51
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
52
|
Sirilert S, Tongsong T, Kumfu S, Chattipakorn SC, Chattipakorn N. Effects of intrauterine exposure to hepatitis B virus in foetuses. J Med Microbiol 2021; 70. [PMID: 34779762 DOI: 10.1099/jmm.0.001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foetal response to hepatitis B viral infection is still unknown. The mechanisms of persistent infection that occurs more often in mother-to-child transmission than adult transmission are also unclear. Various aspects of the environmental factors that accelerate or inhibit infection and the cytokine responses are associated with the persistence of infection. Several studies showed that the cytokine poor immune response in immaturity causes the persistence of the infection. However, some reports suggested that a mature immune response was the cause of this persistent infection. This review comprehensively summarized the reports from in vitro, in vivo as well as clinical reports regarding the responses of the foetuses of hepatitis B infected mothers to the micro-organism. The mechanism of more opportunities to be persistently infected via the mother-to-child transmission route is also summarized and discussed. Since there are limited clinical reports at this time, this review will provide evidence for future studies regarding the intrauterine infection mechanism and foetal response to hepatitis B virus to elucidate the mechanisms responsible for mother-to-child transmission. This understanding may lead to effective interventions to control mother-to-child hepatitis B infection in the future.
Collapse
Affiliation(s)
- Sirinart Sirilert
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
53
|
Tsai KN, Ou JHJ. Hepatitis B virus e antigen and viral persistence. Curr Opin Virol 2021; 51:158-163. [PMID: 34717215 PMCID: PMC8643334 DOI: 10.1016/j.coviro.2021.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) e antigen (HBeAg) was discovered in the sera of HBV patients nearly 50 years ago. It is not essential for HBV to infect or replicate in hepatocytes. Earlier clinical studies suggested that this antigen might play an important role for HBV to establish persistence in babies after its mother-to-child transmission. Subsequent clinical studies also suggested that HBeAg might have immunomodulatory activities. In recent years, a large body of information on how HBeAg might modulate host immunity was published. In this review, we summarize recent research progresses on the immunomodulatory activities of HBeAg and discuss how these activities of HBeAg may promote HBV persistence.
Collapse
Affiliation(s)
- Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
54
|
Jeng WJ, Lok AS. Should Treatment Indications for Chronic Hepatitis B Be Expanded? Clin Gastroenterol Hepatol 2021; 19:2006-2014. [PMID: 32434068 DOI: 10.1016/j.cgh.2020.04.091] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIM Antiviral therapy has greatly improved the outcomes of patients with chronic hepatitis B virus (HBV) infection and active liver disease or advanced fibrosis/cirrhosis. However, current treatment does not eradicate HBV and long-term treatment is needed in most patients to maintain clinical benefit. Thus, professional society guidelines do not recommend treatment of all patients with chronic HBV infection. This review article will examine evidence for and against expansion of treatment to patients in whom treatment is not recommended based on current guidelines. RESULTS Available data support expanding treatment to immune tolerant patients and patients in the grey zones who have evidence of active/advanced liver disease based on liver biopsy or non-invasive tests and those who remain in the immune tolerant phase after age 40. Evidence supporting treatment expansion to confirmed inactive carriers and other immune tolerant patients is lacking. CONCLUSIONS HBV treatment indications can be more liberal when new therapies that can achieve HBsAg loss safely in a high percentage of patients after a finite course of treatment are available.
Collapse
Affiliation(s)
- Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou branch, Taiwan; Chang Gung University College of Medicine, Taiwan
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
55
|
Wang R, Chen K, Wang Y, Liu C, Wu Z, Wang D, Qu C. Booster immunization improves the generation of T follicular helper (Tfh) cells specific to hepatitis B surface antigen (HBsAg) after prenatal HBsAg exposure. Vaccine 2021; 39:5571-5579. [PMID: 34412920 DOI: 10.1016/j.vaccine.2021.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022]
Abstract
Breakthrough infections of hepatitis B virus (HBV) after neonatal vaccination occurred in some adolescents and young adults who were born to mothers with hepatitis B surface antigen (HBsAg). We aimed to determine the impacts of prenatal HBsAg exposure on the generation of T follicular helper (Tfh) cells and antibodies (anti-HBs) specific to HBsAg. To mimic human prenatal HBsAg exposure, we mated female Alb1-HBV (HBV-M) mice with male C57BL/6J mice. Of their first filial generation (F1), HBV-M/F1+ expressed HBsAg in liver tissues and blood, and HBV-M/F1- mice exposed HBsAg in amniotic fluid. At their four weeks old, each HBV-M/F1 mouse was immunized with hepatitis B vaccine containing 5 μg HBsAg subcutaneously. Both HBV-M/F1- and HBV-M/F1+ mice had reduced generation of HBsAg-specific CD4+CXCR5+PD1+ Tfh cells and CD138+IgD- plasma cells in comparison with C57BL/6J mice. Results of coculturing the Tfh cells with B cells that were isolated from different strains of mice indicated that CD4+ T cell activation in response to HBsAg was critical for anti-HBs generation after prenatal HBsAg exposure. When interleukin (IL) 21 was supplemented, the generation of HBsAg-specific Tfh and plasma cells in HBV-M/F1- mice was improved, while supplementation showed little effect in HBV-M/F1+ mice. In HBV-M/F1- mice, HBV vaccine booster improved the generation of Tfh cells and plasma cells, and enhanced anti-HBs production. CONCLUSION: Impaired generation of HBsAg-specific Tfh cells and plasma cells after prenatal HBsAg exposure can be improved by HBV vaccine booster, most likely increasing IL-21 production.
Collapse
Affiliation(s)
- Ruijun Wang
- State Key Lab of Molecular Oncology & Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Kun Chen
- State Key Lab of Molecular Oncology & Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yuting Wang
- State Key Lab of Molecular Oncology & Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Chang Liu
- State Key Lab of Molecular Oncology & Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology & Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Dongmei Wang
- State Key Lab of Molecular Oncology & Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology & Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| |
Collapse
|
56
|
Zhao F, Xie X, Tan X, Yu H, Tian M, Lv H, Qin C, Qi J, Zhu Q. The Functions of Hepatitis B Virus Encoding Proteins: Viral Persistence and Liver Pathogenesis. Front Immunol 2021; 12:691766. [PMID: 34456908 PMCID: PMC8387624 DOI: 10.3389/fimmu.2021.691766] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
About 250 million people worldwide are chronically infected with Hepatitis B virus (HBV), contributing to a large burden on public health. Despite the existence of vaccines and antiviral drugs to prevent infection and suppress viral replication respectively, chronic hepatitis B (CHB) cure remains a remote treatment goal. The viral persistence caused by HBV is account for the chronic infection which increases the risk for developing liver cirrhosis and hepatocellular carcinoma (HCC). HBV virion utilizes various strategies to escape surveillance of host immune system therefore enhancing its replication, while the precise mechanisms involved remain elusive. Accumulating evidence suggests that the proteins encoded by HBV (hepatitis B surface antigen, hepatitis B core antigen, hepatitis B envelope antigen, HBx and polymerase) play an important role in viral persistence and liver pathogenesis. This review summarizes the major findings in functions of HBV encoding proteins, illustrating how these proteins affect hepatocytes and the immune system, which may open new venues for CHB therapies.
Collapse
Affiliation(s)
- Fenglin Zhao
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Xiaoyu Xie
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongli Yu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Miaomiao Tian
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huanran Lv
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
57
|
Wang SJ, Chen ZM, Wei M, Liu JQ, Li ZL, Shi TS, Nian S, Fu R, Wu YT, Zhang YL, Wang YB, Zhang TY, Zhang J, Xiong JH, Tong SP, Ge SX, Yuan Q, Xia NS. Specific determination of hepatitis B e antigen by antibodies targeting precore unique epitope facilitates clinical diagnosis and drug evaluation against hepatitis B virus infection. Emerg Microbes Infect 2021; 10:37-50. [PMID: 33296295 PMCID: PMC7832009 DOI: 10.1080/22221751.2020.1862631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B e antigen (HBeAg) is a widely used marker both for chronic hepatitis B (CHB) clinical management and HBV-related basic research. However, due to its high amino acid sequence homology to hepatitis B core antigen (HBcAg), most of available anti-HBe antibodies are cross-reactive with HBcAg resulting in high interference against accurate measurement of the status and level of HBeAg. In the study, we generated several monoclonal antibodies (mAbs) targeting various epitopes on HBeAg and HBcAg. Among these mAbs, a novel mAb 16D9, which recognizes the SKLCLG (aa -10 to -5) motif on the N-terminal residues of HBeAg that is absent on HBcAg, exhibited excellent detection sensitivity and specificity in pairing with another 14A7 mAb targeting the HBeAg C-terminus (STLPETTVVRRRGR, aa141 to 154). Based on these two mAbs, we developed a novel chemiluminescent HBeAg immunoassay (NTR-HBeAg) which could detect HBeAg derived from various HBV genotypes. In contrast to widely used commercial assays, the NTR-HBeAg completely eliminated the cross-reactivity with secreted HBcAg from precore mutant (G1896A) virus in either cell culture or patient sera. The improved specificity of the NTR-HBeAg assay enables its applicability in cccDNA-targeting drug screening in cell culture systems and also provides an accurate tool for clinical HBeAg detection.
Collapse
Affiliation(s)
- Shao-Juan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Zi-Min Chen
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Min Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jia-Qi Liu
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Zong-Lin Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Shu Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Sheng Nian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Yang-Tao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ya-Li Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ying-Bin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun-Hui Xiong
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China.,Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Shu-Ping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sheng-Xiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
58
|
Baudi I, Kawashima K, Isogawa M. HBV-Specific CD8+ T-Cell Tolerance in the Liver. Front Immunol 2021; 12:721975. [PMID: 34421926 PMCID: PMC8378532 DOI: 10.3389/fimmu.2021.721975] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) remains a leading cause of liver-related morbidity and mortality through chronic hepatitis that may progress to liver cirrhosis and cancer. The central role played by HBV-specific CD8+ T cells in the clearance of acute HBV infection, and HBV-related liver injury is now well established. Vigorous, multifunctional CD8+ T cell responses are usually induced in most adult-onset HBV infections, while chronic hepatitis B (CHB) is characterized by quantitatively and qualitatively weak HBV-specific CD8+ T cell responses. The molecular basis of this dichotomy is poorly understood. Genomic analysis of dysfunctional HBV-specific CD8+ T cells in CHB patients and various mouse models suggest that multifaceted mechanisms including negative signaling and metabolic abnormalities cooperatively establish CD8+ T cell dysfunction. Immunoregulatory cell populations in the liver, including liver resident dendritic cells (DCs), hepatic stellate cells (HSCs), myeloid-derived suppressor cells (MDSCs), may contribute to intrahepatic CD8+ T cell dysfunction through the production of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines and the expression of co-inhibitory molecules. A series of recent studies with mouse models of HBV infection suggest that genetic and epigenetic changes in dysfunctional CD8+ T cells are the manifestation of prolonged antigenic stimulation, as well as the absence of co-stimulatory or cytokine signaling. These new findings may provide potential new targets for immunotherapy aiming at invigorating HBV-specific CD8+ T cells, which hopefully cures CHB.
Collapse
Affiliation(s)
- Ian Baudi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
59
|
Kosinska AD, Festag J, Mück-Häusl M, Festag MM, Asen T, Protzer U. Immunogenicity and Antiviral Response of Therapeutic Hepatitis B Vaccination in a Mouse Model of HBeAg-Negative, Persistent HBV Infection. Vaccines (Basel) 2021; 9:vaccines9080841. [PMID: 34451966 PMCID: PMC8402308 DOI: 10.3390/vaccines9080841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
During the natural course of chronic hepatitis B virus (HBV) infection, the hepatitis B e antigen (HBeAg) is typically lost, while the direct transmission of HBeAg-negative HBV may result in fulminant hepatitis B. While the induction of HBV-specific immune responses by therapeutic vaccination is a promising, novel treatment option for chronic hepatitis B, it remains unclear whether a loss of HBeAg may influence its efficacy or tolerability. We therefore generated an adeno-associated virus (AAV)-vector that carries a 1.3-fold overlength HBV genome with a typical stop-codon mutation in the pre-core region and initiates the replication of HBeAg(-) HBV in mouse livers. Infection of C57BL/6 mice established persistent HBeAg(-) HBV-replication without any detectable anti-HBV immunity or liver damage. HBV-carrier mice were immunized with TherVacB, a therapeutic hepatitis B vaccine that uses a particulate HBV S and a core protein for prime vaccination, and a modified vaccinia Ankara (MVA) for boost vaccination. The TherVacB immunization of HBeAg(+) and HBeAg(-) HBV carrier mice resulted in the effective induction of HBV-specific antibodies and the loss of HBsAg but only mild liver damage. Intrahepatic, HBV-specific CD8 T cells induced in HBeAg(-) mice expressed more IFNγ but showed similar cytolytic activity. This indicates that the loss of HBeAg improves the performance of therapeutic vaccination by enhancing non-cytolytic effector functions.
Collapse
Affiliation(s)
- Anna D. Kosinska
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, D-81675 Munich, Germany; (A.D.K.); (J.F.); (M.M.-H.); (M.M.F.); (T.A.)
- German Center for Infection Research (DZIF), Munich Partner Site, D-81675 Munich, Germany
| | - Julia Festag
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, D-81675 Munich, Germany; (A.D.K.); (J.F.); (M.M.-H.); (M.M.F.); (T.A.)
| | - Martin Mück-Häusl
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, D-81675 Munich, Germany; (A.D.K.); (J.F.); (M.M.-H.); (M.M.F.); (T.A.)
| | - Marvin M. Festag
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, D-81675 Munich, Germany; (A.D.K.); (J.F.); (M.M.-H.); (M.M.F.); (T.A.)
| | - Theresa Asen
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, D-81675 Munich, Germany; (A.D.K.); (J.F.); (M.M.-H.); (M.M.F.); (T.A.)
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, D-81675 Munich, Germany; (A.D.K.); (J.F.); (M.M.-H.); (M.M.F.); (T.A.)
- German Center for Infection Research (DZIF), Munich Partner Site, D-81675 Munich, Germany
- Correspondence:
| |
Collapse
|
60
|
Wu LL, Huang TS, Shyu YC, Wang CL, Wang HY, Chen PJ. Gut microbiota in the innate immunity against hepatitis B virus - implication in age-dependent HBV clearance. Curr Opin Virol 2021; 49:194-202. [PMID: 34242953 DOI: 10.1016/j.coviro.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) chronically infects 257 million people and is one of the most important liver diseases worldwide. A unique feature of HBV infection in humans is that viral clearance heavily depends on the age at exposure. Recent studies demonstrated that the virus takes advantage of immature innate immunity, especially hepatic macrophages, and not-yet-stabilized gut microbiota in early life to establish a chronic infection. The liver contains resident and infiltrating myeloid cells involved in immune responses to pathogens. They influence both innate and adaptive sectors of the immune system and their interplay with HBV has only been noticed recently. Here, we discuss how interactions between gut microbiota and hepatic macrophages influence the outcomes of HBV infection. Understanding the underlying mechanism would pave the way for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Li-Ling Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Ting-Shuo Huang
- Department of General Surgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Lin Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Institute of Ecology and Evolutionary Biology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Microbiology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
61
|
Roohani S, Tacke F. Liver Injury and the Macrophage Issue: Molecular and Mechanistic Facts and Their Clinical Relevance. Int J Mol Sci 2021; 22:ijms22147249. [PMID: 34298870 PMCID: PMC8306699 DOI: 10.3390/ijms22147249] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The liver is an essential immunological organ due to its gatekeeper position to bypassing antigens from the intestinal blood flow and microbial products from the intestinal commensals. The tissue-resident liver macrophages, termed Kupffer cells, represent key phagocytes that closely interact with local parenchymal, interstitial and other immunological cells in the liver to maintain homeostasis and tolerance against harmless antigens. Upon liver injury, the pool of hepatic macrophages expands dramatically by infiltrating bone marrow-/monocyte-derived macrophages. The interplay of the injured microenvironment and altered macrophage pool skews the subsequent course of liver injuries. It may range from complete recovery to chronic inflammation, fibrosis, cirrhosis and eventually hepatocellular cancer. This review summarizes current knowledge on the classification and role of hepatic macrophages in the healthy and injured liver.
Collapse
|
62
|
Campos-Valdez M, Monroy-Ramírez HC, Armendáriz-Borunda J, Sánchez-Orozco LV. Molecular Mechanisms during Hepatitis B Infection and the Effects of the Virus Variability. Viruses 2021; 13:v13061167. [PMID: 34207116 PMCID: PMC8235420 DOI: 10.3390/v13061167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
The immunopathogenesis and molecular mechanisms involved during a hepatitis B virus (HBV) infection have made the approaches for research complex, especially concerning the patients’ responses in the course of the early acute stage. The study of molecular bases involved in the viral clearance or persistence of the infection is complicated due to the difficulty to detect patients at the most adequate points of the disease, especially in the time lapse between the onset of the infection and the viral emergence. Despite this, there is valuable data obtained from animal and in vitro models, which have helped to clarify some aspects of the early immune response against HBV infection. The diversity of the HBV (genotypes and variants) has been proven to be associated not only with the development and outcome of the disease but also with the response to treatments. That is why factors involved in the virus evolution need to be considered while studying hepatitis B infection. This review brings together some of the published data to try to explain the immunological and molecular mechanisms involved in the different stages of the infection, clinical outcomes, viral persistence, and the impact of the variants of HBV in these processes.
Collapse
Affiliation(s)
- Marina Campos-Valdez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Hugo C. Monroy-Ramírez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Juan Armendáriz-Borunda
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, México
| | - Laura V. Sánchez-Orozco
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Correspondence: ; Tel.: +52-33-3954-5677
| |
Collapse
|
63
|
Zwicker C, Bujko A, Scott CL. Hepatic Macrophage Responses in Inflammation, a Function of Plasticity, Heterogeneity or Both? Front Immunol 2021; 12:690813. [PMID: 34177948 PMCID: PMC8220199 DOI: 10.3389/fimmu.2021.690813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing availability and accessibility of single cell technologies, much attention has been given to delineating the specific populations of cells present in any given tissue. In recent years, hepatic macrophage heterogeneity has also begun to be examined using these strategies. While previously any macrophage in the liver was considered to be a Kupffer cell (KC), several studies have recently revealed the presence of distinct subsets of hepatic macrophages, including those distinct from KCs both under homeostatic and non-homeostatic conditions. This heterogeneity has brought the concept of macrophage plasticity into question. Are KCs really as plastic as once thought, being capable of responding efficiently and specifically to any given stimuli? Or are the differential responses observed from hepatic macrophages in distinct settings due to the presence of multiple subsets of these cells? With these questions in mind, here we examine what is currently understood regarding hepatic macrophage heterogeneity in mouse and human and examine the role of heterogeneity vs plasticity in regards to hepatic macrophage responses in settings of both pathogen-induced and sterile inflammation.
Collapse
Affiliation(s)
- Christian Zwicker
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anna Bujko
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
64
|
Bukowska-Ośko I, Popiel M, Kowalczyk P. The Immunological Role of the Placenta in SARS-CoV-2 Infection-Viral Transmission, Immune Regulation, and Lactoferrin Activity. Int J Mol Sci 2021; 22:5799. [PMID: 34071527 PMCID: PMC8198160 DOI: 10.3390/ijms22115799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth-which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus.
Collapse
Affiliation(s)
- Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091Warsaw, Poland;
| | - Marta Popiel
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
65
|
Lee YS, Bang SM, Lee YS. Benefits and Risks of Antiviral Treatment during Pregnancy in Patients with Chronic Hepatitis B. J Clin Med 2021; 10:2320. [PMID: 34073357 PMCID: PMC8198811 DOI: 10.3390/jcm10112320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is a main cause of chronic liver disease worldwide and can lead to severe liver diseases. The World Health Organization has planned to eliminate viral hepatitis, including hepatitis caused by HBV and hepatitis C virus, by 2030. As mother-to-child transmission (MTCT) of HBV is a main cause of chronic HBV infection, MTCT prevention is the main target to reduce the risk of chronic HBV infection and eliminate the disease. Recent clinical trials and meta-analyses found that antiviral therapy could prevent MTCT effectively in mothers with ≥200,000 IU/mL of HBV DNA, in combination with serial vaccination and hepatitis B immune globulin administration in infants. Despite the preventive role of antivirals for MTCT of HBV, there are several concerns regarding antiviral therapy with respect to the safety of the mother and fetus during pregnancy. This review summarizes the benefits and risks of antiviral treatment during pregnancy in women with chronic HBV infection.
Collapse
Affiliation(s)
| | | | - Young-Sun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea; (Y.S.L.); (S.M.B.)
| |
Collapse
|
66
|
Chiale C, Marchese AM, Robek MD. Innate immunity and HBV persistence. Curr Opin Virol 2021; 49:13-20. [PMID: 33992859 DOI: 10.1016/j.coviro.2021.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) causes chronic infections that are associated with immune dysfunction. Though T cell impairment is perhaps the most prominent immune change contributing to viral persistence, HBV interaction with the innate immune system is also likely key, as the lack of effective innate immunity has functional consequences that promote chronic infection. In addition to an intrinsic ability to fight viral infections, the innate immune system also impacts T cell responses and other adaptive immune mechanisms critical for HBV control. Therefore, it is essential to understand the relationships between HBV and innate immunity, as these interactions may be useful immunotherapeutic targets to manage the infection.
Collapse
Affiliation(s)
- Carolina Chiale
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Anthony M Marchese
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
67
|
Du HJ, Zhao SX, Zhao W, Fu N, Li WC, Qin XJ, Zhang YG, Nan YM, Zhao JM. Hepatic Macrophage activation and the LPS pathway in patients with different degrees of severity and histopathological patterns of drug induced liver injury. Histol Histopathol 2021; 36:653-662. [PMID: 33870482 DOI: 10.14670/hh-18-340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inflammatory activation of hepatic macrophages plays a primary role in drug-induced liver injury (DILI). However, the exact mechanism underlying DILI remains unclear. METHODS A total of 328 DILI patients and 80 healthy individuals were prospectively enrolled in this study. The DILI patients were categorized into subgroups based on either disease severity or histopathological patterns. Plasma soluble CD163 (sCD163) and hepatic CD163 were examined to determine hepatic macrophage activation, and CD8, CD20, and MUM-1 were assessed to determine cellular immunity using immunohistochemistry. The lipopolysaccharide (LPS) pathway proteins [e.g. LPS, soluble CD14 (sCD14), and LPS-binding protein (LBP)] were measured using enzyme-linked immunosorbent assay. RESULTS Plasma sCD163 levels were nine-fold higher in DILI patients than in healthy controls at the baseline, but significantly decreased at the 4-week follow-up visit after treatment. The numbers of hepatic macrophages, B cells, and plasma cells were significantly higher in the liver tissues from DILI patients than those from healthy controls. Furthermore, the baseline levels of LPS pathway proteins in the DILI patients were significantly higher than those in the controls. Notably, these proteins significantly decreased at the 4-week follow-up visit but remained significantly higher than the levels for the controls. CONCLUSIONS Hepatic inflammation in DILI involves the activation of hepatic macrophages and cellular immunity, in which the LPS pathway likely plays a role, at least in part. As such, this study has improved our understanding of the pathological mechanisms for DILI and may facilitate the development of better treatments for patients with DILI.
Collapse
Affiliation(s)
- Hui-Juan Du
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Su-Xian Zhao
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen Zhao
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Fu
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen-Cong Li
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Jie Qin
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu-Guo Zhang
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jing-Min Zhao
- Department of Pathology and Hepatology Institution, The Fifth Medical Center, General Hospital of PLA, Beijing, China
| |
Collapse
|
68
|
Traum D, Wang YJ, Schwarz KB, Schug J, Wong DK, Janssen HLA, Terrault NA, Khalili M, Wahed AS, Murray KF, Rosenthal P, Ling SC, Rodriguez-Baez N, Sterling RK, Lau DT, Block TM, Feldman MD, Furth EE, Lee WM, Kleiner DE, Lok AS, Kaestner KH, Chang KM. Highly multiplexed 2-dimensional imaging mass cytometry analysis of HBV-infected liver. JCI Insight 2021; 6:146883. [PMID: 33621209 PMCID: PMC8119221 DOI: 10.1172/jci.insight.146883] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Studies of human hepatitis B virus (HBV) immune pathogenesis are hampered by limited access to liver tissues and technologies for detailed analyses. Here, utilizing imaging mass cytometry (IMC) to simultaneously detect 30 immune, viral, and structural markers in liver biopsies from patients with hepatitis B e antigen+ (HBeAg+) chronic hepatitis B, we provide potentially novel comprehensive visualization, quantitation, and phenotypic characterizations of hepatic adaptive and innate immune subsets that correlated with hepatocellular injury, histological fibrosis, and age. We further show marked correlations between adaptive and innate immune cell frequencies and phenotype, highlighting complex immune interactions within the hepatic microenvironment with relevance to HBV pathogenesis.
Collapse
Affiliation(s)
- Daniel Traum
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Medical Research, The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Yue J Wang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Biomedical Sciences, College of Medicine, Florida State University, Tallahasee, Florida, USA
| | | | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Kh Wong
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - Harry LA Janssen
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - Norah A Terrault
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Mandana Khalili
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Abdus S Wahed
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Karen F Murray
- Cleveland Clinic Pediatric Institute, Cleveland, Ohio, USA
| | | | - Simon C Ling
- The Hospital for Sick Children and Department of Paediatrics and University of Toronto, Toronto, Canada
| | - Norberto Rodriguez-Baez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Richard K Sterling
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daryl Ty Lau
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth E Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - William M Lee
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Anna S Lok
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyong-Mi Chang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Medical Research, The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
69
|
HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses 2021; 13:v13030368. [PMID: 33652619 PMCID: PMC7996909 DOI: 10.3390/v13030368] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.
Collapse
|
70
|
Hong X, Luckenbaugh L, Mendenhall M, Walsh R, Cabuang L, Soppe S, Revill PA, Burdette D, Feierbach B, Delaney W, Hu J. Characterization of Hepatitis B Precore/Core-Related Antigens. J Virol 2021; 95:JVI.01695-20. [PMID: 33148795 PMCID: PMC7925093 DOI: 10.1128/jvi.01695-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Current therapies rarely cure chronic hepatitis B virus (HBV) infection due to the persistence of the viral episome, the covalently closed circular DNA (cccDNA), in hepatocytes. The hepatitis B virus core-related antigen (HBcrAg), a mixture of the viral precore/core gene products, has emerged as one potential marker to monitor the levels and activities of intrahepatic cccDNA. In this study, a comprehensive characterization of precore/core gene products revealed that HBcrAg components included the classical hepatitis B virus core antigen (HBc) and e antigen (HBeAg) and, additionally, the precore-related antigen, PreC, retaining the N-terminal signal peptide. Both HBeAg and PreC antigens displayed heterogeneous proteolytic processing at their C termini resulting in multiple species, which varied with viral genotypes. HBeAg was the predominant form of HBcrAg in HBeAg-positive patients. Positive correlations were found between HBcrAg and PreC, between HBcrAg and HBeAg, and between PreC and HBeAg but not between HBcrAg and HBc. Serum HBeAg and PreC shared similar buoyant density and size distributions, and both displayed density and size heterogeneity. HBc, but not HBeAg or PreC antigen, was found as the main component of capsids in DNA-containing or empty virions. Neither HBeAg nor PreC protein was able to form capsids in cells or in vitro under physiological conditions. In conclusion, our study provides important new quantitative information on levels of each component of precore/core gene products as well as their biochemical and biophysical characteristics, implying that each component may have distinct functions and applications in reflecting intrahepatic viral activities.IMPORTANCE Chronic hepatitis B virus (HBV) infection afflicts approximately 257 million people, who are at high risk of progressing to chronic liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma. Current therapies rarely achieve cure of HBV infection due to the persistence of the HBV episome, the covalently closed circular DNA (cccDNA), in the nuclei of infected hepatocytes. Peripheral markers of cccDNA levels and transcriptional activities are urgently required to guide antiviral therapy and drug development. Serum hepatitis B core-related antigen (HBcrAg) is one such emerging peripheral marker. We have characterized the components of HBcrAg in HBV-infected patients as well as in cell cultures. Our results provide important new quantitative information on levels of each HBcrAg component, as well as their biochemical and biophysical characteristics. Our findings suggest that each HBcrAg component may have distinct functions and applications in reflecting intrahepatic viral activities.
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Laurie Luckenbaugh
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Megan Mendenhall
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Renae Walsh
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Liza Cabuang
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sally Soppe
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | | | | | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
71
|
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). There are approximately 250 million people in the world that are chronically infected by this virus, resulting in nearly 1 million deaths every year. Many of these patients die from severe liver diseases, including HCC. HBV may induce HCC through the induction of chronic liver inflammation, which can cause oxidative stress and DNA damage. However, many studies also indicated that HBV could induce HCC via the alteration of hepatocellular physiology that may involve genetic and epigenetic changes of the host DNA, the alteration of cellular signaling pathways, and the inhibition of DNA repair mechanisms. This alteration of cellular physiology can lead to the accumulation of DNA damages and the promotion of cell cycles and predispose hepatocytes to oncogenic transformation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
72
|
Wu X, Cai B, Lu W, Fu Y, Wei B, Niu Q, Su Z, Li Y, Wang L. HBV upregulated triggering receptor expressed on myeloid cells-1 (TREM-1) expression on monocytes participated in disease progression through NF-Kb pathway. Clin Immunol 2020; 223:108650. [PMID: 33316373 DOI: 10.1016/j.clim.2020.108650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) signal is related to the continuous amplification of inflammatory pathway. However, it is not clear whether and how HBV can regulated the expression of TREM-1 on monocyte participated in the progression of liver disease. Here, we showed that the expression of TREM-1 on monocyte subsets were increased significantly in HBV related liver cirrhosis group compared with chronic infected group and healthy control group. HBsAg and HBeAg could up-regulated TREM-1 on monocyte by NF-KB pathway, and at least last for 72 h. Increased TREM-1 on monocyte might associated with high level of inflammatory cytokine (TNF-a, IL-1β and IL-6) and the activation of LX-2 cells. Bioinformatics analysis showed that the high expression of TREM-1 was related to the poor prognosis of hepatocellular carcinoma (HCC). The level of TREM-1 might help to predict the progression of HBV infected liver disease and treat target to prevent fibrosis progression.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bei Cai
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wang Lu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Fu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Wei
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Niu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zhenzhen Su
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yamei Li
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lanlan Wang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
73
|
Abstract
Hepatitis B virus (HBV) infection causes chronic hepatitis and has long term complications. Individuals ever infected with HBV are at risk of viral reactivation under certain circumstances. This review summarizes studies on HBV persistence and reactivation with a focus on the definitions and mechanisms. Emphasis is placed on the interplay between HBV replication and host immunity as this interplay determines the patterns of persistence following viral acquisition. Chronic infections exhibit as overt persistence when a defective immune response fails to control the viral replication. The HBV genome persists despite an immune response in the form of covalently closed circular DNA (cccDNA) and integrated DNA, rendering an occult state of viral persistence in individuals whose infection appears to have been resolved. We have described HBV reactivation that occurs because of changes in the virus or the immune system. This review aims to raise the awareness of HBV reactivation and to understand how HBV persists, and discusses the risks of HBV reactivation in a variety of clinical settings.
Collapse
Affiliation(s)
- Yu Shi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, China
| |
Collapse
|
74
|
Interferon Alpha Induces Multiple Cellular Proteins That Coordinately Suppress Hepadnaviral Covalently Closed Circular DNA Transcription. J Virol 2020; 94:JVI.00442-20. [PMID: 32581092 DOI: 10.1128/jvi.00442-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Covalently closed circular DNA (cccDNA) of hepadnaviruses exists as an episomal minichromosome in the nucleus of an infected hepatocyte and serves as the template for the transcription of viral mRNAs. It had been demonstrated by others and us that interferon alpha (IFN-α) treatment of hepatocytes induced a prolonged suppression of human and duck hepatitis B virus cccDNA transcription, which is associated with the reduction of cccDNA-associated histone modifications specifying active transcription (H3K9ac or H3K27ac), but not the histone modifications marking constitutive (H3K9me3) or facultative (H3K27me3) heterochromatin formation. In our efforts to identify IFN-induced cellular proteins that mediate the suppression of cccDNA transcription by the cytokine, we found that downregulating the expression of signal transducer and activator of transcription 1 (STAT1), structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1), or promyelocytic leukemia (PML) protein increased basal level of cccDNA transcription activity and partially attenuated IFN-α suppression of cccDNA transcription. In contrast, ectopic expression of STAT1, SMCHD1, or PML significantly reduced cccDNA transcription activity. SMCHD1 is a noncanonical SMC family protein and implicated in epigenetic silencing of gene expression. PML is a component of nuclear domain 10 (ND10) and is involved in suppressing the replication of many DNA viruses. Mechanistic analyses demonstrated that STAT1, SMCHD1, and PML were recruited to cccDNA minichromosomes and phenocopied the IFN-α-induced posttranslational modifications of cccDNA-associated histones. We thus conclude that STAT1, SMCHD1, and PML may partly mediate the suppressive effect of IFN-α on hepadnaviral cccDNA transcription.IMPORTANCE Pegylated IFN-α is the only therapeutic regimen that can induce a functional cure of chronic hepatitis B in a small, but significant, fraction of treated patients. Understanding the mechanisms underlying the antiviral functions of IFN-α in hepadnaviral infection may reveal molecular targets for development of novel antiviral agents to improve the therapeutic efficacy of IFN-α. By a loss-of-function genetic screening of individual IFN-stimulated genes (ISGs) on hepadnaviral mRNAs transcribed from cccDNA, we found that downregulating the expression of STAT1, SMCHD1, or PML significantly increased the level of viral RNAs without altering the level of cccDNA. Mechanistic analyses indicated that those cellular proteins are recruited to cccDNA minichromosomes and induce the posttranslational modifications of cccDNA-associated histones similar to those induced by IFN-α treatment. We have thus identified three IFN-α-induced cellular proteins that suppress cccDNA transcription and may partly mediate IFN-α silencing of hepadnaviral cccDNA transcription.
Collapse
|
75
|
Viswanathan U, Mani N, Hu Z, Ban H, Du Y, Hu J, Chang J, Guo JT. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res 2020; 182:104917. [PMID: 32818519 DOI: 10.1016/j.antiviral.2020.104917] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."
Collapse
Affiliation(s)
- Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Nagraj Mani
- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA, 18974, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|
76
|
Le Bert N, Gill US, Hong M, Kunasegaran K, Tan DZM, Ahmad R, Cheng Y, Dutertre CA, Heinecke A, Rivino L, Tan A, Hansi NK, Zhang M, Xi S, Chong Y, Pflanz S, Newell EW, Kennedy PTF, Bertoletti A. Effects of Hepatitis B Surface Antigen on Virus-Specific and Global T Cells in Patients With Chronic Hepatitis B Virus infection. Gastroenterology 2020; 159:652-664. [PMID: 32302614 DOI: 10.1053/j.gastro.2020.04.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis B virus (HBV) infection is characterized by the presence of defective viral envelope proteins (hepatitis B surface antigen [HBsAg]) and the duration of infection-most patients acquire the infection at birth or during the first years of life. We investigated the effects of these factors on patients' lymphocyte and HBV-specific T-cell populations. METHODS We collected blood samples and clinical data from 243 patients with HBV infection (3-75 years old) in the United Kingdom and China. We measured levels of HBV DNA, HBsAg, hepatitis B e antigen, and alanine aminotransferase; analyzed HBV genotypes; and isolated peripheral blood mononuclear cells (PBMCs). In PBMCs from 48 patients with varying levels of serum HBsAg, we measured 40 markers on nature killer and T cells by mass cytometry. PBMCs from 189 patients with chronic infection and 38 patients with resolved infections were incubated with HBV peptide libraries, and HBV-specific T cells were identified by interferon gamma enzyme-linked immune absorbent spot (ELISpot) assays or flow cytometry. We used multivariate linear regression and performed variable selection using the Akaike information criterion to identify covariates associated with HBV-specific responses of T cells. RESULTS Although T- and natural killer cell phenotypes and functions did not change with level of serum HBsAg, numbers of HBs-specific T cells correlated with serum levels of HBsAg (r = 0.3367; P < .00001). After we performed the variable selection, the multivariate linear regression model identified patient age as the only factor significantly associated with numbers of HBs-specific T cells (P = .000115). In patients younger than 30 years, HBs-specific T cells constituted 28.26% of the total HBV-specific T cells; this value decreased to 7.14% in patients older than 30 years. CONCLUSIONS In an analysis of immune cells from patients with chronic HBV infection, we found that the duration of HBsAg exposure, rather than the quantity of HBsAg, was associated with the level of anti-HBV immune response. Although the presence of HBs-specific T cells might not be required for the clearance of HBV infection in all patients, strategies to restore anti-HBV immune responses should be considered in patients younger than 30 years.
Collapse
Affiliation(s)
- Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Upkar S Gill
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Michelle Hong
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Kamini Kunasegaran
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Damien Z M Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Raidah Ahmad
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Yang Cheng
- Singapore Immunology Network, A∗STAR, Singapore
| | - Charles-A Dutertre
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore; Singapore Immunology Network, A∗STAR, Singapore
| | | | - Laura Rivino
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore; School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
| | - Anthony Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Navjyot K Hansi
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Min Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sujuan Xi
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yutian Chong
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Stefan Pflanz
- Gilead Sciences, Inc, Department of Biology, Foster City, California
| | | | - Patrick T F Kennedy
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore; Singapore Immunology Network, A∗STAR, Singapore.
| |
Collapse
|
77
|
Alberca RW, Pereira NZ, Oliveira LMDS, Gozzi-Silva SC, Sato MN. Pregnancy, Viral Infection, and COVID-19. Front Immunol 2020; 11:1672. [PMID: 32733490 PMCID: PMC7358375 DOI: 10.3389/fimmu.2020.01672] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy comprises a unique immunological condition, to allow fetal development and to protect the host from pathogenic infections. Viral infections during pregnancy can disrupt immunological tolerance and may generate deleterious effects on the fetus. Despite these possible links between pregnancy and infection-induced morbidity, it is unclear how pregnancy interferes with maternal response to some viral pathogens. In this context, the novel coronavirus (SARS-CoV-2) can induce the coronavirus diseases-2019 (COVID-19) in pregnant women. The potential risk of vertical transmission is unclear, babies born from COVID-19-positive mothers seems to have no serious clinical symptoms, the possible mechanisms are discussed, which highlights that checking the children's outcome and more research is warranted. In this review, we investigate the reports concerning viral infections and COVID-19 during pregnancy, to establish a correlation and possible implications of COVID-19 during pregnancy and neonatal's health.
Collapse
MESH Headings
- Betacoronavirus
- COVID-19
- Child, Preschool
- Coronavirus Infections/blood
- Coronavirus Infections/immunology
- Coronavirus Infections/transmission
- Coronavirus Infections/virology
- Cytokines/blood
- Female
- Fetal Development/immunology
- Humans
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Mothers
- Pandemics
- Pneumonia, Viral/blood
- Pneumonia, Viral/immunology
- Pneumonia, Viral/transmission
- Pneumonia, Viral/virology
- Pregnancy
- Pregnancy Complications, Infectious/blood
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- SARS-CoV-2
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara Da Silva Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
78
|
Huang M, Gao Y, Liao D, Li J, Tang B, Ma Y, Yin X, Li Y, Liu Z. Effects of intrauterine exposure to maternal-derived HBeAg on T cell immunity in cord blood. Scand J Immunol 2020; 92:e12914. [PMID: 32533709 DOI: 10.1111/sji.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 01/30/2023]
Abstract
Immature immune system and immune tolerance induced by exposure to HBeAg in utero and/or shortly after infection in newborns were reportedly the causes of chronic HBV infection. To investigate the effect of maternal-derived HBeAg on neonatal T cell immunity, we analysed and compared T cell phenotypes and functions among neonates born to HBsAg+ /HBeAg+ mothers (HBeAg+ neonates), HBsAg+ /HBeAg- mothers (HBeAg- neonates) and healthy control mothers (HC neonates), using flow cytometry. The results showed that neonatal T cell phenotypes were similar regardless of HBeAg exposure. Upon anti-CD3 and anti-CD28 stimulation in HBeAg+ neonates, CD4+ T cell production of IFN-γ (P < .05) was significantly enhanced, while CD8+ T cells secreted significantly more IL-2 compared with those in HBeAg- and HC groups (P < .05). Moreover, similar levels of IFN-γ and IL-10 were observed in the culture supernatant after stimulation with rHBsAg, rHBcAg or rHBeAg among HBeAg+ , HBeAg- and HC neonates, whereas HBeAg+ neonates produced more TNF-α than HBeAg- neonates upon stimulation with rHBcAg. In conclusion, the results indicated that the HBsAg+ /HBeAg+ maternal environment did not influence the phenotypes of cord blood T cells but boosted neonatal non-specific Th1-type cytokine production.
Collapse
Affiliation(s)
- Meiting Huang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfei Gao
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dandan Liao
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinna Li
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Tang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanchen Ma
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueru Yin
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihua Liu
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
79
|
Ma Q, Dong X, Liu S, Zhong T, Sun D, Zong L, Zhao C, Lu Q, Zhang M, Gao Y, Ye Y, Cheng J, Xu Y, Zheng M. Hepatitis B e Antigen Induces NKG2A + Natural Killer Cell Dysfunction via Regulatory T Cell-Derived Interleukin 10 in Chronic Hepatitis B Virus Infection. Front Cell Dev Biol 2020; 8:421. [PMID: 32582704 PMCID: PMC7283553 DOI: 10.3389/fcell.2020.00421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Although persistent hepatitis B virus (HBV) infection is associated with natural killer (NK) cell dysfunction, it remains obscure whether HBV viral antigens are responsible for NK cell dysfunction in patients with chronic hepatitis B (CHB) infection. In this study, we found that the percentage of NK cells expressing the inhibitory receptor, NKG2A, was increased in CHB patients, and NKG2A blockade restored NK cell function. Furthermore, in CHB patients, the frequency of NK cells expressing NKG2A positively correlated with the number of regulatory T cells (Tregs) and production of interleukin-10 (IL-10) in these Tregs. Moreover, exposure of peripheral blood mononuclear cells (PBMCs) isolated from healthy controls to sera from CHB patients resulted in increased proportion of NKG2A+ NK cells; IL-10 blockade reduced the frequency of NKG2A+ NK cells while increasing the percentage of IFN-γ+ NK cells. In addition, stimulation of NK cells and Tregs from healthy controls with CHB sera together with anti-IL-10 antibody increased IFN-γ production in the culture supernatant. The frequencies of NKG2A+ NK cells and IL-10+ Tregs, along with serum levels of alanine transferase and HBV DNA, were significantly increased in CHB patients positive for the Hepatitis B e antigen (HBeAg, a marker of viral replication) when compared to HBeAg-negative CHB patients. Importantly, exposure of PBMCs from healthy controls to HBeAg resulted in increased IL-10 production but reduced levels of TNF and IFN-γ, and IL-10 blockade rescued the generation of TNF and IFN-γ in this assay. The reduced production of TNF and IFN-γ was also observed in NK cells and Tregs from healthy controls that were stimulated with HBeAg, while IL-10 blockade increased the secretion of these two cytokines. We conclude that HBeAg induces IL-10 production in Tregs, thereby leading to increased expression of NKG2A on NK cells, which contributes to NK cell dysfunction during CHB infection. These data suggest that HBeAg is associated with NK cell dysfunction in CHB.
Collapse
Affiliation(s)
- Qingqing Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyu Dong
- Department of Clinical Laboratory, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Siyu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Zhong
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changcheng Zhao
- Department of Life Sciences and Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Qiong Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ying Ye
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jun Cheng
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
80
|
Abstract
Neonates are particularly susceptible to infection. This vulnerability occurs despite their responsiveness to most vaccines. However, current vaccines do not target the pathogens responsible for most of the severe neonatal infections, and the time it takes to induce protective pathogen-specific immunity after vaccination limits protection in the first days to weeks of life. Alternative strategies include using vaccines to broadly stimulate neonatal immunity in a pathogen-agnostic fashion or vaccinating women during pregnancy to induce protective antibodies that are vertically transferred to offspring within their window of vulnerability. Protection may be further improved by integrating these approaches, namely vaccinating the neonate under the cover of vertically transferred maternal immunity. The rationale for and knowledge gaps related to each of these alternatives are discussed.
Collapse
Affiliation(s)
- Tobias R Kollmann
- Systems Vaccinology, Telethon Kids Institute, Nedlands, WA 6009, Australia.
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Sing Sing Way
- Center for Inflammation and Tolerance and Division of Infectious Disease, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA.
| |
Collapse
|
81
|
Mechanisms of HBV immune evasion. Antiviral Res 2020; 179:104816. [PMID: 32387476 DOI: 10.1016/j.antiviral.2020.104816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The concept of immune evasion is a longstanding topic of debate during chronic Hepatitis B Virus infection. The 292 million individuals chronically infected by HBV are clear evidence that the virus avoids elimination by the immune system. The exact mechanisms of immune evasion remain undefined and are distinct, but likely interconnected, between innate and adaptive immunity. There is a significant body of evidence that supports peripheral tolerance and exhaustion of adaptive immunity but our understanding of the role that central tolerance plays is still developing. Innate immunity instructs the adaptive immune response and subversion of its functionality will impact both T and B cell responses. However, literature around the interaction of HBV with innate immunity is inconsistent, with reports suggesting that HBV avoids innate recognition, suppresses innate recognition, or activates innate immunity. This complexity has led to confusion and controversy. This review will discuss the mechanisms of central and peripheral tolerance/exhaustion of adaptive immunity in the context of chronic HBV infection. We also cover the interaction of HBV with cells of the innate immune system and propose concepts for the heterogeneity of responses in chronically infected patients.
Collapse
|
82
|
Early treatment of chronic hepatitis B in children: Everything to play for? J Hepatol 2020; 72:802-803. [PMID: 32067804 DOI: 10.1016/j.jhep.2019.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
|
83
|
Yi H, Zhang Y, Yang X, Li M, Hu H, Xiong J, Wang N, Jin J, Zhang Y, Song Y, Wang X, Chen L, Lian J. Hepatitis B Core Antigen Impairs the Polarization While Promoting the Production of Inflammatory Cytokines of M2 Macrophages via the TLR2 Pathway. Front Immunol 2020; 11:535. [PMID: 32292408 PMCID: PMC7118225 DOI: 10.3389/fimmu.2020.00535] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Although several evidences suggesting the vital roles that innate immunity plays in the persistence and elimination of chronic hepatitis B virus (CHB) infection, the exact mechanism is still complicated. Here, we successfully polarized monocytes derived from healthy human peripheral blood mononuclear cells (PBMCs) into M1/M2 macrophages and detected the effects of hepatitis B core antigen (HBcAg) on the polarization and function of macrophages via the Toll-like receptor (TLR) 2 signaling pathway. The results showed that HBcAg had a negligible impact on M1 polarization, while it effectively impaired M2 polarization and promoted the production of pro-inflammatory cytokines such as IL-6 and TNF-α. Additionally, HBcAg treatment increased TLR2 expression on M2 macrophages and TLR2 blockade abolished the effects of HBcAg on the impaired phenotype and pro-inflammatory cytokine productions of M2 macrophages. Signaling pathway analysis revealed that the nuclear factor κB (NF-κB) pathway, the downstream of TLR2, was upregulated upon HBcAg treatment in both M1 and M2 macrophages. Furthermore, a CD8+ T-macrophage coculture system implied that compared with PBS stimulation, HBcAg-stimulated M2 macrophages regained their ability to activate CD8+ T cells with higher secretion of IFN-γ. Finally, we found impaired expression of M2-related molecules and increased levels of pro-inflammation cytokines in M2 macrophages from CHB patients upon HBcAg stimulation. In conclusion, these results imply a favorable role of HBcAg in the establishment of a pro-inflammatory microenvironment by macrophages, which may suggest a potential therapeutic strategy of HBcAg-induced macrophage activation in CHB infection.
Collapse
Affiliation(s)
- Hongyu Yi
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Ye Zhang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaofei Yang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Xiong
- Department of Respiratory and Critical Care, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ning Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingyi Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xian Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
84
|
Ghany MG, Feld JJ, Chang KM, Chan HLY, Lok ASF, Visvanathan K, Janssen HLA. Serum alanine aminotransferase flares in chronic hepatitis B infection: the good and the bad. Lancet Gastroenterol Hepatol 2020; 5:406-417. [PMID: 32057301 DOI: 10.1016/s2468-1253(19)30344-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection follows a dynamic and variable course. At different stages in the disease, hepatitis flares might occur, which can be challenging to predict and manage. Flares are believed to be primarily immune-mediated and might mark transitions to inactive disease or clearance of infection, but in certain scenarios they might also lead to hepatic decompensation or death. As such, understanding of the clinical significance of flares in different patient populations and different scenarios is important for optimal management. In this Review, we summarise what is known about flares in different stages of chronic HBV infection; describe flares in the context of the natural history of chronic infection; summarise the immunological mechanisms underlying flares, and describe flares in different clinical scenarios. Each section reviews existing knowledge and highlights key unanswered questions that need to be addressed to improve the understanding of flares, hopefully providing insights into their pathogenesis that can be used to improve current clinical management and ideally to further develop new curative therapeutic approaches for HBV infection. We also propose a working definition of an ALT flare to facilitate future research.
Collapse
Affiliation(s)
- Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry L Y Chan
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anna S F Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Kumar Visvanathan
- Department of Infectious Disease, St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
85
|
Joshi SS, Coffin CS. Hepatitis B and Pregnancy: Virologic and Immunologic Characteristics. Hepatol Commun 2020; 4:157-171. [PMID: 32025602 PMCID: PMC6996345 DOI: 10.1002/hep4.1460] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022] Open
Abstract
The hepatitis B virus (HBV) is an important human pathogen. Unvaccinated infants infected through mother-to-child transmission (MTCT) are at >95% risk of developing serum hepatitis B surface antigen-positive chronic hepatitis B (CHB). Despite complete passive-active HBV immunoprophylaxis, approximately 10% of infants born to mothers who are highly viremic develop CHB, and thus maternal treatment with nucleos(t)ide analogs (tenofovir disoproxil fumarate, lamivudine, or telbivudine) is recommended in the third trimester of pregnancy to reduce MTCT risk. Viral rebound usually occurs after stopping treatment and, in the context of maternal immunologic reconstitution postpartum, can also precipitate host immune-mediated hepatic (biochemical) flares. In this article, we review the epidemiology of HBV MTCT, discuss management and potential mechanisms of HBV vertical transmission, and highlight recent studies on virologic and immunologic aspects of hepatitis B in pregnancy and postpartum.
Collapse
Affiliation(s)
- Shivali S. Joshi
- Liver UnitDivision of Gastroenterology and HepatologyDepartment of MedicineUniversity of CalgaryCalgaryCanada
- Department of Microbiology, Immunology and Infectious DiseasesCumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Carla S. Coffin
- Liver UnitDivision of Gastroenterology and HepatologyDepartment of MedicineUniversity of CalgaryCalgaryCanada
- Department of Microbiology, Immunology and Infectious DiseasesCumming School of MedicineUniversity of CalgaryCalgaryCanada
| |
Collapse
|
86
|
Whitacre DC, Peters CJ, Sureau C, Nio K, Li F, Su L, Jones JE, Isogawa M, Sallberg M, Frelin L, Peterson DL, Milich DR. Designing a therapeutic hepatitis B vaccine to circumvent immune tolerance. Hum Vaccin Immunother 2019; 16:251-268. [PMID: 31809638 PMCID: PMC7062423 DOI: 10.1080/21645515.2019.1689745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An effective prophylactic hepatitis B virus (HBV) vaccine has long been available but is ineffective for chronic infection. The primary cause of chronic hepatitis B (CHB) and greatest impediment for a therapeutic vaccine is the direct and indirect effects of immune tolerance to HBV antigens. The resulting defective CD4+/CD8+ T cell response, poor cytokine production, insufficient neutralizing antibody (nAb) and poor response to HBsAg vaccination characterize CHB infection. The objective of this study was to develop virus-like-particles (VLPs) that elicit nAb to prevent viral spread and prime CD4+/CD8+ T cells to eradicate intracellular HBV. Eight neutralizing B cell epitopes from the envelope PreS1 region were consolidated onto a species-variant of the HBV core protein, the woodchuck hepatitis core antigen (WHcAg). PreS1-specific B cell epitopes were chosen because of preferential expression on HBV virions. Because WHcAg and HBcAg are not crossreactive at the B cell level and only partially cross-reactive at the CD4+/CD8+ T cell level, CD4+ T cells specific for WHcAg-unique T cell sites can provide cognate T-B cell help for anti-PreS1 Ab production that is not curtailed by immune tolerance. Immunization of immune tolerant HBV transgenic (Tg) mice with PreS1-WHc VLPs elicited levels of high titer anti-PreS1 nAbs equivalent to wildtype mice. Passive transfer of PreS1 nAbs into human-liver chimeric mice prevented acute infection and cleared serum HBV from mice previously infected with HBV in a model of CHB. At the T cell level, PreS1-WHc VLPs and hybrid WHcAg/HBcAg DNA immunogens elicited HBcAg-specific CD4+ Th and CD8+ CTL responses.
Collapse
Affiliation(s)
- D C Whitacre
- Department of Immunology, VLP Biotech, Inc., JLABS San Diego, San Diego, CA, USA.,Department of Immunology, Vaccine Research Institute of San Diego, San Diego, CA, USA
| | - C J Peters
- Department of Immunology, VLP Biotech, Inc., JLABS San Diego, San Diego, CA, USA.,Department of Immunology, Vaccine Research Institute of San Diego, San Diego, CA, USA
| | - C Sureau
- Molecular Virology Laboratory, Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - K Nio
- Graduate School of Medicine, Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - F Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J E Jones
- Department of Immunology, VLP Biotech, Inc., JLABS San Diego, San Diego, CA, USA
| | - M Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - M Sallberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockhold, Sweden
| | - L Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockhold, Sweden
| | - D L Peterson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - D R Milich
- Department of Immunology, VLP Biotech, Inc., JLABS San Diego, San Diego, CA, USA.,Department of Immunology, Vaccine Research Institute of San Diego, San Diego, CA, USA
| |
Collapse
|
87
|
Suresh M, Czerwinski S, Murreddu MG, Kallakury BV, Ramesh A, Gudima SO, Menne S. Innate and adaptive immunity associated with resolution of acute woodchuck hepatitis virus infection in adult woodchucks. PLoS Pathog 2019; 15:e1008248. [PMID: 31869393 PMCID: PMC6946171 DOI: 10.1371/journal.ppat.1008248] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 11/29/2019] [Indexed: 01/03/2023] Open
Abstract
Viral and/or host factors that are directly responsible for the acute versus chronic outcome of hepatitis B virus (HBV) infection have not been identified yet. Information on immune response during the early stages of HBV infection in humans is mainly derived from blood samples of patients with acute hepatitis B (AHB), which are usually obtained after the onset of clinical symptoms. Features of intrahepatic immune response in these patients are less studied due to the difficulty of obtaining multiple liver biopsies. Woodchuck hepatitis virus (WHV) infection in woodchucks is a model for HBV infection in humans. In the present study, five adult woodchucks were experimentally infected with WHV and then followed for 18 weeks. Blood and liver tissues were frequently collected for assaying markers of WHV replication and innate and adaptive immune responses. Liver tissues were further analyzed for pathological changes and stained for important immune cell subsets and cytokines. The increase and subsequent decline of viral replication markers in serum and liver, the elicitation of antibodies against viral proteins, and the induction of virus-specific T-cell responses indicated eventual resolution of acute WHV infection in all animals. Intrahepatic innate immune makers stayed unchanged immediately after the infection, but increased markedly during resolution, as determined by changes in transcript levels. The presence of interferon-gamma and expression of natural killer (NK) cell markers suggested that a non-cytolytic response mechanism is involved in the initial viral control in liver. This was followed by the expression of T-cell markers and cytolytic effector molecules, indicating the induction of a cytolytic response mechanism. Parallel increases in regulatory T-cell markers suggested that this cell subset participates in the overall immune cell infiltration in liver and/or has a role in regulating AHB induced by the cytolytic response mechanism. Since the transcript levels of immune cell markers in blood, when detectable, were lower than in liver, and the kinetics, except for NK-cells and interferon-gamma, did not correlate well with their intrahepatic expression, this further indicated enrichment of immune cells within liver. Conclusion: The coordinated interplay of innate and adaptive immunity mediates viral clearance in the woodchuck animal model of HBV infection. The initial presence of NK-cell associated interferon-gamma response points to an important role of this cytokine in HBV resolution.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stefanie Czerwinski
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Marta G. Murreddu
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Ashika Ramesh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
88
|
Immunopathogenesis of HBV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:71-107. [DOI: 10.1007/978-981-13-9151-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Chen Y, Tian Z. HBV-Induced Immune Imbalance in the Development of HCC. Front Immunol 2019; 10:2048. [PMID: 31507621 PMCID: PMC6718466 DOI: 10.3389/fimmu.2019.02048] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for human HCC. Despite the integration of virus DNA and the oncoprotein HBx, chronic necroinflammation and hepatocellular regeneration account for hepatocarcinogenesis. As a non-cytopathic virus, HBV is extensively recognized to mediate chronic liver damage through abnormal immune attack. However, the mechanisms driving HBV infection to HCC are poorly understood. During chronic HBV infection in humans, the adaptive immunity changes from immune tolerance to progressive immune activation, inactivation, reactivation and exhaustion, all of which may be the immune pathogenic factors for the development of HCC. Recently, the immunopathogenic mechanisms were described in mouse HBV-induced HCC models, which is absolutely dependent on the presence of HBV-specific T cell response and NK cell-derived IFN-γ, findings which are consistent with the observations from CHB and HCC patients. In this review, we summarize recent research progression on the HBV-specific CD8+ T cells, and also CD4+ T cells, B cells and non-specific immune cells and molecules underlying chronic HBV infection and eventual HCC development to demonstrate the pathogenesis of HBV-induced immune imbalance. Based on the progression, we discussed the potential of immune-based therapies and their challenges in the treatment of HBV-related HCC, including the checkpoint inhibition, genetically modified T cell transfer, therapeutic vaccines and metabolic modulation.
Collapse
Affiliation(s)
- Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
90
|
Highly diversified shrew hepatitis B viruses corroborate ancient origins and divergent infection patterns of mammalian hepadnaviruses. Proc Natl Acad Sci U S A 2019; 116:17007-17012. [PMID: 31371507 DOI: 10.1073/pnas.1908072116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shrews, insectivorous small mammals, pertain to an ancient mammalian order. We screened 693 European and African shrews for hepatitis B virus (HBV) homologs to elucidate the enigmatic genealogy of HBV. Shrews host HBVs at low prevalence (2.5%) across a broad geographic and host range. The phylogenetically divergent shrew HBVs comprise separate species termed crowned shrew HBV (CSHBV) and musk shrew HBV (MSHBV), each containing distinct genotypes. Recombination events across host orders, evolutionary reconstructions, and antigenic divergence of shrew HBVs corroborated ancient origins of mammalian HBVs dating back about 80 million years. Resurrected CSHBV replicated in human hepatoma cells, but human- and tupaia-derived primary hepatocytes were resistant to hepatitis D viruses pseudotyped with CSHBV surface proteins. Functional characterization of the shrew sodium taurocholate cotransporting polypeptide (Ntcp), CSHBV/MSHBV surface peptide binding patterns, and infection experiments revealed lack of Ntcp-mediated entry of shrew HBV. Contrastingly, HBV entry was enabled by the shrew Ntcp. Shrew HBVs universally showed mutations in their genomic preCore domains impeding hepatitis B e antigen (HBeAg) production and resembling those observed in HBeAg-negative human HBV. Deep sequencing and in situ hybridization suggest that HBeAg-negative shrew HBVs cause intense hepatotropic monoinfections and low within-host genomic heterogeneity. Geographical clustering and low MSHBV/CSHBV-specific seroprevalence suggest focal transmission and high virulence of shrew HBVs. HBeAg negativity is thus an ancient HBV infection pattern, whereas Ntcp usage for entry is not evolutionarily conserved. Shrew infection models relying on CSHBV/MSHBV revertants and human HBV will allow comparative assessments of HBeAg-mediated HBV pathogenesis, entry, and species barriers.
Collapse
|
91
|
Mitra B, Wang J, Kim ES, Mao R, Dong M, Liu Y, Zhang J, Guo H. Hepatitis B Virus Precore Protein p22 Inhibits Alpha Interferon Signaling by Blocking STAT Nuclear Translocation. J Virol 2019; 93:e00196-19. [PMID: 31019054 PMCID: PMC6580977 DOI: 10.1128/jvi.00196-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg-) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg- patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy.IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Elena S Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
92
|
Wu LL, Peng WH, Wu HL, Miaw SC, Yeh SH, Yang HC, Liao PH, Lin JS, Chen YR, Hong YT, Wang HY, Chen PJ, Chen DS. Lymphocyte Antigen 6 Complex, Locus C + Monocytes and Kupffer Cells Orchestrate Liver Immune Responses Against Hepatitis B Virus in Mice. Hepatology 2019; 69:2364-2380. [PMID: 30661248 DOI: 10.1002/hep.30510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
To understand the mechanism(s) of age-dependent outcomes of hepatitis B virus (HBV) infection in humans, we previously established an age-related HBV mouse model in which 6-week-old (N6W) C3H/HeN mice exhibited virus tolerance whereas 12-week-old (N12W) counterparts presented virus clearance. By investigating the hepatic myeloid cell dynamics in mice of these two ages, we aim to identify factors associated with HBV clearance. C3H/HeN mice were transfected with an HBV plasmid by hydrodynamic injection. Serum HBV markers were monitored weekly. Hepatic leucocyte populations and their cytokine/chemokine productions were examined at baseline, day 3 (D3), day 7 (D7), and day 14 after injection. C-C chemokine receptor type 2 (CCR2) antagonist and clodronate (CLD) were respectively administered to N12W and N6W mice to study the roles of lymphocyte antigen 6 complex, locus C (Ly6C)+ monocytes and Kupffer cells (KCs) in viral clearance. N12W mice had a significantly higher number of TNF-α-secreting Ly6C+ monocytes and fewer IL-10-secreting KCs at D3 in the liver than their younger N6W counterparts after HBV transfection. In addition, the elevated number of interferon-γ+ TNF-α+ CD8+ T cells at D7 was only seen in the older cohort. The enhanced Ly6C+ monocyte induction in N12W mice resulted from elevated C-C motif chemokine ligand 2 (CCL2) secretion by hepatocytes. CCR2 antagonist administration hampered Ly6C+ monocyte recruitment and degree of KC reduction and delayed HBV clearance in N12W animals. Depletion of KCs by CLD liposomes enhanced Ly6C+ monocyte recruitment and accelerated HBV clearance in N6W mice. Conclusions: Ly6C+ monocytes and KCs may, respectively, represent the resistance and tolerance arms of host defenses. These two cell types play an essential role in determining HBV clearance/tolerance. Manipulation of these cells is a promising avenue for immunotherapy of HBV-related liver diseases.
Collapse
Affiliation(s)
- Li-Ling Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Wei-Hao Peng
- Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,School of Medicine for International Students, I-Shou University (Yanchao Campus), Kaohsiung, Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Hung-Chih Yang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Pei-Hsuan Liao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Jing-Shan Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Yan-Rong Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Yen-Tien Hong
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 100 Taiwan
| |
Collapse
|
93
|
Heterologous prime-boost immunization with vesiculovirus-based vectors expressing HBV Core antigen induces CD8 + T cell responses in naïve and persistently infected mice and protects from challenge. Antiviral Res 2019; 168:156-167. [PMID: 31153968 DOI: 10.1016/j.antiviral.2019.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis B virus (HBV) infections cause more than 800,000 deaths per year and currently approved treatments do not cure the disease. Because a hallmark of acute infection resolution is the presence of functional CD8+ T cells to the virus, activation of the immune system with therapeutic vaccines represents a potential approach for treating chronic hepatitis B. In this study, we evaluated the immunogenicity and efficacy of two attenuated vesiculovirus-based platforms expressing HBV Core antigen, the highly attenuated vesicular stomatitis virus (VSV) N4CT1 and a unique vaccine platform [virus-like vesicles (VLV)] that is based on a Semliki Forest virus replicon expressing the VSV glycoprotein. We found that heterologous prime-boost immunization with VLV and N4CT1 induced Core-specific CD8+ T cell responses in naïve mice. When immunized mice were later challenged with AAV-HBV, functional Core-specific CD8+ T cells were present in the liver, and mice were protected from establishment of persistent infection. In contrast, when mice with pre-established persistent HBV replication received prime-boost immunization, functional Core-specific CD8+ T cells were found in the spleen but not in the liver. These results highlight the importance of investigating the therapeutic value of different HBV antigens alone and in combination using preclinical animal models, and understanding the correlation between anti-HBV efficacy in these models with human infection.
Collapse
|
94
|
Abstract
Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.
Collapse
Affiliation(s)
| | - Catherine Cherry
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Harry Gunn
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| |
Collapse
|
95
|
Milich DR. Is the function of the HBeAg really unknown? Hum Vaccin Immunother 2019; 15:2187-2191. [PMID: 31063442 PMCID: PMC6773382 DOI: 10.1080/21645515.2019.1607132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
The immune response to the hepatitis B virus (HBV) vaccine in newborns of hepatitis B e antigen (HBeAg)-positive or HBeAg-negative mothers is the subject of Huang et al. The authors report no correlation between the HBeAg status of the mothers/cord blood and the newborns immune response to the vaccine, but, unfortunately, draw unfounded conclusions regarding the tolerogenic potential of in utero exposure to HBeAg. In this reply, I address the possible influence of in utero exposure to the HBeAg, and briefly review other characteristics of the HBeAg, that may promote HBV chronicity. I argue that the function of HBeAg should no longer be considered "unknown" and that immunotolerance/immunomodulation represent the dominant functions of the HBeAg in viral-host interactions.
Collapse
Affiliation(s)
- David R. Milich
- Department of Immunology, Vaccine Research Institute of San Diego, San Diego, CA, USA
- VLP Biotech, Inc., La Jolla, CA, USA
| |
Collapse
|
96
|
Weston CJ, Zimmermann HW, Adams DH. The Role of Myeloid-Derived Cells in the Progression of Liver Disease. Front Immunol 2019; 10:893. [PMID: 31068952 PMCID: PMC6491757 DOI: 10.3389/fimmu.2019.00893] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Control of homeostasis and rapid response to tissue damage in the liver is orchestrated by crosstalk between resident and infiltrating inflammatory cells. A crucial role for myeloid cells during hepatic injury and repair has emerged where resident Kupffer cells, circulating monocytes, macrophages, dendritic cells and neutrophils control local tissue inflammation and regenerative function to maintain tissue architecture. Studies in humans and rodents have revealed a heterogeneous population of myeloid cells that respond to the local environment by either promoting regeneration or driving the inflammatory processes that can lead to hepatitis, fibrogenesis, and the development of cirrhosis and malignancy. Such plasticity of myeloid cell responses presents unique challenges for therapeutic intervention strategies and a greater understanding of the underlying mechanisms is needed. Here we review the role of myeloid cells in the establishment and progression of liver disease and highlight key pathways that have become the focus for current and future therapeutic strategies.
Collapse
Affiliation(s)
- Chris John Weston
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| | | | - David H Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
97
|
Yang F, Yu X, Zhou C, Mao R, Zhu M, Zhu H, Ma Z, Mitra B, Zhao G, Huang Y, Guo H, Wang B, Zhang J. Hepatitis B e antigen induces the expansion of monocytic myeloid-derived suppressor cells to dampen T-cell function in chronic hepatitis B virus infection. PLoS Pathog 2019; 15:e1007690. [PMID: 30998767 PMCID: PMC6472891 DOI: 10.1371/journal.ppat.1007690] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is associated with functionally impaired virus-specific T cell responses. Although the myeloid-derived suppressor cells (MDSCs) are known to play a critical role in impairing antiviral T cell responses, viral factors responsible for the expansion of MDSCs in chronic hepatitis B (CHB) remain obscure. In order to elucidate the mechanism of monocytic MDSCs (mMDSCs) expansion and T cell function suppression during persistent HBV infection, we analyzed the circulation frequency of mMDSCs in 164 CHB patients and 70 healthy donors, and found that the proportion of mMDSCs in HBeAg (+) CHB patients was significantly increased compared to that in HBeAg (-) patients, which positively correlated with the level of HBeAg. Furthermore, exposure of peripheral blood mononuclear cells (PBMCs) isolated from healthy donors to HBeAg led to mMDSCs expansion and significant upregulation of IL-1β, IL-6 and indoleamine-2, 3-dioxygenase (IDO), and depletion of the cytokines abrogated HBeAg-induced mMDSCs expansion. Moreover, HBeAg-induced mMDSCs suppressed the autologous T-cell proliferation in vitro, and the purified mMDSCs from HBeAg (+) subjects markedly reduced the proliferation of CD4+ and CD8+ T cells and IFN-γ production, which could be efficiently restored by inhibiting IDO. In summary, HBeAg-induced mMDSCs expansion impairs T cell function through IDO pathway and favors the establishment of a persistent HBV infection, suggesting a mechanism behind the development of HBeAg-induced immune tolerance. HBeAg is not a structural component of HBV and is not essential for viral DNA replication, however, HBeAg positivity is associated with high levels of viremia in patients. HBeAg may represent a viral strategy to establish persistent infection, but the mechanism remains largely ambiguous. Growing evidence suggests that chronic HBV infection may be shaped by MDSCs-mediated T-cell exhaustion. Here, we report that the frequency of circulating mMDSCs in HBeAg (+) patients is higher than HBeAg (-) patients and positively correlates with serum HBeAg levels. The correlation is further demonstrated by in vitro HBeAg stimulation of PBMCs, which induced mMDSCs expansion. Furthermore, HBeAg-induced expansion of mMDSCs is dependent upon cytokine IL-6 and IL-1β, and the indoleamine-2, 3-dioxynase (IDO) plays a critical role in the suppression of T cell proliferation and IFN-γ production by HBeAg-activated mMDSCs. Therefore, our findings demonstrate a novel mechanism responsible for mMDSCs expansion in HBeAg (+) patients, and suggest that the HBeAg-mMDSC-IDO axis may serve as an immunotherapeutic target of chronic hepatitis B.
Collapse
Affiliation(s)
- Feifei Yang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueping Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenliang Zhou
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mengqi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxuan Ma
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gan Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (HG); (BW); (JZ)
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (HG); (BW); (JZ)
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (HG); (BW); (JZ)
| |
Collapse
|
98
|
Song H, Tan G, Yang Y, Cui A, Li H, Li T, Wu Z, Yang M, Lv G, Chi X, Niu J, Zhu K, Crispe IN, Su L, Tu Z. Hepatitis B Virus-Induced Imbalance of Inflammatory and Antiviral Signaling by Differential Phosphorylation of STAT1 in Human Monocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:2266-2275. [PMID: 30842274 DOI: 10.4049/jimmunol.1800848] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
It is not clear how hepatitis B virus (HBV) modulates host immunity during chronic infection. In addition to the key mediators of inflammatory response in viral infection, monocytes also express a high-level IFN-stimulated gene, CH25H, upon response to IFN-α exerting an antiviral effect. In this study, the mechanism by which HBV manipulates IFN signaling in human monocytes was investigated. We observed that monocytes from chronic hepatitis B patients express lower levels of IFN signaling/stimulated genes and higher levels of inflammatory cytokines compared with healthy donors. HBV induces monocyte production of inflammatory cytokines via TLR2/MyD88/NF-κB signaling and STAT1-Ser727 phosphorylation and inhibits IFN-α-induced stat1, stat2, and ch25h expression through the inhibition of STAT1-Tyr701 phosphorylation and in an IL-10-dependent, partially autocrine manner. Further, we found that enhancement of STAT1 activity with a small molecule (2-NP) rescued HBV-mediated inhibition of IFN signaling and counteracted the induction of inflammatory cytokines. In conclusion, HBV contributes to the monocyte inflammatory response but inhibits their IFN-α/β responsiveness to impair antiviral innate immunity. These effects are mediated via differential phosphorylation of Tyr701 and Ser727 of STAT1.
Collapse
Affiliation(s)
- Hongxiao Song
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guangyun Tan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - An Cui
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haijun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Tianyang Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiumei Chi
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Junqi Niu
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ian Nicholas Crispe
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Pathology, University of Washington, Seattle, WA 98195; and
| | - Lishan Su
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhengkun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; .,Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
99
|
Tian Y, James Ou JH. Hepatitis B Virus-Specific T Cells as a Biomarker for Discontinuation of Nucleos(t)ide Analogue Therapy for Chronic Hepatitis B. Hepatology 2019; 69:1342-1344. [PMID: 30168616 PMCID: PMC6393196 DOI: 10.1002/hep.30243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yongjun Tian
- Department of Pathology and Laboratory Medicine, Los Angeles County and University of Southern California Medical Center, Los Angeles, California
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
100
|
Hsu HY, Chang MH. Hepatitis B Virus Infection and the Progress toward its Elimination. J Pediatr 2019; 205:12-20. [PMID: 30244984 DOI: 10.1016/j.jpeds.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hong-Yuan Hsu
- Department of Pediatrics, National Taiwan University Children's Hospital and College of Medicine, National Taiwan University, Taipei; Graduate Institute of Medical Education and Bioethics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Children's Hospital and College of Medicine, National Taiwan University, Taipei.
| |
Collapse
|