51
|
Oyebode O, Erukainure OL, Zuma L, Ibeji CU, Koorbanally NA, Islam MS. In vitro and computational studies of the antioxidant and anti-diabetic properties of Bridelia ferruginea. J Biomol Struct Dyn 2020; 40:3989-4003. [PMID: 33272106 DOI: 10.1080/07391102.2020.1852961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The leaves, stem and root bark of Bridelia ferruginea were sequentially extracted with solvents of increasing polarity to yield the hexane, ethyl acetate, ethanol and aqueous extracts. In vitro analysis revealed the ability of the extracts to scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH), nitric oxide (NO) and hydroxyl radical. They also inhibited the activities of α-glucosidase, α-amylase and lipase enzymes. Gas chromatography-mass spectroscopic (GC-MS) analysis of the extracts revealed the presence of sterols, aromatics, aliphatic acids and esters. The identified compounds were molecularly docked with α-glucosidase, α-amylase and lipase enzymes. All compounds showed good binding affinities with the enzymes studied. The strongest binding affinities were observed for β-amyrin, 4-phenylbenzophenone and lupenone for α-glucosidase, α-amylase and lipase enzymes, respectively. The data suggest antioxidant and antidiabetic potential of the different parts of B. ferruginea, with the leaves having the highest potential. These properties can be explored for development of novel anti-diabetic drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.,Faculty of Health Sciences, Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Ochuko Lucky Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Lindiwe Zuma
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | | | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
52
|
Erukainure OL, Salau VF, Xiao X, Matsabisa MG, Koorbanally NA, Islam MS. Bioactive compounds of African star apple (Chrysophyllum albidum G. Don) and its modulatory effect on metabolic activities linked to type 2 diabetes in isolated rat psoas muscle. J Food Biochem 2020; 45:e13576. [PMID: 33270256 DOI: 10.1111/jfbc.13576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
The infusion of Chrysophyllum albidum was investigated for its antidiabetic mechanism by studying its ability to promote glucose uptake and utilization as well as its modulatory effect on metabolic activities linked to type 2 diabetes in isolated psoas muscle. Isolated psoas muscle was incubated with different concentrations of the infusion in the presence of glucose at 37°C for 2 hr. The infusion improved muscle glucose uptake, with concomitant elevated muscular levels of glutathione, superoxide dismutase, catalase, and ectonucleotidase activities, while depleting malondialdehyde, nitric oxide, adenosine triphosphatase, acetylcholinesterase, glycogen phosphorylase, glucose 6-phosphatase, fructose-1,6-biphosphatase, and lipase activities. It also maintained muscular morphology, while increasing magnesium, calcium, and iron levels. The infusion inhibited α-glucosidase and α-amylase activities in vitro. LC-MS analysis of the infusion revealed the presence of phenolics. These results indicate that C. albidum may mediate antidiabetic activities by stimulating muscle glucose uptake and modulation of key metabolisms linked to diabetes. PRACTICAL APPLICATIONS: The African star apple is among the underutilized fruits consumed for nutritional and medicinal purposes in Western Africa. The fruits are usually wasted during its season leading to postharvest loss owing to poor utilization. The present study gives credence to its use in treating diabetes and its complications. Thus, the fruits can be utilized in the development of cheap and affordable nutraceuticals for the management of diabetes which has been reported for its high-cost treatment. Utilization of the fruits will also reduce its postharvest loss and improve its economic values.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicines, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xin Xiao
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicines, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Pharmacology, School of Clinical Medicines, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
53
|
Erukainure OL, Salau VF, Alabi OO, Ebuehi OAT, Koorbanally NA, Islam MS. Casein micelles from bovine Milk exerts Neuroprotection by stalling metabolic complications linked to oxidative brain injury. Metab Brain Dis 2020; 35:1417-1428. [PMID: 32990928 DOI: 10.1007/s11011-020-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Caseins are the most abundant milk proteins in mammalian species and are assembled in supra-macromolecular structures called micelles. In this study, the microstructural properties, particle size, and elemental composition of isolated casein from bovine milk and its therapeutic effect on oxidative and cholinergic activities linked to dementia in oxidative brain injury were investigated. SEM analysis of the isolated casein micelles from skimmed fresh bovine milk revealed spherical colloid aggregates, while TEM analysis revealed dispersed spherical particles with a mean size of 63.15 ± 4.77 nm. SEM-EDX analysis revealed clusters of carbon, oxygen, sulfur, copper, sodium, magnesium, potassium, iron, and selenium. Treatment of oxidative brain injury with the isolated casein micelles led to elevated levels of GSH, SOD, catalase, ENTPDase, 5'NTPase activities, while concomitantly suppressing MDA, cholesterol, HDL-c levels, acetylcholinesterase and lipase activities. Treatment with the isolated casein micelles led to complete depletion of oxidative generated lipid metabolites, while deactivating oxidative-activated lipid metabolic pathways. These results indicate the microstructural properties, particle size, elemental composition, and antioxidant neuroprotective effect of casein micelles from bovine milk. Thus, demonstrating the nutraceutical properties of milk in the management of oxidative induced cognitive impairment.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Opeyemi O Alabi
- Department of Food Technology, Federal University, Oye-Ekiti, Ekiti, Nigeria
| | | | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
54
|
Phytochemical and Biological Characterization of Tephrosia nubica Boiss. Growing in Saudi Arabia. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
55
|
Xiao X, Erukainure OL, Beseni B, Koorbanally NA, Islam MS. Sequential extracts of red honeybush (Cyclopia genistoides) tea: Chemical characterization, antioxidant potentials, and anti-hyperglycemic activities. J Food Biochem 2020; 44:e13478. [PMID: 32984977 DOI: 10.1111/jfbc.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/29/2022]
Abstract
The antioxidant, antidiabetic, and anti-obesogenic potentials of different extracts (dichloromethane, ethyl acetate, ethanol, and aqueous) of the red honeybush (Cyclopia genistoides) tea were investigated in vitro and ex vivo. All extracts exhibited significant scavenging and reducing power activities, with the aqueous and ethyl acetate extracts being the most potent. In vitro antidiabetic analysis revealed the extracts to be potent inhibitors of α-glucosidase and lipase activities. All extracts increased catalase and SOD activities, and glutathione level in oxidative pancreatic injury. GC-MS analysis revealed the presence of fatty acids, fatty acid ester, phytols, sterols, saccharide, ketones, and triterpenes. These results imply that the sequential extracts of honeybush tea (particularly the aqueous and ethyl acetate extracts) may not only exhibit antioxidant potentials but also mediate anti-hyperglycemia activities by inhibiting lipid and carbohydrate digestion. PRACTICAL APPLICATIONS: Red honeybush tea is enjoyed widely in South Africa and around the world due to its no caffeine and very low tannin content, as well as many healthcare attributes. There are however no scientific reports for its sequential extraction of different solvents on antidiabetic effects. The different extracts of honeybush tea (particularly the aqueous and ethyl acetate extracts) inhibited lipid and carbohydrate digestive enzymes linked to type 2 diabetes (T2D), as well as modulate oxidative pancreatic injury. These findings will promote its utilization as a potential nutraceutical in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Brian Beseni
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
56
|
UPLC-ESI-MS/MS Profile and Antioxidant, Cytotoxic, Antidiabetic, and Antiobesity Activities of the Aqueous Extracts of Three Different Hibiscus Species. J CHEM-NY 2020. [DOI: 10.1155/2020/6749176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aqueous extracts of Hibiscus calyphyllus (HcA), Hibiscus micranthus (HmA), and Hibiscus deflersii (HdA) growing in Saudi Arabia did not receive enough attention in phytochemical and biological studies. This inspired the authors to investigate the phytochemicals of these extracts for the first time using UPLC-ESI-MS/MS in negative and positive ionization modes. The analysis afforded the tentative identification of 103 compounds including phenolic compounds, flavonoids, and anthocyanins. Moreover, in vitro evaluations of their cytotoxic, antioxidant, antidiabetic, and antiobesity activities were carried out. The results showed that aqueous extract of Hibiscus calyphyllus had the highest activity as an antioxidant agent (SC50 = 111 ± 1.5 μg/mL) compared with ascorbic acid (SC50 = 14.2 ± 0.5 μg/mL). MTT assay was used to evaluate cytotoxic activity compared to cisplatin. Hibiscus deflersii showed the most potent cytotoxic effect against A-549 (human lung carcinoma) with IC50 = 50 ± 5.1 μg/mL, and Hibiscus micranthus showed a close effect with IC50 = 60.4 ± 1.7 μg/mL. Hibiscus micranthus showed the most potent effect on HCT-116 (human colon carcinoma) with IC50 = 56 ± 1.9 μg/mL compared with cisplatin (IC50 = 7.53 ± 3.8 μg/mL). HcA and HdA extracts showed weak cytotoxic activity against A-549 and HCT-116 cell lines compared to the other extracts. Eventually, Hibiscus deflersii showed astonishing antidiabetic (IC50 = 56 ± 1.9 μg/mL) and antiobesity (IC50 = 95.45 ± 1.9 μg/mL) activities using in vitro α-amylase inhibitory assay (compared with acarbose (IC50 = 34.71 ± 0.7 μg/mL)) and pancreatic lipase inhibitory assay (compared with orlistat (IC50 = 23.8 ± 0.7 μg/mL)), respectively. In conclusion, these findings are regarded as the first vision of the phytochemical constituents and biological activities of different Hibiscus aqueous extracts. Hibiscus deflersii aqueous extract might be a hopeful origin of functional constituents with anticancer (on A-549 cell line), antidiabetic, and antiobesity activities. It might be a natural alternative remedy and nutritional policy for diabetes and obesity treatment without negative side effects. Isolation of the bioactive phytochemicals from the aqueous extracts of aerial parts of Hibiscus calyphyllus, Hibiscus micranthus, and Hibiscus deflersii and estimation of their biological effects are recommended in further studies.
Collapse
|
57
|
Erukainure OL, Salau VF, Oyenihi AB, Mshicileli N, Islam MS. Strawberry fruit (Fragaria x ananassa cv. Romina) extenuates iron-induced cardiac oxidative injury via effects on redox balance, angiotensin-converting enzyme, purinergic activities, and metabolic pathways. J Food Biochem 2020; 44:e13315. [PMID: 32510661 DOI: 10.1111/jfbc.13315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The potential cardioprotective properties of strawberry fruit (Fragaria x ananassa) (SF) were investigated in cardiac tissues ex vivo. Oxidative injury was induced by incubating freshly harvested cardiac tissue homogenates from healthy Sprague Dawley male rats with 0.1 mM FeSO4 for 30 min at 37°C. The induction of oxidative injury resulted in depleted levels of glutathione, superoxide dismutase, catalase, E-NTPDase activities, and HDL-c, while elevating the levels of malondialdehyde, angiotensin-converting enzyme, acetylcholinesterase, ATPase, lipase activities, cholesterol, triglyceride, and LDL-c. Co-incubation with SF significantly reversed these levels and activities with concomitant depletion of oxidative-induced metabolites and reactivation of oxidative-inactivated pathways, while limiting beta-oxidation of very long chain fatty acids and mitochondrial beta-oxidation of medium-chain saturated fatty acids pathways. These data portray the potential cardioprotective effects of strawberry fruits against oxidative-induced cardiopathy via the attenuation of oxidative stress, inhibition of ACE and acetylcholinesterase activities, and modulation of lipid dysmetabolism. PRACTICAL APPLICATIONS: Fruits and other fruit-based products have been enjoying wide acceptability among consumers due to their immense medicinal benefits particularly, on cardiovascular health. Strawberries are among the common fruits in the world. Over the years, cardiovascular diseases have been known to contribute greatly to global mortality irrespective of age. This study reports the potentials of strawberry fruits to protect against oxidative mediated cardiovascular dysfunctions. Thus, the fruits can be utilized as a cheap alternative for the development of nutraceuticals for maintaining cardiac health.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ndumiso Mshicileli
- AgriFood Technology Station, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
58
|
Kim DS, Choi MH, Shin HJ. Extracts of Moringa oleifera leaves from different cultivation regions show both antioxidant and antiobesity activities. J Food Biochem 2020; 44:e13282. [PMID: 32436270 DOI: 10.1111/jfbc.13282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Moringa oleifera is rich in nutrients, such as protein, vitamins, and phytochemicals, and has been used as a traditional remedy. In this study, extracts of M. oleifera leaves from South Korea and Cambodia were evaluated for their antioxidant and antiobesity activities and for food and natural medicine use. The extracts were made using water and ethanol with leaves from South Korea and Cambodia, and then, the ethanol extracts were further fractionated with ethyl acetate. The antioxidant and antiobesity activities of fractionated ethanol extracts were higher than those of water extracts. Although the expression of C/EBPα in 3T3-L1 cell differentiation did not have a concentration-dependent inhibitory effect on the M. oleifera leaf extracts, the expression of PPARγ, FAS, and ACC was inhibited in a concentration-dependent manner with the M. oleifera leaf extracts. This study shows that M. oleifera leaves from South Korea and Cambodia may be an effective candidate for antiobesity prevention. PRACTICAL APPLICATIONS: Antioxidants and antiobesity factors are important for metabolic syndrome including obesity. Recently, natural antiobesity medication containing polyphenol ingredients has been developed to replace synthetic antiobesity medication, which has various side effects. This study evaluates the antioxidant and antiobesity activities of Moringa oleifera leaves from different cultivation regions. The leaves grow rapidly and leaf extracts contain a large amount of nutrients and phytochemicals, which enables commercial production of the leaves as natural antiobesity medications including functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Da-Song Kim
- Department of Chemical Engineering, Graduate School of Chosun University, Gwangju, Republic of Korea
| | - Moon-Hee Choi
- Department of Biochemical and Polymer Engineering, Chosun University, Gwangju, Republic of Korea
| | - Hyun-Jae Shin
- Department of Chemical Engineering, Graduate School of Chosun University, Gwangju, Republic of Korea.,Department of Biochemical and Polymer Engineering, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
59
|
Rusu ME, Fizesan I, Pop A, Mocan A, Gheldiu AM, Babota M, Vodnar DC, Jurj A, Berindan-Neagoe I, Vlase L, Popa DS. Walnut ( Juglans regia L.) Septum: Assessment of Bioactive Molecules and In Vitro Biological Effects. Molecules 2020; 25:E2187. [PMID: 32392837 PMCID: PMC7248768 DOI: 10.3390/molecules25092187] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Walnut (Juglans regia L.) septum represents an interesting bioactive compound source by-product. In our study, a rich phenolic walnut septum extract, previously selected, was further examined. The tocopherol content determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed higher amounts of α-tocopherol compared to γ- and δ-tocopherols. Moreover, several biological activities were investigated. The in vitro inhibiting assessment against acetylcholinesterase, α-glucosidase, or lipase attested a real management potential in diabetes or obesity. The extract demonstrated very strong antimicrobial potential against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enteritidis. It also revealed moderate (36.08%) and strong (43.27%) antimutagenic inhibitory effects against TA 98 and TA 100 strains. The cytotoxicity of the extract was assessed on cancerous (A549, T47D-KBluc, MCF-7) and normal (human gingival fibroblasts (HGF)) cell lines. Flow cytometry measurements confirmed the cytotoxicity of the extract in the cancerous cell lines. Additionally, the extract demonstrated antioxidant activity on all four cell types, as well as anti-inflammatory activity by lowering the inflammatory cytokines (interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1 β (IL-1β)) evaluated in HGF cells. To the best of our knowledge, most of the cellular model analyses were performed for the first time in this matrix. The results prove that walnut septum may be a potential phytochemical source for pharmaceutical and food industry.
Collapse
Affiliation(s)
- Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.E.R.); (L.V.)
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Mihai Babota
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (I.B.-N.)
- MEDFUTURE—Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.E.R.); (L.V.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| |
Collapse
|
60
|
Akter KM, Park WS, Kim HJ, Khalil AAK, Ahn MJ. Comparative Studies of Fraxinus Species from Korea Using Microscopic Characterization, Phytochemical Analysis, and Anti-Lipase Enzyme Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E534. [PMID: 32326102 PMCID: PMC7238101 DOI: 10.3390/plants9040534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
Fraxinus species belongs to the Oleaceae family, commonly known as Ash tree, and has been utilized as a folk medicine with various medicinal properties, including anti-obesity activity. The goal of the present study was to establish quality control parameters using microscopic characterization, phytochemical differentiation, and anti-lipase activity evaluation of five Fraxinus plants in Korea. Microscopic evaluation of the lower surface, petiole, and midrib of leaves, and stem bark showed discriminative anatomical characteristics, such as the stomatal index of the lower leaf surface; the number of sclerenchyma cells, and the diameter of parenchyma cells in the petiole and midrib; and the cork cell size and fiber frequency in the stem bark. Phytochemical analysis using high-performance liquid chromatography revealed the significant variation in the chemical profiles of the 12 major secondary metabolites among the samples. The orthogonal projections to latent structure-discrimination analysis efficiently differentiated each group belonging to each Fraxinus plant with the anatomical and quantification data. F. rhynchophylla and ligstroside showed the most potent anti-lipase activity among the plants and the 12 major metabolites, respectively. These findings could serve as the scientific criteria for the appropriate identification and establishment of standards for the use of Fraxinus species as medicinal plants.
Collapse
Affiliation(s)
- Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| | - Hye-Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| | - Atif Ali Khan Khalil
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| |
Collapse
|
61
|
Salau VF, Erukainure OL, Ibeji CU, Koorbanally NA, Islam MS. Umbelliferone stimulates glucose uptake; modulates gluconeogenic and nucleotide-hydrolyzing enzymes activities, and dysregulated lipid metabolic pathways in isolated psoas muscle. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
62
|
Younis AM, Abdel-Aziz MM, Yosri M. Evaluation of Some Biological Applications of Pleurotus citrinopileatus and Boletus edulis Fruiting Bodies. Curr Pharm Biotechnol 2020; 20:1309-1320. [PMID: 31483226 DOI: 10.2174/1389201020666190904162403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mushrooms are deemed as a special delicacy in many countries. They are considered an important cuisine due to their bioactive ingredients and possible health benefits. METHODS Herein, we measured selected biological properties of methanol extracts of Pleurotus citrinopileatus and Boletus edulis fruiting bodies including; in vitro antimicrobial activity, anti-α- glucosidase activity, antioxidant activity, anti-lipase activity and cytotoxic activity against different cancer cells and normal cells. RESULTS B. edulis methanol extracts showed high antimicrobial and anti-α-glucosidase activity. In contrast, P. citrinopileatus methanol extracts showed superior antioxidant activity indicated by (1,1- diphenyl-2-picrylhydrazyl) DPPH radical scavenging with half maximal inhibitory concentration of IC50 37.4 µg/ml, anti-lipase activities with IC50 65.2 µg/ml and high cytotoxicity activity against HepG2 and HeLa cell lines with IC50 22.8 and 36.7 µg/ml, respectively. Flow cytometric analysis of the cell cycle was used to show apoptotic effects of methanol extracts against HepG2 and HeLa cells. CONCLUSION P. citrinopileatus and B. edulis methanolic extracts appear to contain biologically active compounds that might be used to treat some common human diseases.
Collapse
Affiliation(s)
- Ahmed M Younis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States.,Department of Microbiology, Faculty of Science, Al Azhar University, Nasr City, Cairo 11841, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Mohamed Yosri
- The Regional Center for Mycology and Biotechnology, Al Azhar University, 11787 Nasr City, Cairo, Egypt.,Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| |
Collapse
|
63
|
Erukainure OL, Chukwuma CI, Matsabisa MG, Salau VF, Koorbanally NA, Islam MS. Buddleja saligna Willd (Loganiaceae) inhibits angiotensin-converting enzyme activity in oxidative cardiopathy with concomitant modulation of nucleotide hydrolyzing enzymatic activities and dysregulated lipid metabolic pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112358. [PMID: 31676404 DOI: 10.1016/j.jep.2019.112358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buddleja saligna Willd (Loganiaceae), mostly indigenous to South Africa is traditionally used in the treatment cardio-dysfunctional related ailments amongst other diseases. AIMS The cardio-protective effect of B. saligna was investigated in ferric-induced oxidative cardiopathy. METHODS Hearts harvested from healthy male SD rats were incubated with 0.1 mM FeSO4 to induce oxidative damage and co-incubated with B. saligna extract. Reaction mixtures without the extract served as negative control, while tissues without the extract or standard antioxidant (gallic acid) and pro-oxidant served as the normal control. The tissues were analyzed for levels of glutathione, malondialdehyde, and nitric oxide as well as cholinergic, angiotensin-converting enzyme (ACE), lipase, and purinergic enzymes activities, lipid profiles, fatty acid metabolic pathways and metabolites. RESULTS Induction of oxidative damage significantly (p < 0.05) depleted the levels of GSH, SOD, catalase, and ENTPDase activities, while concomitantly elevating the levels of MDA, NO, ACE, acetylcholinesterase, lipase and ATPase activities. These levels and activities were significantly reversed on treatment with B. saligna. Treatment with B. saligna also led to depletion of cardiac cholesterol and LDL-c levels, while elevating triglyceride and HDL-c level. It also depleted oxidative-induced lipid metabolites with concomitant generation of thirteen other metabolites. B. saligna also inactivated oxidative-induced pathways for beta oxidation of very long chain fatty acids, glycerolipid metabolism, and fatty acid elongation in mitochondria. CONCLUSION These results suggest that B. saligna protects against ferric-induced oxidative cardiopathy by mitigating oxidative stress, while concomitantly inhibiting ACE, acetylcholinesterase and lipase activities, and modulating lipid spectrum and dysregulated metabolic pathways.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Chika I Chukwuma
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa
| |
Collapse
|
64
|
In Vitro Antidiabetic Activity Affecting Glucose Uptake in HepG2 Cells Following Their Exposure to Extracts of Lauridia tetragona (L.f.) R.H. Archer. Processes (Basel) 2019. [DOI: 10.3390/pr8010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The incidence of diabetes is on the rise and one of the medically active plants used for the treatment of diabetes in South Africa is Lauridia tetragona. The aim of this study is to investigate the antidiabetic property of the polyphenolics (PP) compounds isolated from the methanolic extract of Lauridia tetragona. The α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPPIV), lipase inhibitory activities, and glucose uptake in HepG2 were investigated. The methanolic extract fractions of L. tetragona yielded six fractions (PP1–PP6) all of which showed weak inhibition against DPPIV and lipase compared to the standards. However, PP4 and PP6 showed the best inhibition against α-amylase (IC50 of 359.3 ± 2.11 and 416.82 ± 2.58 μg/mL, respectively) and α-glucosidase (IC50 of 95.93 ± 2.34 and 104.49 ± 2.21 μg/mL, respectively) and only PP4 (173.6%) resulted in enhanced glucose uptake in HepG2 cells compared to berberine (129.89%) and metformin (187.16%) used as positive controls. The previous investigation on PP4 and PP6 showed the presence of polyphenolics such as ferulic acid, coumaric acid, and caffeic acid. The results of this study suggest that L. tetragona could be suitable as an antidiabetic agent and justifies the folkloric use of the plant to treat diabetes.
Collapse
|
65
|
Vangoori Y, Dakshinamoorthi A, Kavimani S. Prominent Pancreatic Lipase Inhibition and Free Radical Scavenging Activity of a Myristica fragrans Ethanolic Extract in vitro. Potential Role in Obesity Treatment. MÆDICA 2019; 14:254-259. [PMID: 31798741 DOI: 10.26574/maedica.2019.14.3.254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective:The objective of the present study was to evaluate the antioxidant and lipase inhibitory potential of various extracts of Myristica fragrans (in vitro). Material and methods:Ethanolic extracts of Myristica fragrans were studied for their free radical scavenging and lipase inhibitory potentials by using porcine lipase, PNPB and DPPH. All results were obtained by applying active formulas and calculating the percentage of inhibition. Results:Among all extracts, Myristica fragrans ethanolic extract has shown the strongest pancreatic lipase inhibitory activity at 100 ìg/mL (66.24%), with the closest potency to tthat of the standard drug, Orlistat (81.57%). This extract has also exhibited a potent antioxidant activity. The findings of the present study clearly showed that DPPH free radical scavenging activity of MFE produced 88% inhibition at 5 mg/mL as compared to standard ascorbic acid, which was 90%. Conclusions:Ethanolic extracts of Myristica fragrans had a marked PL inhibitory action and antioxidant effect. Therefore, based on this research evidence, they could be aternatively used for obesity treatment.
Collapse
Affiliation(s)
- Yakaiah Vangoori
- Sri Ramachandra Institute of Higher Education and Research (SRIHER)-Chennai & Santhiram Medical College, Nandyal, AP, India
| | - Anusha Dakshinamoorthi
- Sri Ramachandra Institute of Higher Education and Research (SRIHER)-Chennai, Tamilnadu, India
| | - S Kavimani
- Mother Theresa Post Graduate and Research Institute of Health Sciences, Pondicherry, India
| |
Collapse
|
66
|
Erukainure OL, Oyebode OA, Salau VF, Koorbanally NA, Islam MS. Flowers of Clerodendrum volubile modulates redox homeostasis and suppresses DNA fragmentation in Fe 2+ - induced oxidative hepatic and pancreatic injuries; and inhibits carbohydrate catabolic enzymes linked to type 2 diabetes. J Diabetes Metab Disord 2019; 18:513-524. [PMID: 31890677 PMCID: PMC6915180 DOI: 10.1007/s40200-019-00458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Medicinal plants have long been recognized for their roles in the treatment and management of diabetes and its complications. The antioxidative and antidiabetic properties of Clerodendrum volubile flowers were investigated in vitro and ex vivo. METHODS The flowers were sequentially extracted with solvents of increasing polarity (n-hexane, ethyl acetate, ethanol and water). The concentrated extracts were subjected to in vitro antioxidant assays using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging and Ferric reducing antioxidant power (FRAP) protocols. Their inhibitory activities were investigated on α-glucosidase, pancreatic lipases, pancreatic ATPase and glucose-6-phosphatase activities. Their anti-oxidative and anti-apoptotic effects on Fe2+-induced oxidative injuries were also investigated in pancreatic and hepatic tissues ex vivo. RESULTS The extracts showed potent free radical scavenging activity and significantly (p < 0.05) inhibited all studied enzymes. The GSH level was significantly (p < 0.05) elevated in both tissues with concomitant increase in superoxide dismutase (SOD) and catalase activities as well as reduced levels of malondialdehyde (MDA). The extracts significantly (p < 0.05) suppressed DNA fragmentation in hepatic tissue. These activities were dose-dependent. The ethanol extract showed the best activity and can be attributed to the synergetic effect of its chemical constituents identified via gas chromatography-mass spectroscopy (GC-MS). CONCLUSION These results suggest the antioxidative, antidiabetic and anti-obesogenic potentials of C. volubile flowers.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000 South Africa
- Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Olajumoke A. Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000 South Africa
| | - Veronica F. Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000 South Africa
| | - Neil A. Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, (Westville Campus), Durban, 4000 South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000 South Africa
| |
Collapse
|
67
|
Inhibition of Key Enzymes Linked to Obesity and Cytotoxic Activities of Whole Plant Extracts of Vernonia mesplilfolia Less. Processes (Basel) 2019. [DOI: 10.3390/pr7110841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The whole plant of Vernonia mespilifolia is widely used as a traditional remedy for obesity in South Africa. The aim of this study was to investigate the anti-obesity and cytotoxic effects of Vernonia mespilifolia extracts in vitro. The α-amylase, α-glucosidase, and lipase inhibitory activities of aqueous and ethanol extracts of Vernonia mespilifolia were investigated, while the cytotoxic effects of these extracts were analyzed using Hoechst 33342 and propidium iodide (PI) dual staining on a human cervical HeLa cell line. The results showed that the LC50 (the concentration of a material will kill 50% of test organisms) values of aqueous and ethanol extracts of Vernonia mespilifolia were >200 and 149 µg/mL, respectively, to HeLa cells. Additionally, the ethanol extract exhibited the strongest inhibitory effect on the pancreatic lipase (Half-maximal inhibitory concentration (IC50) = 331.16 µg/mL) and on α-amylase (IC50 = 781.72 µg/mL), while the aqueous extract has the strongest α-glucosidase (IC50 = 450.88 µg/mL). Our results suggest that Vernonia mespilifolia’s acclaimed anti-obesity effects could be ascribed to its ability to inhibit both carbohydrate and fat digesting enzymes.
Collapse
|
68
|
Oyebode OA, Erukainure OL, Ibeji C, Koorbanally NA, Islam MS. Crassocephalum rubens, a leafy vegetable, suppresses oxidative pancreatic and hepatic injury and inhibits key enzymes linked to type 2 diabetes: An ex vivo and in silico study. J Food Biochem 2019; 43:e12930. [PMID: 31368570 DOI: 10.1111/jfbc.12930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Crassocephalum rubens falls under the wild edible, under-cultivated traditional leafy vegetables (TLV) in Africa; it is used by locals in managing diabetes mellitus among other diseases. This study investigated the in vitro, ex vivo antioxidant and antidiabetic potentials of different extracts of C. rubens. The ameliorative effects of the extracts on Fe2+ -induced oxidative injury was investigated ex vivo together with the effects of the aqueous extract on intestinal glucose absorption and muscle glucose uptake in freshly harvested tissues from normal rats. The aqueous extract was subjected to Liquid Chromatography-Mass Spectrometry (LC-MS) analysis to identify possible bioactive compounds which were then docked with the tested enzymes through in silico modeling. The extracts exhibited antioxidant activity, inhibited α-glucosidase and lipase enzyme activities, intestinal glucose absorption and enhanced muscle glucose uptake compared to controls. Sanguisorbic acid dilactone identified through LC-MS analysis showed a high binding affinity for catalase and lipase enzymes. PRACTICAL APPLICATIONS: The results of this study suggest that the aqueous extract of C. rubens possesses better antioxidant and possible antidiabetic potentials compared to other extracts which could be associated to the synergistic action of its identified bioactive compounds.
Collapse
Affiliation(s)
- Olajumoke Arinola Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Ochuko Lucky Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Collins Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Neil Anthony Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
69
|
Vinodhini S, Rajeswari VD. Exploring the antidiabetic and anti-obesity properties of Samanea saman through in vitro and in vivo approaches. J Cell Biochem 2019; 120:1539-1549. [PMID: 30378154 DOI: 10.1002/jcb.27385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
In recent years, diabetes and obesity have become a major problem in global health care because of changes in lifestyle, food habits, and age-related metabolic disorders. Diabetes mellitus is one of the most common diseases, affecting millions of people worldwide. Currently, herbal drugs are used to control obesity and diabetes. The present study investigates the anti-obesity, antidiabetic, and antioxidant activities of Samanea saman leaf extract. A methanolic extract of S. saman leaves was prepared by a maceration method. The S. saman leaf extract was studied for its inhibitory effect on glucose utilization using specific in vitro procedures to analyze its antioxidant, anti-obesity, and antidiabetic activities via different assays, such as α-amylase and α-glucosidase inhibition assay, glucose uptake by yeast cells, nonenzymatic glycosylation assay followed by glucose diffusion assay. The outcome of the study showed that the methanolic extract strongly inhibited the pancreatic lipase, α-amylase, and glucosidase activities, compared with the standard drug. The results showed that the extract possessed considerable antioxidant and antidiabetic activities, and further studies are needed to confirm the results using an in vivo model. Thus, it is proposed that S. saman can be used as a therapeutic agent.
Collapse
Affiliation(s)
- Shanmugam Vinodhini
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
70
|
Jo KJ, Ghim J, Kim J, Lee H, Lee TG, Kim JI, Kim Y, Byun JW, Min BS, Son JS, Shim SG, Cheon WJ, Ryu SH. Water Extract of Pleurotus eryngii var. ferulae Prevents High-Fat Diet-Induced Obesity by Inhibiting Pancreatic Lipase. J Med Food 2019; 22:178-185. [PMID: 30657431 DOI: 10.1089/jmf.2018.4255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pleurotus eryngii var. ferulae (PEF) is traditionally used in the prevention and treatment of lifestyle-related diseases. In this study, we investigated the ability of PEF extract to prevent obesity and metabolic diseases and explored the underlying mechanism. Mice were fed a high-fat diet (HFD) containing PEF extract for 12 weeks, and their body weight, adipose tissue and liver weights, and lipid profiles and blood glucose levels, were monitored. Fecal triglyceride (TG) levels were also measured and olive oil-loading tests were performed. Furthermore, the effect of PEF extract on pancreatic lipase (PL) activity was examined in vitro. Treatment with PEF extract for 12 weeks resulted in a significant decrease in the HFD-induced increases in body weight, white adipose tissue weight, liver weights, and lipid profiles, and improved glucose tolerance and insulin sensitivity. To assess the mechanism underlying the effect of PEF extract on obesity and diabetes, we investigated its role in inhibiting lipid absorption. Consumption of an HFD containing PEF extract significantly increased the TG level in feces compared with the controls, suggesting inhibition of TG absorption in the digestive tract. Furthermore, PEF extract suppressed the increase in serum TG levels resulting from oral administration of a lipid emulsion to mice, confirming inhibition of TG absorption. Moreover, PEF extract inhibited PL activity in vitro. Our combined results indicate that the anti-obesity and antidiabetic effect of PEF extract in mice fed an HFD may be caused by inhibition of lipid absorption as a result of reduced PL activity.
Collapse
Affiliation(s)
- Kyung-Jin Jo
- 1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaewang Ghim
- 2 NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Jaeyoon Kim
- 3 School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyengji Lee
- 1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Taehoon G Lee
- 2 NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Jong-In Kim
- 1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngmi Kim
- 1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong Won Byun
- 1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Byung Sun Min
- 4 College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongsan-si, Republic of Korea
| | - Jae Sun Son
- 5 Gyeongsangbuk-do Forest Environment Research Institute, Gyeongju, Republic of Korea
| | - Sang Gap Shim
- 5 Gyeongsangbuk-do Forest Environment Research Institute, Gyeongju, Republic of Korea
| | - Woo Jae Cheon
- 5 Gyeongsangbuk-do Forest Environment Research Institute, Gyeongju, Republic of Korea
| | - Sung Ho Ryu
- 1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
71
|
Yu SC, Chen TC, Hou YT, Wan L, Tsai FJ, Tsai Y. β-Sitosterol-2-hydroxypropyl-β-cyclodextrin inclusion complex: Characterization and inhibitory effect on adipogenesis in 3T3-L1 pre-adipocytes. Steroids 2018; 140:196-201. [PMID: 30176257 DOI: 10.1016/j.steroids.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023]
Abstract
β-Sitosterol (Sit) has been used as a functional food additive. Among its many beneficial effects, this phytosterol plays a role in controlling obesity by inhibiting the adipogenesis process of pre-adipocytes. However, the highly lipophilic character of Sit limits its bioavailability. In the present study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to form a complex with Sit, namely the Sit-HP-β-CD inclusion complex, and the inhibitory effect of this complex on adipogenesis in the 3T3-L1 pre-adipocyte cell line was investigated. The results of DSC, TLC, 1H NMR spectroscopy, and 2D ROESY showed that the Sit-HP-β-CD inclusion complex was successfully synthesized. In addition, the inhibitory effect of the Sit-HP-β-CD inclusion complex on adipogenesis was evaluated using the Oil Red O staining method and western blot analysis after a 14-day adipogenesis induction in 3T3-L1 pre-adipocytes. The results showed that the Sit-HP-β-CD inclusion complex had a higher efficiency than Sit in reducing intracellular lipid accumulation and the expression levels of PPARγ and FAS in 3T3-L1 cells, suggesting that the inhibitory effect on adipogenesis was improved by the formation of the Sit and HP-β-CD complex.
Collapse
Affiliation(s)
- Song-Cu Yu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ta Chen Chen
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ting Hou
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lei Wan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
72
|
Acalypha Wilkesiana 'Java White': Identification of Some Bioactive Compounds by Gc-Ms and Their Effects on Key Enzymes Linked to Type 2 Diabete. ACTA PHARMACEUTICA 2018; 68:425-439. [PMID: 31259705 DOI: 10.2478/acph-2018-0037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
In this study, we identified bioactive compounds from the ethanolic extracts of the leaves, stem bark and root bark of Acalypha wilkesiana through GC-MS analysis and investigated the effects of these extracts on some of the enzymes linked to type 2 diabetes. Plant parts were extracted sequentially with ethyl acetate, ethanol and water. GC-MS analysis revealed the presence of long-chain alkyl acids, esters, ketones and alcohols including phytol and phytol acetate along with some secondary metabolites such as xanthone, vitamin E and various types of sterols including stigmasterol, campesterol and sitosterol. Ethanolic extracts of all the parts showed a dose- -dependent inhibition of α-glucosidase and α-amylase activity. The extracts also demonstrated anti-lipase activity. The ethanolic extract of root bark showed the highest inhibition of enzymes compared to other extracts. The EC50 values (concentrations for 50 % inhibition) of α-glucosidase, α-amylase and lipase inhibition were 35.75 ± 1.95, 6.25 ± 1.05 and 101.33 ± 5.21 μg mL-1, resp. The study suggests that A. wilkesiana ethanolic extracts have the ability to inhibit the activity of enzymes linked to type 2 diabetes. Further studies are needed to confirm the responsible bioactive compounds in this regard.
Collapse
|
73
|
Aalim H, Belwal T, Wang Y, Luo Z, Hu J. Purification and identification of rice bran (
Oryza sativa L
.) phenolic compounds with
in‐vitro
antioxidant and antidiabetic activity using macroporous resins. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13985] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Halah Aalim
- Zhejiang Key Laboratory for Agri‐Food Processing Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Tarun Belwal
- Zhejiang Key Laboratory for Agri‐Food Processing Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Youyong Wang
- Zhejiang Key Laboratory for Agri‐Food Processing Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Zisheng Luo
- Zhejiang Key Laboratory for Agri‐Food Processing Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Juwu Hu
- Jiangxi Academy of Sciences Nanchang 330029 China
| |
Collapse
|
74
|
Oyebode OA, Erukainure OL, Chukwuma CI, Ibeji CU, Koorbanally NA, Islam S. Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Biomed Pharmacother 2018; 106:1116-1125. [DOI: 10.1016/j.biopha.2018.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
|
75
|
Muhammadi, Shafiq S. Genetic, structural and pharmacological characterization of polymannuronate synthesized by algG mutant indigenous soil bacterium Pseudomonas aeruginosa CMG1421. J Appl Microbiol 2018; 126:113-126. [PMID: 30179291 DOI: 10.1111/jam.14098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
Abstract
AIMS It was aimed to study the genetic, structural and pharmacological characteristics of polymannuronate synthesized by Pseudomonas aeruginosa CMG1421. METHODS AND RESULTS Synthesis was analysed by transmission electron microscopy, FT/IR, 1 H-NMR and gel permeation chromatography followed by in vitro bioassays. Colony PCR followed by sequence analysis was employed for screening of structural genes. FT/IR analysis indicated the presence of hydroxyl, carboxyl and O-acetyl groups linked to mannuronate. 1 H-NMR analysis indicated M-M bond characteristics for mannuronic acid residues. The average relative molecular weight was found in range of 20 000-250 000 Da. The amplified DNA fragments were identified as 16S rRNA, algD, alg8, alg44, algG, algE and algX genes showing 99-100% homology with those of P. aeruginosa. However, in algG there were transition mutations of adenine and cytosine at nucleotide position 766 and 769, and 878 and 881 respectively. Polymannuronate and its oligomannuronates respectively showed moderate and significant antioxidant, anti-inflammatory, anti-obesity and antidiabetic activities. CONCLUSIONS Alginate synthesized by ∆algG mutant P. aeruginosa CMG1421 was bioactive and solely consists of acetylated d-mannuronates. SIGNIFICANCE AND IMPACT OF THE STUDY We investigated biocompatible, nonimmunogenic and nontoxic pharmacological agents for treatment and attenuation of degenerative, inflammatory, autoimmune disease, and metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Muhammadi
- Centre for Bioresource Research, Islamabad, Pakistan
| | - S Shafiq
- Centre for Bioresource Research, Islamabad, Pakistan
| |
Collapse
|
76
|
Chukwuma CI, Islam MS, Amonsou EO. A comparative study on the physicochemical, anti-oxidative, anti-hyperglycemic and anti-lipidemic properties of amadumbe (Colocasia esculenta
) and okra (Abelmoschus esculentus
) mucilage. J Food Biochem 2018. [DOI: 10.1111/jfbc.12601] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Chika Ifeanyi Chukwuma
- Faculty of Applied Sciences, Department of Biotechnology and Food Technology; Durban University of Technology; Durban South Africa
- Faculty of Health Sciences, Department of Pharmacology; University of the Free State; Bloemfontein South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences; University of KwaZulu-Natal (Westville Campus); Durban South Africa
| | - Eric Oscar Amonsou
- Faculty of Applied Sciences, Department of Biotechnology and Food Technology; Durban University of Technology; Durban South Africa
| |
Collapse
|
77
|
Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chem 2018; 257:341-349. [DOI: 10.1016/j.foodchem.2018.03.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 11/19/2022]
|
78
|
Suraiya S, Lee JM, Cho HJ, Jang WJ, Kim DG, Kim YO, Kong IS. Monascus spp. fermented brown seaweeds extracts enhance bio-functional activities. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Hypoglycemic, anti-glycation and antioxidant in vitro properties of two Vaccinium species from Macaronesia: A relation to their phenolic composition. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
80
|
Im KH, Choi J, Baek SA, Lee TS. Hyperlipidemic Inhibitory Effects of Phellinus pini in Rats Fed with a High Fat and Cholesterol Diet. MYCOBIOLOGY 2018; 46:159-167. [PMID: 29963318 PMCID: PMC6023259 DOI: 10.1080/12298093.2018.1461316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 05/14/2023]
Abstract
This study evaluated the in vitro and in vivo hypolipidemic effects of the medicinal mushroom Phellinus pini. The methanol extract (ME) of the fruiting body of Ph. pini was active against pancreatic lipase and cholesterol esterase with 99.14% and 67.23% inhibited activity at 1.0 mg/mL, respectively. It also inhibited 81.81% and 55.33% of α-glucosidase and α-amylase activities, respectively, at 2.0 mg/mL. Hyperlipidemia as induced by feeding rats with a high fat and cholesterol diet (HFC). HFC supplemented with a 5% fruiting body powder of Ph. pini (HFC + PhP) significantly reduced plasma total cholesterol, low-density lipoprotein cholesterol, and triglycerides in rats compared with HFC. The reduced levels were comparable to rats fed the normal control diet (NC). The atherogenic index of HFC + PhP rats was significantly lower than that of the HFC rats. The excretion of fecal total lipid and cholesterol in the HFC + PhP rats was significantly higher than those in the NC and HFC rats. Histopathological examinations demonstrated scant deposition of lipids in the liver of rats fed HFC + PhP. The dietary supplementation with the fruiting body powder provided natural plasma lipid and glucose lowering effects in experimental rats without adverse effects on the plasma biochemical parameters and liver function related enzyme activities. Therefore, the hypolipidemic effects of Ph. pini may be due to the inhibitory effects on pancreatic lipase, cholesterol esterase, α-glucosidase, and α-amylase, and excretion of excess lipids and cholesterol in the feces.
Collapse
Affiliation(s)
- Kyung Hoan Im
- Division of Life Sciences, Incheon National University, Incheon, South Korea
| | - Jaehyuk Choi
- Division of Life Sciences, Incheon National University, Incheon, South Korea
| | - Seung-A Baek
- Division of Life Sciences, Incheon National University, Incheon, South Korea
| | - Tae Soo Lee
- Division of Life Sciences, Incheon National University, Incheon, South Korea
- CONTACT Tae Soo Lee
| |
Collapse
|
81
|
Bautista-Expósito S, Peñas E, Silván JM, Frias J, Martínez-Villaluenga C. pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chem 2017; 248:262-271. [PMID: 29329853 DOI: 10.1016/j.foodchem.2017.12.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022]
Abstract
Lentil fermentation has a promising potential as a strategy for development of multifunctional ingredients targeting metabolic syndrome (MetS). Response surface methodology was applied to optimize lentil fermentation and study its effects on generation of peptides, soluble phenolics and bioactivities. Fermentation using Lactobacillus plantarum and Savinase® 16 L was carried out at different pH (6.5-8.5) and times (5.5-30 h). Analysis of variance was performed to evaluate linear, quadratic and interaction effects between fermentation parameters. pH positively affected peptides, soluble phenolic compounds and antioxidant activity whereas a negative impact on lipase inhibitory activity was observed (p < .0001). Time showed positive effect on proteolysis and negatively affected angiotensin I-converting enzyme inhibitory activity of fermented lentil (p < .0001). Multivariate optimization led to high levels of peptides, soluble phenolics and bioactivity of fermented lentil at pH 8.5 and 11.6 h. In conclusion, this study might contribute to the development of functional ingredients from lentil for MetS management.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Manuel Silván
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | |
Collapse
|
82
|
Ganjayi MS, Meriga B, Hari B, Oruganti L, Dasari S, Mopuri R. PolyPhenolic rich fraction of Terminalia paniculata attenuates obesity through inhibition of pancreatic amylase, lipase and 3T3-L1 adipocyte differentiation. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2017; 10:19-25. [DOI: 10.1016/j.jnim.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
83
|
Spínola V, Castilho PC. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro). PHYTOCHEMISTRY 2017; 143:29-35. [PMID: 28755585 DOI: 10.1016/j.phytochem.2017.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The study was performed to assess, for the first time, the in vitro anti-diabetic potential of ten Asteraceae plant extracts to inhibit the activity of digestive enzymes (α-amylase, α-, β-glucosidases and lipase) responsible for hydrolysis/digestion of sugar and lipids. Prevention of advanced glycation end-products (AGEs) formation was evaluated in bovine serum albumin/ribose glycation reaction model. The phytochemical profiles and caffeoylquinic acids (CQAs) contents were determined for the methanolic extract of each plant. Analyzed plant extracts exhibited significant inhibitory activity against key digestive enzymes linked to type II diabetes and obesity. A strong inhibition was observed for glucosidases and mild activity towards amylase and lipase (compared to reference compounds). Moreover, some extracts exhibited potent ability to prevent formation of AGEs, implicated in some diabetic complications. Caffeoylquinic acids were dominant in all plant extracts and findings demonstrate that these compounds are the most relevant hypoglycemic and anti-glycation agents. From the obtained results, Argyranthemum pinnatifidum, Helichrysum melaleucum, and Phagnalon lowei are good candidates for further development of phyto-pharmaceutical preparations as complementary therapy for diabetes and obesity control.
Collapse
Affiliation(s)
- Vítor Spínola
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Paula C Castilho
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
84
|
Bark Extracts of Ceylon Cinnamon Possess Antilipidemic Activities and Bind Bile Acids In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7347219. [PMID: 28808476 PMCID: PMC5541800 DOI: 10.1155/2017/7347219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/13/2017] [Accepted: 06/01/2017] [Indexed: 01/06/2023]
Abstract
Ethanol (95%) and dichloromethane : methanol (1 : 1) bark extracts of authenticated Ceylon cinnamon were investigated for range of antilipidemic activities (ALA): HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities and bile acids binding in vitro. Individual compounds in bark extracts were also evaluated. Bark extracts showed ALA in all the assays studied. The IC50 (μg/mL) values ranged within 153.07 ± 8.38–277.13 ± 32.18, 297.57 ± 11.78–301.09 ± 4.05, 30.61 ± 0.79–34.05 ± 0.41, and 231.96 ± 9.22–478.89 ± 9.27, respectively, for HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities. The bile acids binding (3 mg/mL) for taurocholate, glycodeoxycholate, and chenodeoxycholate ranged within 19.74 ± 0.31–20.22 ± 0.31, 21.97 ± 2.21–26.97 ± 1.61, and 16.11 ± 1.42–19.11 ± 1.52%, respectively. The observed ALA were moderate compared to the reference drugs studied. Individual compounds in bark extracts ranged within 2.14 ± 0.28–101.91 ± 3.61 and 0.42 ± 0.03–49.12 ± 1.89 mg/g of extract. Cinnamaldehyde and gallic acid were the highest and the lowest among the tested compounds. The ethanol extract had highest quantity of individual compounds and ALA investigated. Properties observed indicate usefulness of Ceylon cinnamon bark in managing hyperlipidemia and obesity worldwide. Further, this study provides scientific evidence for the traditional claim that Ceylon cinnamon has antilipidemic activities.
Collapse
|
85
|
Medicinal plants and phytochemicals with anti-obesogenic potentials: A review. Biomed Pharmacother 2017; 89:1442-1452. [DOI: 10.1016/j.biopha.2017.02.108] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023] Open
|
86
|
Abu-Gharbieh E, Shehab NG. Therapeutic potentials of Crataegus azarolus var. eu- azarolus Maire leaves and its isolated compounds. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:218. [PMID: 28420354 PMCID: PMC5395866 DOI: 10.1186/s12906-017-1729-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Background Hyperglycemia is a complicated condition accompanied with high incidence of infection and dyslipidemia. This study aimed to explore the phyto-constituents of Crataegus azarolus var. eu- azarolus Maire leaves, and to evaluate the therapeutic potentials particularly antimicrobial, antihyperglycemic and antihyperlipidemic of the extract and the isolated compound (3β-O-acetyl ursolic acid). Methods Total phenolics and flavonoidal contents were measured by RP-HPLC analysis. Free radicals scavenging activity of different extraction solvents was tested in-vitro on DPPH free radicals. The antimicrobial activity of the ethanolic extract and its fractions as well as the isolated compounds were evaluated in-vitro on variable microorganisms. Animal models were used to evaluate the antihyperglycemic and antihyperlipidemic activities of the ethanolic extract along with the isolated compound (3β-O acetyl ursolic acid). Results RP- HPLC analysis of the phenolics revealed high content of rutin, salicylic and ellagic acids. Six compounds belonging to triterpenes and phenolics were isolated from chloroform and n-butanol fractions namely: ursolic acid, 3β-O-acetyl ursolic acid, ellagic acid, quercetin 3-O-β methyl ether, rutin and apigenin7-O-rutinoside. Ethanolic extract showed the highest DPPH radical scavenger activity compared to other solvents. Ethanolic extract, hexane fraction, ursolic acid, 3β-O acetyl ursolic acid and quercetin 3-O-methyl ether showed variable antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Administration of the ethanolic extract or 3β-O acetyl ursolic acid orally to the mice reduced blood glucose significantly in a time- and dose-dependent manner. Ethanolic extract significantly reduced LDL-C, VLDL-C, TC and TG and increased HDL-C in rats. Ethanolic extract and 3β-O acetyl ursolic acid reduced in-vitro activity of pancreatic lipase. Conclusion This study reveals that Crataegus azarolus var. eu- azarolus Maire has the efficiency to control hyperglycemia with its associated complications. This study is the first to evaluate antihyperglycemic and antihyperlipidemic potentials of 3β-O acetyl ursolic acid. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1729-9) contains supplementary material, which is available to authorized users.
Collapse
|
87
|
Mangal P, Khare P, Jagtap S, Bishnoi M, Kondepudi KK, Bhutani KK. Screening of six Ayurvedic medicinal plants for anti-obesity potential: An investigation on bioactive constituents from Oroxylum indicum (L.) Kurz bark. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:138-146. [PMID: 27469197 DOI: 10.1016/j.jep.2016.07.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an effort to identify newer anti-obesity lead(s) we have selected 13 plant materials from the six plant species which have been reported in Indian Ayurvedic medicine as remedy against complications affecting glucose and lipid homeostasis. AIM OF THE STUDY In vitro screening of six Indian Ayurvedic medicinal plants on anti-adipogenic and pancreatic lipase (PL) inhibition potential followed by bioactivity guided isolation from most active plant material. MATERIALS AND METHODS In vitro anti-adipogenic assay using 3T3-L1 preadipocytes and pancreatic lipase (PL) inhibition assay were performed for hexanes, dichloromethane, ethyl acetate and methanolic extracts of all the plant materials. Bioactivity guided isolation approach was used to identify active constituent for anti-adipogenesis and PL inhibition assay. Inhibition of lipid accumulation and adipogenic transcription factor was measured by oil Red 'O' staining and quantitative real-time PCR method respectively. RESULTS Ethyl acetate extract of Oroxylum indicum bark was found to be most active in screening of anti-adipogenesis (59.12±1.66% lipid accumulation as compared to control at 50μg/mL dose) and PL inhibition (89.12±6.87% PL inhibition at 250μg/mL dose) assays. Further, three bioactive flavonoids were isolated and identified as oroxylin A, chrysin and baicalein from O. indicum bark. Oroxylin A, chrysin, and baicalein were inhibited lipid accumulation in 3T3-L1 preadipocytes (75.00±5.76%, 70.21±4.23% and 77.21±5.49% lipid accumulation respectively in comparison to control at 50μM dose) and PL enzyme (69.86±2.96%, 52.08±2.14% and 45.06±2.42% PL inhibition respectively at 250μg/mL dose). In addition, oroxylin A and chrysin also inhibited PPARγ and C/EBPα, major adipogenic transcription factors, in 3T3L-1 preadipocytes during adipogenesis process at 50μM dose. CONCLUSION The present study augurs the anti-obesity potential of well practiced Ayurvedic herb O. indicum and its flavonoids.
Collapse
Affiliation(s)
- Priyanka Mangal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 160071, India
| | - Sneha Jagtap
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 160071, India
| | | | - Kamlesh Kumar Bhutani
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
88
|
Fabroni S, Ballistreri G, Amenta M, Romeo FV, Rapisarda P. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4713-4723. [PMID: 26970531 DOI: 10.1002/jsfa.7708] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/01/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The phytotherapic treatment of overweight and/or moderate obesity is growing widely, thus there is a great interest towards the phenolic compounds of fruits and vegetables which may inhibit pancreatic lipase enzyme. In this study, we report the chemical composition and in vitro pancreatic lipase inhibitory activity of 13 freeze-dried anthocyanin-containing extracts of different Mediterranean plants: fruits (blood orange, pomegranate, blackberry, mulberry and sumac), citrus by-products (blood orange peel), citrus vegetative tissues (young lemon shoots); vegetables (red cabbage and violet cauliflower), legume seeds (black bean), cereals (black rice), and cereal processing by-products (black rice hull). Total phenols and anthocyanins were determined. Individual anthocyanins were identified by UHPLC-PDA-ESI/MSn . RESULTS Results revealed a wide variation in the distribution of anthocyanin compounds. Blood orange and pomegranate juice extracts had the highest total anthocyanin content and exhibited the strongest inhibition of pancreatic lipase in vitro. CONCLUSION Inhibitory activity was positively correlated with anthocyanin content. In appropriate formulations, anthocyanin-containing extracts could find a use as anti-obesity agents. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Simona Fabroni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia 190, 95024, Acireale, Italy
| | - Gabriele Ballistreri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia 190, 95024, Acireale, Italy
| | - Margherita Amenta
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia 190, 95024, Acireale, Italy
| | - Flora V Romeo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia 190, 95024, Acireale, Italy
| | - Paolo Rapisarda
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia 190, 95024, Acireale, Italy.
| |
Collapse
|
89
|
Kalegowda P, Chauhan AS, Nanjaraj Urs SM. Opuntia dillenii (Ker-Gawl) Haw cladode mucilage: Physico-chemical, rheological and functional behavior. Carbohydr Polym 2016; 157:1057-1064. [PMID: 27987807 DOI: 10.1016/j.carbpol.2016.10.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/01/2016] [Accepted: 10/23/2016] [Indexed: 01/04/2023]
Abstract
The yield of mucilage extracted from cladodes of Opuntia dillenii (Ker-Gawl) Haw in aqueous medium was 6.2%. The neutral sugar comprised of arabinose (38.80%), galactose (33.00%), rhamnose (15.70%), xylose (5.10%), and glucose (5.10%). The mucilage showed pseudo plastic behavior with good swelling index (20%), water holding capacity (g water/g dry sample; 4±0.10) and micrometric properties. In addition, mucilage presented intrinsic viscosity of 3.7 dL/g with average molecular weight of 1.9×103kDa. The FTIR and NMR spectra of extracted mucilage showed characteristic polysaccharide nature. Further, the mucilage exhibited anti-obesity property through lipase inhibition. These findings could highlight that isolated mucilage could be exploited as an additive in food and pharmaceutical sector.
Collapse
Affiliation(s)
- Pavithra Kalegowda
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru -570 020, Karnataka, India
| | - Attar Singh Chauhan
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru -570 020, Karnataka, India
| | - Shashirekha Mysore Nanjaraj Urs
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru -570 020, Karnataka, India.
| |
Collapse
|
90
|
Spínola V, Pinto J, Castilho PC. In vitro studies on the effect of watercress juice on digestive enzymes relevant to type 2 diabetes and obesity and antioxidant activity. J Food Biochem 2016. [DOI: 10.1111/jfbc.12335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Vítor Spínola
- CQM-Centro de Química da Madeira, Universidade da Madeira; Campus da Penteada Funchal 9020-105 Portugal
| | - Joana Pinto
- CQM-Centro de Química da Madeira, Universidade da Madeira; Campus da Penteada Funchal 9020-105 Portugal
| | - Paula C. Castilho
- CQM-Centro de Química da Madeira, Universidade da Madeira; Campus da Penteada Funchal 9020-105 Portugal
| |
Collapse
|
91
|
Ha MT, Tran MH, Ah KJ, Jo KJ, Kim J, Kim WD, Cheon WJ, Woo MH, Ryu SH, Min BS. Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morus alba L. Bioorg Med Chem Lett 2016; 26:2788-2794. [PMID: 27156775 DOI: 10.1016/j.bmcl.2016.04.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 12/25/2022]
Abstract
Detailed phytochemical investigation from the root bark of Morus alba resulted in the isolation of eleven new compounds, including seven 2-arylbenzofuran derivatives (morusalfurans A-G), three flavonoids (morusalnols A-C), and one geranylated stilbene (morusibene A), as well as 22 known compounds. The structures of the identified compounds were elucidated based on a comprehensive analysis of spectroscopic data and Mosher's method. Compounds 2, 3, 6-8, 11, 23, 24, and 29 showed potent inhibition of PL in comparison with the positive control treatment (orlistat, IC50=0.012μM), with IC50 values ranging from 0.09 to 0.92μM.
Collapse
Affiliation(s)
- Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, Republic of Korea; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Manh Hung Tran
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, Republic of Korea
| | - Kim Jeong Ah
- College of Pharmacy, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Jo
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaewang Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Wook Dong Kim
- Gyeongsanbuk-do Forest & Environment Research Institute, Gyeongju 780-936, Republic of Korea
| | - Woo Jae Cheon
- Gyeongsanbuk-do Forest & Environment Research Institute, Gyeongju 780-936, Republic of Korea
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, Republic of Korea.
| |
Collapse
|
92
|
Heo JI, Kim JH, Lee JM, Kho YJ, Lim SS, Park JB, Kim J, Kim SC, Lee JY. FOXO3a Activation by oxyresveratrol ofMorus bombyciskoidzumi extract mediates antioxidant activity. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1143030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
93
|
Dechakhamphu A, Wongchum N. Screening for anti-pancreatic lipase properties of 28 traditional Thai medicinal herbs. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
94
|
Gupta M, Saxena S, Goyal D. Lipase inhibitory activity of endophytic fungal species of Aegle marmelos: a bioresource for potential pancreatic lipase inhibitors. Symbiosis 2015. [DOI: 10.1007/s13199-015-0311-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
95
|
Calabrone L, Larocca M, Marzocco S, Martelli G, Rossano R. Total Phenols and Flavonoids Content, Antioxidant Capacity and Lipase Inhibition of Root and Leaf Horseradish (<i>Armoracia rusticana</i>) Extracts. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/fns.2015.61008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
96
|
Roh C, Lee SJ, Nasir Uddin SM, Kim JK, Kang C. Characterization of anti-obesity compounds from soybean paste. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2390-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
97
|
Yang SO, Park HR, Sohn ES, Lee SW, Kim HD, Kim YC, Kim KH, Na SW, Choi HK, Arasu MV, Kim YO. Classification of ginseng berry (Panax ginseng C.A. MEYER) extract using 1H NMR spectroscopy and its inhibition of lipid accumulation in 3 T3-L1 cells. Altern Ther Health Med 2014; 14:455. [PMID: 25418343 PMCID: PMC4289160 DOI: 10.1186/1472-6882-14-455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/13/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Panax ginseng is a famous traditional medicine in Korea for its beneficial effect on obesity, cardiac and liver associated diseases. The aim of this study was to investigate the metabolite in Panax ginseng (P. ginseng, Aralicaceae) berries depending on the ripen stages and evaluate its potential inhibition on adipocyte differentiation in 3 T3-L1 cells. METHODS Different ripening stage samples of P. ginseng berry were analyzed through global metabolite profiling by NMR spectroscopy. Lipid accumulation in the cells was analyzed by Oil Red O staining. RESULTS The PLS-DA clearly distinguished P. ginseng berry extract (PGBE) according to the partial ripe (PR), ripe(R) and fully ripe (FR) stage. Lipid accumulation of PGBE was examined by measuring triglyceride content and Oil-Red O staining. These results suggested that the FR stage of PGBE decrease in lipid accumulation during adipocyte differentiation and the amount of threonine, asparagine, fumarate, tyraine, tyrosine, and phenylalanine increased with longer ripening of ginseng berries. CONCLUSION Metabolite profiling of P. ginseng was identified by 1H NMR spectra. P. ginseng extract efficiently inhibits adipogenesis in 3 T3-L1 adipocytes concluded that the P. ginseng has the antiobesity properties.
Collapse
|
98
|
Lim SM, Goh YM, Kuan WB, Loh SP. Effect of germinated brown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes. Lipids Health Dis 2014; 13:169. [PMID: 25367070 PMCID: PMC4232653 DOI: 10.1186/1476-511x-13-169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This study investigated anti-obesity effects of seven different solvent (n-hexane, toluene, dicholoromethane, ethyl acetate, absolute methanol, 80% methanol and deionized water) extracts of germinated brown rice (GBR) on pancreatic lipase activity, adipogenesis and lipolysis in 3T3-L1 adipocytes. METHODS GBR were extracted separately by employing different solvents with ultrasound-assisted. Pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm. Adipogenesis and lipolysis were assayed in fully differentiated 3T3-L1 adipocytes by using Oil Red O staining and glycerol release measurement. RESULTS GBR extract using hexane showed the highest inhibitory effect (13.58 ± 0.860%) at concentration of 200 μg/ml followed by hexane extract at 100 μg/ml (9.98 ± 1.048%) while ethyl acetate extract showed the lowest (2.62 ± 0.677%) at concentration of 200 μg/ml on pancreatic lipase activity. Water extract at 300 μg/ml showed 61.55 ± 3.824% of Oil Red O staining material (OROSM), a marker of adipogenesis. It significantly decrease (p < 0.05) lipid accumulation than control (OROSM = 100%), follow by ethyl acetate extract at 300 μg/ml (OROSM = 65.17 ± 3.131%). All the GBR extracts induced lipolysis with 1.22-1.83 fold of greater glycerol release than control. CONCLUSIONS GBR extracts especially the least polar and intermediate polar solvent extracts exhibited inhibitory effect on pancreatic lipase, decrease fat accumulation by adipocyte differentiation inhibition, and stimulate lipolysis on adipocytes. Therefore, GBR could be furthered study and developed as a functional food in helping the treatment and/or prevention of obesity.
Collapse
Affiliation(s)
- See Meng Lim
- />Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Yong Meng Goh
- />Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Wen Bin Kuan
- />Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Su Peng Loh
- />Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
99
|
Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes. Molecules 2014; 19:16656-71. [PMID: 25322285 PMCID: PMC6270905 DOI: 10.3390/molecules191016656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/22/2014] [Accepted: 10/10/2014] [Indexed: 12/05/2022] Open
Abstract
Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds.
Collapse
|
100
|
Marrelli M, Loizzo MR, Nicoletti M, Menichini F, Conforti F. In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with α-amylase and pancreatic lipase inhibitory activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2217-2224. [PMID: 24535986 DOI: 10.1002/jsfa.6544] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND Inhibition of digestive enzymes is one of the most widely studied mechanisms used to determine the potential efficacy of natural products as anti-obesity agents. In vitro studies reported here were performed to evaluate the inhibitory activity of formulations of edible plants from Italy on amylase and lipase by monitoring the hydrolysis of nitrophenyl caprilate and the hydrolysis of glycoside bonds in digestible carbohydrate foods. RESULTS The formulation obtained from Capparis sicula exhibited the strongest inhibitory effect on pancreatic lipase (IC50 = 0.53 mg mL(-1) ) while the Borago officinalis formulation exhibited the strongest inhibitory effect on α-amylase (IC50 = 31.61 µg mL(-1) ). In order to characterise the extracts, high-performance thin-layer chromatography analysis of the formulations was performed, revealing the predominance of (±)-catechin in Mentha aquatica formulation, rutin in C. sicula, and caffeic acid and chlorogenic acid in Echium vulgare. CONCLUSION The results obtained indicated that the extracts of C. sicula and B. officinalis could be good candidates for further studies to isolate pancreatic lipase and α-amylase inhibitors, respectively.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-8736, Rende, (CS), Italy
| | | | | | | | | |
Collapse
|