51
|
Wang YT, Therriault J, Servaes S, Tissot C, Rahmouni N, Macedo AC, Fernandez-Arias J, Mathotaarachchi SS, Benedet AL, Stevenson J, Ashton NJ, Lussier FZ, Pascoal TA, Zetterberg H, Rajah MN, Blennow K, Gauthier S, Rosa-Neto P. Sex-specific modulation of amyloid-β on tau phosphorylation underlies faster tangle accumulation in females. Brain 2024; 147:1497-1510. [PMID: 37988283 PMCID: PMC10994548 DOI: 10.1093/brain/awad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023] Open
Abstract
Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-β (Aβ) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aβ and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aβ plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aβ and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aβ predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aβ-positive females presented higher CSF p-tau181 concentrations compared with Aβ-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aβ-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aβ and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aβ in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aβ plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Arthur Cassa Macedo
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sulantha S Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RX, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK
| | - Firoza Z Lussier
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tharick A Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Montreal Neurological Institute, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
52
|
Hasnain N, Arif TB, Shafaut R, Zakaria F, Fatima SZ, Haque IU. Association between sex and Huntington's disease: an updated review on symptomatology and prognosis of neurodegenerative disorders. Wien Med Wochenschr 2024; 174:87-94. [PMID: 35723821 DOI: 10.1007/s10354-022-00941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Huntington's disease is a rare autosomal dominant disorder presenting with chorea, rigidity, hypo-/akinesia, cognitive decline, and psychiatric disturbances. Numerous risk factors have been defined in the onset of this disease. However, the number of CAG repeats in the genes are the most crucial factor rendering patients susceptible to the disease. Studies have shown significant differences in onset and disease presentation among the sexes, which prompts analysis of the impact of different sexes on disease etiology and progression. This article therefore discusses the evidence-based role of sex in aspects of symptomatology, pathogenesis, biomarkers, progression, and prognosis of Huntington's disease, with a secondary review of sex-linked differences in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Nimra Hasnain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan
| | - Taha Bin Arif
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan.
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan.
| | - Roha Shafaut
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Faiza Zakaria
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Ibtehaj Ul Haque
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan
| |
Collapse
|
53
|
Stickel AM, Tarraf W, Kuwayama S, Wu B, Sundermann EE, Gallo LC, Lamar M, Daviglus M, Zeng D, Thyagarajan B, Isasi CR, Lipton RB, Cordero C, Perreira KM, Gonzalez HM, Banks SJ. Connections between reproductive health and cognitive aging among women enrolled in the HCHS/SOL and SOL-INCA. Alzheimers Dement 2024; 20:1944-1957. [PMID: 38160447 PMCID: PMC10947951 DOI: 10.1002/alz.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Reproductive health history may contribute to cognitive aging and risk for Alzheimer's disease, but this is understudied among Hispanic/Latina women. METHODS Participants included 2126 Hispanic/Latina postmenopausal women (44 to 75 years) from the Study of Latinos-Investigation of Neurocognitive Aging. Survey linear regressions separately modeled the associations between reproductive health measures (age at menarche, history of oral contraceptive use, number of pregnancies, number of live births, age at menopause, female hormone use at Visit 1, and reproductive span) with cognitive outcomes at Visit 2 (performance, 7-year change, and mild cognitive impairment [MCI] prevalence). RESULTS Younger age at menarche, oral contraceptive use, lower pregnancies, lower live births, and older age at menopause were associated with better cognitive performance. Older age at menarche was protective against cognitive change. Hormone use was linked to lower MCI prevalence. DISCUSSION Several aspects of reproductive health appear to impact cognitive aging among Hispanic/Latina women.
Collapse
Affiliation(s)
- Ariana M. Stickel
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Wassim Tarraf
- Institute of Gerontology & Department of Healthcare SciencesWayne State UniversityDetroitMichiganUSA
| | - Sayaka Kuwayama
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Benson Wu
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Erin E. Sundermann
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Linda C. Gallo
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Melissa Lamar
- Institute for Minority Health ResearchUniversity of Illinois at ChicagoCollege of MedicineChicagoIllinoisUSA
- Rush Alzheimer's Disease Research Center and the Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Martha Daviglus
- Institute for Minority Health ResearchUniversity of Illinois at ChicagoCollege of MedicineChicagoIllinoisUSA
| | - Donglin Zeng
- Department of BiostatisticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Carmen R. Isasi
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Richard B. Lipton
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | | | - Krista M. Perreira
- Department of Social MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Hector M. Gonzalez
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Sarah J. Banks
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
54
|
De Sousa Rodrigues ME, Bolen ML, Blackmer-Raynolds L, Schwartz N, Chang J, Tansey MG, Sampson TR. Diet-induced metabolic and immune impairments are sex-specifically modulated by soluble TNF signaling in the 5xFAD mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582516. [PMID: 38464096 PMCID: PMC10925304 DOI: 10.1101/2024.02.28.582516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. In male mice, we note that HFHC triggered increases in amyloid beta, an observation not seen in female mice. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.
Collapse
Affiliation(s)
| | - MacKenzie L. Bolen
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Noah Schwartz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, Florida, USA
| | | |
Collapse
|
55
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 804] [Impact Index Per Article: 804.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
56
|
Long J, Qin F, Luo J, Zhong G, Huang S, Jing L, Yi T, Liu J, Jiang N. Design, synthesis, and biological evaluation of novel capsaicin-tacrine hybrids as multi-target agents for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:107026. [PMID: 38103330 DOI: 10.1016/j.bioorg.2023.107026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against β-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.
Collapse
Affiliation(s)
- Juanyue Long
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Fengxue Qin
- Blood Transfusion Department, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China
| | - Jinchong Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China
| | - Guohui Zhong
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China.
| | - Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China.
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
57
|
Gao X, Sun Y, Huang X, Zhou Y, Zhu H, Li Q, Ma Y. Adequate dietary magnesium intake may protect females but not males older than 55 years from cognitive impairment. Nutr Neurosci 2024; 27:184-195. [PMID: 36803323 DOI: 10.1080/1028415x.2023.2169986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
BACKGROUND Magnesium is an essential nutrient required to maintain brain health throughout life, and adequate magnesium intake is positively associated with cognitive performance in older adults. However, sex differences in magnesium metabolism have not been adequately assessed in humans. OBJECTIVES We investigated sex differences in the effect of dietary magnesium intake and the risk of different types of cognitive impairment in older Chinese adults. METHODS We collected and assessed dietary data and cognitive function status in people aged 55 years and older in northern China who participated in the Community Cohort Study of Nervous System Diseases from 2018 to 2019 to explore the relationship between dietary magnesium intake and the risk of each type of mild cognitive impairment (MCI) in sex-specific cohorts of older adults. RESULTS The study included 612 people: 260 (42.5%) men and 352 (57.5%) women. Logistic regression results showed that for the total sample and women's sample, high dietary magnesium intake reduced the risk of amnestic MCI (ORtotal = 0.300; ORwomen = 0.190) and multidomain amnestic MCI (ORtotal = 0.225; ORwomen = 0.145). The results of restricted cubic spline analysis showed that the risk of amnestic MCI (ptotal = 0.0193; pwomen = 0.0351) and multidomain amnestic MCI (ptotal = 0.0089; pwomen = 0.0096) in the total sample and women's sample gradually decreased with increasing dietary magnesium intake. CONCLUSIONS The results suggest that adequate magnesium intake may have a preventive effect against the risk of MCI in older women.
Collapse
Affiliation(s)
- Xian Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
- Department of Gastrointestinal Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
| | - Xin Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
- Handan Center for Disease Control and Prevention, Handan, People's Republic of China
| | - Yutian Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
| | - Huichen Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
| | - Qingxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
| |
Collapse
|
58
|
Dabiri S, Mwendwa DT, Campbell A. Psychological and neurobiological mechanisms involved in the relationship between loneliness and cognitive decline in older adults. Brain Behav Immun 2024; 116:10-21. [PMID: 38008386 DOI: 10.1016/j.bbi.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023] Open
Abstract
Loneliness, among older adults, is one of the risk factors for developing dementia. Still, little is known about the neurobiological and psychological conditions that link loneliness to cognitive decline. The current study investigated several research aims: First, it sought to identify neurobiological and psychological pathways that may account for the relationship between loneliness and decline across several cognitive domains. These pathways included depressive symptoms, total gray matter volume, and conditional analyses of pro-inflammatory cytokines and brain-derived neurotrophic factor (BDNF) expression. Second, it examined loneliness as a predictor of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Third, it sought to determine whether the relationship between loneliness and cognitive decline is sex-specific in older adults. Longitudinal data were collected from 2130 Rush Memory and Aging Project participants. Participants underwent annual cognitive and psychological assessments and neuroimaging procedures every year. BDNF gene expression was measured in the dorsolateral prefrontal cortex, cytokines were measured in serum, and the final consensus clinical diagnosis was identified at the time of death. All linear mixed and multinomial logistic regression models controlled for age at baseline, education, sex, and APOE genotype. Participants were largely women (73 %), and Caucasian (93 %). The average education was 14.93 (SD = 3.34). The average age at baseline was 80.05 (SD = 7.57). Results showed that gray matter volume and depressive symptoms partially mediated the relationship between loneliness and cognitive decline. There was a significant interaction between loneliness and BDNF expression in relation to cognitive decline. Higher levels of BDNF expression was associated with slower decline in semantic memory and visuospatial ability. Finally, the current study also established that higher levels of loneliness was positively associated with the incidence of AD and other dementias. The present findings support the growing literature, which tends to show that the consequence of loneliness goes beyond the feeling of being isolated. Loneliness may induce physiological changes in our brains, leading to cognitive decline. Future research can explore a wide range of biological and psychological expressions of loneliness to clarify how loneliness relates to dementia.
Collapse
Affiliation(s)
- Sanaz Dabiri
- The Alzheimer's Trial Recruitment Innovation Lab, University of Southern California, United States.
| | | | | |
Collapse
|
59
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
60
|
Pérez-Silanes S, Martisova E, Moreno E, Solas M, Plano D, Sanmartin C, Ramírez MJ. Novel Pitolisant-Derived Sulfonyl Compounds for Alzheimer Disease. Int J Mol Sci 2024; 25:799. [PMID: 38255872 PMCID: PMC10815131 DOI: 10.3390/ijms25020799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disorder characterized by cognitive decline, memory loss, behavioral changes, and other neurological symptoms. Considering the urgent need for new AD therapeutics, in the present study we designed, synthesized, and evaluated multitarget compounds structurally inspired by sulfonylureas and pitolisant with the aim of obtaining multitarget ligands for AD treatment. Due to the diversity of chemical scaffolds, a novel strategy has been adopted by merging into one structure moieties displaying H3R antagonism and acetylcholinesterase inhibition. Eight compounds, selected by their binding activity on H3R, showed a moderate ability to inhibit acetylcholinesterase activity in vitro, and two of the compounds (derivatives 2 and 7) were also capable of increasing acetylcholine release in vitro. Among the tested compounds, derivative 2 was identified and selected for further in vivo studies. Compound 2 was able to reverse scopolamine-induced cognitive deficits with results comparable to those of galantamine, a drug used in clinics for treating AD. In addition to its efficacy, this compound showed moderate BBB permeation in vitro. Altogether, these results point out that the fragment-like character of compound 2 leads to an optimal starting point for a plausible medicinal chemistry approach for this novel strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - María Javier Ramírez
- Department of Pharmaceutical Sciences, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.P.-S.); (E.M.); (E.M.); (M.S.); (D.P.); (C.S.)
| |
Collapse
|
61
|
Nemoto Y, Brown WJ, Mielke GI. Trajectories of physical activity from mid to older age in women: 21 years of data from the Australian Longitudinal Study on Women's Health. Int J Behav Nutr Phys Act 2024; 21:4. [PMID: 38191462 PMCID: PMC10773129 DOI: 10.1186/s12966-023-01540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Women's physical activity varies across the adult lifespan. However, changes in physical activity among mid-aged women are not well understood. We analysed 21 years of data from women born in 1946-51 to identify: (1) trajectories of physical activity in the transition from mid- to old-age and (2) determinants of different physical activity trajectories. METHODS Data were from the 1946-51 cohort of the Australian Longitudinal Study on Women's Health (N = 10,371). Surveys were mailed at three-year intervals from 1998 (age 47-52) to 2019 (age 68-73) to collect data on physical activity, sociodemographic factors (country of birth, area of residence, educational attainment, marital status, income management, paid work hours, living with children age < 18, providing care), health indicators (menopause status, BMI, physical and mental health, chronic conditions), and health behaviours (smoking, alcohol status). Group-based trajectory modelling was used to identify trajectories of physical activity. Multinomial logistic regression models were used to examine the determinants of physical activity trajectories. RESULTS Five trajectories were identified: Low-stable (13.3% of participants), Moderate-stable (50.4%), Moderate-increasing (22.2%), High-declining (7.7%), and High-stable (6.6%). Sociodemographic characteristics (area of residence, education, income management, living with children, and providing care) were determinants of physical activity trajectories, but the strongest factors were BMI, physical and mental health. Women who were overweight/obese and had poor physical and mental health were less likely to be in the High-stable group than in any other group. Changes in these variables (increasing BMI, and declining physical and mental health) and in marital status (getting married) were positively associated with being in trajectories other than the High-stable group. CONCLUSIONS Although most women maintained physical activity at or above current guidelines, very low physical activity levels in the Low-stable group, and declining levels in the High-declining group are concerning. The data suggest that physical activity promotion strategies could be targeted to these groups, which are characterised by socioeconomic disadvantage, high (and increasing) BMI, and poor (and worsening) physical and mental health. Removing barriers to physical activity in these women, and increasing opportunities for activity, may reduce chronic disease risk in older age.
Collapse
Affiliation(s)
- Yuta Nemoto
- School of Public Health, The University of Queensland, Brisbane, QLD, 4006, Australia.
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo, 160-8402, Japan.
- School of Health Innovation, Kanagawa University of Human Services, Kanagawa, 210-0821, Japan.
| | - Wendy J Brown
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, 4229, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Gregore Iven Mielke
- School of Public Health, The University of Queensland, Brisbane, QLD, 4006, Australia
| |
Collapse
|
62
|
O’Neal MA. Women and the risk of Alzheimer's disease. Front Glob Womens Health 2024; 4:1324522. [PMID: 38250748 PMCID: PMC10796575 DOI: 10.3389/fgwh.2023.1324522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose of the review This review will elucidate reasons to explain why women may be at greater risk for Alzheimer's disease. Recent findings Potential mechanisms to explain sex and gender differences in Alzheimer dementia include: differences in risk associated with the apolipoprotein E 4 allele; telomere shortening- which is linked with neurodegeneration, higher incidence of depression and insomnia in women as psychiatric co-morbidities which are linked with an increased Alzheimer disease risk, disorders of pregnancy including gestational hypertension and preeclampsia and psychosocial factors such as educational level which may contribute to differences in cognitive reserve. Summary The sex and gender differences in Alzheimer's disease can be explained by biological and psychosocial factors.
Collapse
Affiliation(s)
- Mary A. O’Neal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
63
|
Wedatilake Y, Myrstad C, Tom SE, Strand BH, Bergh S, Selbæk G. Female Reproductive Factors and Risk of Mild Cognitive Impairment and Dementia: The HUNT Study. J Prev Alzheimers Dis 2024; 11:1063-1072. [PMID: 39044518 PMCID: PMC11937202 DOI: 10.14283/jpad.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/27/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND More women are living with dementia than men worldwide and there is a need to investigate causes for this female preponderance. While reproductive factors have been investigated as risk factors, the results are conflicting. We aim to clarify this using a large cohort with a long observation time, adjusting for multiple health and lifestyle variables and encompassing a wider range of cognitive impairment. OBJECTIVE To study the association between menopause age, menarche age and risk of and risk of mild cognitive impairment (MCI) and dementia. SETTING The Trøndelag Health study (HUNT), a longitudinal population health study in Norway (1984-2019). PARTICIPANTS Women who were ≥70 years in 2017-2019 were assessed for cognitive impairment. MEASUREMENTS Data on menopause age and menarche age were obtained from questionnaires. Diagnosis of MCI or dementia was set using a standardised procedure by a diagnostic group of nine physicians. Multinomial logistic regression was used to study the association between menopause age, menarche age and risk of MCI and dementia with adjustment for birth year, education, smoking, ApoE4, number of children, diabetes, body mass index, alcohol use and physical inactivity. RESULTS We evaluated 5314 women where 900 (16.9%) had dementia, and 1747 (32.8%) had MCI. Multiple adjusted relative risk ratio (RRR) and 95% confidence intervals (CI) for dementia were: 0.96(95%CI 0.95-0.98) (p<0.001) for menopause age, 0.97(95%CI 0.94-0.99) (p=0.007) for natural menopause age (excluding hysterectomy and/or oophorectomyp<55 years) and 0.97(95%CI 0.95-0.99) (pp<0.001) for reproductive span (menopause age minus menarche age). Menopause age p<45years was associated with a 56% higher risk compared to mean menopause age 50 years. We found no significant associations between menarche age and dementia and no associations with MCI. CONCLUSIONS Older menopause age and longer reproductive span corresponding to longer oestrogen exposure were associated with a lower dementia risk. Future studies should explore therapeutical options to offset this risk in women.
Collapse
Affiliation(s)
- Y Wedatilake
- Yehani Wedatilake, Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,
| | | | | | | | | | | |
Collapse
|
64
|
Wagemann O, Li Y, Hassenstab J, Aschenbrenner AJ, McKay NS, Gordon BA, Benzinger TLS, Xiong C, Cruchaga C, Renton AE, Perrin RJ, Berman SB, Chhatwal JP, Farlow MR, Day GS, Ikeuchi T, Jucker M, Lopera F, Mori H, Noble JM, Sánchez‐Valle R, Schofield PR, Morris JC, Daniels A, Levin J, Bateman RJ, McDade E, Llibre‐Guerra JJ. Investigation of sex differences in mutation carriers of the Dominantly Inherited Alzheimer Network. Alzheimers Dement 2024; 20:47-62. [PMID: 37740921 PMCID: PMC10841236 DOI: 10.1002/alz.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Yan Li
- Department of BiostatisticsWashington University St. LouisSt. LouisMissouriUSA
| | - Jason Hassenstab
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | | | - Nicole S. McKay
- Department of RadiologyWashington University St. LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University St. LouisSt. LouisMissouriUSA
| | | | - Chengjie Xiong
- Department of BiostatisticsWashington University St. LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University St. LouisSt. LouisMissouriUSA
| | - Alan E. Renton
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Richard J. Perrin
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University St. LouisSt. LouisMissouriUSA
| | - Sarah B. Berman
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jasmeer P. Chhatwal
- Department of NeurologyMassachusetts General and Brigham & Female's HospitalsHarvard Medical SchoolBostonMassachusettsUSA
| | - Martin R. Farlow
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gregory S. Day
- Department of NeurologyMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Takeshi Ikeuchi
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA)Universidad de AntioquiaMedellinColombia
| | - Hiroshi Mori
- Department of Clinical NeuroscienceOsaka Metropolitan University Medical SchoolNagaoka Sutoku UniversityOsakaJapan
| | - James M. Noble
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Raquel Sánchez‐Valle
- Department of NeurologyHospital Clínic de Barcelona (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - John C. Morris
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Alisha Daniels
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Randall J. Bateman
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Eric McDade
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | | | | |
Collapse
|
65
|
Li Y, Xu X, Wang P, Chen X, Yang Q, Sun L, Gao X. Association of Cancer History with Lifetime Risk of Dementia and Alzheimer's Disease. J Alzheimers Dis 2024; 98:1319-1328. [PMID: 38517790 DOI: 10.3233/jad-231223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background The literature presents conflicting results regarding the potential protective effect of prevalent cancer on the development of dementia and Alzheimer's disease (AD). Objective Association between cancer and subsequent risk of dementia and/or AD was reported previously, but survival bias has been of concern. Here, we aimed to calculate the lifetime risk of dementia and AD and evaluate the association of cancer history with these two conditions. Methods In this retrospective analysis, we included 292,654 participants aged 60+ y during the follow-up and free of dementia at baseline, within the UK Biobank cohort. Lifetime risks of dementia and AD were estimated in individuals with and without cancer history, and different durations of cancer exposure and cancer types. Results During a median of 12.5 follow-up years, 5,044 new dementia and 2,141 AD cases were reported. Lifetime risks of dementia and AD were lower in cancer survivors compared to those without cancer, and this effect was more pronounced in participants with cancer history exposure≥5 years. Similar relationship was observed in individual cancer types, except for breast cancer. Conclusions Results suggested an inverse association between cancer history and lifetime risk of dementia and AD, which may be modified by different cancer types and cancer exposure time.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Xinming Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Peilu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qishan Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| |
Collapse
|
66
|
Schwarz KG, Vicencio SC, Inestrosa NC, Villaseca P, Del Rio R. Autonomic nervous system dysfunction throughout menopausal transition: A potential mechanism underpinning cardiovascular and cognitive alterations during female ageing. J Physiol 2024; 602:263-280. [PMID: 38064358 DOI: 10.1113/jp285126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular diseases (CVD) and neurodegenerative disorders, such as Alzheimer's disease (AD), are highly prevalent conditions in middle-aged women that severely impair quality of life. Recent evidence suggests the existence of an intimate cross-talk between the heart and the brain, resulting from a complex network of neurohumoral circuits. From a pathophysiological perspective, the higher prevalence of AD in women may be explained, at least in part, by sex-related differences in the incidence/prevalence of CVD. Notably, the autonomic nervous system, the main heart-brain axis physiological orchestrator, has been suggested to play a role in the incidence of adverse cardiovascular events in middle-aged women because of decreases in oestrogen-related signalling during transition into menopause. Despite its overt relevance for public health, this hypothesis has not been thoroughly tested. Accordingly, in this review, we aim to provide up to date evidence supporting how changes in circulating oestrogen levels during transition to menopause may trigger autonomic dysfunction, thus promoting cardiovascular and cognitive decline in women. A main focus on the effects of oestrogen-mediated signalling at CNS structures related to autonomic regulation is provided, particularly on the role of oestrogens in sympathoexcitation. Improving the understanding of the contribution of the autonomic nervous system on the development, maintenance and/or progression of both cardiovascular and cognitive dysfunction during the transition to menopause should help improve the clinical management of elderly women, with the outcome being an improved life quality during the natural ageing process.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
67
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
68
|
Losee MA, Seibyl JP, Kuo PH. Neurotheranostics: The Next Frontier for Health Span. J Nucl Med Technol 2023; 51:266-270. [PMID: 37586855 DOI: 10.2967/jnmt.123.265502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/14/2023] [Indexed: 08/18/2023] Open
Abstract
With an aging U.S. population, advancements in the treatment of Alzheimer disease (AD) and other neurodegenerative diseases are key to the maximization of health span. The recent approval of 2 antiamyloid antibodies, which decrease brain amyloid load, places us on the cusp of breakthrough therapies that target the mechanism of the disease rather than just treating the symptoms. Although the trials that led to these approvals studied patients with mild early symptoms, multiple ongoing trials have enrolled cognitively normal patients screened for AD biomarkers including risk factors for amyloid positivity, family history, and genetic markers. Thus, amyloid PET can help identify an at-risk population that can be enrolled for antiamyloid therapy to prevent AD symptoms from ever developing. In this review, we examine the paradigm of neurotheranostics and how PET biomarkers of amyloid, tau, inflammation, and neurodegeneration could characterize the pathologic stage of AD and therefore allow for personalized therapy.
Collapse
Affiliation(s)
| | - John P Seibyl
- Institute for Neurodegenerative Disorders, New Haven, Connecticut; and
| | - Phillip H Kuo
- Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
69
|
Abstract
Traditional textbook physiology has ascribed unitary functions to hormones from the anterior and posterior pituitary gland, mainly in the regulation of effector hormone secretion from endocrine organs. However, the evolutionary biology of pituitary hormones and their receptors provides evidence for a broad range of functions in vertebrate physiology. Over the past decade, we and others have discovered that thyroid-stimulating hormone, follicle-stimulating hormone, adrenocorticotropic hormone, prolactin, oxytocin and arginine vasopressin act directly on somatic organs, including bone, adipose tissue and liver. New evidence also indicates that pituitary hormone receptors are expressed in brain regions, nuclei and subnuclei. These studies have prompted us to attribute the pathophysiology of certain human diseases, including osteoporosis, obesity and neurodegeneration, at least in part, to changes in pituitary hormone levels. This new information has identified actionable therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
70
|
Han SL, Liu DC, Tan CC, Tan L, Xu W. Male- and female-specific reproductive risk factors across the lifespan for dementia or cognitive decline: a systematic review and meta-analysis. BMC Med 2023; 21:457. [PMID: 37996855 PMCID: PMC10666320 DOI: 10.1186/s12916-023-03159-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Sex difference exists in the prevalence of dementia and cognitive decline. The impacts of sex-specific reproductive risk factors across the lifespan on the risk of dementia or cognitive decline are still unclear. Herein, we conducted this systemic review and meta-analysis to finely depict the longitudinal associations between sex-specific reproductive factors and dementia or cognitive decline. METHODS PubMed, EMBASE, and Cochrane Library were searched up to January 2023. Studies focused on the associations of female- and male-specific reproductive factors with dementia or cognitive decline were included. Multivariable-adjusted effects were pooled via the random effect models. Evidence credibility was scored by the GRADE system. The study protocol was pre-registered in PROSPERO and the registration number is CRD42021278732. RESULTS A total of 94 studies were identified for evidence synthesis, comprising 9,839,964 females and 3,436,520 males. Among the identified studies, 63 of them were included in the meta-analysis. According to the results, seven female-specific reproductive factors including late menarche (risk increase by 15%), nulliparous (11%), grand parity (32%), bilateral oophorectomy (8%), short reproductive period (14%), early menopause (22%), increased estradiol level (46%), and two male-specific reproductive factors, androgen deprivation therapy (18%), and serum sex hormone-binding globulin (22%) were associated with an elevated risk of dementia or cognitive decline. CONCLUSIONS These findings potentially reflect sex hormone-driven discrepancy in the occurrence of dementia and could help build sex-based precise strategies for preventing dementia.
Collapse
Affiliation(s)
- Shuang-Ling Han
- Department of Neurology, Qingdao Municipal Hospital Group, Qingdao University, Donghai Middle Road, No.5, Qingdao, 266000, China
- Medical College, Qingdao University, Qingdao, 266000, China
| | - De-Chun Liu
- Department of Obstetrics, Qingdao Municipal Hospital Group, Qingdao, 266000, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital Group, Qingdao University, Donghai Middle Road, No.5, Qingdao, 266000, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital Group, Qingdao University, Donghai Middle Road, No.5, Qingdao, 266000, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital Group, Qingdao University, Donghai Middle Road, No.5, Qingdao, 266000, China.
| |
Collapse
|
71
|
Gregory S, Booi L, Jenkins N, Bridgeman K, Muniz-Terrera G, Farina FR. Hormonal contraception and risk for cognitive impairment or Alzheimer's disease and related dementias in young women: a scoping review of the evidence. Front Glob Womens Health 2023; 4:1289096. [PMID: 38025979 PMCID: PMC10679746 DOI: 10.3389/fgwh.2023.1289096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Women are significantly more likely to develop Alzheimer's disease and related dementias (ADRD) than men. Suggestions to explain the sex differences in dementia incidence have included the influence of sex hormones with little attention paid to date as to the effect of hormonal contraception on brain health. The aim of this scoping review is to evaluate the current evidence base for associations between hormonal contraceptive use by women and non-binary people in early adulthood and brain health outcomes. Methods A literature search was conducted using EMBASE, Medline and Google Scholar, using the keywords "hormonal contraception" OR "contraception" OR "contraceptive" AND "Alzheimer*" OR "Brain Health" OR "Dementia". Results Eleven papers were identified for inclusion in the narrative synthesis. Studies recruited participants from the UK, USA, China, South Korea and Indonesia. Studies included data from women who were post-menopausal with retrospective data collection, with only one study contemporaneously collecting data from participants during the period of hormonal contraceptive use. Studies reported associations between hormonal contraceptive use and a lower risk of ADRD, particularly Alzheimer's disease (AD), better cognition and larger grey matter volume. Some studies reported stronger associations with longer duration of hormonal contraceptive use, however, results were inconsistent. Four studies reported no significant associations between hormonal contraceptive use and measures of brain health, including brain age on MRI scans and risk of AD diagnosis. Discussion Further research is needed on young adults taking hormonal contraceptives, on different types of hormonal contraceptives (other than oral) and to explore intersections between sex, gender, race and ethnicity. Systematic Review Registration https://doi.org/10.17605/OSF.IO/MVX63, identifier: OSF.io: 10.17605/OSF.IO/MVX63.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Booi
- Memory and Aging Center, Global Brain Health Institute, Trinity College, Dublin, Ireland
- Centre for Dementia Research, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Natalie Jenkins
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Katie Bridgeman
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Francesca R. Farina
- Memory and Aging Center, Global Brain Health Institute, Trinity College, Dublin, Ireland
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
72
|
McNeish BL, Miljkovic I, Zhu X, Cawthon PM, Newman AB, Goodpaster B, Yaffe K, Rosano C. Associations Between Circulating Levels of Myostatin and Plasma β-Amyloid 42/40 in a Biracial Cohort of Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:2077-2082. [PMID: 37220890 PMCID: PMC10613004 DOI: 10.1093/gerona/glad132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Myostatin, a cytokine produced by skeletal muscle, may influence Alzheimer's disease (AD) pathogenesis, but sparse evidence exists in humans. We assessed the association between circulating levels of myostatin at Year 1 and plasma levels of β-amyloid 42/40 at Year 2, a marker of AD pathology, in a biracial cohort of older adults. METHODS We studied 403 community-dwelling older adults enrolled in the Health, Aging and Body Composition Study from Memphis, Tennessee, and Pittsburgh, PA. Mean age was 73.8 ± 3 years; 54% were female; and 52% were Black. Serum myostatin levels were measured at Year 1, plasma β-amyloid 42/40 levels in Year 2 (higher ratio indicating lower amyloid load). Multivariable linear regression analyses tested the association of serum myostatin with plasma levels of β-amyloid 42/40 adjusted for computed-tomography-derived thigh muscle cross-sectional area, demographics, APOe4 allele, and risk factors for dementia. We tested for 2-way.interactions between myostatin and race or sex; results were stratified by race and sex. RESULTS In multivariable models, myostatin was positively associated with plasma levels of β-amyloid 42/40 (standardized regression coefficient: 0.145, p = .004). Results were significant for white men and women (0.279, p = .009, and 0.221, p = .035, respectively) but not for Black men or women; interactions by race and gender were not statistically significant. CONCLUSIONS Higher serum myostatin was associated with lower amyloid burden, independently of APOe4 alleles, muscle area and other established risk factors for dementia. The role of myostatin in AD pathogenesis and the influence of race should be further investigated.
Collapse
Affiliation(s)
- Brendan L McNeish
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Iva Miljkovic
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaonan Zhu
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peggy M Cawthon
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- VA Medical Center, San Francisco, San Francisco, California, USA
| | - Caterina Rosano
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
73
|
Walker A, Czyz DM. Oh my gut! Is the microbial origin of neurodegenerative diseases real? Infect Immun 2023; 91:e0043722. [PMID: 37750713 PMCID: PMC10580905 DOI: 10.1128/iai.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Alyssa Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
74
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
75
|
Atmaca U, Aksoy M, Öztekin A. A safe alternative synthesis of primary carbamates from alcohols; in vitro and in silico assessments as an alternative acetylcholinesterase inhibitors. J Biomol Struct Dyn 2023; 41:8191-8200. [PMID: 36224670 DOI: 10.1080/07391102.2022.2134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
Carbamates are important molecules because they are used in various biochemical processes. In this study, effective alternative method for the synthesis of primary carbamates from alcohols was developed in the presence of chlorosulfonyl isocyanate (CSI) in pyridine at room temperature in mild conditions. The primary carbamates were synthesized excellent yield. This method is easy, practical, and inexpensive without any additive, metal, or catalyst. Alzheimer's disease (AD) is a neurodegenerative disease and has been reported to affect approximately 50 million people worldwide in 2020. Drugs that reversibly inhibit the acetylcholinesterase (AChE) activity are used for the treatment of AD. For this reason, there is a growing interest in developing alternative AChE inhibitors. Concordantly, Anti-anticholinesterase activity of synthesized carbamate derivatives was investigated as an alternative AChE inhibitors. In order to determine the inhibitory effect of these molecules, IC50, and Ki values and inhibition types were determined. According to the Ki results, the most effective inhibitors were 3 b and 3e with the Ki values of 22 and 38 µM, respectively. It was found that all molecules showed competitive inhibition type. For clarify the inhibitors-enzyme interactions, molecular docking studies were performed and possible binding interactions between the synthesized molecules and AChE were determined. Additionally, the pharmacokinetic and properties of the synthesized molecules were evaluated in silico.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ufuk Atmaca
- Oltu Vocational School, Atatürk University, Erzurum, Turkey
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mine Aksoy
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Aykut Öztekin
- Medical Services and Techniques Department, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
76
|
Wood ME, Xiong LY, Wong YY, Buckley RF, Swardfager W, Masellis M, Lim ASP, Nichols E, Joie RL, Casaletto KB, Kumar RG, Dams-O'Connor K, Palta P, George KM, Satizabal CL, Barnes LL, Schneider JA, Binet AP, Villeneuve S, Pa J, Brickman AM, Black SE, Rabin JS. Sex differences in associations between APOE ε2 and longitudinal cognitive decline. Alzheimers Dement 2023; 19:4651-4661. [PMID: 36994910 PMCID: PMC10544702 DOI: 10.1002/alz.13036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION We examined whether sex modifies the association between APOE ε2 and cognitive decline in two independent samples. METHODS We used observational data from cognitively unimpaired non-Hispanic White (NHW) and non-Hispanic Black (NHB) adults. Linear mixed models examined interactive associations of APOE genotype (ε2 or ε4 carrier vs. ε3/ε3) and sex on cognitive decline in NHW and NHB participants separately. RESULTS In both Sample 1 (N = 9766) and Sample 2 (N = 915), sex modified the association between APOE ε2 and cognitive decline in NHW participants. Specifically, relative to APOE ε3/ε3, APOE ε2 protected against cognitive decline in men but not women. Among APOE ε2 carriers, men had slower decline than women. Among APOE ε3/ε3 carriers, cognitive trajectories did not differ between sexes. There were no sex-specific associations of APOE ε2 with cognition in NHB participants (N = 2010). DISCUSSION In NHW adults, APOE ε2 may protect men but not women against cognitive decline. HIGHLIGHTS We studied sex-specific apolipoprotein E (APOE) ε2 effects on cognitive decline. In non-Hispanic White (NHW) adults, APOE ε2 selectively protects men against decline. Among men, APOE ε2 was more protective than APOE ε3/ε3. In women, APOE ε2 was no more protective than APOE ε3/ε3. Among APOE ε2 carriers, men had slower decline than women. There were no sex-specific APOE ε2 effects in non-Hispanic Black (NHB) adults.
Collapse
Affiliation(s)
- Madeline E Wood
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Y Xiong
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yuen Yan Wong
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Florey Institute, University of Melbourne, Parkville, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew S P Lim
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Raj G Kumar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Priya Palta
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Kristen M George
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California, USA
| | - Claudia L Satizabal
- Department of Population Health Science and Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Alexa Pichette Binet
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sylvia Villeneuve
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
77
|
Abghari M, Vu JTCM, Eckberg N, Aldana BI, Kohlmeier KA. Decanoic Acid Rescues Differences in AMPA-Mediated Calcium Rises in Hippocampal CA1 Astrocytes and Neurons in the 5xFAD Mouse Model of Alzheimer's Disease. Biomolecules 2023; 13:1461. [PMID: 37892143 PMCID: PMC10604953 DOI: 10.3390/biom13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aβ42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aβ42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells.
Collapse
|
78
|
Vered S, Beiser AS, Sulimani L, Sznitman S, Gonzales MM, Aparicio HJ, DeCarli C, Scott MR, Ghosh S, Lewitus GM, Meiri D, Seshadri S, Weinstein G. The association of circulating endocannabinoids with neuroimaging and blood biomarkers of neuro-injury. Alzheimers Res Ther 2023; 15:154. [PMID: 37700370 PMCID: PMC10496329 DOI: 10.1186/s13195-023-01301-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We examined the associations of multiple circulating eCBs and eCB-like molecules with early markers of neurodegeneration and neuro-injury and tested for effect modification by sex. METHODS This exploratory cross-sectional study included a random sample of 237 dementia-free older participants from the Framingham Heart Study Offspring cohort who attended examination cycle 9 (2011-2014), were 65 years or older, and cognitively healthy. Forty-four eCB compounds were quantified in serum, via liquid chromatography high-resolution mass spectrometry. Linear regression models were used to examine the associations of eCB levels with brain MRI measures (i.e., total cerebral brain volume, gray matter volume, hippocampal volume, and white matter hyperintensities volume) and blood biomarkers of Alzheimer's disease and neuro-injury (i.e., total tau, neurofilament light, glial fibrillary acidic protein and Ubiquitin C-terminal hydrolase L1). All models were adjusted for potential confounders and effect modification by sex was examined. RESULTS Participants mean age was 73.3 ± 6.2 years, and 40% were men. After adjustment for potential confounders and correction for multiple comparisons, no statistically significant associations were observed between eCB levels and the study outcomes. However, we identified multiple sex-specific associations between eCB levels and the various study outcomes. For example, high linoleoyl ethanolamide (LEA) levels were related to decreased hippocampal volume among men and to increased hippocampal volume among women (β ± SE = - 0.12 ± 0.06, p = 0.034 and β ± SE = 0.08 ± 0.04, p = 0.026, respectively). CONCLUSIONS Circulating eCBs may play a role in neuro-injury and may explain sex differences in susceptibility to accelerated brain aging. Particularly, our results highlight the possible involvement of eCBs from the N-acyl amino acids and fatty acid ethanolamide classes and suggest specific novel fatty acid compounds that may be implicated in brain aging. Furthermore, investigation of the eCBs contribution to neurodegenerative disease such as Alzheimer's disease in humans is warranted, especially with prospective study designs and among diverse populations, including premenopausal women.
Collapse
Affiliation(s)
- Shiraz Vered
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Alexa S Beiser
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sharon Sznitman
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Hugo J Aparicio
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, 95816, USA
| | - Matthew R Scott
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Saptaparni Ghosh
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Gil M Lewitus
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sudha Seshadri
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel.
| |
Collapse
|
79
|
Zhang JJ, Wu ZX, Tan W, Liu D, Cheng GR, Xu L, Hu FF, Zeng Y. Associations among multidomain lifestyles, chronic diseases, and dementia in older adults: a cross-sectional analysis of a cohort study. Front Aging Neurosci 2023; 15:1200671. [PMID: 37600519 PMCID: PMC10438989 DOI: 10.3389/fnagi.2023.1200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Background Unhealthy lifestyles and chronic diseases are commonly seen and treatable factors in older adults and are both associated with dementia. However, the synergistic effect of the interaction of lifestyles and chronic diseases on dementia is unknown. Methods We determined independent associations of multidomain lifestyles and chronic diseases (cerebrovascular disease, diabetes, and hypertension) with dementia and examined their synergistic impact on dementia among older adults. The data were drawn from the Hubei Memory and Aging Cohort Study. We created a summary score of six factors for multidomain lifestyles. Dementia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders IV. Logistic regression and multiple correspondence analyses were used to explore the relationships among multidomain lifestyles, chronic diseases, and dementia. A sensitivity analysis was performed to minimize the interference of reverse causality and potential confounders. Results Independent associations with dementia were found in unhealthy (OR = 1.90, 95% CI: 1.38-2.61) and intermediate healthy lifestyles (OR, 3.29, 2.32-4.68), hypertension (OR, 1.21, 1.01-1.46), diabetes (OR, 1.30, 1.04-1.63), and cerebrovascular disease (OR, 1.39, 1.12-1.72). Interactions of diabetes (p = 0.004), hypertension (p = 0.004), and lifestyles were significant, suggesting a combined impact on dementia. Sensitivity analysis supported the strong association among multidomain lifestyles, chronic diseases, and dementia prevalence. Conclusion An unhealthy lifestyle was associated with a higher prevalence of dementia, regardless of whether the participants had chronic diseases; however, this association was stronger in individuals with chronic diseases. Multidomain lifestyles and chronic diseases may have an enhanced impact on dementia.
Collapse
Affiliation(s)
- Jing-jing Zhang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhao-xia Wu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Dan Liu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Gui-rong Cheng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Fei-fei Hu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
80
|
Gong J, Harris K, Lipnicki DM, Castro‐Costa E, Lima‐Costa MF, Diniz BS, Xiao S, Lipton RB, Katz MJ, Wang C, Preux P, Guerchet M, Gbessemehlan A, Ritchie K, Ancelin M, Skoog I, Najar J, Sterner TR, Scarmeas N, Yannakoulia M, Kosmidis MH, Guaita A, Rolandi E, Davin A, Gureje O, Trompet S, Gussekloo J, Riedel‐Heller S, Pabst A, Röhr S, Shahar S, Singh DKA, Rivan NFM, van Boxtel M, Köhler S, Ganguli M, Chang C, Jacobsen E, Haan M, Ding D, Zhao Q, Xiao Z, Narazaki K, Chen T, Chen S, Ng TP, Gwee X, Numbers K, Mather KA, Scazufca M, Lobo A, De‐la‐Cámara C, Lobo E, Sachdev PS, Brodaty H, Hackett ML, Peters SAE, Woodward M. Sex differences in dementia risk and risk factors: Individual-participant data analysis using 21 cohorts across six continents from the COSMIC consortium. Alzheimers Dement 2023; 19:3365-3378. [PMID: 36790027 PMCID: PMC10955774 DOI: 10.1002/alz.12962] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Sex differences in dementia risk, and risk factor (RF) associations with dementia, remain uncertain across diverse ethno-regional groups. METHODS A total of 29,850 participants (58% women) from 21 cohorts across six continents were included in an individual participant data meta-analysis. Sex-specific hazard ratios (HRs), and women-to-men ratio of hazard ratios (RHRs) for associations between RFs and all-cause dementia were derived from mixed-effect Cox models. RESULTS Incident dementia occurred in 2089 (66% women) participants over 4.6 years (median). Women had higher dementia risk (HR, 1.12 [1.02, 1.23]) than men, particularly in low- and lower-middle-income economies. Associations between longer education and former alcohol use with dementia risk (RHR, 1.01 [1.00, 1.03] per year, and 0.55 [0.38, 0.79], respectively) were stronger for men than women; otherwise, there were no discernible sex differences in other RFs. DISCUSSION Dementia risk was higher in women than men, with possible variations by country-level income settings, but most RFs appear to work similarly in women and men.
Collapse
Affiliation(s)
- Jessica Gong
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
| | - Katie Harris
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Erico Castro‐Costa
- Center for Studies in Public Health and Aging Rene Rachou InstituteOswaldo Cruz FoundationBelo HorizonteBrazil
| | - Maria Fernanda Lima‐Costa
- Center for Studies in Public Health and Aging Rene Rachou InstituteOswaldo Cruz FoundationBelo HorizonteBrazil
| | - Breno S. Diniz
- UConn Center on AgingDepartment of PsychiatrySchool of MedicineUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| | - Shifu Xiao
- Department of Geriatric PsychiatryShanghai Mental Health CentreShanghai Jiaotong University School of MedicineShanghaiChina
| | - Richard B. Lipton
- Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Mindy J. Katz
- Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Cuiling Wang
- Department of Epidemiology and Community HeathAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Pierre‐Marie Preux
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Maëlenn Guerchet
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Antoine Gbessemehlan
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Karen Ritchie
- INM Institute for Neurosciences of MontpellierUniv MontpellierINSERMMontpellierFrance
| | - Marie‐Laure Ancelin
- INM Institute for Neurosciences of MontpellierUniv MontpellierINSERMMontpellierFrance
| | - Ingmar Skoog
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Jenna Najar
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Therese Rydberg Sterner
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Nikolaos Scarmeas
- 1st Department of NeurologyAiginition HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - Mary Yannakoulia
- Department of Nutrition and DieteticsHarokopio UniversityAthensGreece
| | - Mary H. Kosmidis
- Lab of Cognitive NeuroscienceSchool of PsychologyAristotle University of ThessalonikiThessalonikiGreece
| | | | - Elena Rolandi
- Golgi Cenci FoundationAbbiategrassoItaly
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | | | - Oye Gureje
- WHO Collaborating Centre for Research and Training in Mental HealthNeurosciences and Substance AbuseDepartment of PsychiatryUniversity of IbadanIbadanNigeria
| | - Stella Trompet
- Section of Gerontology and GeriatricsDepartment of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jacobijn Gussekloo
- Section of Gerontology and GeriatricsDepartment of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
- Department of Public Health and Primary CareLeidenthe Netherlands
| | - Steffi Riedel‐Heller
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Alexander Pabst
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Susanne Röhr
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Suzana Shahar
- Centre for Healthy Ageing and WellnessUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | | | | | - Martin van Boxtel
- Alzheimer Centrum LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Sebastian Köhler
- Alzheimer Centrum LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Mary Ganguli
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chung‐Chou Chang
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Erin Jacobsen
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mary Haan
- Department of Epidemiology and BiostatisticsSchool of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ding Ding
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Qianhua Zhao
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Zhenxu Xiao
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Kenji Narazaki
- Center for Liberal ArtsFukuoka Institute of TechnologyFukuokaJapan
| | - Tao Chen
- Sports and Health Research CenterDepartment of Physical EducationTongji UniversityShanghaiChina
| | - Sanmei Chen
- Global Health NursingDepartment of Health SciencesGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tze Pin Ng
- Gerontology Research ProgrammeDepartment of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore
| | - Xinyi Gwee
- Gerontology Research ProgrammeDepartment of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore
| | - Katya Numbers
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Marcia Scazufca
- Instituto de Psiquiátria e LIM‐23Hospital da ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Antonio Lobo
- Department of Medicine and Psychiatry Universidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- n°33 CIBERSAMMadridSpain
| | - Concepción De‐la‐Cámara
- Department of Medicine and Psychiatry Universidad de ZaragozaZaragozaSpain
- n°33 CIBERSAMMadridSpain
| | - Elena Lobo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- n°33 CIBERSAMMadridSpain
- Department of Public Health Universidad de ZaragozaZaragozaSpain
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Maree L. Hackett
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- Faculty of Health and WellbeingUniversity of Central LancashireLancashireUK
| | - Sanne A. E. Peters
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Mark Woodward
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
| | | |
Collapse
|
81
|
Nguyen S, LaCroix AZ, Hayden KM, Di C, Palta P, Stefanick ML, Manson JE, Rapp SR, LaMonte MJ, Bellettiere J. Accelerometer-measured physical activity and sitting with incident mild cognitive impairment or probable dementia among older women. Alzheimers Dement 2023; 19:3041-3054. [PMID: 36695426 PMCID: PMC10366337 DOI: 10.1002/alz.12908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Physical activity (PA) is prospectively inversely associated with dementia risk, but few studies examined accelerometer measures of PA and sitting with rigorously-adjudicated mild cognitive impairment (MCI) and dementia risk. METHODS We examined the associations of accelerometer measures (PA and sitting) with incident MCI/probable dementia in the Women's Health Initiative (n = 1277; mean age = 82 ± 6 years) RESULTS: Over a median follow-up of 4.2 years, 267 MCI/probable dementia cases were identified. Adjusted Cox regression HRs (95% CI) across moderate-to-vigorous PA (MVPA) min/d quartiles were 1.00 (reference), 1.28 (0.90 to 1.81), 0.79 (0.53 to 1.17), and 0.69 (0.45 to 1.06); P-trend = 0.01. Adjusted HRs (95% CI) across steps/d quartiles were 1.00 (reference), 0.73 (0.51 to 1.03), 0.64 (0.43 to 0.94), and 0.38 (0.23 to 0.61); P-trend < 0.001. The HR (95% CI) for each 1-SD increment in MVPA (31 min/d) and steps/d (1865) were 0.79 (0.67 to 0.94) and 0.67 (0.54 to 0.82), respectively. Sitting was not associated with MCI/probable dementia. DISCUSSION Findings suggest ≥ moderate intensity PA, particularly stepping, associates with lower MCI and dementia risk. HIGHLIGHTS Few studies have examined accelerometer-measured physical activity, including steps, and sitting with incident ADRD. Moderate-to-vigorous physical activity and steps, but not light physical activity or sitting, were inversely associated with lower ADRD risk. Among older women, at least moderate intensity physical activity may be needed to reduce ADRD risk.
Collapse
Affiliation(s)
- Steve Nguyen
- Division of Epidemiology, Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Andrea Z. LaCroix
- Division of Epidemiology, Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Kathleen M. Hayden
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chongzhi Di
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Priya Palta
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcia L. Stefanick
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen R. Rapp
- Department of Psychiatry & Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael J. LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo - SUNY, Buffalo, NY, USA
| | - John Bellettiere
- Division of Epidemiology, Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
82
|
Umberson D, Donnelly R. Social Isolation: An Unequally Distributed Health Hazard. ANNUAL REVIEW OF SOCIOLOGY 2023; 49:379-399. [PMID: 38106980 PMCID: PMC10722883 DOI: 10.1146/annurev-soc-031021-012001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Social isolation is a potent predictor of poor health, mortality, and dementia risk. A great deal of research across national contexts provides causal evidence for these linkages and identifies key explanatory mechanisms through which isolation affects health. Research on social isolation recognizes that some people are more likely than others to be isolated, but over the past several decades, researchers have focused primarily on the consequences of isolation for health rather than a systematic assessment of the social conditions that foster isolation over the life course. In this article, we review the available evidence on inequities in social isolation and develop a conceptual framework to guide future research on structural systems that fuel social isolation over the life course. Future work in this area has the potential to identify root causes of inequality in social isolation, as well as targeted policy levers to reduce isolation in vulnerable populations.
Collapse
Affiliation(s)
- Debra Umberson
- Department of Sociology, Center on Aging & Population Sciences, and Population Research Center, University of Texas at Austin, Austin, Texas, USA
| | - Rachel Donnelly
- Department of Sociology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
83
|
Zotcheva E, Strand BH, Bowen CE, Bratsberg B, Jugessur A, Engdahl BL, Selbæk G, Kohler HP, Harris JR, Weiss J, Grøtting MW, Tom SE, Krokstad S, Stern Y, Håberg AK, Skirbekk V. Retirement age and disability status as pathways to later-life cognitive impairment: Evidence from the Norwegian HUNT Study linked with Norwegian population registers. Int J Geriatr Psychiatry 2023; 38:e5967. [PMID: 37475192 PMCID: PMC10493399 DOI: 10.1002/gps.5967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Research shows that retirement age is associated with later-life cognition but has not sufficiently distinguished between retirement pathways. We examined how retirement age was associated with later-life dementia and mild cognitive impairment (MCI) for people who retired via the disability pathway (received a disability pension prior to old-age pension eligibility) and those who retired via the standard pathway. METHODS The study sample comprised 7210 participants from the Norwegian Trøndelag Health Study (HUNT4 70+, 2017-2019) who had worked for at least one year in 1967-2019, worked until age 55+, and retired before HUNT4. Dementia and MCI were clinically assessed in HUNT4 70+ when participants were aged 69-85 years. Historical data on participants' retirement age and pathway were retrieved from population registers. We used multinomial regression to assess the dementia/MCI risk for women and men retiring via the disability pathway, or early (<67 years), on-time (age 67, old-age pension eligibility) or late (age 68+) via the standard pathway. RESULTS In our study sample, 9.5% had dementia, 35.3% had MCI, and 28.1% retired via the disability pathway. The disability retirement group had an elevated risk of dementia compared to the on-time standard retirement group (relative risk ratio [RRR]: 1.64, 95% CI 1.14-2.37 for women, 1.70, 95% CI 1.17-2.48 for men). MCI risk was lower among men who retired late versus on-time (RRR, 0.76, 95% CI 0.61-0.95). CONCLUSION Disability retirees should be monitored more closely, and preventive policies should be considered to minimize the dementia risk observed among this group of retirees.
Collapse
Affiliation(s)
- Ekaterina Zotcheva
- Department for Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Bjørn Heine Strand
- Department for Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Bernt Bratsberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Ragnar Frisch Center for Economic Research, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Bo Lars Engdahl
- Department for Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
| | - Geir Selbæk
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hans-Peter Kohler
- Population Aging Research Center and Department of Sociology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer R. Harris
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA, USA
| | - Maja Weemes Grøtting
- Department for Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, Oslo, Norway
| | - Sarah E. Tom
- Department of Neurology, Vagelos College of Physicians and Surgeons, Department of Epidemiology, Mailman School of Public Health, Columbia University, USA
| | - Steinar Krokstad
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Norway
| | - Yaakov Stern
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, USA
| | - Asta Kristine Håberg
- Department for Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vegard Skirbekk
- Department for Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
84
|
Misiura MB, Butts B, Hammerschlag B, Munkombwe C, Bird A, Fyffe M, Hemphill A, Dotson VM, Wharton W. Intersectionality in Alzheimer's Disease: The Role of Female Sex and Black American Race in the Development and Prevalence of Alzheimer's Disease. Neurotherapeutics 2023; 20:1019-1036. [PMID: 37490246 PMCID: PMC10457280 DOI: 10.1007/s13311-023-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
It is well known that vascular factors and specific social determinants of health contribute to dementia risk and that the prevalence of these risk factors differs according to race and sex. In this review, we discuss the intersection of sex and race, particularly female sex and Black American race. Women, particularly Black women, have been underrepresented in Alzheimer's disease clinical trials and research. However, in recent years, the number of women participating in clinical research has steadily increased. A greater prevalence of vascular risk factors such as hypertension and type 2 diabetes, coupled with unique social and environmental pressures, puts Black American women particularly at risk for the development of Alzheimer's disease and related dementias. Female sex hormones and the use of hormonal birth control may offer some protective benefits, but results are mixed, and studies do not consistently report the demographics of their samples. We argue that as a research community, greater efforts should be made to not only recruit this vulnerable population, but also report the demographic makeup of samples in research to better target those at greatest risk for the disease.
Collapse
Affiliation(s)
- Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA.
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Bruno Hammerschlag
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Chinkuli Munkombwe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Arianna Bird
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Mercedes Fyffe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Asia Hemphill
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
85
|
Guo L, Cao J, Hou J, Li Y, Huang M, Zhu L, Zhang L, Lee Y, Duarte ML, Zhou X, Wang M, Liu CC, Martens Y, Chao M, Goate A, Bu G, Haroutunian V, Cai D, Zhang B. Sex specific molecular networks and key drivers of Alzheimer's disease. Mol Neurodegener 2023; 18:39. [PMID: 37340466 PMCID: PMC10280841 DOI: 10.1186/s13024-023-00624-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive and age-associated neurodegenerative disorder that affects women disproportionally. However, the underlying mechanisms are poorly characterized. Moreover, while the interplay between sex and ApoE genotype in AD has been investigated, multi-omics studies to understand this interaction are limited. Therefore, we applied systems biology approaches to investigate sex-specific molecular networks of AD. METHODS We integrated large-scale human postmortem brain transcriptomic data of AD from two cohorts (MSBB and ROSMAP) via multiscale network analysis and identified key drivers with sexually dimorphic expression patterns and/or different responses to APOE genotypes between sexes. The expression patterns and functional relevance of the top sex-specific network driver of AD were further investigated using postmortem human brain samples and gene perturbation experiments in AD mouse models. RESULTS Gene expression changes in AD versus control were identified for each sex. Gene co-expression networks were constructed for each sex to identify AD-associated co-expressed gene modules shared by males and females or specific to each sex. Key network regulators were further identified as potential drivers of sex differences in AD development. LRP10 was identified as a top driver of the sex differences in AD pathogenesis and manifestation. Changes of LRP10 expression at the mRNA and protein levels were further validated in human AD brain samples. Gene perturbation experiments in EFAD mouse models demonstrated that LRP10 differentially affected cognitive function and AD pathology in sex- and APOE genotype-specific manners. A comprehensive mapping of brain cells in LRP10 over-expressed (OE) female E4FAD mice suggested neurons and microglia as the most affected cell populations. The female-specific targets of LRP10 identified from the single cell RNA-sequencing (scRNA-seq) data of the LRP10 OE E4FAD mouse brains were significantly enriched in the LRP10-centered subnetworks in female AD subjects, validating LRP10 as a key network regulator of AD in females. Eight LRP10 binding partners were identified by the yeast two-hybrid system screening, and LRP10 over-expression reduced the association of LRP10 with one binding partner CD34. CONCLUSIONS These findings provide insights into key mechanisms mediating sex differences in AD pathogenesis and will facilitate the development of sex- and APOE genotype-specific therapies for AD.
Collapse
Affiliation(s)
- Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiqing Cao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Jianwei Hou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Min Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Li Zhu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Larry Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Yeji Lee
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuka Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael Chao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Vahram Haroutunian
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Alzheimer Disease Research Center Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, MIRECC, Bronx, NY, 10468, USA
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Alzheimer Disease Research Center Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
86
|
Easson K, Gilbert G, Gauthier C, Rohlicek CV, Saint-Martin C, Brossard-Racine M. Sex-Specific Cerebral Blood Flow Alterations in Youth Operated for Congenital Heart Disease. J Am Heart Assoc 2023:e028378. [PMID: 37301764 DOI: 10.1161/jaha.122.028378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023]
Abstract
Background Lower cerebral blood flow (CBF) has previously been documented preoperatively in neonates with congenital heart disease (CHD). However, it remains unclear if these CBF deficits persist over the life span of CHD survivors following heart surgery. When exploring this question, it is critical to consider the sex differences in CBF that emerge during adolescence. Therefore, this study aimed to compare global and regional CBF between postpubertal youth with CHD and healthy peers and examine if such alterations are related to sex. Methods and Results Youth aged 16 to 24 years who underwent open heart surgery for complex CHD during infancy and age- and sex-matched controls completed brain magnetic resonance imaging, including T1-weighted and pseudo-continuous arterial spin labeling acquisitions. Global gray matter CBF and regional CBF in 9 bilateral gray matter regions were quantified for each participant. Compared with female controls (N=27), female participants with CHD (N=25) presented with lower global and regional CBF. In contrast, there were no differences in CBF between male controls (N=18) and males with CHD (N=17). Concurrently, female controls had higher global and regional CBF compared with male controls, with no differences in CBF between female and male participants with CHD. CBF was lower in individuals with a Fontan circulation. Conclusions This study provides evidence of altered CBF in postpubertal female participants with CHD despite undergoing surgical intervention during infancy. Alterations to CBF could have implications for later cognitive decline, neurodegeneration, and cerebrovascular disease in women with CHD.
Collapse
Affiliation(s)
- Kaitlyn Easson
- Advances in Brain & Child Development (ABCD) Research Laboratory Research Institute of the McGill University Health Centre Montreal Quebec Canada
- Department of Neurology & Neurosurgery, Faculty of Medicine & Health Sciences McGill University Quebec Montreal Canada
| | | | - Claudine Gauthier
- Department of Physics Concordia University Montreal Quebec Canada
- Montreal Heart Institute Research Centre Montreal Quebec Canada
| | - Charles V Rohlicek
- Division of Cardiology, Department of Pediatrics Montreal Children's Hospital Montreal Quebec Canada
| | - Christine Saint-Martin
- Division of Pediatric Radiology, Department of Medical Imaging Montreal Children's Hospital Montreal Quebec Canada
| | - Marie Brossard-Racine
- Advances in Brain & Child Development (ABCD) Research Laboratory Research Institute of the McGill University Health Centre Montreal Quebec Canada
- Department of Neurology & Neurosurgery, Faculty of Medicine & Health Sciences McGill University Quebec Montreal Canada
- Division of Neonatology, Department of Pediatrics Montreal Children's Hospital Montreal Quebec Canada
- School of Physical & Occupational Therapy, Faculty of Medicine and Health Sciences McGill University Quebec Montreal Canada
| |
Collapse
|
87
|
Piccoli T, Castro F, La Bella V, Meraviglia S, Di Simone M, Salemi G, Dieli F, Spataro R. Role of the immune system in amyotrophic lateral sclerosis. Analysis of the natural killer cells and other circulating lymphocytes in a cohort of ALS patients. BMC Neurol 2023; 23:222. [PMID: 37296379 DOI: 10.1186/s12883-023-03255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
AIMS Neuroinflammation might be involved in the degeneration and progression of Amyotrophic Lateral Sclerosis (ALS). Here, we studied the role of the circulating lymphocytes in ALS, in particular the NK cells. We focused on the relationship between blood lymphocytes, ALS clinical subtype and disease severity. SUBJECTS AND METHODS Blood samples were collected from 92 patients with sporadic ALS, 21 patients with Primary Lateral Sclerosis (PLS) and 37 patients affected by primary progressive multiple sclerosis (PPMS) with inactive plaques. Blood was taken from ALS and controls at the time of diagnosis/referral. Circulating lymphocytes were analyzed by flow cytometry with specific antibodies. Values were expressed as absolute number (n°/µl) of viable lymphocytes subpopulations in ALS were compared with controls. Multivariable analysis was made using site of onset, gender changes in ALSFRS-R and disease progression rate (calculated as ΔFS score). RESULTS Age at onset was 65y (58-71) in ALS (spinal 67.4%; bulbar, 32.6%), 57y (48-78) in PLS and 56y (44-68) PPMS. Absolute blood levels of the lymphocytes in the different cohorts were within normal range. Furthermore, while levels of lymphocytes T and B were not different between disease groups, NK cells were increased in the ALS cohort (ALS = 236 [158-360] vs. Controls = 174[113-240], p < 0.001). In ALS, blood levels of NK cells were not related with the main clinical-demographic variables, including the rate of disease progression. Multivariable analysis suggested that male gender and bulbar onset were independently associated with a risk of high blood NK cells levels. CONCLUSIONS We show that blood NK cells are selectively increased in ALS, though their level appear unaffected in patients with an estimated rapidly progressing disease. Being of a male gender and with a bulbar onset seems to confer higher susceptibility to have increased NK lymphocytes levels at diagnosis/referral. Our experiments provides a further clear-cut evidence of the role of the NK lymphocytes as a significant player in ALS pathogenesis.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Cognitive and Memory Disorders Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesca Castro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy.
- ALS Clinical Research Center, Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, via Gaetano La Loggia, 1, Palermo, I-90129, Italy.
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Multiple Sclerosis Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Rossella Spataro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| |
Collapse
|
88
|
Sun F. The impact of blood pressure variability on cognition: current limitations and new advances. J Hypertens 2023; 41:888-905. [PMID: 37016905 PMCID: PMC10158606 DOI: 10.1097/hjh.0000000000003422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 04/06/2023]
Abstract
Dementia is the most common neurodegenerative disease in the aging population. Emerging evidence indicates that blood pressure (BP) variability is correlated with cognitive impairment and dementia independent of mean BP levels. The state-of-the-art review summarizes the latest evidence regarding the impact of BP variability on cognition in cognitively intact populations, patients with mild cognitive impairment, and different dementia types, focusing on the important confounding factors and new advances. This review also summarizes the potential mechanisms underlying the relationship between BP variability and cognitive impairment, and dementia, briefly discussing sex differences in the relationship. At last, current limitations and future perspectives are discussed to optimize BP management in preventing cognitive impairment and dementia.
Collapse
Affiliation(s)
- Fen Sun
- Department of Anatomy, College of Basic Medicine
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
89
|
Abstract
Reviewing the research presented in this article, it is evident that from an epidemiological perspective, it is important to evaluate the extent to which findings of sex and gender differences in Alzheimer's dementia (AD) are due to differences in longevity, survival bias, and comorbidities. Medical, genetic, psychosocial, and behavioral factors, in addition to hormonal factors, can differentially affect the risk and progression of AD in women versus men. Further, evaluation of sex differences in AD progression and the trajectory of change in cognitive function, neuroimaging, cerebrospinal fluid (CSF), and blood-based biomarkers of AD is needed. Finally, identifying sex differences in AD biomarkers and change across the lifespan is critical for the planning of prevention trials to reduce the risk of developing AD.
Collapse
Affiliation(s)
- Neelum T Aggarwal
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 West Harrison Street, Suite 1000, Chicago, IL 60612, USA.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
90
|
Justo AFO, Toscano ECDB, Farias-Itao DS, Suemoto CK. The action of phosphodiesterase-5 inhibitors on β-amyloid pathology and cognition in experimental Alzheimer's disease: A systematic review. Life Sci 2023; 320:121570. [PMID: 36921685 DOI: 10.1016/j.lfs.2023.121570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia worldwide. The etiology of AD is partially explained by the deposition of β-amyloid in the brain. Despite extensive research on the pathogenesis of AD, the current treatments are ineffective. Here, we systematically reviewed studies that investigated whether phosphodiesterase 5 inhibitors (PDE5i) are efficient in reducing the β-amyloid load in hippocampi and improving cognitive decline in rodent models with β-amyloid accumulation. We identified ten original studies, which used rodent models with β-amyloid accumulation, were treated with PDE5i, and β-amyloid was measured in the hippocampi. PDE5i was efficient in reducing the β-amyloid levels, except for one study that exclusively used female rodents and the treatment did not affect β-amyloid levels. Interestingly, PDE5i prevented cognitive decline in all studies. This study supports the potential therapeutic use of PDE5i for the reduction of the β-amyloid load in hippocampi and cognitive decline. However, we highlight the importance of conducting additional experimental studies to evaluate the PDE5i-related molecular mechanisms involved in β-amyloid removal in male and female animals.
Collapse
Affiliation(s)
- Alberto Fernando Oliveira Justo
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Eliana Cristina de Brito Toscano
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Pathology, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil; Post-graduation Program in Health, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil.
| | | | - Claudia Kimie Suemoto
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
91
|
Dai J, Xu Y, Wang T, Zeng P. Exploring the relationship between socioeconomic deprivation index and Alzheimer's disease using summary-level data: From genetic correlation to causality. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110700. [PMID: 36566903 DOI: 10.1016/j.pnpbp.2022.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Patients with Alzheimer's disease (AD) are markedly increasing as population aging and no disease-modifying therapies are currently available for AD. Previous studies suggested a broad link between socioeconomic status and a variety of disorders, including mental illness and cognitive abilities. However, the association between socioeconomic deprivation and AD has been unknown. We here employed Townsend deprivation index (TDI) to explore such relation and found a positive genetic correlation (r̂g=0.211, P = 8.00 × 10-4) between the two traits with summary statistics data (N = 455,258 for TDI and N = 455,815 for AD). Then, we performed pleiotropy analysis at both variant and gene levels using a powerful method called PLACO and detected 87 distinct pleiotropic genes. Functional analysis demonstrated these genes were significantly enriched in pancreas, liver, heart, blood, brain, and muscle tissues. Using Mendelian randomization methods, we further found that one genetically predicted standard deviation elevation in TDI could lead to approximately 18.5% (95% confidence intervals 1.6- 38.2%, P = 0.031) increase of AD risk, and that the identified causal association was robust against used MR approaches, horizontal pleiotropy, and instrumental selection. Overall, this study provides deep insight into common genetic components underlying TDI and AD, and further reveals causal connection between them. It is also helpful to develop a more suitable plan for ameliorating inequities, hardship, and disadvantage, with the hope of improving health outcomes among economically disadvantaged people.
Collapse
Affiliation(s)
- Jing Dai
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Xu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
92
|
Oveisgharan S, Yang J, Yu L, Burba D, Bang W, Tasaki S, Grodstein F, Wang Y, Zhao J, De Jager PL, Schneider JA, Bennett DA. Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease. Neurology 2023; 100:e1474-e1487. [PMID: 36697247 PMCID: PMC10104608 DOI: 10.1212/wnl.0000000000206833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 ER (GPER1, ER2, and ER1) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined ER molecular variants in men. METHODS Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-β and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. ER molecular genomic variants included genotyping and examining ER DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, GPER1 molecular variants had the most consistent associations with AD traits. GPER1 DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. GPER1 RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of ER2 and ER1 sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between ER molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between ER molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION ER DNA methylation and RNA expression, and to some extent ER polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL.
| | - Jingyun Yang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Dominika Burba
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Woojeong Bang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Shinya Tasaki
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Fran Grodstein
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Yanling Wang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Jinying Zhao
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Philip Lawrence De Jager
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
93
|
Schliep KC, Shaaban CE, Meeks H, Fraser A, Smith KR, Majersik JJ, Foster NL, Wactawski‐Wende J, Østbye T, Tschanz J, Padbury JF, Sharma S, Zhang Y, Facelli JC, Abdelrahman CS, Theilen L, Varner MW. Hypertensive disorders of pregnancy and subsequent risk of Alzheimer's disease and other dementias. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12443. [PMID: 37223334 PMCID: PMC10201212 DOI: 10.1002/dad2.12443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Introduction Women with hypertensive disorders of pregnancy (HDP) have an increased risk of cardiovascular disease. Whether HDP is also associated with later-life dementia has not been fully explored. Methods Using the Utah Population Database, we performed an 80-year retrospective cohort study of 59,668 parous women. Results Women with, versus without, HDP, had a 1.37 higher risk of all-cause dementia (95% confidence interval [CI]: 1.26, 1.50) after adjustment for maternal age at index birth, birth year, and parity. HDP was associated with a 1.64 higher risk of vascular dementia (95% CI: 1.19, 2.26) and 1.49 higher risk of other dementia (95% CI: 1.34, 1.65) but not Alzheimer's disease dementia (adjusted hazard ratio = 1.04; 95% CI: 0.87, 1.24). Gestational hypertension and preeclampsia/eclampsia showed similar increased dementia risk. Nine mid-life cardiometabolic and mental health conditions explained 61% of HDP's effect on subsequent dementia risk. Discussion Improved HDP and mid-life care could reduce the risk of dementia.
Collapse
Affiliation(s)
- Karen C. Schliep
- Department of Family and Preventative MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Huong Meeks
- Department of Population SciencesHuntsman Cancer InstituteSalt Lake CityUtahUSA
| | - Alison Fraser
- Department of Population SciencesHuntsman Cancer InstituteSalt Lake CityUtahUSA
| | - Ken R. Smith
- Department of Family and Consumer StudiesUniversity of UtahSalt Lake CityUtahUSA
| | | | | | - Jean Wactawski‐Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health ProfessionsUniversity at BuffaloThe State University of New YorkBuffaloNew YorkUSA
| | - Truls Østbye
- Community and Family Medicine and Community HealthNursing and Global HealthDuke UniversityDurhamNorth CarolinaUSA
| | - JoAnn Tschanz
- Department of PsychologyUtah State UniversityLoganUtahUSA
| | - James F. Padbury
- Department of PediatricsUniversity of California San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Surrendra Sharma
- Department of PediatricsWomen & Infants HospitalAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Yue Zhang
- Department of Internal MedicineUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Julio C. Facelli
- Department of Biomedical InformaticsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - C. Samir Abdelrahman
- Department of Biomedical InformaticsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Lauren Theilen
- Department of Obstetrics and GynecologyUniversity of UtahSalt Lake CityUtahUSA
| | - Michael W. Varner
- Department of Obstetrics and GynecologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
94
|
Abstract
This article describes the public health impact of Alzheimer's disease, including prevalence and incidence, mortality and morbidity, use and costs of care, and the overall impact on family caregivers, the dementia workforce and society. The Special Report examines the patient journey from awareness of cognitive changes to potential treatment with drugs that change the underlying biology of Alzheimer's. An estimated 6.7 million Americans age 65 and older are living with Alzheimer's dementia today. This number could grow to 13.8 million by 2060 barring the development of medical breakthroughs to prevent, slow or cure AD. Official death certificates recorded 121,499 deaths from AD in 2019, and Alzheimer's disease was officially listed as the sixth-leading cause of death in the United States. In 2020 and 2021, when COVID-19 entered the ranks of the top ten causes of death, Alzheimer's was the seventh-leading cause of death. Alzheimer's remains the fifth-leading cause of death among Americans age 65 and older. Between 2000 and 2019, deaths from stroke, heart disease and HIV decreased, whereas reported deaths from AD increased more than 145%. This trajectory of deaths from AD was likely exacerbated by the COVID-19 pandemic in 2020 and 2021. More than 11 million family members and other unpaid caregivers provided an estimated 18 billion hours of care to people with Alzheimer's or other dementias in 2022. These figures reflect a decline in the number of caregivers compared with a decade earlier, as well as an increase in the amount of care provided by each remaining caregiver. Unpaid dementia caregiving was valued at $339.5 billion in 2022. Its costs, however, extend to family caregivers' increased risk for emotional distress and negative mental and physical health outcomes - costs that have been aggravated by COVID-19. Members of the paid health care workforce are involved in diagnosing, treating and caring for people with dementia. In recent years, however, a shortage of such workers has developed in the United States. This shortage - brought about, in part, by COVID-19 - has occurred at a time when more members of the dementia care workforce are needed. Therefore, programs will be needed to attract workers and better train health care teams. Average per-person Medicare payments for services to beneficiaries age 65 and older with AD or other dementias are almost three times as great as payments for beneficiaries without these conditions, and Medicaid payments are more than 22 times as great. Total payments in 2023 for health care, long-term care and hospice services for people age 65 and older with dementia are estimated to be $345 billion. The Special Report examines whether there will be sufficient numbers of physician specialists to provide Alzheimer's care and treatment now that two drugs are available that change the underlying biology of Alzheimer's disease.
Collapse
|
95
|
Full KM, Pusalavidyasagar S, Palta P, Sullivan KJ, Shin JI, Gottesman RF, Spira AP, Pase MP, Lutsey PL. Associations of Late-Life Sleep Medication Use With Incident Dementia in the Atherosclerosis Risk in Communities Study. J Gerontol A Biol Sci Med Sci 2023; 78:438-446. [PMID: 35421897 PMCID: PMC9977227 DOI: 10.1093/gerona/glac088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sleep medications may contribute to dementia development or indicate sleep disturbances that are markers of or contributors to neurologic disease. The objective of this study was to examine the use of sleep medications and incident dementia in a community-based cohort of older adults. We hypothesize late-life sleep medication use is associated with a greater risk of dementia. METHODS The Atherosclerosis Risk in Communities (ARIC) study is an ongoing community-based cohort study. ARIC participants taking barbiturates, benzodiazepines, antidepressants, non-benzodiazepine receptor agonists (Z-drugs), or other hypnotics in 2011-2013 were categorized as sleep medication users. Participants were followed through 2019 for incident dementia. Logistic regression propensity scores were used to match sleep medication users with nonusers (1:2). Cox proportional hazards regression models were used to estimate hazard ratios (HR) for time to dementia diagnosis with adjustment for demographics, lifestyle characteristics, and cardiovascular risk factors. RESULTS One-quarter of the eligible ARIC participants used sleep medications. In the matched sample (N = 4 197; 69% female; mean age 75.3 + 5.0 years), 632 dementia cases were ascertained over a median follow-up of 6.5 years. In the fully adjusted model, sleep medication use compared to nonuse was associated with a 48% greater risk of dementia (HR: 1.48; 95% confidence interval (CI): 1.26-1.74). CONCLUSION To expand on these findings, studies with longer follow-up and earlier assessment of sleep medication use are needed. Furthermore investigation of the potential dose-response association of multiple sleep medications and the potential causal role of sleep medications in the development of dementia may be clinically meaningful.
Collapse
Affiliation(s)
- Kelsie M Full
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Snigdha Pusalavidyasagar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Priya Palta
- Division of General Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Kevin J Sullivan
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jung-Im Shin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland,USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, Maryland, USA
| | - Adam P Spira
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Center on Aging and Health, Baltimore, Maryland,USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
96
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2251] [Impact Index Per Article: 1125.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
97
|
Lv B, Liang L, Chen A, Yang H, Zhang X, Guo F, Qian H. Mortality of Alzheimer's Disease and Other Dementias in China: Past and Future Decades. Int J Public Health 2023; 68:1605129. [PMID: 36816830 PMCID: PMC9935610 DOI: 10.3389/ijph.2023.1605129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Objectives: This study aimed to explore the distribution features and trends of dementia mortality in China from 2011 to 2020 and make a prediction for the next decade. Methods: Mortality-relevant data were gathered from the Chinese Center for Disease Control and Prevention's Disease Surveillance Points system. Joinpoint regression was applied to evaluate the trends. Results: Crude Mortality Rate (CMR) of AD and other dementias increased from 3.7 per 100,000 to 6.2 per 100,000 in 2011-2020, with an Average Annual Percent Change (AAPC) of 5.3% (95% CI 4.4%-6.3%). Age-Standardized Mortality Rate (ASMR) slightly decreased from 5.0 per 100,000 to 4.1 per 100,000 in 2011-2020, with AAPC of -0.4% (95% CI -2.5%-1.8%). CMR will increase to 9.66 per 100,000 while ASMR will decline to 3.42 per 100,000 in the following decade. Conclusion: The upward trend in CMR and downward trend in ASMR suggested the further development of population aging and dementia mortality in the past and future decades. In China, there were gender, urban-rural, regional and age differences.
Collapse
Affiliation(s)
- Bin Lv
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li Liang
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Anan Chen
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Yang
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xiaolan Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fangfang Guo
- Department of Outpatient, No.13 Cadre Santatorium of Beijing Garrison, Beijing, China
| | - Hairong Qian
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Hairong Qian,
| |
Collapse
|
98
|
Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, Lanman L, Chadha AS, van der Flier WM. Global estimates on the number of persons across the Alzheimer's disease continuum. Alzheimers Dement 2023; 19:658-670. [PMID: 35652476 DOI: 10.1002/alz.12694] [Citation(s) in RCA: 349] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Global estimates on numbers of persons in early stages of Alzheimer's disease (AD), including prodromal and preclinical, are lacking, yet are needed to inform policy decisions on preventive measures and planning for future therapies targeting AD pathology. METHODS We synthesized the literature on prevalence across the AD continuum and derived a model estimating the number of persons, stratified by 5-year age groups, sex, and disease stage (AD dementia, prodromal AD, and preclinical AD). RESULTS The global number of persons with AD dementia, prodromal AD, and preclinical AD were estimated at 32, 69, and 315 million, respectively. Together they constituted 416 million across the AD continuum, or 22% of all persons aged 50 and above. DISCUSSION Considering predementia stages, the number of persons with AD is much larger than conveyed in available literature. Our estimates are uncertain, especially for predementia stages in low- and middle-income regions where biomarker studies are missing.
Collapse
Affiliation(s)
- Anders Gustavsson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | | | | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Drew Holzapfel
- CEO Initiative on Alzheimer's Disease, Philadelphia, USA
| | | | - Pierre Krolak-Salmon
- Lyon Institute for Aging, Clinical & Research Memory Center of Lyon, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Paolo M Rossini
- Faculty of Medicine of the Catholic University of the Sacred Heart, Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Rome, Italy
| | | | | | | | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Department of Epidemiology and Data Science, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
99
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
100
|
Akushevich I, Kravchenko J, Yashkin A, Doraiswamy PM, Hill CV. Expanding the scope of health disparities research in Alzheimer's disease and related dementias: Recommendations from the "Leveraging Existing Data and Analytic Methods for Health Disparities Research Related to Aging and Alzheimer's Disease and Related Dementias" Workshop Series. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12415. [PMID: 36935764 PMCID: PMC10020680 DOI: 10.1002/dad2.12415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Topics discussed at the "Leveraging Existing Data and Analytic Methods for Health Disparities Research Related to Aging and Alzheimer's Disease and Related Dementias" workshop, held by Duke University and the Alzheimer's Association with support from the National Institute on Aging, are summarized. Ways in which existing data resources paired with innovative applications of both novel and well-known methodologies can be used to identify the effects of multi-level societal, community, and individual determinants of race/ethnicity, sex, and geography-related health disparities in Alzheimer's disease and related dementia are proposed. Current literature on the population analyses of these health disparities is summarized with a focus on identifying existing gaps in knowledge, and ways to mitigate these gaps using data/method combinations are discussed at the workshop. Substantive and methodological directions of future research capable of advancing health disparities research related to aging are formulated.
Collapse
Affiliation(s)
- Igor Akushevich
- Social Science Research InstituteBiodemography of Aging Research UnitDuke UniversityDurhamNorth CarolinaUSA
| | - Julia Kravchenko
- Duke University School of MedicineDepartment of SurgeryDurhamNorth CarolinaUSA
| | - Arseniy Yashkin
- Social Science Research InstituteBiodemography of Aging Research UnitDuke UniversityDurhamNorth CarolinaUSA
| | - P. Murali Doraiswamy
- Departments of Psychiatry and MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | | | | |
Collapse
|