
64
|
Winfree S, Khan S, Micanovic R, Eadon MT, Kelly KJ, Sutton TA, Phillips CL, Dunn KW, El-Achkar TM. Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol 2017; 28:2108-2118. [PMID: 28154201 DOI: 10.1681/asn.2016091027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022] Open
Abstract
Analysis of the immune system in the kidney relies predominantly on flow cytometry. Although powerful, the process of tissue homogenization necessary for flow cytometry analysis introduces bias and results in the loss of morphologic landmarks needed to determine the spatial distribution of immune cells. An ideal approach would support three-dimensional (3D) tissue cytometry: an automated quantitation of immune cells and associated spatial parameters in 3D image volumes collected from intact kidney tissue. However, widespread application of this approach is limited by the lack of accessible software tools for digital analysis of large 3D microscopy data. Here, we describe Volumetric Tissue Exploration and Analysis (VTEA) image analysis software designed for efficient exploration and quantitative analysis of large, complex 3D microscopy datasets. In analyses of images collected from fixed kidney tissue, VTEA replicated the results of flow cytometry while providing detailed analysis of the spatial distribution of immune cells in different regions of the kidney and in relation to specific renal structures. Unbiased exploration with VTEA enabled us to discover a population of tubular epithelial cells that expresses CD11C, a marker typically expressed on dendritic cells. Finally, we show the use of VTEA for large-scale quantitation of immune cells in entire human kidney biopsies. In summary, we show that VTEA is a simple and effective tool that supports unique digital interrogation and analysis of kidney tissue from animal models or biobanked human kidney biopsies. We have made VTEA freely available to interested investigators via electronic download.
Collapse
Affiliation(s)
- Seth Winfree
- Division of Nephrology, Department of Medicine and
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine and
| | | | | | | | | | - Carrie L Phillips
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | | | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine and .,Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
65
|
Philipsen L, Reddycherla AV, Hartig R, Gumz J, Kästle M, Kritikos A, Poltorak MP, Prokazov Y, Turbin E, Weber A, Zuschratter W, Schraven B, Simeoni L, Müller AJ. De novo phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling. Sci Signal 2017; 10:10/462/eaaf4736. [DOI: 10.1126/scisignal.aaf4736] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
66
|
Abstract
T cells can become activated in lymph nodes following a diverse set of interactions with antigen-presenting cells. These cellular contacts range from short and dynamic to stable and long-lasting interactions, termed kinapses and synapses, respectively. Here, we describe a methodology to generate naïve T cells expressing a fluorescent probe of interest through the generation of bone marrow chimeras and to image T cell dynamics using intravital two-photon microscopy. In these settings, the formation of kinapses and synapses can be triggered by the administration of low and high affinity peptides, respectively. Finally, 3D cell tracking can help classify distinct T cell behaviors. These approaches should offer new possibilities for dissecting the process of T cell activation in vivo.
Collapse
Affiliation(s)
- Hélène D Moreau
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015, Paris, France
- INSERM U1223, 75015, Paris, France
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015, Paris, France.
- INSERM U1223, 75015, Paris, France.
| |
Collapse
|
67
|
Abstract
The interactions between dendritic cells and T cells during the initiation of an adaptive immune response underpins one of the most important checkpoints in ensuring that the correct immune response is induced, in order to direct the development of immune tolerance or to mount an immune response against pathogenic organisms. The advent of two-photon intravital imaging allows us to directly study the interactions between dendritic cells and T cells as they occur under physiological conditions, greatly improving our understanding of the dynamic relationship that occurs during T cell activation and expanding our knowledge of how the adaptive immune system is regulated during both priming and memory responses. Here, we describe a technique for the in vivo analysis of the interactions between either CD4+ or CD8+ T cells and dendritic cells as they occur in the popliteal lymph nodes of live mice. The adoptive transfer of both dendritic cells and T cells is utilized here in order to allow investigators to control the time point of interaction being analyzed, the activation state and amount of antigen presented by the dendritic cell, and the maturation/differentiation state of the interacting T cell.
Collapse
|
68
|
Boldajipour B, Nelson A, Krummel MF. Tumor-infiltrating lymphocytes are dynamically desensitized to antigen but are maintained by homeostatic cytokine. JCI Insight 2016; 1:e89289. [PMID: 27942588 DOI: 10.1172/jci.insight.89289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
T cells that enter tumors are largely tolerized, but how that process is choreographed and how the ensuing "dysfunctional" tumor-infiltrating lymphocytes (TILs) are maintained are poorly understood and are difficult to assess in spontaneous disease. We exploited an autochthonous model of breast cancer for high-resolution imaging of the early and later stages of tumor residence to understand the relationships between cellular behaviors and cellular phenotypes. "Dysfunctional" differentiation began within the first days of tumor residence with an initial phase in which T cells arrest, largely on tumor-associated macrophages. Within 10 days, cellular motility increased and resembled a random walk, suggesting a relative absence of TCR signaling. We then studied the concurrent and apparently contradictory phenomenon that many of these cells express molecular markers of activation and were visualized undergoing active cell division. We found that whereas proliferation did not require ongoing TCR/ZAP70 signaling, instead this is driven in part by intratumoral IL-15 cytokine. Thus, TILs undergo sequential reprogramming by the tumor microenvironment and are actively retained, even while being antigen insensitive. We conclude that this program effectively fills the niche with ineffective yet cytokine-dependent TILs, and we propose that these might compete with new clones, when they arise.
Collapse
Affiliation(s)
| | | | - Matthew F Krummel
- Department of Pathology and.,Biological Imaging Development Center, UCSF, San Francisco, California, USA
| |
Collapse
|
69
|
Veres TZ, Kopcsányi T, van Panhuys N, Gerner MY, Liu Z, Rantakari P, Dunkel J, Miyasaka M, Salmi M, Jalkanen S, Germain RN. Allergen-Induced CD4+ T Cell Cytokine Production within Airway Mucosal Dendritic Cell-T Cell Clusters Drives the Local Recruitment of Myeloid Effector Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:895-907. [PMID: 27903737 DOI: 10.4049/jimmunol.1601448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
Allergic asthma develops in the mucosal tissue of small bronchi. At these sites, local cytokine production by Th2/Th17 cells is believed to be critical for the development of tissue eosinophilia/neutrophilia. Using the mouse trachea as a relevant model of human small airways, we performed advanced in vivo dynamic and in situ static imaging to visualize individual cytokine-producing T cells in the airway mucosa and to define their immediate cellular environment. Upon allergen sensitization, newly recruited CD4+ T cells formed discrete Ag-driven clusters with dendritic cells (DCs). Within T cell-DC clusters, a small fraction of CD4+ T cells produced IL-13 or IL-17 following prolonged Ag-specific interactions with DCs. As a result of local Th2 cytokine signaling, eosinophils were recruited into these clusters. Neutrophils also infiltrated these clusters in a T cell-dependent manner, but their mucosal distribution was more diffuse. Our findings reveal the focal nature of allergen-driven responses in the airways and define multiple steps with potential for interference with the progression of asthmatic pathology.
Collapse
Affiliation(s)
- Tibor Z Veres
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland; .,Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tamás Kopcsányi
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Nicholas van Panhuys
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Sidra Medical and Research Center, Doha, Qatar
| | - Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Zhiduo Liu
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Johannes Dunkel
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Masayuki Miyasaka
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; and
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, 20520 Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, 20520 Turku, Finland
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
70
|
Breart B, Bousso P. S1P1downregulation tailors CD8+T-cell residence time in lymph nodes to the strength of the antigenic stimulation. Eur J Immunol 2016; 46:2730-2736. [DOI: 10.1002/eji.201646550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Béatrice Breart
- Institut Pasteur; Dynamics of Immune Responses Unit; 75015 Paris France
- INSERM U1223; rue du Dr Roux 75015 Paris France
| | - Philippe Bousso
- Institut Pasteur; Dynamics of Immune Responses Unit; 75015 Paris France
- INSERM U1223; rue du Dr Roux 75015 Paris France
| |
Collapse
|
71
|
Ozga AJ, Moalli F, Abe J, Swoger J, Sharpe J, Zehn D, Kreutzfeldt M, Merkler D, Ripoll J, Stein JV. pMHC affinity controls duration of CD8+ T cell-DC interactions and imprints timing of effector differentiation versus expansion. J Exp Med 2016; 213:2811-2829. [PMID: 27799622 PMCID: PMC5110015 DOI: 10.1084/jem.20160206] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
Ozga and colleagues use intravital two-photon microscopy and quantitative whole-organ imaging to reveal the dynamics of early affinity-driven CD8+ T cell activation. During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity–primed T cells acquired cytotoxic activity earlier than high affinity–primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity–stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jun Abe
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jim Swoger
- Systems Biology Research Unit, European Molecular Biology Laboratory/Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - James Sharpe
- Systems Biology Research Unit, European Molecular Biology Laboratory/Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Centre des laboratoires d'Epalinges, 1066 Epalinges, Switzerland.,Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III of Madrid, 28911 Madrid, Spain.,Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
72
|
Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B. Postarrest stalling rather than crawling favors CD8(+) over CD4(+) T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol 2016; 46:2187-203. [PMID: 27338806 PMCID: PMC5113696 DOI: 10.1002/eji.201546251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023]
Abstract
Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Isabelle Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
73
|
Capece T, Kim M. The Role of Lymphatic Niches in T Cell Differentiation. Mol Cells 2016; 39:515-23. [PMID: 27306645 PMCID: PMC4959015 DOI: 10.14348/molcells.2016.0089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022] Open
Abstract
Long-term immunity to many viral and bacterial pathogens requires CD8(+) memory T cell development, and the induction of long-lasting CD8(+) memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8(+) T cell compartment is highly dependent on the early activation cues received by naïve CD8(+) T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs.
Collapse
Affiliation(s)
- Tara Capece
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| |
Collapse
|
74
|
Mayya V, Dustin ML. What Scales the T Cell Response? Trends Immunol 2016; 37:513-522. [PMID: 27364960 DOI: 10.1016/j.it.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/14/2023]
Abstract
T cells are known to scale their clonal expansion and effector cytokine response according to the dose and strength of antigenic signal so as to balance their role of affecting protection with the intertwined and immunologically driven tissue damage. How T cells achieve this is now beginning to be understood. We underscore temporal integration of digital T cell receptor (TCR) signaling as the basis for achieving scaled response by means of accumulating crucial mediators over time. We also discuss the role of temporally integrated crosstalk between TCR and IL2 signaling in mediating a scaled, coherent, collective response by T cells. Finally, we highlight numerous known and putative regulatory interactions in the transcriptional program that are expected to quantitatively scale the T cell response, and also offer new mechanisms to hitherto unexplained observations.
Collapse
Affiliation(s)
- Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK; Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
75
|
Palmer E, Drobek A, Stepanek O. Opposing effects of actin signaling and LFA-1 on establishing the affinity threshold for inducing effector T-cell responses in mice. Eur J Immunol 2016; 46:1887-901. [PMID: 27188212 DOI: 10.1002/eji.201545909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 11/10/2022]
Abstract
Mature CD8(+) T cells use a narrow antigen affinity threshold to generate tissue-infiltrating cytotoxic effector T cells and induce autoimmune pathology, but the mechanisms that establish this antigen affinity threshold are poorly understood. Only antigens with affinities above the threshold induce stable contacts with APCs, polarization of a T cell, and asymmetric T-cell division. Previously published data indicate that LFA-1 inside-out signaling might be involved in establishing the antigen affinity threshold. Here, we show that subthreshold antigens weakly activate all major distal TCR signaling pathways. Low-affinity antigens are more dependent on LFA-1 than suprathreshold antigens. Moreover, augmenting the inside-out signaling by hyperactive Rap1 does not increase responses to the subthreshold antigens. Thus, LFA-1 signaling does not contribute to the affinity-based antigen discrimination. However, we found that subthreshold antigens do not induce actin rearrangement toward an APC, mediated by Rho-family GTPases, Cdc42, and Rac. Our data suggest that Rac and Cdc42 contribute to the establishment of the antigen affinity threshold in CD8(+) T cells by enhancing responses to high-affinity antigens, or by reducing the responses to low-affinity antigens.
Collapse
Affiliation(s)
- Ed Palmer
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
76
|
Jain R, Tikoo S, Weninger W. Recent advances in microscopic techniques for visualizing leukocytes in vivo. F1000Res 2016; 5:F1000 Faculty Rev-915. [PMID: 27239292 PMCID: PMC4874443 DOI: 10.12688/f1000research.8127.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo.
Collapse
Affiliation(s)
- Rohit Jain
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Shweta Tikoo
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
77
|
Guedj C, Abraham N, Jullié D, Randriamampita C. T cell adhesion triggers an early signaling pole distal to the immune synapse. J Cell Sci 2016; 129:2526-37. [PMID: 27185862 DOI: 10.1242/jcs.182311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/09/2016] [Indexed: 01/09/2023] Open
Abstract
The immunological synapse forms at the interface between a T cell and an antigen-presenting cell after foreign antigen recognition. The immunological synapse is considered to be the site where the signaling cascade leading to T lymphocyte activation is triggered. Here, we show that another signaling region can be detected before formation of the synapse at the opposite pole of the T cell. This structure appears during the first minute after the contact forms, is transient and contains all the classic components that have been previously described at the immunological synapse. Its formation is independent of antigen recognition but is driven by adhesion itself. It constitutes a reservoir of signaling molecules that are potentially ready to be sent to the immunological synapse through a microtubule-dependent pathway. The antisynapse can thus be considered as a pre-synapse that is triggered independently of antigen recognition.
Collapse
Affiliation(s)
- Chloé Guedj
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Nicolas Abraham
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Damien Jullié
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Clotilde Randriamampita
- INSERM, U1016, Institut Cochin, Infection, Immunity and Inflammation Department, 22 rue Méćhain, Paris 75014, France CNRS, UMR8104, Paris 75014, France Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
78
|
Moreau HD, Bogle G, Bousso P. A virtual lymph node model to dissect the requirements for T-cell activation by synapses and kinapses. Immunol Cell Biol 2016; 94:680-8. [PMID: 27089942 PMCID: PMC4980574 DOI: 10.1038/icb.2016.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
Abstract
The initiation of T-cell responses in lymph nodes requires T cells to integrate signals delivered by dendritic cells (DCs) during long-lasting contacts (synapses) or more transient interactions (kinapses). However, it remains extremely challenging to understand how a specific sequence of contacts established by T cells ultimately dictates T-cell fate. Here, we have coupled a computational model of T-cell migration and interactions with DCs with a real-time, flow cytometry-like representation of T-cell activation. In this model, low-affinity peptides trigger T-cell proliferation through kinapses but we show that this process is only effective under conditions of high DC densities and prolonged antigen availability. By contrast, high-affinity peptides favor synapse formation and a vigorous proliferation under a wide range of antigen presentation conditions. In line with the predictions, decreasing the DC density in vivo selectively abolished proliferation induced by the low-affinity peptide. Finally, our results suggest that T cells possess a biochemical memory of previous stimulations of at least 1–2 days. We propose that the stability of T-cell–DC interactions, apart from their signaling potency, profoundly influences the robustness of T-cell activation. By offering the ability to control parameters that are difficult to manipulate experimentally, the virtual lymph node model provides new possibilities to tackle the fundamental mechanisms that regulate T-cell responses elicited by infections or vaccines.
Collapse
Affiliation(s)
- Hélène D Moreau
- Institut Pasteur, Dynamics of Immune Responses Unit, Paris, France.,INSERM U1223, Paris, France
| | - Gib Bogle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Philippe Bousso
- Institut Pasteur, Dynamics of Immune Responses Unit, Paris, France.,INSERM U1223, Paris, France
| |
Collapse
|
79
|
Juvet SC, Sanderson S, Hester J, Wood KJ, Bushell A. Quantification of CD4(+) T Cell Alloreactivity and Its Control by Regulatory T Cells Using Time-Lapse Microscopy and Immune Synapse Detection. Am J Transplant 2016; 16:1394-407. [PMID: 26603026 PMCID: PMC4855688 DOI: 10.1111/ajt.13607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 10/07/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
Abstract
Assays designed to select transplant recipients for immunosuppression withdrawal have met with limited success, perhaps because they measure events downstream of T cell-alloantigen interactions. Using in vitro time-lapse microscopy in a mouse transplant model, we investigated whether transplant outcome would result in changes in the proportion of CD4(+) T cells forming prolonged interactions with donor dendritic cells. By blocking CD4-MHC class II and CD28-B7 interactions, we defined immunologically relevant interactions as those ≥500 s. Using this threshold, T cell-dendritic cell (T-DC) interactions were examined in rejection, tolerance and T cell control mediated by regulatory T cells. The frequency of T-DC contacts ≥500 s increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. Regulatory T cells reduced prolonged T-DC contacts. Importantly, this effect was replicated with human polyclonally expanded naturally occurring regulatory T cells, which we have previously shown can control rejection of human tissues in humanized mouse models. Finally, in a proof-of-concept translational context, we were able to visualize differential allogeneic immune synapse formation in polyclonal CD4(+) T cells using high-throughput imaging flow cytometry.
Collapse
Affiliation(s)
- S. C. Juvet
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK,Toronto Lung Transplant Program and Division of RespirologyDepartment of MedicineUniversity Health Network and University of TorontoTorontoOntarioCanada,Present address: Toronto General HospitalTorontoOntarioCanada
| | - S. Sanderson
- NIHR BRC Translational Immunology LaboratoryNuffield Department of MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - J. Hester
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - K. J. Wood
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - A. Bushell
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
80
|
Gaylo A, Overstreet MG, Fowell DJ. Imaging CD4 T Cell Interstitial Migration in the Inflamed Dermis. J Vis Exp 2016:e53585. [PMID: 27078264 PMCID: PMC4841317 DOI: 10.3791/53585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability of CD4 T cells to carry out effector functions is dependent upon the rapid and efficient migration of these cells in inflamed peripheral tissues through an as-yet undefined mechanism. The application of multiphoton microscopy to the study of the immune system provides a tool to measure the dynamics of immune responses within intact tissues. Here we present a protocol for non-invasive intravital multiphoton imaging of CD4 T cells in the inflamed mouse ear dermis. Use of a custom imaging platform and a venous catheter allows for the visualization of CD4 T cell dynamics in the dermal interstitium, with the ability to interrogate these cells in real-time via the addition of blocking antibodies to key molecular components involved in motility. This system provides advantages over both in vitro models and surgically invasive imaging procedures. Understanding the pathways used by CD4 T cells for motility may ultimately provide insight into the basic function of CD4 T cells as well as the pathogenesis of both autoimmune diseases and pathology from chronic infections.
Collapse
Affiliation(s)
- Alison Gaylo
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Michael G Overstreet
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Deborah J Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY;
| |
Collapse
|
81
|
Hivroz C, Saitakis M. Biophysical Aspects of T Lymphocyte Activation at the Immune Synapse. Front Immunol 2016; 7:46. [PMID: 26913033 PMCID: PMC4753286 DOI: 10.3389/fimmu.2016.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/31/2016] [Indexed: 11/21/2022] Open
Abstract
T lymphocyte activation is a pivotal step of the adaptive immune response. It requires the recognition by T-cell receptors (TCR) of peptides presented in the context of major histocompatibility complex molecules (pMHC) present at the surface of antigen-presenting cells (APCs). T lymphocyte activation also involves engagement of costimulatory receptors and adhesion molecules recognizing ligands on the APC. Integration of these different signals requires the formation of a specialized dynamic structure: the immune synapse. While the biochemical and molecular aspects of this cell–cell communication have been extensively studied, its mechanical features have only recently been addressed. Yet, the immune synapse is also the place of exchange of mechanical signals. Receptors engaged on the T lymphocyte surface are submitted to many tensile and traction forces. These forces are generated by various phenomena: membrane undulation/protrusion/retraction, cell mobility or spreading, and dynamic remodeling of the actomyosin cytoskeleton inside the T lymphocyte. Moreover, the TCR can both induce force development, following triggering, and sense and convert forces into biochemical signals, as a bona fide mechanotransducer. Other costimulatory molecules, such as LFA-1, engaged during immune synapse formation, also display these features. Moreover, T lymphocytes themselves are mechanosensitive, since substrate stiffness can modulate their response. In this review, we will summarize recent studies from a biophysical perspective to explain how mechanical cues can affect T lymphocyte activation. We will particularly discuss how forces are generated during immune synapse formation; how these forces affect various aspects of T lymphocyte biology; and what are the key features of T lymphocyte response to stiffness.
Collapse
Affiliation(s)
- Claire Hivroz
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| | - Michael Saitakis
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| |
Collapse
|
82
|
Le Borgne M, Raju S, Zinselmeyer BH, Le VT, Li J, Wang Y, Miller MJ, Shaw AS. Real-Time Analysis of Calcium Signals during the Early Phase of T Cell Activation Using a Genetically Encoded Calcium Biosensor. THE JOURNAL OF IMMUNOLOGY 2016; 196:1471-9. [PMID: 26746192 DOI: 10.4049/jimmunol.1502414] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Proper T cell activation is promoted by sustained calcium signaling downstream of the TCR. However, the dynamics of calcium flux after stimulation with an APC in vivo remain to be fully understood. Previous studies focusing on T cell motility suggested that the activation of naive T cells in the lymph node occurs in distinct phases. In phase I, T cells make multiple transient contacts with dendritic cells before entering a phase II, where they exist in stable clusters with dendritic cells. It has been suggested that T cells signal during transient contacts of phase I, but this has never been shown directly. Because time-dependent loss of calcium dyes from cells hampers long-term imaging of cells in vivo after antigenic stimulation, we generated a knock-in mouse expressing a modified form of the Cameleon fluorescence resonance energy transfer reporter for intracellular calcium and examined calcium flux both in vitro and in situ. In vitro, we observed transient, oscillatory, and sustained calcium flux after contact with APC, but these behaviors were not affected by the type of APC or Ag quantity, but were, however, moderately dependent on Ag quality. In vivo, we found that during phase I, T cells exhibit weak calcium fluxes and detectable changes in cell motility. This demonstrates that naive T cells signal during phase I and support the hypothesis that accumulated calcium signals are required to signal the beginning of phase II.
Collapse
Affiliation(s)
- Marie Le Borgne
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Viet T Le
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - JiaJia Li
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093; and
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrey S Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
83
|
Huranova M, Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic, Stepanek O. Role of actin cytoskeleton at multiple levels of T cell activation. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
84
|
van Pel M, Fibbe WE, Schepers K. The human and murine hematopoietic stem cell niches: are they comparable? Ann N Y Acad Sci 2015; 1370:55-64. [DOI: 10.1111/nyas.12994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Melissa van Pel
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| | - Willem E. Fibbe
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| | - Koen Schepers
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| |
Collapse
|
85
|
Arsenio J, Metz PJ, Chang JT. Asymmetric Cell Division in T Lymphocyte Fate Diversification. Trends Immunol 2015; 36:670-683. [PMID: 26474675 DOI: 10.1016/j.it.2015.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
Abstract
Immunological protection against microbial pathogens is dependent on robust generation of functionally diverse T lymphocyte subsets. Upon microbial infection, naïve CD4(+) or CD8(+) T lymphocytes can give rise to effector- and memory-fated progeny that together mediate a potent immune response. Recent advances in single-cell immunological and genomic profiling technologies have helped elucidate early and late diversification mechanisms that enable the generation of heterogeneity from single T lymphocytes. We discuss these findings here and argue that one such mechanism, asymmetric cell division, creates an early divergence in T lymphocyte fates by giving rise to daughter cells with a propensity towards the terminally differentiated effector or self-renewing memory lineages, with cell-intrinsic and -extrinsic cues from the microenvironment driving the final maturation steps.
Collapse
Affiliation(s)
- Janilyn Arsenio
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
86
|
Signal strength regulates antigen-mediated T-cell deceleration by distinct mechanisms to promote local exploration or arrest. Proc Natl Acad Sci U S A 2015; 112:12151-6. [PMID: 26371316 DOI: 10.1073/pnas.1506654112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T lymphocytes are highly motile cells that decelerate upon antigen recognition. These cells can either completely stop or maintain a low level of motility, forming contacts referred to as synapses or kinapses, respectively. Whether similar or distinct molecular mechanisms regulate T-cell deceleration during synapses or kinapses is unclear. Here, we used microfabricated channels and intravital imaging to observe and manipulate T-cell kinapses and synapses. We report that high-affinity antigen induced a pronounced deceleration selectively dependent on Ca(2+) signals and actin-related protein 2/3 complex (Arp2/3) activity. In contrast, low-affinity antigens induced a switch of migration mode that promotes T-cell exploratory behavior, characterized by partial deceleration and frequent direction changes. This switch depended on T-cell receptor binding but was largely independent of downstream signaling. We propose that distinct mechanisms of T-cell deceleration can be triggered during antigenic recognition to favor local exploration and signal integration upon suboptimal stimulus and complete arrest on the best antigen-presenting cells.
Collapse
|
87
|
Kallikourdis M, Viola A, Benvenuti F. Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Front Immunol 2015; 6:433. [PMID: 26379669 PMCID: PMC4551858 DOI: 10.3389/fimmu.2015.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/09/2015] [Indexed: 11/13/2022] Open
Abstract
The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott-Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott-Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC-T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC-T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC-T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University , Rozzano , Italy ; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
88
|
Hägerbrand K, Westlund J, Yrlid U, Agace W, Johansson-Lindbom B. MyD88 Signaling Regulates Steady-State Migration of Intestinal CD103+ Dendritic Cells Independently of TNF-α and the Gut Microbiota. THE JOURNAL OF IMMUNOLOGY 2015; 195:2888-99. [PMID: 26259586 DOI: 10.4049/jimmunol.1500210] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/15/2015] [Indexed: 01/28/2023]
Abstract
Intestinal homeostasis and induction of systemic tolerance to fed Ags (i.e., oral tolerance) rely on the steady-state migration of small intestinal lamina propria dendritic cells (DCs) into draining mesenteric lymph nodes (MLN). The majority of these migratory DCs express the α integrin chain CD103, and in this study we demonstrate that the steady-state mobilization of CD103(+) DCs into the MLN is in part governed by the IL-1R family/TLR signaling adaptor molecule MyD88. Similar to mice with complete MyD88 deficiency, specific deletion of MyD88 in DCs resulted in a 50-60% reduction in short-term accumulation of both CD103(+)CD11b(+) and CD103(+)CD11b(-) DCs in the MLN. DC migration was independent of caspase-1, which is responsible for the inflammasome-dependent proteolytic activation of IL-1 cytokine family members, and was not affected by treatment with broad-spectrum antibiotics. Consistent with the latter finding, the proportion and phenotypic composition of DCs were similar in mesenteric lymph from germ-free and conventionally housed mice. Although TNF-α was required for CD103(+) DC migration to the MLN after oral administration of the TLR7 agonist R848, it was not required for the steady-state migration of these cells. Similarly, TLR signaling through the adaptor molecule Toll/IL-1R domain-containing adapter inducing IFN-β and downstream production of type I IFN were not required for steady-state CD103(+) DC migration. Taken together, our results demonstrate that MyD88 signaling in DCs, independently of the microbiota and TNF-α, is required for optimal steady-state migration of small intestinal lamina propria CD103(+) DCs into the MLN.
Collapse
Affiliation(s)
| | - Jessica Westlund
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; and
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; and
| | - William Agace
- Immunology Section, Lund University, 221 84 Lund, Sweden; Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | | |
Collapse
|
89
|
Cross-recognition of a myelin peptide by CD8+ T cells in the CNS is not sufficient to promote neuronal damage. J Neurosci 2015; 35:4837-50. [PMID: 25810515 DOI: 10.1523/jneurosci.3380-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the CNS thought to be driven by CNS-specific T lymphocytes. Although CD8(+) T cells are frequently found in multiple sclerosis lesions, their distinct role remains controversial because direct signs of cytotoxicity have not been confirmed in vivo. In the present work, we determined that murine ovalbumin-transgenic (OT-1) CD8(+) T cells recognize the myelin peptide myelin oligodendrocyte glycoprotein 40-54 (MOG40-54) both in vitro and in vivo. The aim of this study was to investigate whether such cross-recognizing CD8(+) T cells are capable of inducing CNS damage in vivo. Using intravital two-photon microscopy in the mouse model of multiple sclerosis, we detected antigen recognition motility of the OT-1 CD8(+) T cells within the CNS leading to a selective enrichment in inflammatory lesions. However, this cross-reactivity of OT-1 CD8(+) T cells with MOG peptide in the CNS did not result in clinically or subclinically significant damage, which is different from myelin-specific CD4(+) Th17-mediated autoimmune pathology. Therefore, intravital imaging demonstrates that local myelin recognition by autoreactive CD8(+) T cells in inflammatory CNS lesions alone is not sufficient to induce disability or increase axonal injury.
Collapse
|
90
|
Zehentmeier S, Cseresnyes Z, Escribano Navarro J, Niesner RA, Hauser AE. Automated quantification of hematopoietic cell - stromal cell interactions in histological images of undecalcified bone. J Vis Exp 2015:52544. [PMID: 25938636 PMCID: PMC4541482 DOI: 10.3791/52544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Confocal microscopy is the method of choice for the analysis of localization of multiple cell types within complex tissues such as the bone marrow. However, the analysis and quantification of cellular localization is difficult, as in many cases it relies on manual counting, thus bearing the risk of introducing a rater-dependent bias and reducing interrater reliability. Moreover, it is often difficult to judge whether the co-localization between two cells results from random positioning, especially when cell types differ strongly in the frequency of their occurrence. Here, a method for unbiased quantification of cellular co-localization in the bone marrow is introduced. The protocol describes the sample preparation used to obtain histological sections of whole murine long bones including the bone marrow, as well as the staining protocol and the acquisition of high-resolution images. An analysis workflow spanning from the recognition of hematopoietic and non-hematopoietic cell types in 2-dimensional (2D) bone marrow images to the quantification of the direct contacts between those cells is presented. This also includes a neighborhood analysis, to obtain information about the cellular microenvironment surrounding a certain cell type. In order to evaluate whether co-localization of two cell types is the mere result of random cell positioning or reflects preferential associations between the cells, a simulation tool which is suitable for testing this hypothesis in the case of hematopoietic as well as stromal cells, is used. This approach is not limited to the bone marrow, and can be extended to other tissues to permit reproducible, quantitative analysis of histological data.
Collapse
Affiliation(s)
| | - Zoltan Cseresnyes
- Biophysical Analytics, German Rheumatism Research Center, a Leibniz Institute; Max-Delbrück Center for Molecular Medicine
| | | | - Raluca A Niesner
- Biophysical Analytics, German Rheumatism Research Center, a Leibniz Institute
| | - Anja E Hauser
- Immunodynamics, German Rheumatism Research Center, a Leibniz Institute; Immunodynamics and Intravital Imaging, Charité - University of Medicine;
| |
Collapse
|
91
|
Benson RA, McInnes IB, Brewer JM, Garside P. Cellular imaging in rheumatic diseases. Nat Rev Rheumatol 2015; 11:357-67. [DOI: 10.1038/nrrheum.2015.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
92
|
Abstract
Recruitment of leukocytes into arteries is a hallmark event throughout all stages of atherosclerosis and hence stands out as a primary therapeutic target. To understand the molecular mechanisms of arterial leukocyte subset infiltration, real-time visualization of recruitment processes of leukocyte subsets at high resolution is a prerequisite. In this review we provide a balanced overview of optical imaging modalities in the more commonly used experimental models for atherosclerosis (e.g., mouse models) allowing for in vivo display of recruitment processes in large arteries and further detail strategies to overcome hurdles inherent to arterial imaging. We further provide a synopsis of techniques allowing for non-toxic, photostable labeling of target structures. Finally, we deliver a short summary of ongoing developments including the emergence of novel labeling approaches, the use of superresolution microscopy, and the potentials of opto-acoustic microscopy and intravascular 2-dimensional near-infrared fluorescence microscopy.
Collapse
Affiliation(s)
- Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
93
|
Evrard M, Chong SZ, Devi S, Chew WK, Lee B, Poidinger M, Ginhoux F, Tan SM, Ng LG. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol 2014; 97:611-9. [PMID: 25516753 DOI: 10.1189/jlb.1ta0514-274r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Monocytes are innate immune cells that play critical roles in inflammation and immune defense. A better comprehension of how monocytes are mobilized and recruited is fundamental to understand their biologic role in disease and steady state. The BM represents a major "checkpoint" for monocyte homeostasis, as it is the primary site for their production and release. Our study determined that the Cx3cr1(gfp/+) mouse strain is currently the most ideal model for the visualization of monocyte behavior in the BM by multiphoton intravital microscopy. However, we observed that DCs are also labeled with high levels of GFP and thus, interfere with the accuracy of monocyte tracking in vivo. Hence, we generated a Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse and showed that whereas monocyte numbers were not affected, DC numbers were reduced significantly, as DCs but not monocytes depend on Flt3 signaling for their development. We thus verified that mobilization of monocytes from the BM in Cx3cr1(gfp/+)Flt3L(-/-) mice is intact in response to LPS. Collectively, our study demonstrates that the Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse model represents a powerful tool to visualize monocyte activities in BM and illustrates the potential of a Cx3cr1(gfp/+)-based, multifunctionality fluorescence reporter approach to dissect monocyte function in vivo.
Collapse
Affiliation(s)
- Maximilien Evrard
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shu Zhen Chong
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sapna Devi
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Weng Keong Chew
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bernett Lee
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Michael Poidinger
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Florent Ginhoux
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suet Mien Tan
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lai Guan Ng
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
94
|
|
95
|
Sáez PJ, Shoji KF, Aguirre A, Sáez JC. Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediators Inflamm 2014; 2014:742734. [PMID: 25301274 PMCID: PMC4180397 DOI: 10.1155/2014/742734] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/19/2014] [Indexed: 12/13/2022] Open
Abstract
Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs) coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs) and gap junction channels (GJCs) and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs) or pannexins (Panxs), which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling.
Collapse
Affiliation(s)
- Pablo J. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Kenji F. Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Adam Aguirre
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2360103 Valparaíso, Chile
| |
Collapse
|
96
|
Textor J, Henrickson SE, Mandl JN, von Andrian UH, Westermann J, de Boer RJ, Beltman JB. Random migration and signal integration promote rapid and robust T cell recruitment. PLoS Comput Biol 2014; 10:e1003752. [PMID: 25102014 PMCID: PMC4125054 DOI: 10.1371/journal.pcbi.1003752] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/13/2014] [Indexed: 01/27/2023] Open
Abstract
To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs), and reliably localize the antigen (Ag) within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search within each LN. Here we combine simulations and experimental data to investigate which features of random T cell migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs, allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune surveillance.
Collapse
Affiliation(s)
- Johannes Textor
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Sarah E. Henrickson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Judith N. Mandl
- Lymphocyte Biology Section, National Insitutes of Health, Bethesda, Maryland, United States of America
| | - Ulrich H. von Andrian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Rob J. de Boer
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joost B. Beltman
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
97
|
Benechet AP, Menon M, Khanna KM. Visualizing T Cell Migration in situ. Front Immunol 2014; 5:363. [PMID: 25120547 PMCID: PMC4114210 DOI: 10.3389/fimmu.2014.00363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022] Open
Abstract
Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen-specific T cells persists as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in situ visualization of T cell responses. Here, we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naïve, effector, and memory T cells.
Collapse
Affiliation(s)
- Alexandre P. Benechet
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Manisha Menon
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
98
|
Au-Yeung BB, Melichar HJ, Ross JO, Cheng DA, Zikherman J, Shokat KM, Robey EA, Weiss A. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol 2014; 15:687-94. [PMID: 24908390 PMCID: PMC4095875 DOI: 10.1038/ni.2918] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/06/2014] [Indexed: 02/06/2023]
Abstract
The catalytic activity of Zap70 is crucial for T cell antigen receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap70 catalytic activity in a model of synchronized thymic selection, we showed that CD4(+)CD8(+) thymocytes integrate multiple, transient, Zap70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas 1 h of signaling was sufficient for negative selection. Titration of Zap70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, which revealed heterogeneity, even among CD4(+)CD8(+) thymocytes expressing identical TCRs undergoing positive selection.
Collapse
Affiliation(s)
- Byron B Au-Yeung
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA. [5]
| | - Heather J Melichar
- 1] Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] [3]
| | - Jenny O Ross
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Debra A Cheng
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Julie Zikherman
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Arthur Weiss
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
99
|
Shimoni R, Pham K, Yassin M, Ludford-Menting MJ, Gu M, Russell SM. Normalized polarization ratios for the analysis of cell polarity. PLoS One 2014; 9:e99885. [PMID: 24963926 PMCID: PMC4070888 DOI: 10.1371/journal.pone.0099885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/11/2014] [Indexed: 12/01/2022] Open
Abstract
The quantification and analysis of molecular localization in living cells is increasingly important for elucidating biological pathways, and new methods are rapidly emerging. The quantification of cell polarity has generated much interest recently, and ratiometric analysis of fluorescence microscopy images provides one means to quantify cell polarity. However, detection of fluorescence, and the ratiometric measurement, is likely to be sensitive to acquisition settings and image processing parameters. Using imaging of EGFP-expressing cells and computer simulations of variations in fluorescence ratios, we characterized the dependence of ratiometric measurements on processing parameters. This analysis showed that image settings alter polarization measurements; and that clustered localization is more susceptible to artifacts than homogeneous localization. To correct for such inconsistencies, we developed and validated a method for choosing the most appropriate analysis settings, and for incorporating internal controls to ensure fidelity of polarity measurements. This approach is applicable to testing polarity in all cells where the axis of polarity is known.
Collapse
Affiliation(s)
- Raz Shimoni
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Kim Pham
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Mohammed Yassin
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Mandy J. Ludford-Menting
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Min Gu
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah M. Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
100
|
Heuzé ML, Vargas P, Chabaud M, Le Berre M, Liu YJ, Collin O, Solanes P, Voituriez R, Piel M, Lennon-Duménil AM. Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol Rev 2014; 256:240-54. [PMID: 24117825 DOI: 10.1111/imr.12108] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) constitute a complex cell population that resides in both peripheral tissues and lymphoid organs. Their major function in tissues is to patrol their environment in search of danger-associated antigens to transport to lymph nodes and present to T lymphocytes. This process constitutes the first step of the adaptive immune response and relies on specific DC properties, including a high endocytic capacity as well as efficient motility in confined three-dimensional environments. Although cell motility has been widely studied, little is known on how the geometric characteristics of the environment influence DC migration and function. In this review, we give an overview of the basic physical principles and molecular mechanisms that control DC migration under confinement and discuss how such mechanisms impact the environment-patrolling capacity of DCs.
Collapse
|