51
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
52
|
Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2018; 65:37-55. [PMID: 30213667 DOI: 10.1016/j.mam.2018.09.002] [Citation(s) in RCA: 755] [Impact Index Per Article: 107.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
The progression of chronic liver diseases (CLD), irrespective of etiology, involves chronic parenchymal injury, persistent activation of inflammatory response as well as sustained activation of liver fibrogenesis and wound healing response. Liver fibrogenesis, is a dynamic, highly integrated molecular, cellular and tissue process responsible for driving the excess accumulation of extracellular matrix (ECM) components (i.e., liver fibrosis) sustained by an eterogeneous population of hepatic myofibroblasts (MFs). The process of liver fibrogenesis recognizes a number of common and etiology-independent mechanisms and events but it is also significantly influenced by the specific etiology, as also reflected by peculiar morphological patterns of liver fibrosis development. In this review we will analyze the most relevant established and/or emerging pathophysiological issues underlying CLD progression with a focus on the role of critical hepatic cell populations, mechanisms and signaling pathways involved, as they represent potential therapeutic targets, to finally analyze selected and relevant clinical issues.
Collapse
|
53
|
Mariotti V, Cadamuro M, Spirli C, Fiorotto R, Strazzabosco M, Fabris L. Animal models of cholestasis: An update on inflammatory cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1865:954-964. [PMID: 30398152 DOI: 10.1016/j.bbadis.2018.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
Cholestasis is a frequent clinical condition initiating or complicating chronic liver diseases, particularly cholangiopathies, where the biliary epithelium is the primary target of the pathogenetic sequence. Until a few decades ago, understanding of cholestasis relied mostly on the experimental model of bile duct ligation in rodents. However, a simple model of biliary obstruction cannot reproduce the complex mechanisms and networks leading to cholestasis in cholangiopathies. These networks are underpinned by an intricate dysregulation of pro-inflammatory and pro-fibrotic signals involving besides cholangiocytes, multiple cell elements of both innate and adaptive immunity. Therefore, in the last years, a wide range of animal models of biliary injury have been developed, mostly in mice, following three main approaches, chemical induction, immunization and genetic manipulation. In this review, we will give an update of the animal models of the two main cholangiopathies, primary sclerosing cholangitis and primary biliary cholangitis, which have provided us with the most relevant insights into the pathogenesis of these still controversial diseases.
Collapse
Affiliation(s)
- Valeria Mariotti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Carlo Spirli
- Section of Digestive Disease, Liver Center, Yale University, Yale, USA
| | - Romina Fiorotto
- Section of Digestive Disease, Liver Center, Yale University, Yale, USA
| | | | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy; Section of Digestive Disease, Liver Center, Yale University, Yale, USA.
| |
Collapse
|
54
|
Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol 2018; 68-69:435-451. [PMID: 29656147 DOI: 10.1016/j.matbio.2018.04.006] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis and in particular cirrhosis are the major causes of morbidity and mortality of patients with chronic liver disease. Their prevention or reversal have become major endpoints in clinical trials with novel liver specific drugs. Remarkable progress has been made with therapies that efficiently address the cause of the underlying liver disease, as in chronic hepatitis B and C. Highly effective antiviral therapy can prevent progression or even induce reversal in the majority of patients, but such treatment remains elusive for the majority of liver patients with advanced alcoholic or nonalcoholic steatohepatitis, genetic or autoimmune liver diseases. Moreover, drugs that would speed up fibrosis reversal are needed for patients with cirrhosis, since even with effective causal therapy reversal is slow or the disease may further progress. Therefore, highly efficient and specific antifibrotic agents are needed that can address advanced fibrosis, i.e., the detrimental downstream result of all chronic liver diseases. This review discusses targeted antifibrotic therapies that address molecules and mechanisms that are central to fibrogenesis or fibrolysis, including strategies that allow targeting of activated hepatic stellate cells and myofibroblasts and other fibrogenic effector cells. Focus is on collagen synthesis, integrins and cells and mechanisms specific including specific downregulation of TGFbeta signaling, major extracellular matrix (ECM) components, ECM-crosslinking, and ECM-receptors such as integrins and discoidin domain receptors, ECM-crosslinking and methods for targeted delivery of small interfering RNA, antisense oligonucleotides and small molecules to increase potency and reduce side effects. With an increased understanding of the biology of the ECM and liver fibrosis and an improved preclinical validation, the translation of these approaches to the clinic is currently ongoing. Application to patients with liver fibrosis and a personalized treatment is tightly linked to the development of noninvasive biomarkers of fibrosis, fibrogenesis and fibrolysis.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Muhammad Ashfaq-Khan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Ai Ting Yang
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
55
|
Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018; 129:37-53. [PMID: 29414674 DOI: 10.1016/j.addr.2018.01.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex process, which ultimately leads to fibrosis if not repaired well. Pathologically very similar to fibrosis is the tumor stroma, found in several solid tumors which are regarded as wounds that do not heal. Integrins are heterodimeric surface receptors which control various physiological cellular functions. Additionally, integrins also sense ECM-induced extracellular changes during pathological events, leading to cellular responses, which influence ECM remodeling. The purpose and scope of this review is to introduce integrins as key targets for therapeutics and drug delivery within the scope of wound healing, fibrosis and the tumor stroma. This review provides a general introduction to the biology of integrins including their types, ligands, means of signaling and interaction with growth factor receptors. Furthermore, we highlight integrins as key targets for therapeutics and drug delivery, based on their biological role, expression pattern within human tissues and at cellular level. Next, therapeutic approaches targeting integrins, with a focus on clinical studies, and targeted drug delivery strategies based on ligands are described.
Collapse
|
56
|
Li P, Li Y, Zhu L, Yang Z, He J, Wang L, Shang Q, Pan H, Wang H, Ma X, Li B, Fan X, Ge S, Jia R, Zhang H. Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:709-720. [DOI: 10.1016/j.bbadis.2017.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
|
57
|
Keat N, Kenny J, Chen K, Onega M, Garman N, Slack RJ, Parker CA, Lumbers RT, Hallett W, Saleem A, Passchier J, Lukey PT. A Microdose PET Study of the Safety, Immunogenicity, Biodistribution, and Radiation Dosimetry of 18F-FB-A20FMDV2 for Imaging the Integrin αvβ6. J Nucl Med Technol 2018; 46:136-143. [DOI: 10.2967/jnmt.117.203547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022] Open
|
58
|
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH. J Hepatol 2018; 68:238-250. [PMID: 29154966 DOI: 10.1016/j.jhep.2017.11.012] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
Cirrhosis has become the major liver-related clinical endpoint in non-alcoholic steatohepatitis (NASH). However, progression to cirrhosis is less predictable in NASH than in other chronic liver diseases. This is due to the complex and multifactorial aetiology of NASH, which is determined by lifestyle and nutrition, multiple genetic and epigenetic factors, and a prominent role of hepatic and extrahepatic comorbidities. Thus, modest changes in these cofactors can also induce fibrosis regression, at least in patients with precirrhotic liver disease. Fibrogenesis in NASH correlates with, but is indirectly coupled to, classical inflammation, since fibrosis progression is driven by repetitive periods of repair. While hepatocyte lipoapoptosis is a key driving force of fibrosis progression, activated hepatic stellate cells, myofibroblasts, cholangiocytes, macrophages and components of the pathological extracellular matrix are major fibrogenic effectors and thus pharmacological targets for therapies aimed at inhibition of fibrosis progression or induction of fibrosis reversal. The advent of novel, highly sensitive and specific serum biomarkers and imaging methods to assess the dynamics of liver fibrosis in NASH will improve detection, stratification and follow-up of patients with progressive NASH . These non-invasive tools will also promote the clinical development of antifibrotic drugs, by permitting the design of lean proof-of-concept studies, and enabling development of a personalised antifibrotic therapy for patients with rapid fibrosis progression or advanced disease.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Rambabu Surabattula
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Xiao Yu Wang
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
59
|
Cargnoni A, Farigu S, Cotti Piccinelli E, Bonassi Signoroni P, Romele P, Vanosi G, Toschi I, Cesari V, Barros Sant'Anna L, Magatti M, Silini AR, Parolini O. Effect of human amniotic epithelial cells on pro-fibrogenic resident hepatic cells in a rat model of liver fibrosis. J Cell Mol Med 2017; 22:1202-1213. [PMID: 29105277 PMCID: PMC5783829 DOI: 10.1111/jcmm.13396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022] Open
Abstract
Myofibroblasts are key fibrogenic cells responsible for excessive extracellular matrix synthesis characterizing the fibrotic lesion. In liver fibrosis, myofibroblasts derive either from activation of hepatic stellate cells (HSC) and portal fibroblasts (PF), or from the activation of fibroblasts that originate from ductular epithelial cells undergoing epithelial-mesenchymal transition. Ductular cells can also indirectly promote myofibroblast generation by activating TGF-β, the main fibrogenic growth factor, through αvβ6 integrin. In addition, after liver injury, liver sinusoidal cells can lose their ability to maintain HSC quiescence, thus favouring HSC differentiation towards myofibroblasts. The amniotic membrane and epithelial cells (hAEC) derived thereof have been shown to decrease hepatic myofibroblast levels in rodents with liver fibrosis. In this study, in a rat model of liver fibrosis, we investigated the effects of hAEC on resident hepatic cells contributing to myofibroblast generation. Our data show that hAEC reduce myofibroblast numbers with a consequent reduction in fibronectin and collagen deposition. Interestingly, we show that hAEC strongly act on specific myofibroblast precursors. Specifically, hAEC reduce the activation of PF rather than HSC. In addition, hAEC target reactive ductular cells by inhibiting their proliferation and αvβ6 integrin expression, with a consequent decrease in TGF-β activation. Moreover, hAEC counteract the transition of ductular cells towards fibroblasts, while it does not affect injury-induced and fibrosis-promoting sinusoidal alterations. In conclusion, among the emerging therapeutic applications of hAEC in liver diseases, their specific action on PF and ductular cells strongly suggests their application in liver injuries involving the expansion and activation of the portal compartment.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Serafina Farigu
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ester Cotti Piccinelli
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Pietro Romele
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Graziella Vanosi
- Dip. Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università di Milano, Milano, Italy
| | - Ivan Toschi
- Dip. Scienze Agrarie e Ambientali, Università di Milano, Milano, Italy
| | - Valentina Cesari
- Dip. Scienze Agrarie e Ambientali, Università di Milano, Milano, Italy
| | - Luciana Barros Sant'Anna
- Institute of Research and Development, University of Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Antonietta R Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
60
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
61
|
Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Rønnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev 2017; 121:43-56. [PMID: 28736303 DOI: 10.1016/j.addr.2017.07.014] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Usually the dense extracellular structure in fibrotic tissues is described as extracellular matrix (ECM) or simply as collagen. However, fibrosis is not just fibrosis, which is already exemplified by the variant morphological characteristics of fibrosis due to viral versus cholestatic, autoimmune or toxic liver injury, with reticular, chicken wire and bridging fibrosis. Importantly, the overall composition of the ECM, especially the relative amounts of the many types of collagens, which represent the most abundant ECM molecules and which centrally modulate cellular functions and physiological processes, changes dramatically during fibrosis progression. We hypothesize that there are good and bad collagens in fibrosis and that a change of location alone may change the function from good to bad. Whereas basement membrane collagen type IV anchors epithelial and other cells in a polarized manner, the interstitial fibroblast collagens type I and III do not provide directional information. In addition, feedback loops from biologically active degradation products of some collagens are examples of the importance of having the right collagen at the right place and at the right time controlling cell function, proliferation, matrix production and fate. Examples are the interstitial collagen type VI and basement membrane collagen type XVIII. Their carboxyterminal propeptides serve as an adipose tissue hormone, endotrophin, and as a regulator of angiogenesis, endostatin, respectively. We provide an overview of the 28 known collagen types and propose that the molecular composition of the ECM in fibrosis needs careful attention to assess its impact on organ function and its potential to progress or reverse. Consequently, to adequately assess fibrosis and to design optimal antifibrotic therapies, we need to dissect the molecular entity of fibrosis for the molecular composition and spatial distribution of collagens and the associated ECM.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark.
| | - S H Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - L L Langholm
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - M J Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - A Siebuhr
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - N S Gudmann
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S Rønnow
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S J Daniels
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
62
|
Ikenaga N, Peng ZW, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, Mikels-Vigdal A, Smith V, Schuppan D, Popov YV. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 2017; 66:1697-1708. [PMID: 28073888 PMCID: PMC5561383 DOI: 10.1136/gutjnl-2016-312473] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/07/2016] [Accepted: 12/18/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS We studied the role of lysyl oxidase-like 2 (LOXL2) in collagen crosslinking and hepatic progenitor cell (HPC) differentiation, and the therapeutic efficacy of a LOXL2-blocking monoclonal antibody on liver fibrosis progression/reversal in mice. METHODS Anti-LOXL2 antibody, control antilysyl oxidase antibody or placebo was administered during thioacetamide (TAA)-induced fibrosis progression or during recovery. Therapeutic efficacy in biliary fibrosis was tested in BALB/c.Mdr2-/- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice. Collagen crosslinking, fibrosis progression and reversal were assessed histologically and biochemically. HPC differentiation was studied in primary EpCAM(+) liver cells in vitro. RESULTS LOXL2 was virtually absent from healthy but strongly induced in fibrotic liver, with predominant localisation within fibrotic septa. Delayed anti-LOXL2 treatment of active TAA fibrosis significantly reduced collagen crosslinking and histological signs of bridging fibrosis, with a 53% reduction in morphometric collagen deposition. In established TAA fibrosis, LOXL2 inhibition promoted fibrosis reversal, with enhanced splitting and thinning of fibrotic septa, and a 45% decrease in collagen area at 4 weeks of recovery. In the Mdr2-/- and DDC-induced models of biliary fibrosis, anti-LOXL2 antibody similarly achieved significant antifibrotic efficacy and suppressed the ductular reaction, while hepatocyte replication increased. Blocking LOXL2 had a profound direct effect on primary EpCAM(+) HPC behaviour in vitro, promoting their differentiation towards hepatocytes, while inhibiting ductal cell lineage commitment. CONCLUSIONS LOXL2 mediates collagen crosslinking and fibrotic matrix stabilisation during liver fibrosis, and independently promotes fibrogenic HPC differentiation. By blocking these two convergent profibrotic pathways, therapeutic LOXL2 inhibition attenuates both parenchymal and biliary fibrosis and promotes fibrosis reversal.
Collapse
Affiliation(s)
- Naoki Ikenaga
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhen-Wei Peng
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan B Liu
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuhei Yoshida
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Deanna Y Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA,Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
63
|
Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M. Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G102-G116. [PMID: 28526690 PMCID: PMC5582882 DOI: 10.1152/ajpgi.00452.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 01/31/2023]
Abstract
Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals. Chronic damage and inflammation will ultimately result in pathological repair with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathological biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin that are able to orchestrate a complex process that involves a number of different cell types, under joint control of inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review contributes to the current debate by highlighting a number of new concepts derived from the study of the pathophysiology of chronic cholangiopathies, such as congenital hepatic fibrosis, biliary atresia, and Alagille syndrome.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; .,Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut.,International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Carlo Spirli
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Massimiliano Cadamuro
- 3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| | - Romina Fiorotto
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Mario Strazzabosco
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| |
Collapse
|
64
|
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol 2017; 8:461. [PMID: 28769795 PMCID: PMC5509761 DOI: 10.3389/fphar.2017.00461] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Collapse
Affiliation(s)
- Kelly L Walton
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Katharine E Johnson
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Craig A Harrison
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| |
Collapse
|
65
|
Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1254-1261. [PMID: 28709963 DOI: 10.1016/j.bbadis.2017.06.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
In the last 25years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled 'core' pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
|
66
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix components due to chronic injury, with collagens as predominant structural components. Liver fibrosis can progress to cirrhosis, which is characterized by a severe distortion of the delicate hepatic vascular architecture, the shunting of the blood supply away from hepatocytes and the resultant functional liver failure. Cirrhosis is associated with a highly increased morbidity and mortality and represents the major hard endpoint in clinical studies of chronic liver diseases. Moreover, cirrhosis is a strong cofactor of primary liver cancer. In vivo models are indispensable tools to study the cellular and molecular mechanisms of liver fibrosis and to develop specific antifibrotic therapies towards clinical translation. Here, we provide a detailed description of select optimized mouse models of liver fibrosis and state-of-the-art fibrosis readouts.
Collapse
Affiliation(s)
- Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Yury Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
67
|
Joshi N, Kopec AK, Cline-Fedewa H, Luyendyk JP. Lymphocytes contribute to biliary injury and fibrosis in experimental xenobiotic-induced cholestasis. Toxicology 2016; 377:73-80. [PMID: 28049044 DOI: 10.1016/j.tox.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 02/07/2023]
Abstract
The etiology of chronic bile duct injury and fibrosis in patients with autoimmune cholestatic liver diseases is complex, and likely involves immune cells such as lymphocytes. However, most models of biliary fibrosis are not autoimmune in nature. Biliary fibrosis can be induced experimentally by prolonged exposure of mice to the bile duct toxicant alpha-naphthylisothiocyanate (ANIT). We determined whether lymphocytes contributed to ANIT-mediated biliary hyperplasia and fibrosis in mice. Hepatic accumulation of T-lymphocytes and increased serum levels of anti-nuclear-autoantibodies were evident in wild-type mice exposed to ANIT (0.05% ANIT in chow). This occurred alongside bile duct hyperplasia and biliary fibrosis. To assess the role of lymphocytes in ANIT-induced biliary fibrosis, we utilized RAG1-/- mice, which lack T- and B-lymphocytes. ANIT-induced bile duct injury, indicated by increased serum alkaline phosphatase activity, was reduced in ANIT-exposed RAG1-/- mice compared to ANIT-exposed wild-type mice. Despite this reduction in biliary injury, ANIT-induced bile duct hyperplasia was similar in wild-type and RAG1-/- mice. However, hepatic induction of profibrogenic genes including COL1A1, ITGβ6 and TGFβ2 was markedly attenuated in ANIT-exposed RAG1-/- mice compared to ANIT-exposed wild-type mice. Peribiliary collagen deposition was also reduced in ANIT-exposed RAG1-/- mice. The results indicate that lymphocytes exacerbate bile duct injury and fibrosis in ANIT-exposed mice without impacting bile duct hyperplasia.
Collapse
Affiliation(s)
- Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - James P Luyendyk
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
68
|
Floreani A, Sun Y, Zou ZS, Li B, Cazzagon N, Bowlus CL, Gershwin ME. Proposed therapies in primary biliary cholangitis. Expert Rev Gastroenterol Hepatol 2016; 10:371-382. [PMID: 26577047 PMCID: PMC4935759 DOI: 10.1586/17474124.2016.1121810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary biliary cholangitis (PBC), previously known as primary biliary cirrhosis, is a model autoimmune disease with chronic cholestasis characterized by the hallmark of anti-mitochondrial antibodies and treated with ursodeoxycholic acid (UDCA). However, approximately 20-40% of patients incompletely respond to UDCA and have an increased risk of disease progression. Although there have been significant advances in the immunobiology of PBC, these have yet to be translated into newer therapeutic modalities. Current approaches to controlling the immune response include broad immunosuppression with corticosteroids as well as targeted therapies directed against T and B cells. In contrast, ameliorating cholestasis is the focus of other therapies in development, including obeticholic acid. In this article the authors will discuss ongoing clinical trials and, in particular, the rationale for choosing agents that may effectively target the aberrant immune response.
Collapse
Affiliation(s)
- Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Ying Sun
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, USA.,Diagnostic and Treatment Center for Non-Infectious Liver Diseases, 302 Military Hospital, Beijing, China
| | - Zheng Sheng Zou
- Diagnostic and Treatment Center for Non-Infectious Liver Diseases, 302 Military Hospital, Beijing, China
| | - Baosen Li
- Diagnostic and Treatment Center for Non-Infectious Liver Diseases, 302 Military Hospital, Beijing, China
| | - Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
69
|
Joshi N, Ray JL, Kopec AK, Luyendyk JP. Dose-dependent effects of alpha-naphthylisothiocyanate disconnect biliary fibrosis from hepatocellular necrosis. J Biochem Mol Toxicol 2016; 31:1-7. [PMID: 27605088 DOI: 10.1002/jbt.21834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Exposure of rodents to the xenobiotic α-naphthylisothiocyanate (ANIT) is an established model of experimental intrahepatic bile duct injury. Administration of ANIT to mice causes neutrophil-mediated hepatocellular necrosis. Prolonged exposure of mice to ANIT also produces bile duct hyperplasia and liver fibrosis. However, the mechanistic connection between ANIT-induced hepatocellular necrosis and bile duct hyperplasia and fibrosis is not well characterized. We examined impact of two different doses of ANIT, by feeding chow containing ANIT (0.05%, 0.1%), on the severity of various liver pathologies in a model of chronic ANIT exposure. ANIT-elicited increases in liver inflammation and hepatocellular necrosis increased with dose. Remarkably, there was no connection between increased hepatocellular necrosis and bile duct hyperplasia and peribiliary fibrosis, as these pathologies increased similarly in mice exposed to either dose of ANIT. The results indicate that the severity of hepatocellular necrosis does not dictate the extent of bile duct hyperplasia/fibrosis in ANIT-exposed mice.
Collapse
Affiliation(s)
- Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jessica L Ray
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - James P Luyendyk
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
70
|
Mousa HS, Carbone M, Malinverno F, Ronca V, Gershwin ME, Invernizzi P. Novel therapeutics for primary biliary cholangitis: Toward a disease-stage-based approach. Autoimmun Rev 2016; 15:870-876. [DOI: 10.1016/j.autrev.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
|
71
|
Hall ER, Bibby LI, Slack RJ. Characterisation of a novel, high affinity and selective αvβ6 integrin RGD-mimetic radioligand. Biochem Pharmacol 2016; 117:88-96. [PMID: 27501918 DOI: 10.1016/j.bcp.2016.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022]
Abstract
The alpha-v beta-6 (αvβ6) integrin has been identified as playing a key role in the activation of transforming growth factor-β (TGFβ) that is hypothesised to be pivotal in the development of cancer and fibrotic diseases. Therefore, the αvβ6 integrin is an attractive therapeutic target for these debilitating diseases and a drug discovery programme to identify small molecule αvβ6 selective arginyl-glycinyl-aspartic acid (RGD)-mimetics was initiated within GlaxoSmithKline. The primary aim of this study was to pharmacologically characterise the binding to αvβ6 of a novel clinical candidate, compound 1, using a radiolabelled form. Radioligand binding studies were completed with [(3)H]compound 1 against the human and mouse soluble protein forms of αvβ6 to determine accurate affinity estimates and binding kinetics. The selectivity of compound 1 for the RGD integrin family was also determined using saturation binding studies (αvβ1, αvβ3, αvβ5, αvβ8, α5β1 and α8β1 integrins) and fibrinogen-induced platelet aggregation (αIIbβ3 integrin). In addition, the relationship between divalent metal cation type and concentration and αvβ6 RGD site binding was also investigated. Compound 1 has been demonstrated to bind with extremely high affinity and selectivity for the αvβ6 integrin and has the potential as a clinical tool and therapeutic for investigating the role of αvβ6 in a range of disease states both pre-clinically and clinically. In addition, this is the first study that has successfully applied radioligand binding to the RGD integrin field to accurately determine the affinity and selectivity profile of a small molecule RGD-mimetic.
Collapse
Affiliation(s)
- Eleanor R Hall
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Lloyd I Bibby
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Robert J Slack
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
| |
Collapse
|
72
|
Tatler AL, Goodwin AT, Gbolahan O, Saini G, Porte J, John AE, Clifford RL, Violette SM, Weinreb PH, Parfrey H, Wolters PJ, Gauldie J, Kolb M, Jenkins G. Amplification of TGFβ Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis. PLoS One 2016; 11:e0158047. [PMID: 27494713 PMCID: PMC4975449 DOI: 10.1371/journal.pone.0158047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/09/2016] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease with poor survival rates and limited treatment options. Upregulation of αvβ6 integrins within the alveolar epithelial cells is a characteristic feature of IPF and correlates with poor patient survival. The pro-fibrotic cytokine TGFβ1 can upregulate αvβ6 integrin expression but the molecular mechanisms driving this effect have not previously been elucidated. We confirm that stimulation with exogenous TGFβ1 increases expression of the integrin β6 subunit gene (ITGB6) and αvβ6 integrin cell surface expression in a time- and concentration-dependent manner. TGFβ1-induced ITGB6 expression occurs via transcriptional activation of the ITGB6 gene, but does not result from effects on ITGB6 mRNA stability. Basal expression of ITGB6 in, and αvβ6 integrins on, lung epithelial cells occurs via homeostatic αvβ6-mediated TGFβ1 activation in the absence of exogenous stimulation, and can be amplified by TGFβ1 activation. Fundamentally, we show for the first time that TGFβ1-induced ITGB6 expression occurs via canonical Smad signalling since dominant negative constructs directed against Smad3 and 4 inhibit ITGB6 transcriptional activity. Furthermore, disruption of a Smad binding site at -798 in the ITGB6 promoter abolishes TGFβ1-induced ITGB6 transcriptional activity. Using chromatin immunoprecipitation we demonstrate that TGFβ1 stimulation of lung epithelial cells results in direct binding of Smad3, and Smad4, to the ITGB6 gene promoter within this region. Finally, using an adenoviral TGFβ1 over-expression model of pulmonary fibrosis we demonstrate that Smad3 is crucial for TGFβ1-induced αvβ6 integrin expression within the alveolar epithelium in vivo. Together, these data confirm that a homeostatic, autocrine loop of αvβ6 integrin activated TGFβ1-induced ITGB6 gene expression regulates epithelial basal αvβ6 integrin expression, and demonstrates that this occurs via Smad-dependent transcriptional regulation at a single Smad binding site in the promoter of the β6 subunit gene. Active TGFβ1 amplifies this pathway both in vitro and in vivo, which may promote fibrosis.
Collapse
Affiliation(s)
- Amanda L. Tatler
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - Amanda T. Goodwin
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Olumide Gbolahan
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Gauri Saini
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Joanne Porte
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Alison E. John
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Rachel L. Clifford
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Helen Parfrey
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul J. Wolters
- School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jack Gauldie
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Gisli Jenkins
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
73
|
Inhibition of PAR-4 and P2Y12 receptor-mediated platelet activation produces distinct hepatic pathologies in experimental xenobiotic-induced cholestatic liver disease. Toxicology 2016; 365:9-16. [PMID: 27475285 DOI: 10.1016/j.tox.2016.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
Emerging evidence supports a protective effect of platelets in experimental cholestatic liver injury and cholangiofibrosis. Coagulation-mediated platelet activation has been shown to inhibit experimental chronic cholestatic liver necrosis and biliary fibrosis. This occurs through thrombin-mediated activation of protease activated receptor-4 (PAR-4) in mice. However, it is not known whether other pathways of platelet activation, such as adenosine diphosphate (ADP)-mediated receptor P2Y12 activation is also protective. We tested the hypothesis that inhibition of P2Y12-mediated platelet activation exacerbates hepatic injury and cholangiofibrosis, and examined the impact of P2Y12 inhibition in both the presence and absence of PAR-4. Treatment of wild-type mice with the P2Y12 receptor antagonist clopidogrel increased biliary hyperplasia and cholangiofibrosis in wild-type mice exposed to the xenobiotic alpha-naphthylisothiocyanate (ANIT) for 4 weeks compared to vehicle-treated mice exposed to ANIT. Interestingly, this effect of clopidogrel occurred without a corresponding increase in hepatocellular necrosis. Whereas biliary hyperplasia and cholangiofibrosis were increased in PAR-4(-/-) mice, clopidogrel treatment failed to further increase these pathologies in PAR-4(-/-) mice. The results indicate that inhibition of receptor P2Y12-mediated platelet activation exacerbates bile duct fibrosis in ANIT-exposed mice, independent of hepatocellular necrosis. Moreover, the lack of an added effect of clopidogrel administration on the exaggerated pathology in ANIT-exposed PAR-4(-/-) mice reinforces the prevailing importance of coagulation-mediated platelet activation in limiting this unique liver pathology.
Collapse
|
74
|
Kopec AK, Joshi N, Luyendyk JP. Role of hemostatic factors in hepatic injury and disease: animal models de-liver. J Thromb Haemost 2016; 14:1337-49. [PMID: 27060337 PMCID: PMC5091081 DOI: 10.1111/jth.13327] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Chronic liver damage is associated with unique changes in the hemostatic system. Patients with liver disease often show a precariously rebalanced hemostatic system, which is easily tipped towards bleeding or thrombotic complications by otherwise benign stimuli. In addition, some clinical studies have shown that hemostatic system components contribute to the progression of liver disease. There is a strong basic science foundation for clinical studies with this particular focus. Chronic and acute liver disease can be modeled in rodents and large animals with a variety of approaches, which span chronic exposure to toxic xenobiotics, diet-induced obesity, and surgical intervention. These experimental approaches have now provided strong evidence that, in addition to perturbations in hemostasis caused by liver disease, elements of the hemostatic system have powerful effects on the progression of experimental liver toxicity and disease. In this review, we cover the basis of the animal models that are most often utilized to assess the impact of the hemostatic system on liver disease, and highlight the role that coagulation proteases and their targets play in experimental liver toxicity and disease, emphasizing key similarities and differences between models. The need to characterize hemostatic changes in existing animal models and to develop novel animal models recapitulating the coagulopathy of chronic liver disease is highlighted. Finally, we emphasize the continued need to translate knowledge derived from highly applicable animal models to improve our understanding of the reciprocal interaction between liver disease and the hemostatic system in patients.
Collapse
Affiliation(s)
- Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
75
|
Conroy KP, Kitto LJ, Henderson NC. αv integrins: key regulators of tissue fibrosis. Cell Tissue Res 2016; 365:511-9. [PMID: 27139180 PMCID: PMC5010580 DOI: 10.1007/s00441-016-2407-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/08/2016] [Indexed: 01/09/2023]
Abstract
Chronic tissue injury with fibrosis results in the disruption of tissue architecture, organ dysfunction and eventual organ failure. Therefore, the development of effective anti-fibrotic therapies is urgently required. During fibrogenesis, complex interplay occurs between cellular and extracellular matrix components of the wound healing response. Integrins, a family of transmembrane cell adhesion molecules, play a key role in mediating intercellular and cell-matrix interactions. Thus, integrins provide a major node of communication between the extracellular matrix, inflammatory cells, fibroblasts and parenchymal cells and, as such, are intimately involved in the initiation, maintenance and resolution of tissue fibrosis. Modulation of members of the αv integrin family has exhibited profound effects on fibrosis in multiple organs and disease states. In this review, we discuss the current knowledge of the mechanisms of αv-integrin-mediated regulation of fibrogenesis and show that the therapeutic targeting of specific αv integrins represents a promising avenue to treat patients with a broad range of fibrotic diseases.
Collapse
Affiliation(s)
- Kylie P Conroy
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Laura J Kitto
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Neil C Henderson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
76
|
Tatler AL, Habgood A, Porte J, John AE, Stavrou A, Hodge E, Kerama-Likoko C, Violette SM, Weinreb PH, Knox AJ, Laurent G, Parfrey H, Wolters PJ, Wallace W, Alberti S, Nordheim A, Jenkins G. Reduced Ets Domain-containing Protein Elk1 Promotes Pulmonary Fibrosis via Increased Integrin αvβ6 Expression. J Biol Chem 2016; 291:9540-53. [PMID: 26861876 PMCID: PMC4850293 DOI: 10.1074/jbc.m115.692368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with high mortality. Active TGFβ1 is considered central to the pathogenesis of IPF. A major mechanism of TGFβ1 activation in the lung involves the epithelially restricted αvβ6 integrin. Expression of the αvβ6 integrin is dramatically increased in IPF. How αvβ6 integrin expression is regulated in the pulmonary epithelium is unknown. Here we identify a region in the β6 subunit gene (ITGB6) promoter acting to markedly repress basal gene transcription, which responds to both the Ets domain-containing protein Elk1 (Elk1) and the glucocorticoid receptor (GR). Both Elk1 and GR can regulate αvβ6 integrin expression in vitro We demonstrate Elk1 binding to the ITGB6 promoter basally and that manipulation of Elk1 or Elk1 binding alters ITGB6 promoter activity, gene transcription, and αvβ6 integrin expression. Crucially, we find that loss of Elk1 causes enhanced Itgb6 expression and exaggerated lung fibrosis in an in vivo model of fibrosis, whereas the GR agonist dexamethasone inhibits Itgb6 expression. Moreover, Elk1 dysregulation is present in epithelium from patients with IPF. These data reveal a novel role for Elk1 regulating ITGB6 expression and highlight how dysregulation of Elk1 can contribute to human disease.
Collapse
Affiliation(s)
- Amanda L Tatler
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom,
| | - Anthony Habgood
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| | - Joanne Porte
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| | - Alison E John
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| | - Anastasios Stavrou
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| | - Emily Hodge
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| | - Cheryl Kerama-Likoko
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| | | | | | - Alan J Knox
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| | - Geoffrey Laurent
- the Centre for Respiratory Research, University College London, London WC1E 6JF, United Kingdom, the Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Crawley WA 6009, Australia
| | - Helen Parfrey
- the Department of Medicine, University of Cambridge and Papworth Hospital NHSFT, Cambridge CB2 0SP, United Kingdom
| | - Paul John Wolters
- the Department of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - William Wallace
- the Division of Pathology, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom, and
| | - Siegfried Alberti
- the Interfaculty Institute of Cell Biology, Tübingen University, Tübingen 72076, Germany
| | - Alfred Nordheim
- the Interfaculty Institute of Cell Biology, Tübingen University, Tübingen 72076, Germany
| | - Gisli Jenkins
- From the Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom
| |
Collapse
|
77
|
Locatelli L, Cadamuro M, Spirli C, Fiorotto R, Lecchi S, Morell CM, Popov Y, Scirpo R, De Matteis M, Amenduni M, Pietrobattista A, Torre G, Schuppan D, Fabris L, Strazzabosco M. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 2016; 63:965-82. [PMID: 26645994 PMCID: PMC4764460 DOI: 10.1002/hep.28382] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local transforming growth factor-β1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. CONCLUSION Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time.
Collapse
Affiliation(s)
- Luigi Locatelli
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy
| | - Massimiliano Cadamuro
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy,Department of Molecular Medicine, University of Padua School of Medicine, 35121, Padua, Italy
| | - Carlo Spirli
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Silvia Lecchi
- Center for Liver Research (CeLiveR), Papa Giovanni XXIII Hospital, 24121, Bergamo, Italy
| | - Carola Maria Morell
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy
| | - Yury Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Roberto Scirpo
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy
| | - Maria De Matteis
- Department of Molecular Medicine, University of Padua School of Medicine, 35121, Padua, Italy
| | | | | | - Giuliano Torre
- Liver Unit, Bambino Gesu Pediatric Hospital, IRCSS, 00146, Rome, Italy
| | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Institute of Translational Immunology, Johannes Gutenberg University, 55122, Mainz, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, 35121, Padua, Italy,Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA,Correspondence. Luca Fabris M.D., Ph.D., Department of Molecular Medicine, University of Padova School of Medicine, Viale G. Colombo, 3; 35131 Padova, Italy, Phone: +39 049 827 6127; Fax: +39 049 807 3310, ;
| | - Mario Strazzabosco
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy,Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
78
|
Fibrin deposition following bile duct injury limits fibrosis through an αMβ2-dependent mechanism. Blood 2016; 127:2751-62. [PMID: 26921287 DOI: 10.1182/blood-2015-09-670703] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
Coagulation cascade activation and fibrin deposits have been implicated or observed in diverse forms of liver damage. Given that fibrin amplifies pathological inflammation in several diseases through the integrin receptor αMβ2, we tested the hypothesis that disruption of the fibrin(ogen)-αMβ2 interaction in Fibγ(390-396A) mice would reduce hepatic inflammation and fibrosis in an experimental setting of chemical liver injury. Contrary to our hypothesis, α-naphthylisothiocyanate (ANIT)-induced liver fibrosis increased in Fibγ(390-396A) mice, whereas inflammatory cytokine expression and hepatic necrosis were similar to ANIT-challenged wild-type (WT) mice. Increased fibrosis in Fibγ(390-396A) mice appeared to be independent of coagulation factor 13 (FXIII) transglutaminase, as ANIT challenge in FXIII-deficient mice resulted in a distinct pathological phenotype characterized by increased hepatic necrosis. Rather, bile duct proliferation underpinned the increased fibrosis in ANIT-exposed Fibγ(390-396A) mice. The mechanism of fibrin-mediated fibrosis was linked to interferon (IFN)γ induction of inducible nitric oxide synthase (iNOS), a gene linked to bile duct hyperplasia and liver fibrosis. Expression of iNOS messenger RNA was significantly increased in livers of ANIT-exposed Fibγ(390-396A) mice. Fibrin(ogen)-αMβ2 interaction inhibited iNOS induction in macrophages stimulated with IFNγ in vitro and ANIT-challenged IFNγ-deficient mice had reduced iNOS induction, bile duct hyperplasia, and liver fibrosis. Further, ANIT-induced iNOS expression, liver fibrosis, and bile duct hyperplasia were significantly reduced in WT mice administered leukadherin-1, a small molecule that allosterically enhances αMβ2-dependent cell adhesion to fibrin. These studies characterize a novel mechanism whereby the fibrin(ogen)-integrin-αMβ2 interaction reduces biliary fibrosis and suggests a novel putative therapeutic target for this difficult-to-treat fibrotic disease.
Collapse
|
79
|
Wang P, Koyama Y, Liu X, Xu J, Ma HY, Liang S, Kim IH, Brenner DA, Kisseleva T. Promising Therapy Candidates for Liver Fibrosis. Front Physiol 2016; 7:47. [PMID: 26909046 PMCID: PMC4754444 DOI: 10.3389/fphys.2016.00047] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a wound-healing process in response to repeated and chronic injury to hepatocytes and/or cholangiocytes. Ongoing hepatocyte apoptosis or necrosis lead to increase in ROS production and decrease in antioxidant activity, which recruits inflammatory cells from the blood and activate hepatic stellate cells (HSCs) changing to myofibroblasts. Injury to cholangiocytes also recruits inflammatory cells to the liver and activates portal fibroblasts in the portal area, which release molecules to activate and amplify cholangiocytes. No matter what origin of myofibroblasts, either HSCs or portal fibroblasts, they share similar characteristics, including being positive for α-smooth muscle actin and producing extracellular matrix. Based on the extensive pathogenesis knowledge of liver fibrosis, therapeutic strategies have been designed to target each step of this process, including hepatocyte apoptosis, cholangiocyte proliferation, inflammation, and activation of myofibroblasts to deposit extracellular matrix, yet the current therapies are still in early-phase clinical development. There is an urgent need to translate the molecular mechanism of liver fibrosis to effective and potent reagents or therapies in human.
Collapse
Affiliation(s)
- Ping Wang
- Department of Surgery, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA; Liver Research Center, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Yukinori Koyama
- Department of Surgery, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Surgery, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Xiao Liu
- Department of Surgery, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Jun Xu
- Department of Surgery, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Hsiao-Yen Ma
- Department of Surgery, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Shuang Liang
- Department of Surgery, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - In H Kim
- Department of Surgery, University of CaliforniaSan Diego, La Jolla, CA, USA; Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
80
|
Picelli N, Tanikawa AA, Grotto RMT, Silva GF, Barbosa AN, Ferrasi AC, Silveira LVDA, Pardini MIDMC. The absence of the human platelet antigen polymorphism effect on fibrosis progression in human immunodeficiency virus-1/hepatitis C virus coinfected patients. Rev Soc Bras Med Trop 2016; 48:406-9. [PMID: 26312929 DOI: 10.1590/0037-8682-0152-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Hepatic fibrosis progression in patients with chronic hepatitis C virus infections has been associated with viral and host factors, including genetic polymorphisms. Human platelet antigen polymorphisms are associated with the rapid development of fibrosis in HCV-monoinfected patients. This study aimed to determine whether such an association exists in human immunodeficiency virus-1/hepatitis C virus-coinfected patients. METHODS Genomic deoxyribonucleic acid from 36 human immunodeficiency virus-1/hepatitis C virus-coinfected patients was genotyped to determine the presence of human platelet antigens-1, -3, or -5 polymorphisms. Fibrosis progression was evaluated using the Metavir scoring system, and the patients were assigned to two groups, namely, G1 that comprised patients with F1, portal fibrosis without septa, or F2, few septa (n = 23) and G2 that comprised patients with F3, numerous septa, or F4, cirrhosis (n = 13). Fisher's exact test was utilized to determine possible associations between the human platelet antigen polymorphisms and fibrosis progression. RESULTS There were no deviations from the Hardy-Weinberg equilibrium in the human platelet antigen systems evaluated. Statistically significant differences were not observed between G1 and G2 with respect to the distributions of the allelic and genotypic frequencies of the human platelet antigen systems. CONCLUSION The greater stimulation of hepatic stellate cells by the human immunodeficiency virus and, consequently, the increased expression of transforming growth factor beta can offset the effect of human platelet antigen polymorphism on the progression of fibrosis in patients coinfected with the human immunodeficiency virus-1 and the hepatitis C virus.
Collapse
Affiliation(s)
- Natália Picelli
- Laboratório de Biologia Molecular do Hemocentro, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| | - Aline Aki Tanikawa
- Laboratório de Biologia Molecular do Hemocentro, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| | - Rejane Maria Tommasini Grotto
- Laboratório de Biologia Molecular do Hemocentro, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| | - Giovanni Faria Silva
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| | - Alexandre Naime Barbosa
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| | - Adriana Camargo Ferrasi
- Laboratório de Biologia Molecular do Hemocentro, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| | - Liciana Vaz de Arruda Silveira
- Departamento de Bioestatística, Instituto de Biociências de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| | - Maria Inês de Moura Campos Pardini
- Laboratório de Biologia Molecular do Hemocentro, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, BR
| |
Collapse
|
81
|
Slack RJ, Hafeji M, Rogers R, Ludbrook SB, Marshall JF, Flint DJ, Pyne S, Denyer JC. Pharmacological Characterization of the αvβ6 Integrin Binding and Internalization Kinetics of the Foot-and-Mouth Disease Virus Derived Peptide A20FMDV2. Pharmacology 2016; 97:114-25. [PMID: 26734728 DOI: 10.1159/000443180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
A20FMDV2 is a peptide derived from the foot-and-mouth disease virus with a high affinity and selectivity for the alpha-v beta-6 (αvβ6) arginyl-glycinyl-aspartic acid (RGD)-binding integrin. It has been shown to be an informative tool ligand in pre-clinical imaging studies for selective labelling of the αvβ6 integrin in a number of disease models. In a radioligand binding assay using a radiolabelled form of the peptide ([3H]A20FMDV2), its high affinity (K(D): 0.22 nmol/l) and selectivity (at least 85-fold) for αvβ6 over the other members of the RGD integrin family was confirmed. [3H]A20FMDV2 αvβ6 binding could be fully reversed only in the presence of EDTA, whereas a partial reversal was observed in the presence of excess concentrations of an RGD-mimetic small molecule (SC-68448) or unlabelled A20FMDV2. Using flow cytometry on bronchial epithelial cells, the ligand-induced internalization of αvβ6 by A20FMDV2 and latency-associated peptide-1 was shown to be fast (t(1/2): 1.5 and 3.1 min, respectively), concentration-dependent (EC50: values 1.1 and 3.6 nmol/l, respectively) and was followed by a moderately slow return of integrin to the surface. The results of the radioligand binding studies suggest that the binding of A20FMDV2 to the RGD-binding site on αvβ6 is required to maintain its engagement with the hypothesised A20FMDV2 synergy site on the integrin. In addition, there is evidence from flow cytometric studies that the RGD-ligand engagement of αvβ6 post-internalization plays a role in delaying recycling of the integrin to the cell surface. This mechanism may act as a homeostatic control of membrane αvβ6 following RGD ligand engagement.
Collapse
Affiliation(s)
- Robert J Slack
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Peng ZW, Ikenaga N, Liu SB, Sverdlov DY, Vaid KA, Dixit R, Weinreb PH, Violette S, Sheppard D, Schuppan D, Popov Y. Integrin αvβ6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis, and tumorigenesis. Hepatology 2016; 63:217-32. [PMID: 26448099 PMCID: PMC5312042 DOI: 10.1002/hep.28274] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Integrin αvβ6 is rapidly up-regulated on cells of epithelial lineage during tissue injury, where one of its primary functions is activation of latent transforming growth factor beta 1 (TGFβ1). In human liver cirrhosis, αvβ6 is overexpressed by cells comprising the ductular reaction, and its inhibition suppresses experimental biliary fibrosis in rodents. Here, we show that αvβ6 is expressed on the actively proliferating subset of hepatic progenitor cells and is required for their progenitor function in vivo and in vitro through integrin αvβ6-dependent TGFβ1 activation. Freshly isolated αvβ6(+) liver cells demonstrate clonogenic potential and differentiate into cholangiocytes and functional hepatocytes in vitro, whereas colony formation by epithelial cell adhesion molecule-positive progenitor cells is blocked by αvβ6-neutralizing antibody and in integrin beta 6-deficient cells. Inhibition of progenitors by anti-αvβ6 antibody is recapitulated by TGFβ1 neutralization and rescued by addition of bioactive TGFβ1. Genetic disruption or selective targeting of αvβ6 with 3G9 antibody potently inhibits progenitor cell responses in mouse models of chronic biliary injury and protects from liver fibrosis and tumorigenesis, two conditions clinically associated with exacerbated ductular reaction. CONCLUSION These results suggest that αvβ6 is a promising target for chronic fibrotic liver diseases and associated cancers.
Collapse
Affiliation(s)
- Zhen-Wei Peng
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Naoki Ikenaga
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Susan B. Liu
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Deanna Y. Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kahini A. Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Richa Dixit
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | - Dean Sheppard
- Lung Biology Center, University of California, San Francisco School of Medicine, San Francisco, CA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| | - Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
83
|
Liu SB, Ikenaga N, Peng ZW, Sverdlov DY, Greenstein A, Smith V, Schuppan D, Popov Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J 2015; 30:1599-609. [PMID: 26700732 DOI: 10.1096/fj.14-268425] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023]
Abstract
Collagen stabilization through irreversible cross-linking is thought to promote hepatic fibrosis progression and limit its reversibility. However, the mechanism of this process remains poorly defined. We studied the functional contribution of lysyl oxidase (LOX) to collagen stabilization and hepatic fibrosis progression/reversalin vivousing chronic administration of irreversible LOX inhibitor β-aminopropionitrile (BAPN, or vehicle as control) in C57Bl/6J mice with carbon tetrachloride (CCl4)-induced fibrosis. Fibrotic matrix stability was directly assessed using a stepwise collagen extraction assay and fibrotic septae morphometry. Liver cells and fibrosis were studied by histologic, biochemical methods and quantitative real-time reverse-transcription PCR. During fibrosis progression, BAPN administration suppressed accumulation of cross-linked collagens, and fibrotic septae showed widening and collagen fibrils splitting, reminiscent of remodeling signs observed during fibrosis reversal. LOX inhibition attenuated hepatic stellate cell activation markers and promoted F4/80-positive scar-associated macrophage infiltration without an increase in liver injury. In reversal experiments, BAPN-treated fibrotic mice demonstrated accelerated fibrosis reversal after CCl4withdrawal. Our findings demonstrate for the first time that LOX contributes significantly to collagen stabilization in liver fibrosis, promotes fibrogenic activation of attenuated hepatic stellate cells, and limits fibrosis reversal. Our data support the concept of pharmacologic targeting of LOX pathway to inhibit liver fibrosis and promote its resolution.-Liu, S. B., Ikenaga, N., Peng, Z.-W., Sverdlov, D. Y., Greenstein, A., Smith, V., Schuppan, D., Popov, Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.
Collapse
Affiliation(s)
- Susan B Liu
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Naoki Ikenaga
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Zhen-Wei Peng
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Deanna Y Sverdlov
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Andrew Greenstein
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Victoria Smith
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Detlef Schuppan
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Yury Popov
- *Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Gilead Sciences, Inc., Foster City, California, USA; and Institute of Translational Immunology, University Medical Center, Mainz, Germany
| |
Collapse
|
84
|
Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 2015; 93:162-74. [PMID: 26562414 DOI: 10.1016/j.yjmcc.2015.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ruixia Li
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
85
|
L(59) TGF-β LAP degradation products serve as a promising blood biomarker for liver fibrogenesis in mice. FIBROGENESIS & TISSUE REPAIR 2015; 8:17. [PMID: 26379781 PMCID: PMC4570586 DOI: 10.1186/s13069-015-0034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Background Hepatic fibrosis, which is the excessive accumulation of extracellular matrices (ECMs) produced mainly from activated hepatic stellate cells (HSCs), develops to cirrhosis over several decades. There are no validated biomarkers that can non-invasively monitor excessive production of ECM (i.e., fibrogenesis). Transforming growth factor (TGF)-β, a key driver of fibrogenesis, is produced as an inactive latent complex, in which active TGF-β is enveloped by its pro-peptide, the latency-associated protein (LAP). Thus, active TGF-β must be released from the complex for binding to its receptor and inducing ECM synthesis. We recently reported that during the pathogenesis of liver fibrosis, plasma kallikrein (PLK) activates TGF-β by cleavage between R58 and L59 residues within LAP and that one of its by-products, the N-terminal side LAP degradation products ending at residue R58 (R58 LAP-DPs), can be detected mainly around activated HSCs by specific antibodies against R58 cleavage edges and functions as a footprint of PLK-dependent TGF-β activation. Here, we describe a sandwich enzyme-linked immunosorbent assay (ELISA) that detects the other by-products, the C-terminal side LAP-DPs starting from residue L59 (L59 LAP-DPs). We demonstrated that the L59 LAP-DPs are a potentially novel blood biomarker reflecting hepatic fibrogenesis. Results We established a specific sandwich ELISA to quantify L59 LAP-DPs as low as 2 pM and measured L59 LAP-DP levels in the culture media of a human activated HSC line, TWNT-4 cells. L59 LAP-DPs could be detected in their media, and after treatment of TWNT-4 cells with a TGF-β receptor kinase inhibitor, SB431542, a simultaneous reduction was observed in both L59 LAP-DP levels in the culture media and the mRNA expression levels of collagen type (I) α1. In carbon tetrachloride- and bile duct ligation-induced liver fibrosis models in mice, plasma L59 LAP-DP levels increased prior to increase of hepatic hydroxyproline (HDP) contents and well correlated with α-smooth muscle actin (αSMA) expression in liver tissues. At this time, αSMA-positive cells as well as R58 LAP-DPs were seen in their liver tissues. Conclusions L59 LAP-DPs reflect PLK-dependent TGF-β activation and the increase in αSMA-positive activated HSCs in liver injury, thereby serving as a novel blood biomarker for liver fibrogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13069-015-0034-9) contains supplementary material, which is available to authorized users.
Collapse
|
86
|
Schuppan D. Liver fibrosis: Common mechanisms and antifibrotic therapies. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S51-9. [PMID: 26189980 DOI: 10.1016/j.clinre.2015.05.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/03/2015] [Indexed: 02/06/2023]
Abstract
Liver fibrosis and in particular cirrhosis have become major endpoints in clinical trials of patients with chronic liver diseases. Here, viral hepatitis, alcoholic and non-alcoholic steatohepatitis have become the major etiologies. We have made great progress in our understanding of the mechanisms and the cell biology of liver fibrosis and have already made the transition from preclinical testing of antifibrotic agents and strategies towards clinical translation. There continues to be an urgent need for specific antifibrotic therapies, despite the advent of highly potent antiviral agents that can even induce regression of advanced fibrosis. This review addresses central mechanisms and cells to be targeted, current antifibrotic drug trials, and the state of non-invasive biomarker development that is key to rapid clinical progress and to a personalized treatment of fibrosis.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
87
|
Abstract
Liver fibrosis is an outcome of many chronic diseases, and often results in cirrhosis, liver failure, and portal hypertension. Liver transplantation is the only treatment available for patients with advanced stages of liver cirrhosis. Therefore, alternative methods are required to develop new strategies for anti-fibrotic therapy. Various kinds of hepatocyte injuries cause inflammatory reactions, which lead to activation of hepatic stellate cells (HSCs). Continuous liver injuries maintain these activated HSCs, and they are called as myofibroblasts. Myofibroblasts proliferate in response to various kinds of cytokines and produce extracellular matrix proteins (ECMs). Myofibroblasts undergo apoptosis and inactivation when the underlying causative etiologies are cleared. Here, we describe the current knowledge of targeting the activated HSCs as a therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Yukinori Koyama
- School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093 California, United States
| | - David A Brenner
- School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093 California, United States.
| |
Collapse
|
88
|
Tabibian JH, Lindor KD. Primary biliary cirrhosis: safety and benefits of established and emerging therapies. Expert Opin Drug Saf 2015; 14:1435-1444. [PMID: 26212223 DOI: 10.1517/14740338.2015.1073260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Primary biliary cirrhosis (PBC) is a chronic, cholestatic liver disease characterized histologically by lymphocytic cholangitis and intralobular bile duct destruction. It is a progressive disorder associated with increased mortality and decreased quality of life related to hepatic fibrosis, troublesome symptoms such as fatigue and pruritus, and ultimately endstage cirrhosis. PBC affects adults around the world, and therefore effective treatment of PBC and its associated symptoms constitute significant issues for patients and providers as well as on a public health level. The only approved pharmacotherapy for PBC to date is ursodeoxycholic acid (UDCA), a choleretic, hydrophilic bile acid which has been in clinical use for decades. UDCA is effective in a majority of patients with PBC, but nearly a third of patients are UDCA non-responders. Non-response to UDCA is associated with an increased risk of death or need for liver transplantation (LT). Whereas LT is an effective treatment, it engenders substantial cost and a risk of PBC recurrence, among other complications. Patients who are non-responders to UDCA or have highly symptomatic disease (e.g., intractable pruritus) are thus in critical need of novel therapeutic approaches, which are both safe and effective. AREAS COVERED In this review, we provide a synopsis regarding the safety and benefits of established and emerging pharmacotherapies for PBC and present viewpoints on how they may evolve over the next several years. EXPERT OPINION It is our belief that the pharmacoscope of PBC, as with other cholestatic liver diseases, is likely to see important advancements in the near future.
Collapse
Affiliation(s)
- James H Tabibian
- a 1 Mayo Clinic, Division of Gastroenterology and Hepatology , Rochester, MN, USA
| | | |
Collapse
|
89
|
Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, Hansen NUB, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G807-30. [PMID: 25767261 PMCID: PMC4437019 DOI: 10.1152/ajpgi.00447.2014] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases.
Collapse
Affiliation(s)
- Morten A. Karsdal
- 1Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark; ,2University of Southern Denmark, SDU, Odense, Denmark;
| | | | | | | | | | | | | | | | | | - Aleksander Krag
- 3Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Odense, Denmark;
| | - Andy Blanchard
- 4GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom;
| | - Henrik Krarup
- 5Section of Molecular Biology, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark;
| | | | - Detlef Schuppan
- 6Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; ,7Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
90
|
Abstract
Significant progress has been made in understanding the principles underlying the development of liver fibrosis. This includes appreciating its dynamic nature, the importance of active fibrolysis in fibrosis regression, and the plasticity of cell populations endowing them with fibrogenic or fibrolytic properties. This is complemented by an increasing array of therapeutic targets with known roles in the progression or regression of fibrosis. With a key role for fibrosis in determining clinical outcomes and encouraging data from recently Food and Drug Administration-approved antifibrotics for pulmonary fibrosis, the development and validation of antifibrotic therapies has taken center stage in translational hepatology. In addition to summarizing the recent progress in antifibrotic therapies, the authors discuss some of the challenges ahead, such as achieving a better understanding of the interindividual heterogeneity of the fibrotic response, how to match interventions with the ideal patient population, and the development of better noninvasive methods to assess the dynamics of fibrogenesis and fibrolysis. Together, these advances will permit a better targeting and dose titration of individualized therapies. Finally, the authors discuss combination therapy with different antifibrotics as possibly the most potent approach for treating fibrosis in the liver.
Collapse
Affiliation(s)
- W. Z. Mehal
- Section of Digestive Diseases, Yale University, New Haven, Connecticut,West Haven Veterans Medical Center, West Haven, Connecticut
| | - D. Schuppan
- Department of Medicine, Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
91
|
Li Y, Yang F, Yuan M, Jiang L, Yuan L, Zhang X, Li Y, Dong L, Bao X, Yin S. Synthesis and evaluation of asiatic acid derivatives as anti-fibrotic agents: structure/activity studies. Steroids 2015; 96:44-9. [PMID: 25461275 DOI: 10.1016/j.steroids.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 01/19/2023]
Abstract
Fibrotic diseases are characterized by the over-accumulation of fibrous components in the extracellular matrix and the liver, which can lead to liver cirrhosis. Current treatment options cannot reverse or halt liver fibrosis, motivating a search for newer treatment options. Previously, we showed that asiaticoside, a bioactive triterpene glycoside from Centella asiatica, has anti-fibrotic properties. Here, the aglycone asiatic acid was chemically modified, and these derivatives were evaluated for their potential as anti-fibrotic agents. The data obtained from in vivo testing of these compounds in a rodent CCl4-induced liver injury model are discussed. The information obtained from these studies may be useful in the design of novel anti-fibrotic agents.
Collapse
Affiliation(s)
- Yong Li
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Fang Yang
- Sichuan Tourism University, 459 Hongling Road, Longquan District, Chengdu 610100, Sichuan Province, China
| | - Mingxing Yuan
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Lijuan Jiang
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Li Yuan
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Xiaowei Zhang
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Ying Li
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Lin Dong
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Xu Bao
- School of Pharmacy, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China
| | - Shufan Yin
- School of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province, China.
| |
Collapse
|
92
|
Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA, Lindor KD, Jones DEJ. Novel therapeutic targets in primary biliary cirrhosis. Nat Rev Gastroenterol Hepatol 2015; 12:147-58. [PMID: 25645973 DOI: 10.1038/nrgastro.2015.12] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary biliary cirrhosis (PBC) is a chronic immune-mediated liver disease characterized by progressive cholestasis, biliary fibrosis and eventually cirrhosis. It results in characteristic symptoms with marked effects on life quality. The advent of large patient cohorts has challenged the view of PBC as a benign condition treated effectively by the single licensed therapy-ursodeoxycholic acid (UDCA). UDCA nonresponse or under-response has a major bearing on outcome, substantially increasing the likelihood that liver transplantation will be required or that patients will die of the disease. In patients with high-risk, treatment-unresponsive or highly symptomatic disease the need for new treatment approaches is clear. Evolution in our understanding of disease mechanisms is rapidly leading to the advent of new and re-purposed therapeutic agents targeting key processes. Notable opportunities are offered by targeting what could be considered as the 'upstream' immune response, 'midstream' biliary injury and 'downstream' fibrotic processes. Combination therapy targeting several pathways or the development of novel agents addressing multiple components of the disease pathway might be required. Ultimately, PBC therapeutics will require a stratified approach to be adopted in practice. This Review provides a current perspective on potential approaches to PBC treatment, and highlights the challenges faced in evaluating and implementing those treatments.
Collapse
Affiliation(s)
- Jessica K Dyson
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gideon M Hirschfield
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - David H Adams
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - Ulrich Beuers
- Department of Gastroenterology &Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, G4-216, University of Amsterdam, PO Box 22600, NL-1100 DD, Amsterdam, Netherlands
| | - Derek A Mann
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Keith D Lindor
- College of Health Solutions, Arizona State University, 550 North 3rd Street, Phoenix, AZ 85004, USA
| | - David E J Jones
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
93
|
Pi L, Robinson PM, Jorgensen M, Oh SH, Brown AR, Weinreb PH, Trinh TL, Yianni P, Liu C, Leask A, Violette SM, Scott EW, Schultz GS, Petersen BE. Connective tissue growth factor and integrin αvβ6: a new pair of regulators critical for ductular reaction and biliary fibrosis in mice. Hepatology 2015; 61:678-691. [PMID: 25203810 PMCID: PMC4303530 DOI: 10.1002/hep.27425] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Connective tissue growth factor (CTGF) is a matricellular protein that mediates cell-matrix interaction through various subtypes of integrin receptors. This study investigated the role of CTGF and integrin αvβ6 in hepatic progenitor/oval cell activation, which often occurs in the form of ductular reactions (DRs) when hepatocyte proliferation is inhibited during severe liver injury. CTGF and integrin αvβ6 proteins were highly expressed in DRs of human cirrhotic livers and cholangiocarcinoma. Confocal microscopy analysis of livers from Ctgf promoter-driven green fluorescent protein reporter mice suggested that oval cells and cholangiocytes were the main sources of CTGF and integrin αvβ6 during liver injury induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Deletion of exon 4 of the Ctgf gene using tamoxifen-inducible Cre-loxP system down-regulated integrin αvβ6 in DDC-damaged livers of knockout mice. Ctgf deficiency or inhibition of integrin αvβ6, by administrating the neutralizing antibody, 6.3G9 (10 mg/kg body weight), caused low levels of epithelial cell adhesion molecule and cytokeratin 19 gene messenger RNAs. Also, there were smaller oval cell areas, fewer proliferating ductular epithelial cells, and lower cholestasis serum markers within 2 weeks after DDC treatment. Associated fibrosis was attenuated, as indicated by reduced expression of fibrosis-related genes, smaller areas of alpha-smooth muscle actin staining, and low collagen production based on hydroxyproline content and Sirius Red staining. Finally, integrin αvβ6 could bind to CTGF mediating oval cell adhesion to CTGF and fibronection substrata and promoting transforming growth factor (TGF)-β1 activation in vitro. CONCLUSIONS CTGF and integrin αvβ6 regulate oval cell activation and fibrosis, probably through interacting with their common matrix and signal partners, fibronectin and TGF-β1. CTGF and integrin αvβ6 are potential therapeutic targets to control DRs and fibrosis in related liver disease.
Collapse
Affiliation(s)
- Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, 32610
| | | | - Marda Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, 32610
| | - Seh-Hoon Oh
- Department of Pediatrics, University of Florida, Gainesville, 32610
| | - Alicia R. Brown
- Department of Pediatrics, University of Florida, Gainesville, 32610
| | | | - Thu Le Trinh
- Department of Pathology, University of Florida, Gainesville, 32610
| | | | - Chen Liu
- Department of Pathology, University of Florida, Gainesville, 32610
| | - Andrew Leask
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | - Edward W. Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32610
| | - Gregory S. Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, 32610
| | | |
Collapse
|
94
|
Ikenaga N, Liu SB, Sverdlov DY, Yoshida S, Nasser I, Ke Q, Kang PM, Popov Y. A new Mdr2(-/-) mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:325-34. [PMID: 25478810 DOI: 10.1016/j.ajpath.2014.10.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
We previously characterized the Mdr2(Abcb4)(-/-) mouse as a reproducible model of chronic biliary liver disease. However, it demonstrates relatively slow fibrosis progression, possibly due to its fibrosis-resistant genetic background. We aimed to improve the model by moving it onto a fibrosis-susceptible background. We generated novel BALB/c.Mdr2(-/-) mouse via genetic backcross onto highly fibrosis-susceptible BALB/c substrain, identified in inbred mouse strain screening. Liver fibrosis, portal pressure, and hepatic tumor burden in BALB/c.Mdr2(-/-) mice were studied up to 1 year of age in direct comparison to parental strain FVB.Mdr2(-/-). BALB/c.Mdr2(-/-) mice developed periductular onion-skin type fibrotic lesions and pronounced ductular reaction starting from 4 weeks of age. Compared to parental strain, BALB/c.Mdr2(-/-) mice demonstrated dramatically accelerated liver fibrosis, with threefold increase in collagen deposition and bridging fibrosis/early signs of cirrhosis at 12 weeks. This was accompanied by early-onset severe portal hypertension and twofold to fourfold increase in profibrogenic transcripts Col1a1 [procollagen α1(I)], Tgfb1, and Timp1. Primary liver cancers in BALB/c.Mdr2(-/-) developed earlier, with greater tumor burden compared to FVB.Mdr2(-/-). BALB/c.Mdr2(-/-) mice have unprecedented degree and rapidity of hepatic fibrosis progression and clinically relevant cirrhosis complications, such as early-onset portal hypertension and primary liver cancers. This new model will facilitate development of antifibrotic drugs and studies into mechanisms of biliary fibrosis progression.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- Animals
- Cholangitis, Sclerosing/genetics
- Cholangitis, Sclerosing/metabolism
- Cholangitis, Sclerosing/pathology
- Disease Models, Animal
- Hypertension, Portal/genetics
- Hypertension, Portal/metabolism
- Hypertension, Portal/pathology
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Naoki Ikenaga
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Susan B Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Deanna Y Sverdlov
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Shuhei Yoshida
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Qingen Ke
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Peter M Kang
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yury Popov
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
95
|
Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015; 3:939-958. [PMID: 32261972 DOI: 10.1039/c4tb01611d] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver diseases, particularly viral hepatitis, cirrhosis and hepatocellular carcinoma, are common in clinical practice with high morbidity and mortality worldwide. Many substances for diagnostic imaging and therapy of liver diseases may have either severe adverse effects or insufficient effectiveness in vivo because of their nonspecific uptake. Therefore, by targeting the delivery of drugs into the liver or specific liver cells, drug efficiency may be largely improved. This review summarizes the up-to-date research progress focusing on nanoparticles targeting the liver for both diagnostic and therapeutic purposes. Targeting strategies, mechanisms of enhanced effects, and clinical applications of nanoparticles are discussed specifically. We believe that new targeting nanotechnology such as nanoprobes for multi-modality imaging and multifunctional nanoparticles would facilitate significant advancements in this active research area in the near future.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Integrin β-8, but not β-5 or -6, protein expression is increased in livers of children with biliary atresia. J Pediatr Gastroenterol Nutr 2014; 59:679-83. [PMID: 25079481 DOI: 10.1097/mpg.0000000000000518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Our previous work demonstrated altered messenger RNA expression of integrin β-5 and -8, using an in silico analysis of publically available data from patients with biliary atresia (BA); however, we were unable to demonstrate statistically significant differences in protein expression because of sample size. In the present study, we repeated the analysis of liver fibrosis and protein expression of the integrins in a larger cohort of patients with BA and compared them with patients undergoing liver biopsy for other diagnoses, with the hypothesis that ≥ 1 of the integrins would be differentially expressed. METHODS Liver specimens were obtained at 2 collaborating institutions. Samples from infants with BA (n = 23) were compared with samples from those who underwent liver biopsy for neonatal hepatitis (n = 9). All of the specimens were analyzed by 2 pathologists (C.R. and R.A.), who were blinded to the diagnoses. Standard Ishak scoring was performed to evaluate fibrosis and inflammation, and immunohistochemical (IHC) positivity was graded from 0 to 4. Comparisons between the IHC positivity and Ishak scoring for the BA and control groups were performed using the Student t test with P < 0.01 considered significant because of the multiple comparisons. Interobserver variability was assessed by intraclass correlation (ICC). RESULTS Pooled analysis from specimens from patients with BA showed significantly more fibrosis than controls based on Ishak scores (3.21 ± 1.82 vs 1.17 ± 1.00, P < 0.005). IHC evaluation showed increased integrin ανβ8 protein expression when compared with controls (2.67 ± 0.81 vs 1.72 ± 0.62, P < 0.005); however, there were no significant differences in integrin ανβ5 (1.93 ± 0.84 vs 1.50 ± 0.90, P = 0.23) or integrin ανβ6 (0.85 ± 1.20 vs 0.94 ± 0.85, P = 0.82) expression. These data were confirmed on individual analysis. Interobserver agreement was fair for integrin ανβ5 (ICC 0.52), good for integrin ανβ6 (ICC 0.72), and excellent for integrin ανβ8 (ICC 0.79) and fibrosis (ICC 0.89). CONCLUSIONS Our data show that integrin ανβ8, but not integrin ανβ5 or integrin ανβ6, protein expression is increased in liver specimens of patients with BA. These data support the mounting evidence that transforming growth factor-β (TGF-β) activation is responsible for the fibrosis found in BA. Anti-integrin ανβ8 or more global integrin blocking strategies may be therapeutic options in BA, but further work is clearly needed.
Collapse
|
97
|
Yoshida S, Ikenaga N, Liu SB, Peng ZW, Chung J, Sverdlov DY, Miyamoto M, Kim YO, Ogawa S, Arch RH, Schuppan D, Popov Y. Extrahepatic platelet-derived growth factor-β, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 2014; 147:1378-92. [PMID: 25173753 DOI: 10.1053/j.gastro.2014.08.038] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Platelet-derived growth factor-β (PDGFB) is a mitogen for hepatic stellate cells (HSCs). We studied the cellular sources of PDGFB and the effects of a high-affinity monoclonal antibody against PDGFB (MOR8457) in mouse models of biliary fibrosis. METHODS Cellular sources of PDGFB were identified using quantitative reverse-transcription polymerase chain reaction, biochemical, and immunohistologic methods. Mice with advanced biliary fibrosis, MDR2(Abcb4)-null mice, and C57Bl/6 (control) mice were placed on 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-supplemented diets and were given weekly intraperitoneal injections of MOR8457. Platelets were depleted from MDR2-null mice by injection of an antibody against CD41, or inhibited with diets containing low-dose aspirin. Liver tissues were collected and analyzed by quantitative reverse-transcription PCR and histologic and biochemical analyses. RESULTS Levels of PDGFB protein, but not messenger RNA, were increased in fibrotic livers of MDR2-null mice, compared with control mice. Platelet clusters were detected in the hepatic endothelium, in close proximity to HSCs, and were identified as a source of PDGFB protein in MDR2-null mice. Levels of the PDGFB were increased in serum samples from patients with early stages of liver fibrosis of various etiologies (F1-2, n = 16; P < .05), compared with nonfibrotic liver tissue (F0, n = 12). Depletion of platelets from MDR2-null mice normalized hepatic levels of PDGFB within 48 hours, reducing levels of a marker of HSC activation (α-smooth muscle actin) and expression of genes that promote fibrosis. Diets supplemented with low-dose aspirin reduced circulating serum and hepatic levels of PDGFB and significantly reduced progression of fibrosis in MDR2-null mice over 1 year. MOR8457 produced a dose-dependent decrease in liver fibrosis in MDR2-null mice, reducing collagen deposition by 45% and expression of fibrosis-associated genes by 50%, compared with mice given a control antibody. In vitro, platelets activated freshly isolated HSCs (induction of α-smooth muscle actin and fibrosis-associated genes) via a PDGFB-dependent mechanism. MOR8457 also reduced liver fibrosis in mice placed on DDC-supplemented diets. CONCLUSIONS Platelets produce PDGFB to activate HSC and promote fibrosis in MDR2-null mice and mice on DDC-supplemented diets. Antiplatelet therapy or selective inhibition of PDGFB might reduce biliary fibrosis in patients with liver disease.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Naoki Ikenaga
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Susan B Liu
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zhen-Wei Peng
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jeanhee Chung
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Deanna Y Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Makoto Miyamoto
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yong Ook Kim
- Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | | | | | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
98
|
Adams J, Anderson EC, Blackham EE, Chiu YWR, Clarke T, Eccles N, Gill LA, Haye JJ, Haywood HT, Hoenig CR, Kausas M, Le J, Russell HL, Smedley C, Tipping WJ, Tongue T, Wood CC, Yeung J, Rowedder JE, Fray MJ, McInally T, Macdonald SJF. Structure Activity Relationships of αv Integrin Antagonists for Pulmonary Fibrosis by Variation in Aryl Substituents. ACS Med Chem Lett 2014; 5:1207-12. [PMID: 25408832 DOI: 10.1021/ml5002079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Abstract
Antagonism of αvβ6 is emerging as a potential treatment of idiopathic pulmonary fibrosis based on strong target validation. Starting from an αvβ3 antagonist lead and through simple variation in the nature and position of the aryl substituent, the discovery of compounds with improved αvβ6 activity is described. The compounds also have physicochemical properties commensurate with oral bioavailability and are high quality starting points for a drug discovery program. Compounds 33S and 43E1 are pan αv antagonists having ca. 100 nM potency against αvβ3, αvβ5, αvβ6, and αvβ8 in cell adhesion assays. Detailed structure activity relationships with these integrins are described which also reveal substituents providing partial selectivity (defined as at least a 0.7 log difference in pIC50 values between the integrins in question) for αvβ3 and αvβ5.
Collapse
Affiliation(s)
- James Adams
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Edward C. Anderson
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Emma E. Blackham
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Yin Wa Ryan Chiu
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Thomas Clarke
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Natasha Eccles
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Luke A. Gill
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Joshua J. Haye
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Harvey T. Haywood
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Christian R. Hoenig
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Marius Kausas
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage SG1
2NY, U.K
| | - Joelle Le
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage SG1
2NY, U.K
| | - Hannah L. Russell
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Christopher Smedley
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - William J. Tipping
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Tom Tongue
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Charlotte C. Wood
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Jason Yeung
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - James E. Rowedder
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage SG1
2NY, U.K
| | - M. Jonathan Fray
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Thomas McInally
- University
of Nottingham, School of Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Simon J. F. Macdonald
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage SG1
2NY, U.K
| |
Collapse
|
99
|
Bi J, Ge S. Potential roles of BMP9 in liver fibrosis. Int J Mol Sci 2014; 15:20656-67. [PMID: 25393508 PMCID: PMC4264188 DOI: 10.3390/ijms151120656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common phenomenon that is associated with several pathologies and is characterized by excessive extracellular matrix deposition that leads to progressive liver dysfunction. Bone morphogenetic protein 9 (BMP9) is the most recently discovered member of the BMP family. BMP9 bound with high affinity to activin receptor-like kinase 1 (ALK1) and endoglin in non-parenchymal liver cells. In addition, BMP9 activated Smad1/Smad5/Smad8 and induced the expression of the target genes inhibitor of differentiation 1 (Id1), hepcidin, Snail and the co-receptor endoglin in liver cells. Although the role of BMP9 in liver fibrosis is currently poorly understood, the presence of BMP9-activated proteins and its target genes have been reported to be associated with liver fibrosis development. This review summarizes the indirect connection between BMP9 and liver fibrosis, with a focus on the BMP9 signaling pathway members ALK1, endoglin, Id1, hepcidin and Snail. The observations on the role of BMP9 in regulating liver fibrosis may help in understanding the pathology mechanisms of liver disease. Furthermore, BMP9 could be served as a potent biomarker and the target of potential therapeutic drugs to treat hepatocytes fibrosis.
Collapse
Affiliation(s)
- Jianjun Bi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
100
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|