51
|
Zhang W, Song WJ, Chen W, Pan Z, Zhang J, Fan L, Li J. Metabolic dysfunction-associated steatotic liver disease-related hepatic fibrosis increases risk of insulin resistance, type 2 diabetes, and chronic kidney disease. Eur J Gastroenterol Hepatol 2024; 36:802-810. [PMID: 38526946 PMCID: PMC11045407 DOI: 10.1097/meg.0000000000002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) (previously called nonalcoholic fatty liver disease, NAFLD) is associated with cardiometabolic risk factors and chronic kidney disease (CKD). However, evidence is lacking regarding whether the severity of fibrosis is affected by these risk factors and diseases and to what degree. We aimed to determine the correlation between these factors and vibration-controlled transient elastography-determined liver stiffness measurements (LSMs) and controlled attenuation parameter (CAP) values in a sample of the US population. Data from the 2017-2018 cycle of the National Health and Nutrition Examination Survey were pooled. The association between LSM and cardiometabolic risk factors and CKD was assessed using generalized linear or logistic regression analyses. In multivariate regression analyses, CAP and BMI were adjusted as confounders. Of 3647 participants, 2079 (57.1%) had NAFLD/MASLD [weighted prevalence 54.8%; 95% confidence interval (CI) 51.8-57.9%]; the weighted prevalence of significant fibrosis (LSM ≥ 7.9 kPa) was 9.7% (95% CI 8.2-11.3%). Log LSM was associated with higher levels of homeostatic model assessment of insulin resistance ( β = 2.19; P = 0.017), hepatic steatosis (CAP > 248 dB/m) [odds ratio (OR) 3.66; 95% CI 2.22-6.02], type 2 diabetes (OR 2.69; 95% CI 1.72-4.20), and CKD (OR 1.70; 95% CI 1.24-2.34). These correlations did not change notably after adjustments were made for waist circumference, CAP, and BMI. LSM and CAP, although influenced by waist circumference and BMI, are good indicators of hepatic fibrosis and steatosis. LSM is associated with insulin resistance, diabetes, and CKD independent of hepatic steatosis and obesity.
Collapse
Affiliation(s)
- Weijing Zhang
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing
| | - Wen Jing Song
- Department of Ultrasound Medicine, Wendeng Orthopaedic Hospital of Shandong Province, Weihai, Shandong
| | - Weiyu Chen
- College of Mechanical and Electronic Engineering, Nanjing Forestry University
| | - Zoucheng Pan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing
| | - Jiawei Zhang
- Department of Special Treatment, The 904th Hospital of PLA
| | - Li Fan
- Department of Echocardiography, ChangZhou No. 2 People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jie Li
- Department of Echocardiography, ChangZhou No. 2 People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
52
|
Tulone A, Pennisi G, Ciccioli C, Infantino G, La Mantia C, Cannella R, Mercurio F, Petta S. Are we ready for genetic testing in metabolic dysfunction-associated steatotic liver disease? United European Gastroenterol J 2024; 12:638-648. [PMID: 38659291 PMCID: PMC11176907 DOI: 10.1002/ueg2.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 04/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with its steadily increasing prevalence, represents now a major problem in public health. A proper referral could benefit from tools allowing more precise risk stratification. To this end, in recent decades, several genetic variants that may help predict and refine the risk of development and progression of MASLD have been investigated. In this review, we aim to discuss the role genetics in MASLD plays in everyday clinical practice. We performed a comprehensive literature search of PubMed for relevant publications. Available evidence highlights the emergence of genetic-based noninvasive algorithms for diagnosing fatty liver, metabolic dysfunction-associated steatohepatitis, fibrosis progression and occurrence of liver-related outcomes including hepatocellular carcinoma. Nevertheless, their accuracy is not optimal and application in everyday clinical practice remains challenging. Furthermore, susceptible genetic markers have recently become subjects of great scientific interest as therapeutic targets in precision medicine. In conclusion, decisional algorithms based on genetic testing in MASLD to facilitate the clinician decisions on management and treatment are under growing investigation and could benefit from artificial intelligence methodology.
Collapse
Affiliation(s)
- Adele Tulone
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Grazia Pennisi
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Carlo Ciccioli
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | | | - Claudia La Mantia
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Roberto Cannella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND)University of PalermoPalermoItaly
| | | | - Salvatore Petta
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| |
Collapse
|
53
|
Greco S, Campigotto M, D’Amuri A, Fabbri N, Passaro A. Dyslipidemia, Cholangitis and Fatty Liver Disease: The Close Underexplored Relationship: A Narrative Review. J Clin Med 2024; 13:2714. [PMID: 38731243 PMCID: PMC11084647 DOI: 10.3390/jcm13092714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
In assessing individual cardiovascular risk, dyslipidemia is known for emerging as a pivotal factor significantly contributing to major cardiovascular events. However, dyslipidemic patients frequently present with concurrent medical conditions, each with varying frequencies of occurrence; cholangitis, whether acute or chronic, and hepatic steatosis, along with associated conditions, are strongly associated with specific forms of dyslipidemia, and these associations are reasonably well elucidated. Conversely, evidence linking biliary disease to hepatic steatosis is comparatively scant. This narrative review aims to bridge this gap in knowledge concerning the interplay between dyslipidemia, cholangitis, and hepatic steatosis. By addressing this gap, clinicians can better identify patients at heightened risk of future major cardiovascular events, facilitating more targeted interventions and management strategies. The review delves into the intricate relationships between dyslipidemia and these hepatic and biliary clinical conditions, shedding light on potential mechanisms underlying their associations. Understanding these complex interactions is crucial for optimizing cardiovascular risk assessment as well and devising tailored treatment approaches for patients with dyslipidemia and associated hepatic disorders. Moreover, elucidating these connections empowers clinicians with the knowledge needed to navigate the multifaceted landscape of cardiovascular risk assessment and management effectively. By exploring the intricate relationships between dyslipidemia, cholangitis, and hepatic steatosis (without forgetting the possible clinical consequences of hepatic steatosis itself), this review not only contributes to the existing body of knowledge but also offers insights into potential avenues for further research and clinical practice. Thus, it serves as a valuable resource for healthcare professionals striving to enhance patient care and outcomes in the context of cardiovascular disease and associated hepatic conditions.
Collapse
Affiliation(s)
- Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
- Department of Internal Medicine, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy
| | - Michele Campigotto
- Gastroenterology and Digestive Endoscopy Unit, ASUGI, Cattinara University Hospital, Strada di Fiume 447, 34149 Trieste, TS, Italy;
| | - Andrea D’Amuri
- General Medicine Unit, Medical Department, ASST Mantova, Ospedale Carlo Poma, Strada Lago Paiolo 10, 46100 Mantova, MN, Italy;
| | - Nicolò Fabbri
- Department of General Surgery, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy;
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
| |
Collapse
|
54
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
55
|
Abbate M, Parvanova A, López-González ÁA, Yañez AM, Bennasar-Veny M, Ramírez-Manent JI, Reseghetti E, Ruggenenti P. MAFLD and glomerular hyperfiltration in subjects with normoglycemia, prediabetes and type 2 diabetes: A cross-sectional population study. Diabetes Metab Res Rev 2024; 40:e3810. [PMID: 38757431 DOI: 10.1002/dmrr.3810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD, 2020 diagnostic criteria) and glomerular hyperfiltration share common risk factors, including obesity, insulin resistance, impaired glucose tolerance, diabetes, dyslipidemia, and hypertension. AIMS To assess the prevalence of MAFLD and its association with glomerular hyperfiltration and age-related worsening of kidney function in subjects with normoglycemia, prediabetes and type 2 diabetes mellitus (T2DM). METHODS We analysed data recorded during occupational health visits of 125,070 Spanish civil servants aged 18-65 years with a de-indexed glomerular filtration rate (GFR) estimated with the chronic-kidney-disease-epidemiological (CKD-EPI) equation (estimated glomerular filtration rate [eGFR]) ≥60 mL/min. Subjects were categorised according to fasting plasma glucose levels <100 mg/dL (normoglycemia), ≥100 and ≤ 125 mg/dL (prediabetes), or ≥126 mg/dL and/or antidiabetic treatment (T2DM). The association between MAFLD and glomerular hyperfiltration, defined as a de-indexed eGFR above the age- and gender-specific 95th percentile, was assessed by multivariable logistic regression. RESULTS In the whole study group, MAFLD prevalence averaged 19.3%. The prevalence progressively increased from 14.7% to 33.2% and to 48.9% in subjects with normoglycemia, prediabetes and T2DM, respectively (p < 0.001 for trend). Adjusted odds ratio (95% CI) for the association between MAFLD and hyperfiltration was 9.06 (8.53-9.62) in the study group considered as a whole, and 8.60 (8.03-9.21), 9.52 (8.11-11.18) and 8.31 (6.70-10.30) in subjects with normoglycemia, prediabetes and T2DM considered separately. In stratified analyses, MAFLD amplified age-dependent eGFR decline in all groups (p < 0.001). CONCLUSIONS MAFLD prevalence increases across the glycaemic spectrum. MAFLD is significantly associated with hyperfiltration and amplifies the age-related eGFR decline.
Collapse
Affiliation(s)
- Manuela Abbate
- Research Group on Global Health, University of the Balearic Islands, Palma, Spain
- Research Group on Evidence, Lifestyles and Health Research, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Nursing and Physiotherapy Department, University of the Balearic Islands, Palma, Spain
| | - Aneliya Parvanova
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò": Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica Bergamo, Italy
| | - Ángel Arturo López-González
- Prevention of Occupational Risks in Health Services, Balearic Islands Health Service, Palma, Spain
- ADEMA-HEALTH Group IUNICS, University of the Balearic Islands, Palma, Spain
| | - Aina M Yañez
- Research Group on Global Health, University of the Balearic Islands, Palma, Spain
- Research Group on Evidence, Lifestyles and Health Research, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Nursing and Physiotherapy Department, University of the Balearic Islands, Palma, Spain
| | - Miquel Bennasar-Veny
- Research Group on Global Health, University of the Balearic Islands, Palma, Spain
- Research Group on Evidence, Lifestyles and Health Research, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Nursing and Physiotherapy Department, University of the Balearic Islands, Palma, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José Ignacio Ramírez-Manent
- ADEMA-HEALTH Group IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Faculty of Medicine, University of the Balearic Islands, Palma, Spain
| | - Elia Reseghetti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Piero Ruggenenti
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò": Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
56
|
Sun M, Li Y, Su S, Gao J, Yu L, Qi X, Liang H, Li X, Qi X, Liang Y, Zhou L, Zhang G, Li Y. Tussilagone ameliorates high-fat diet-induced hepatic steatosis by enhancing energy metabolism and antioxidant activity. Phytother Res 2024; 38:2099-2113. [PMID: 37010930 DOI: 10.1002/ptr.7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health problem. However, no effective treatments are currently available. Thus, there is a critical need to develop novel drugs that can prevent and treat NAFLD with few side effects. In this study, Tussilagone (TUS), a natural sesquiterpene isolated from Tussilago farfara L, was explored in vitro and in vivo for its potential to treat NAFLD. Our results showed that in vitro TUS reduced oleic acid palmitate acid-induced triglyceride and cholesterol synthesis in HepG2cells, reduced intracellular lipid droplet accumulation, improved glucose metabolism disorders and increased energy metabolism and reduced oxidative stress levels. In vivo, TUS significantly reduced fat accumulation and improved liver injury in high-fat diet (HFD)-induced mice. TUS treatment significantly increased liver mitochondrial counts and antioxidant levels compared to the HFD group of mice. In addition, TUS was found to reduce the expression of genes involved in lipid synthesis sterol regulatory element binding protein-1 (SREBP1), fatty acid synthase (FASN), and stearoy-CoA desaturase 1 (SCD1) in vitro and in vivo. Our results suggest that TUS may be helpful in the treatment of NAFLD, suggesting that TUS is a promising compound for the treatment of NAFLD. Our findings provided novel insights into the application of TUS in regulating lipid metabolism.
Collapse
Affiliation(s)
- Mingjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yu Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Songtao Su
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiayi Gao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lin Yu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xinyi Qi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Huanjie Liang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiangling Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xinyu Qi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yunxiao Liang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lei Zhou
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Guo Zhang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
57
|
Gurun M, Brennan P, Handjiev S, Khatib A, Leith D, Dillon JF, Byrne CJ. Increased risk of chronic kidney disease and mortality in a cohort of people diagnosed with metabolic dysfunction associated steatotic liver disease with hepatic fibrosis. PLoS One 2024; 19:e0299507. [PMID: 38625981 PMCID: PMC11020899 DOI: 10.1371/journal.pone.0299507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/09/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND AND AIMS Metabolic dysfunction associated steatotic liver disease (MASLD) increases the risk of incident chronic kidney disease (CKD). However, the relative risk of CKD associated with increasing hepatic fibrosis, and consequent mortality risk, remains underexplored in real-world cohorts. In this study, we sought to establish whether hepatic fibrosis is associated with increased CKD risk and explore differences in mortality risk in a cohort of people living with MASLD, contingent on liver fibrosis and CKD status. METHODS This was an observational study of people who underwent routine liver function testing in Tayside, Scotland. MASLD was defined as: elevated ALT (>30 U/L) or GGT (>73 U/L); presence of diabetes, and/or hypertension, and/or obesity; weekly alcohol consumption <14 units (112g (+/-8g) alcohol); and negative screen for other aetiologies. Data was collected from digital health records. We used log-binomial models to quantify the risk of CKD among those with and without fibrosis, and Cox regression models to estimate differences in mortality risk dependent on fibrosis and CKD. RESULTS In our cohort (n = 2,046), 1,448 (70.8%) people had MASLD without fibrosis and 598 (29.2%) with fibrosis; 161 (11.1%) and 117 (19.6%) respectively also had CKD. After excluding individuals with structural, autoimmune, or malignant CKD (n = 22), liver fibrosis (n = 593; 18.9% with CKD) was associated with increased CKD risk (aRR = 1.31, 1.04-1.64, p = 0.021). Increased mortality risk was observed for those with liver fibrosis (aHR = 2.30, 1.49-3.56, p = <0.001) and was higher again among people with both fibrosis and CKD (aHR = 5.07, 3.07-8.39, p = <0.014). CONCLUSIONS Liver fibrosis was an independent risk factor for CKD in this cohort of people living with MASLD. Furthermore, those with MASLD with liver fibrosis had higher risk for mortality and this risk was further elevated among those with co-morbid CKD. Given the increased risk of CKD, and consequent mortality risk, among people living with MASLD fibrosis, renal function screening should be considered within liver health surveillance programmes and guidelines.
Collapse
Affiliation(s)
- Marc Gurun
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Paul Brennan
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
- Department of Gastroenterology, NHS Tayside, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Sava Handjiev
- Department of Biochemical Medicine, NHS Tayside, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Aseil Khatib
- Department of Gastroenterology, NHS Tayside, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Damien Leith
- Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - John F. Dillon
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
- Department of Gastroenterology, NHS Tayside, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Christopher J. Byrne
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
- Directorate of Public Health, NHS Tayside, Kings Cross Hospital, Dundee, United Kingdom
| |
Collapse
|
58
|
Zheng T, Wang X, Kamili K, Luo C, Hu Y, Wang D, Wang B, Gao P, Tian G. The relationship between alcohol consumption and chronic kidney disease in patients with nonalcoholic fatty liver disease. Scand J Gastroenterol 2024; 59:480-488. [PMID: 38179969 DOI: 10.1080/00365521.2023.2299304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Objective: To examine the impact of moderate alcohol consumption on the progression of chronic kidney disease (CKD) in individuals diagnosed with non-alcoholic fatty liver disease (NAFLD), as NAFLD has been identified as an autonomous risk factor for CKD and previous research has demonstrated a reduction in overall mortality in NAFLD patients who consume alcohol in moderation.Methods: This study included participants from ten consecutive rounds of the National Health and Nutrition Examination Survey (NHANES:1998-2018). Multivariate logistic regression models were employed to assess the impact of moderate alcohol consumption on chronic kidney disease (CKD) in both male and female populations. Subgroup analysis was conducted by categorizing patients with non-alcoholic fatty liver disease (NAFLD) based on the Fibrosis-4 (FIB-4) index.Results: 17040 participants were eligible to be included in the study. The logistic regression analysis model showed that moderate alcohol consumption was a protective factor for CKD in male NAFLD patients, with an unadjusted OR: 0.37 (0.22,0.65), and p < 0.001. After further adjustment, the association persisted. However, the association was not significant in female patients with NAFLD. Among men with low risk of liver fibrosis group, moderate alcohol consumption remained a protective factor for CKD (OR = 0.32, 95% CI 0.12-0.84, p = 0.02), but the association was not significant in the high risk of liver fibrosis group. In female patients, both moderate alcohol consumption and excessive alcohol consumption were not significantly associated with CKD in either the low-risk group or the high-risk group.Conclusion: Moderate alcohol consumption is associated with a lower prevalence of CKD in men with NAFLD.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kamila Kamili
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaodi Luo
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Hu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Danni Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boxiang Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengjie Gao
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Tian
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
59
|
Pose E, Piano S, Juanola A, Ginès P. Hepatorenal Syndrome in Cirrhosis. Gastroenterology 2024; 166:588-604.e1. [PMID: 38246506 DOI: 10.1053/j.gastro.2023.11.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 01/23/2024]
Abstract
Hepatorenal syndrome (HRS) is a form of kidney dysfunction that characteristically occurs in liver cirrhosis. It is characterized by a marked impairment of kidney function in response to circulatory and hemodynamic alterations that occur in advanced stages of liver cirrhosis, aggravated by systemic inflammation and bacterial translocation. The classical definitions of the types of HRS have been recently revisited and 2 forms of HRS have been redefined: the acute form, referred to as acute kidney injury (HRS-AKI), and the chronic form, referred to as chronic kidney disease. HRS-AKI is one of the most severe forms of AKI in patients with cirrhosis and it consists of an abrupt impairment of kidney function, frequently triggered by an infection, appearing in the setting of advanced decompensated cirrhosis. Differential diagnosis with other causes of AKI is crucial because HRS-AKI requires a specific treatment. Differential diagnosis with AKI-acute tubular necrosis may be challenging and kidney biomarkers may be useful in this setting. Treatment of HRS-AKI is based on the administration of vasoconstrictor drugs in combination with volume expansion with albumin. Prognosis of HRS-AKI is poor, and the ideal definitive treatment consists of liver transplantation or simultaneous liver-kidney transplantation. HRS-AKI has a big impact on patients' quality of life. Management of HRS-AKI remains challenging in specific situations such as alcohol-associated hepatitis or metabolic-associated steatotic liver disease cirrhosis. Developing preventive measures for HRS-AKI, improving its early identification, discovering new biomarkers for differential diagnosis, and improving the response to therapy are some of the unmet needs in the field of HRS-AKI.
Collapse
Affiliation(s)
- Elisa Pose
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Adrià Juanola
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Pere Ginès
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Catalunya, Spain; School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
60
|
Le MH, Le DM, Baez TC, Dang H, Nguyen VH, Lee K, Stave CD, Ito T, Wu Y, Yeo YH, Ji F, Cheung R, Nguyen MH. Global incidence of adverse clinical events in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Clin Mol Hepatol 2024; 30:235-246. [PMID: 38281814 PMCID: PMC11016479 DOI: 10.3350/cmh.2023.0485] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND/AIMS Nonalcoholic fatty liver disease (NAFLD) is associated with a multitude of adverse outcomes. We aimed to estimate the pooled incidence of NAFLD-related adverse events. METHODS We performed a systematic review and meta-analysis of cohort studies of adults with NAFLD to evaluate the pooled incidence of adverse events. RESULTS 19,406 articles were screened, 409 full-text articles reviewed, and 79 eligible studies (1,377,466 persons) were included. Mean age was 51.47 years and body mass index 28.90 kg/m2. Baseline comorbidities included metabolic syndrome (41.73%), cardiovascular disease (CVD) (16.83%), cirrhosis (21.97%), and nonalcoholic steatohepatitis (NASH) (58.85%). Incidence rate per 1,000 person-years for mortality included: all-cause (14.6), CVD-related (4.53), non-liver cancer-related (4.53), and liver-related (3.10). Incidence for liver-related events included overall (24.3), fibrosis progression (49.0), cirrhosis (10.9), liver transplant (12.0), and hepatocellular carcinoma (HCC) (3.39). Incidence for non-liver events included metabolic syndrome (25.4), hypertension (25.8), dyslipidemia (26.4), diabetes (19.0), CVD (24.77), renal impairment (30.3), depression/anxiety (29.1), and non-liver cancer (10.5). Biopsy-proven NASH had higher incidence of HCC (P=0.043) compared to non-NASH. Higher rates of CVD and mortality were observed in North America and Europe, hypertension and non-liver cancer in North America, and HCC in Western Pacific/Southeast Asia (P<0.05). No significant differences were observed by sex. Time-period analyses showed decreasing rates of cardiovascular and non-liver cancer mortality and increasing rates of decompensated cirrhosis (P<0.05). CONCLUSION People with NAFLD have high incidence of liver and non-liver adverse clinical events, varying by NASH, geographic region, and time-period, but not sex.
Collapse
Affiliation(s)
- Michael H. Le
- Larner College of Medicine at the University of Vermont, Burlington, VT, USA
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - David M. Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Thomas C. Baez
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Hansen Dang
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
| | - Vy H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuankai Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yee Hui Yeo
- The Karsh Division of Gastroenterology and Hepatology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Fanpu Ji
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Division of Gastroenterology and Hepatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA, USA
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
61
|
Wang J, Fan T, Zhang S, Wu C, Huang R. Letter: Impact of antiviral treatment on renal function in patients with chronic hepatitis B. Aliment Pharmacol Ther 2024; 59:1012-1013. [PMID: 38523126 DOI: 10.1111/apt.17922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
LINKED CONTENTThis article is linked to Hong et al papers. To view these articles, visit https://doi.org/10.1111/apt.17819 and https://doi.org/10.1111/apt.17937
Collapse
Affiliation(s)
- Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Fan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shaoqiu Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
62
|
Wongtrakul W, Charatcharoenwitthaya N, Charatcharoenwitthaya P. Metabolic dysfunction-associated steatotic liver disease and the risk of mortality in individuals with type 2 diabetes: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2024; 36:351-358. [PMID: 38407898 DOI: 10.1097/meg.0000000000002719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The systematic review aimed to assess the risks of metabolic dysfunction-associated steatotic liver disease (MASLD) on all-cause and cause-specific mortality in patients with type 2 diabetes (T2DM). EMBASE and MEDLINE were searched from inception to June 2022 for observational studies examining the relationship between MASLD and the risk of mortality among T2DM patients. Meta-analysis was conducted using random-effects models with hazard ratios (HRs) to quantify the risk of mortality. A total of 5877 articles were screened, and ultimately, 12 eligible studies encompassing 368 528 T2DM patients, with a median follow-up of 8.9 years (interquartile range, 4.7-14.5), were included. Our analysis revealed a significant association between MASLD and an increased risk of all-cause mortality in T2DM patients [HR 1.28; 95% confidence interval (CI), 1.05-1.58; I 2 = 90%]. Meta-regression analyses did not show significant effects of mean age, mean BMI, and percentage of smokers, hypertension, and hyperlipidemia on the association between MASLD and the risk of all-cause mortality. However, we found that MASLD was not significantly associated with mortality related to cardiovascular diseases (HR 1.05; 95% CI, 0.82-1.35; I2 = 0%) or cancer (HR 1.21; 95% CI, 0.41-3.51; I 2 = 79%) among patients with T2DM. No publication bias was observed. This comprehensive meta-analysis provides substantial evidence supporting a significant association between MASLD and an increased risk of all-cause mortality among the T2DM population. These findings underscore the potential benefits of screening for MASLD in T2DM patients, aiding in the early identification of high-risk individuals and enabling risk modification strategies to improve survival.
Collapse
Affiliation(s)
- Wasit Wongtrakul
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok
| | - Natthinee Charatcharoenwitthaya
- Division of Endocrinology and Metabolism. Department of Medicine, Faculty of Medicine Thammasat University, Pathumthani, Thailand
| | | |
Collapse
|
63
|
Chrysavgis LG, Kazanas S, Bafa K, Rozani S, Koloutsou ME, Cholongitas E. Glucagon-like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide, and Glucagon Receptor Agonists in Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Medication in New Liver Disease Nomenclature. Int J Mol Sci 2024; 25:3832. [PMID: 38612640 PMCID: PMC11012092 DOI: 10.3390/ijms25073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic β-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.
Collapse
Affiliation(s)
- Lampros G. Chrysavgis
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Spyridon Kazanas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Konstantina Bafa
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Sophia Rozani
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Maria-Evangelia Koloutsou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece;
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| |
Collapse
|
64
|
Lee HH, Ro H, Jung JY, Chang JH, Chung W, Kim AJ. The Fatty Liver Index's Association with Incident Chronic Kidney Disease in Korean Middle-Aged Adults: A Community-Based Cohort Study. J Clin Med 2024; 13:1616. [PMID: 38541842 PMCID: PMC10971018 DOI: 10.3390/jcm13061616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 01/03/2025] Open
Abstract
(1) Background: The relationship between nonalcoholic fatty liver disease (NAFLD) and incident chronic kidney disease (CKD) is unclear, and long-term follow-up data are limited. Therefore, this study aimed to evaluate whether NAFLD, as assessed by the fatty liver index (FLI), could predict the development of CKD in a community-based Korean cohort over 16 years. (2) Methods: Among the 10,030 total participants, 7778 patients without CKD were selected from the Korean Genome and Epidemiology Study (KoGES). The FLI grade ranged from 0 to 100 and was divided into three groups: low (FLI, <30), intermediate (FLI, 30-59), and high (FLI, ≥60). An estimated glomerular filtration rate (eGFR) of <60 mL/min/1.73 m2 or the development of proteinuria was considered to indicate incident CKD. (3) Results: During the 16-year follow-up period, 919 individuals (11.8%) developed CKD. The HRs of incident CKD in the intermediate FLI group (30-59) and high FLI group (≥60) increased compared with the reference low FLI group (<30) after adjusting for potentially confounding variables. NAFLD, as assessed by the FLI, was an independent risk factor for CKD. (4) Conclusions: Our findings suggest that the FLI, a simple surrogate biomarker of fatty liver disease, may be used to identify people at high risk of incident CKD in clinical practice.
Collapse
Affiliation(s)
- Hyun Hee Lee
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Han Ro
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Ji Yong Jung
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Jae Hyun Chang
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Wookyung Chung
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Ae Jin Kim
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| |
Collapse
|
65
|
Kotsiubiichuk Z, Antoniv A, Kanovska L, Mandryk O. Correction of endothelial dysfunction in patients with type 2 diabetes mellitus, diabetic kidney disease and non-alcoholic steatohepatitis. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (UKRAINE) 2024; 20:1-6. [DOI: 10.22141/2224-0721.20.1.2024.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background. Non-alcoholic fatty liver disease and chronic kidney disease are public health concerns worldwide due to their increasing prevalence, adverse prognosis, and health care burden. The purpose of the study was to determine the probable effect of a combination of metformin, rosuvastatin, essential phospholipids and quercetin on the blood lipids, endothelial function, fibrinolysis system and platelet hemostasis, which are factors for the progression of nonalcoholic steatohepatitis. Materials and methods. Studies were performed on the dynamics of treatment in 60 patients with non-alcoholic fatty liver disease, type 2 diabetes mellitus and diabetic kidney disease (stage I–III). Depending on the prescribed treatment at random, the examined patients were divided into 2 groups. Twenty-eight persons of the first group received a low-calorie diet with dietary restrictions, essential phospholipids, metformin hydrochloride, rosuvastatin. Thirty-two patients from the second group received quercetin in addition to similar dietary recommendations, essential phospholipids, hypoglycemic and hypolipidemic therapy. The mean age of patients was 53.80 ± 3.52 years. The comparison group consisted of 30 healthy individuals of the corresponding age. Results. To evaluate the degree of endothelial-protective effect of quercetin on the background of the recommended protocol therapy, markers of endothelial dysfunction, fibrinolysis and platelet hemostasis were studied. NO content significantly reduced (1.7 times) in patients of group 2 before treatment, increased by 1.5 times (p < 0.05). This can be explained by the effect of quercetin, as well as the use of metformin, which reduces the degree of insulin resistance and the level of hyperlipidemia. Conclusions. The effectiveness of a combination therapy for non-alcoholic steatohepatitis and type 2 diabetes mellitus with diabetic kidney disease using essential phospholipids, statins and metformin with the addition of quercetin is higher than that of traditional therapy, as it significantly restores the functional state of the endothelium, eliminates the phenomena of hypercoagulation syndrome without the additional prescription of antiplatelet agents.
Collapse
|
66
|
Chan KE, Ong EYH, Chung CH, Ong CEY, Koh B, Tan DJH, Lim WH, Yong JN, Xiao J, Wong ZY, Syn N, Kaewdech A, Teng M, Wang JW, Chew N, Young DY, Know A, Siddiqui MS, Huang DQ, Tamaki N, Wong VWS, Mantzoros CS, Sanyal A, Noureddin M, Ng CH, Muthiah M. Longitudinal Outcomes Associated With Metabolic Dysfunction-Associated Steatotic Liver Disease: A Meta-analysis of 129 Studies. Clin Gastroenterol Hepatol 2024; 22:488-498.e14. [PMID: 37775028 DOI: 10.1016/j.cgh.2023.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND & AIMS The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) has been found to manifest in a series of hepatic and extrahepatic complications. A comprehensive meta-analysis of the longitudinal outcomes associated with MASLD has yet to be conducted. METHODS To investigate the longitudinal outcomes associated with MASLD, Medline and Embase databases were searched to identify original studies that evaluated the longitudinal risks of incident clinical outcomes among MASLD patients compared with non-MASLD individuals. DerSimonian Laird random-effects meta-analysis was performed. Pooled effect estimates were calculated, and heterogeneity among studies was evaluated. RESULTS One hundred twenty-nine studies were included in the meta-analysis. Meta-analysis revealed a significant increase in the risk of cardiovascular outcomes (hazard ratio [HR], 1.43; 95% confidence interval [CI], 1.27-1.60; P < .01), various metabolic outcomes such as incident hypertension (HR, 1.75; 95% CI, 1.46-2.08; P < .01), diabetes (HR, 2.56; 95% CI, 2.10-3.13; P < .01), pre-diabetes (HR, 1.69; 95% CI, 1.22-2.35; P < .01), metabolic syndrome (HR, 2.57; 95% CI, 1.13-5.85; P = .02), chronic kidney disease (HR, 1.38; 95% CI, 1.27-1.50; P < .01), as well as all cancers (HR, 1.54; 95% CI, 1.35-1.76; P < .01) among MASLD patients compared with non-MASLD individuals. By subgroup analysis, MASLD patients with advanced liver disease (HR, 3.60; 95% CI, 2.10-6.18; P < .01) were also found to be associated with a significantly greater risk (P = .02) of incident diabetes than those with less severe MASLD (HR, 1.63; 95% CI, 1.0-2.45; P = .02) when compared with non-MASLD. CONCLUSIONS The present study emphasizes the association between MASLD and its clinical outcomes including cardiovascular, metabolic, oncologic, and other outcomes. The multisystemic nature of MASLD found in this analysis requires treatment targets to reduce systemic events and end organ complications.
Collapse
Affiliation(s)
- Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Elden Yen Hng Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charlotte Hui Chung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christen En Ya Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Benjamin Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhen Yu Wong
- Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Margaret Teng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Cardiovascular Research Institute (CVRI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Dan Yock Young
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Alfred Know
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christos S Mantzoros
- Division of Endocrinology, Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arun Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | | | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore.
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore.
| |
Collapse
|
67
|
Chen C, He Y, Ni Y, Tang Z, Zhang W. Identification of crosstalk genes relating to ECM-receptor interaction genes in MASH and DN using bioinformatics and machine learning. J Cell Mol Med 2024; 28:e18156. [PMID: 38429902 PMCID: PMC10907849 DOI: 10.1111/jcmm.18156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/03/2024] Open
Abstract
This study aimed to identify genes shared by metabolic dysfunction-associated fatty liver disease (MASH) and diabetic nephropathy (DN) and the effect of extracellular matrix (ECM) receptor interaction genes on them. Datasets with MASH and DN were downloaded from the Gene Expression Omnibus (GEO) database. Pearson's coefficients assessed the correlation between ECM-receptor interaction genes and cross talk genes. The coexpression network of co-expression pairs (CP) genes was integrated with its protein-protein interaction (PPI) network, and machine learning was employed to identify essential disease-representing genes. Finally, immuno-penetration analysis was performed on the MASH and DN gene datasets using the CIBERSORT algorithm to evaluate the plausibility of these genes in diseases. We found 19 key CP genes. Fos proto-oncogene (FOS), belonging to the IL-17 signalling pathway, showed greater centrality PPI network; Hyaluronan Mediated Motility Receptor (HMMR), belonging to ECM-receptor interaction genes, showed most critical in the co-expression network map of 19 CP genes; Forkhead Box C1 (FOXC1), like FOS, showed a high ability to predict disease in XGBoost analysis. Further immune infiltration showed a clear positive correlation between FOS/FOXC1 and mast cells that secrete IL-17 during inflammation. Combining the results of previous studies, we suggest a FOS/FOXC1/HMMR regulatory axis in MASH and DN may be associated with mast cells in the acting IL-17 signalling pathway. Extracellular HMMR may regulate the IL-17 pathway represented by FOS through the Mitogen-Activated Protein Kinase 1 (ERK) or PI3K-Akt-mTOR pathway. HMMR may serve as a signalling carrier between MASH and DN and could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Chao Chen
- Instrumentation and Service Center for Science and TechnologyBeijing Normal UniversityZhuhaiChina
| | - Yuxi He
- Pediatric Research InstituteThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ying Ni
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| | - Zhanming Tang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| | - Wensheng Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| |
Collapse
|
68
|
Benlloch S, Moncho F, Górriz JL. Esteatosis hepática metabólica y nefropatía diabética: una llamada a la acción. Nefrologia 2024; 44:129-138. [DOI: 10.1016/j.nefro.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
69
|
Li X, Bhattacharya D, Yuan Y, Wei C, Zhong F, Ding F, D'Agati VD, Lee K, Friedman SL, He JC. Chronic kidney disease in a murine model of non-alcoholic steatohepatitis (NASH). Kidney Int 2024; 105:540-561. [PMID: 38159678 PMCID: PMC10922588 DOI: 10.1016/j.kint.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Clinical studies suggest that non-alcoholic steatohepatitis (NASH) is an independent risk factor for chronic kidney disease (CKD), but causality and mechanisms linking these two major diseases are lacking. To assess whether NASH can induce CKD, we have characterized kidney function, histological features, transcriptomic and lipidomic profiles in a well-validated murine NASH model. Mice with NASH progressively developed significant podocyte foot process effacement, proteinuria, glomerulosclerosis, tubular epithelial cell injury, lipid accumulation, and interstitial fibrosis. The progression of kidney fibrosis paralleled the severity of the histologic NASH-activity score. Significantly, we confirmed the causal link between NASH and CKD by orthotopic liver transplantation, which attenuated proteinuria, kidney dysfunction, and fibrosis compared with control sham operated mice. Transcriptomic analysis of mouse kidney cortices revealed differentially expressed genes that were highly enriched in mitochondrial dysfunction, lipid metabolic process, and insulin signaling pathways in NASH-induced CKD. Lipidomic analysis of kidney cortices further revealed that phospholipids and sphingolipids were the most significantly changed lipid species. Notably, we found similar kidney histological changes in human NASH and CKD. Thus, our results confirm a causative role of NASH in the development of CKD, reveal potential pathophysiologic mechanisms of NASH-induced kidney injury, and established a valuable model to study the pathogenesis of NASH-associated CKD. This is an important feature of fatty liver disease that has been largely overlooked but has clinical and prognostic importance.
Collapse
Affiliation(s)
- Xuezhu Li
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yue Yuan
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chengguo Wei
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Kyung Lee
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J Peters VA Medical Center at Bronx, New York, New York, USA.
| |
Collapse
|
70
|
Benlloch S, Moncho F, Górriz JL. Targeting metabolic-associated fatty liver disease in diabetic kidney disease: A call to action. Nefrologia 2024; 44:129-138. [PMID: 38565488 DOI: 10.1016/j.nefroe.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Nonalcoholic fatty liver disease or metabolic-associated fatty liver disease (MAFLD) is a common condicion with increasing prevalence and incidence, specially in patients with type 2 diabetes mellitus (T2DM). Both cardiovascular and renal disease are clearly increased in these patients, particularly in those with diabetic nephropathy. In the liver-heart-kidney-metabolic axis, the common pathophysiological basis of MAFLD, cardiovascular disease (CVD), chronic kidney disease (CKD), and T2DM is the same. The clinical relationship between all of them is clear and is multidirectional: MAFLD may precede the development of cardiovascular and renal disease, and may also worsen the prognosis of these complications once developed. In this review we emphasize the importance of targeting MAFLD in Diabetic kidney disease, with the goal of detecting high-risk patients in order to improve their prognosis.
Collapse
Affiliation(s)
- Salvador Benlloch
- Servicio de Digestivo, Hospital Arnau de Vilanova, Universidad CEU-Cardenal Herrera, Valencia, CIBERhed-Instituto de salud Carlos III, Madrid, Spain.
| | - Francesc Moncho
- Servicio de Nefrología, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Jose Luis Górriz
- Servicio de Nefrología, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain; Universidad de Valencia, Valencia, Spain
| |
Collapse
|
71
|
Chang TH, Chen YD, Lu HHS, Wu JL, Mak K, Yu CS. Specific patterns and potential risk factors to predict 3-year risk of death among non-cancer patients with advanced chronic kidney disease by machine learning. Medicine (Baltimore) 2024; 103:e37112. [PMID: 38363886 PMCID: PMC10869094 DOI: 10.1097/md.0000000000037112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/18/2024] Open
Abstract
Chronic kidney disease (CKD) is a major public health concern. But there are limited machine learning studies on non-cancer patients with advanced CKD, and the results of machine learning studies on cancer patients with CKD may not apply directly on non-cancer patients. We aimed to conduct a comprehensive investigation of risk factors for a 3-year risk of death among non-cancer advanced CKD patients with an estimated glomerular filtration rate < 60.0 mL/min/1.73m2 by several machine learning algorithms. In this retrospective cohort study, we collected data from in-hospital and emergency care patients from 2 hospitals in Taiwan from 2009 to 2019, including their international classification of disease at admission and laboratory data from the hospital's electronic medical records (EMRs). Several machine learning algorithms were used to analyze the potential impact and degree of influence of each factor on mortality and survival. Data from 2 hospitals in northern Taiwan were collected with 6565 enrolled patients. After data cleaning, 26 risk factors and approximately 3887 advanced CKD patients from Shuang Ho Hospital were used as the training set. The validation set contained 2299 patients from Taipei Medical University Hospital. Predictive variables, such as albumin, PT-INR, and age, were the top 3 significant risk factors with paramount influence on mortality prediction. In the receiver operating characteristic curve, the random forest had the highest values for accuracy above 0.80. MLP, and Adaboost had better performance on sensitivity and F1-score compared to other methods. Additionally, SVM with linear kernel function had the highest specificity of 0.9983, while its sensitivity and F1-score were poor. Logistic regression had the best performance, with an area under the curve of 0.8527. Evaluating Taiwanese advanced CKD patients' EMRs could provide physicians with a good approximation of the patients' 3-year risk of death by machine learning algorithms.
Collapse
Affiliation(s)
- Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Da Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Henry Horng-Shing Lu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Data Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jenny L. Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Cheng-Sheng Yu
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- Clinical Data Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
- Fintech RD Center, Nan Shan Life Insurance Co., Ltd
| |
Collapse
|
72
|
Björnsdottir S, Ulfsdottir H, Gudmundsson EF, Sveinsdottir K, Isberg AP, Dobies B, Akerlie Magnusdottir GE, Gunnarsdottir T, Karlsdottir T, Bjornsdottir G, Sigurdsson S, Oddsson S, Gudnason V. User Engagement, Acceptability, and Clinical Markers in a Digital Health Program for Nonalcoholic Fatty Liver Disease: Prospective, Single-Arm Feasibility Study. JMIR Cardio 2024; 8:e52576. [PMID: 38152892 PMCID: PMC10905363 DOI: 10.2196/52576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. Common comorbidities are central obesity, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome. Cardiovascular disease is the most common cause of death among people with NAFLD, and lifestyle changes can improve health outcomes. OBJECTIVE This study aims to explore the acceptability of a digital health program in terms of engagement, retention, and user satisfaction in addition to exploring changes in clinical outcomes, such as weight, cardiometabolic risk factors, and health-related quality of life. METHODS We conducted a prospective, open-label, single-arm, 12-week study including 38 individuals with either a BMI >30, metabolic syndrome, or type 2 diabetes mellitus and NAFLD screened by FibroScan. An NAFLD-specific digital health program focused on disease education, lowering carbohydrates in the diet, food logging, increasing activity level, reducing stress, and healthy lifestyle coaching was offered to participants. The coach provided weekly feedback on food logs and other in-app activities and opportunities for participants to ask questions. The coaching was active throughout the 12-week intervention period. The primary outcome was feasibility and acceptability of the 12-week program, assessed through patient engagement, retention, and satisfaction with the program. Secondary outcomes included changes in weight, liver fat, body composition, and other cardiometabolic clinical parameters at baseline and 12 weeks. RESULTS In total, 38 individuals were included in the study (median age 59.5, IQR 46.3-68.8 years; n=23, 61% female). Overall, 34 (89%) participants completed the program and 29 (76%) were active during the 12-week program period. The median satisfaction score was 6.3 (IQR 5.8-6.7) of 7. Mean weight loss was 3.5 (SD 3.7) kg (P<.001) or 3.2% (SD 3.4%), with a 2.2 (SD 2.7) kg reduction in fat mass (P<.001). Relative liver fat reduction was 19.4% (SD 23.9%). Systolic blood pressure was reduced by 6.0 (SD 13.5) mmHg (P=.009). The median reduction was 0.14 (IQR 0-0.47) mmol/L for triglyceride levels (P=.003), 3.2 (IQR 0.0-5.4) µU/ml for serum insulin (s-insulin) levels (P=.003), and 0.5 (IQR -0.7 to 3.8) mmol/mol for hemoglobin A1c (HbA1c) levels (P=.03). Participants who were highly engaged (ie, who used the app at least 5 days per week) had greater weight loss and liver fat reduction. CONCLUSIONS The 12-week-long digital health program was feasible for individuals with NAFLD, receiving high user engagement, retention, and satisfaction. Improved liver-specific and cardiometabolic health was observed, and more engaged participants showed greater improvements. This digital health program could provide a new tool to improve health outcomes in people with NAFLD. TRIAL REGISTRATION Clinicaltrials.gov NCT05426382; https://clinicaltrials.gov/study/NCT05426382.
Collapse
Affiliation(s)
- Sigridur Björnsdottir
- Department of Endocrinology, Metabolism and Diabetes, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | - Gudlaug Bjornsdottir
- Icelandic Heart Association, Kopavogur, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sigurdur Sigurdsson
- Icelandic Heart Association, Kopavogur, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
73
|
Boeckmans J, Sandrin L, Knackstedt C, Schattenberg JM. Liver stiffness as a cornerstone in heart disease risk assessment. Liver Int 2024; 44:344-356. [PMID: 38014628 DOI: 10.1111/liv.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) typically presents with hepatic fibrosis in advanced disease, resulting in increased liver stiffness. A subset of patients further develops liver cirrhosis and hepatocellular carcinoma. Cardiovascular disease is a common comorbidity in patients with MASLD and its prevalence is increasing in parallel. Recent evidence suggests that especially liver stiffness, whether or not existing against a background of MASLD, is associated with heart diseases. We conducted a narrative review on the role of liver stiffness in the prediction of highly prevalent heart diseases including heart failure, cardiac arrhythmias (in particular atrial fibrillation), coronary heart disease, and aortic valve sclerosis. Research papers were retrieved from major scientific databases (PubMed, Web of Science) until September 2023 using 'liver stiffness' and 'liver fibrosis' as keywords along with the latter cardiac conditions. Increased liver stiffness, determined by vibration-controlled transient elastography or hepatic fibrosis as predicted by biomarker panels, are associated with a variety of cardiovascular diseases, including heart failure, atrial fibrillation, and coronary heart disease. Elevated liver stiffness in patients with metabolic liver disease should lead to considerations of cardiac workup including N-terminal pro-B-type natriuretic peptide/B-type natriuretic peptide determination, electrocardiography, and coronary computed tomography angiography. In addition, patients with MASLD would benefit from heart disease case-finding strategies in which liver stiffness measurements can play a key role. In conclusion, increased liver stiffness should be a trigger to consider a cardiac workup in metabolically compromised patients.
Collapse
Affiliation(s)
- Joost Boeckmans
- Metabolic Liver Research Center, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- In Vitro Liver Disease Modelling Team, Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Christian Knackstedt
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, the Netherlands
- Faculty of Health, Medicine, and Life Sciences, CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Jörn M Schattenberg
- Metabolic Liver Research Center, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
74
|
Liu Y, Chai S, Zhang X. Effect of MAFLD on albuminuria and the interaction between MAFLD and diabetes on albuminuria. J Diabetes 2024; 16:e13501. [PMID: 37974383 PMCID: PMC10859309 DOI: 10.1111/1753-0407.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE To investigate the effects of metabolic associated fatty liver disease (MAFLD) on chronic kidney disease (CKD) and abnormal albuminuria and the interaction between MAFLD and diabetes on abnormal albuminuria. METHODS Data of participants in the American 2017-2018 National Health and Nutrition Examination Survey were analyzed. Hepatic steatosis was defined as median controlled attenuation parameter ≥248 dB/m, which was measured by ultrasound transient elastography. MAFLD was defined by evidence of hepatic steatosis on ultrasound in addition to any metabolic dysregulation. Hepatic fibrosis was detected by FibroScan and quantified by parameter of stiffness (E). Hepatic fibrosis was defined as E ≥ 9.7 kPa. As component of CKD, reduced estimated glomerular filtration rate (eGFR) was defined as<60 mL/min/1.73 m2 and abnormal albuminuria was defined as urinary albumin-to-creatinine ratio ≥ 30 mg/g. RESULTS Data pertaining to 5119 participants were included in the analysis, with 40.6% hepatic normal, 52.1% MAFLD, and 7.2% hepatic fibrosis. Multivariable regression analyses showed that for abnormal albuminuria, the odds ratio (OR) was 0.82 (0.65-1.04) for MAFLD group and 1.73 (1.14.-,2.63) for hepatic fibrosis group, both taking the hepatic healthy group as reference. As for reduced eGFR, the OR was 0.68 (0.51-0.92) for MAFLD group and 0.93 (0.56-1.53) for hepatic fibrosis group. Diabetes was significantly related to greater risk of abnormal albuminuria (3.04 [2.70-3.42]) and reduced eGFR (1.53 [1.33-1.77]). With regard to the prevalence of abnormal albuminuria, the OR was 1.64 (1.03-2.60) for those with hepatic fibrosis only, 3.30 (2.80-3.89) for those with diabetes only, and 5.05 (3.30-7.72) for those with both two conditions. But there were neither additive interaction (relative excess risk due to interaction 0.56 [-1.41-.53], p = .577) nor multiplicative interaction (OR 0.81 [0.45-1.47], p = .492) between hepatic fibrosis and diabetes on the prevalence of abnormal albuminuria. CONCLUSION MAFLD with hepatic fibrosis is an independent risk factor for abnormal albuminuria, but it does not have interaction with diabetes on abnormal albuminuria.
Collapse
Affiliation(s)
- Yufang Liu
- Department of EndocrinologyPeking University International HospitalBeijingChina
| | - Sanbao Chai
- Department of EndocrinologyPeking University International HospitalBeijingChina
| | - Xiaomei Zhang
- Department of EndocrinologyPeking University International HospitalBeijingChina
| |
Collapse
|
75
|
Ensho T, Hino J, Ueda Y, Miyazato M, Iwakura H. Vascular endothelial cell-specific overexpression of CNP did not improve liver fibrosis in HFFCD-induced NASH, but did improve renal lesions. Peptides 2024; 172:171146. [PMID: 38157939 DOI: 10.1016/j.peptides.2023.171146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Mice with endothelial-cell-specific overexpression of C-type natriuretic peptide (E-CNP Tg mice) were shown to be protected against hepatic fibrosis and inflammation induced by high fat diet (HFD) feeding, with improved insulin sensitivity and attenuated weight gain. A recently developed high-fat, high-fructose, high-cholesterol diet (HFFCD) is considered to be a superior model to HFD, owing to the resemblance to human non-alcoholic steatohepatitis (NASH). In this study, we therefore aimed to reveal whether these previous findings with E-CNP Tg mice on HFD can be observed in a newly developed NASH model. Patients with NASH have been suggested to be at higher risk of developing chronic kidney disease, so we also assessed the kidney histology of these mice. After 8 months of HFFCD feeding, the livers of E-CNP Tg mice and controls showed progressive fibrosis, which resembled the features of human NASH. However, no significant differences were observed in NAFLD activity scores between E-CNP Tg mice and controls, although there was a tendency for improvement in E-CNP Tg mice. The reduced levels of GCB, a receptor for CNP, may have weakened the action of CNP in the current model. In the kidneys, HFFCD showed glomerular hypertrophy and tubular atrophy in the cortical region, which were suppressed in E-CNP Tg mice. The present study did not prove the therapeutic effect of CNP on NASH in the HFFCD model, but provided evidence of its potential beneficial effects on NASH-associated renal damage.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
76
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
77
|
Liu X, Li Y, Chai Y, Zhang Y, Zhang L, Zhang H. Thyroid function and thyroid homeostasis parameters are associated with increased urinary albumin excretion in euthyroid individuals over 60 years old from NHANES. Front Endocrinol (Lausanne) 2024; 14:1285249. [PMID: 38260133 PMCID: PMC10800926 DOI: 10.3389/fendo.2023.1285249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The relationship between thyroid function/homeostasis parameters and renal function has been extensively studied. However, the relationship between thyroid function and thyroid homeostasis parameters with albuminuria among elderly individuals remains unclear. Methods The population was divided into an albuminuria group and a non-albuminuria group for baseline characteristic difference analysis. Multivariable logistic regression was used to test the association between thyroid function, and thyroid homeostasis parameters and albuminuria. The nonlinear relationship was explored with restricted cubic splines. Meanwhile, we investigated whether the relationship also existed in the diabetes and hypertension subgroups. Receiver operating characteristic (ROC) curves were used to assess the effectiveness of the indices. Results FT4 and TFQIFT4 were positively correlated with albuminuria (OR = 1.12; 95% CI = 1.02-1.23, p = 0.02; OR = 1.79; 95% CI = 1.08-2.99, p = 0.03), and FT3/FT4 was negatively correlated with albuminuria (OR = 0.03; 95% CI = 0.00-0.26, p = 0.003). Additionally, the nonlinear relationship between FT3/FT4 as well as TSHI and albuminuria was approximately U-shaped. Similar results were observed in the hypertension subgroup but not in the diabetes subgroup. There was a U-shaped nonlinear relationship between FT3 and albuminuria in the diabetes group. In addition, FT3/FT4 performed better than TFQI, TT4RI, and TSHI in ROC analyses for albuminuria prediction. Conclusion FT4, TFQIFT4, and a low FT3/FT4 ratio were risk factors for albuminuria in euthyroid individuals over 60 years old. However, FT3 was more associated with albuminuria in the diabetes subgroup. TSH was not associated with albuminuria in any analysis. In our study, we attempted to provide more reasonable thyroid parameters and basis for evaluating patients with underlying albuminuria. FT3/FT4 may be used as a helpful indicator to predict albuminuria and provide novel ideas for the evaluation and treatment of albuminuria.
Collapse
Affiliation(s)
- Xue Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuchen Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuwei Chai
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuhao Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
78
|
Lonardo A, Ballestri S, Mantovani A, Targher G, Bril F. Endpoints in NASH Clinical Trials: Are We Blind in One Eye? Metabolites 2024; 14:40. [PMID: 38248843 PMCID: PMC10820221 DOI: 10.3390/metabo14010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
This narrative review aims to illustrate the notion that nonalcoholic steatohepatitis (NASH), recently renamed metabolic dysfunction-associated steatohepatitis (MASH), is a systemic metabolic disorder featuring both adverse hepatic and extrahepatic outcomes. In recent years, several NASH trials have failed to identify effective pharmacological treatments and, therefore, lifestyle changes are the cornerstone of therapy for NASH. with this context, we analyze the epidemiological burden of NASH and the possible pathogenetic factors involved. These include genetic factors, insulin resistance, lipotoxicity, immuno-thrombosis, oxidative stress, reprogramming of hepatic metabolism, and hypoxia, all of which eventually culminate in low-grade chronic inflammation and increased risk of fibrosis progression. The possible explanations underlying the failure of NASH trials are also accurately examined. We conclude that the high heterogeneity of NASH, resulting from variable genetic backgrounds, exposure, and responses to different metabolic stresses, susceptibility to hepatocyte lipotoxicity, and differences in repair-response, calls for personalized medicine approaches involving research on noninvasive biomarkers. Future NASH trials should aim at achieving a complete assessment of systemic determinants, modifiers, and correlates of NASH, thus adopting a more holistic and unbiased approach, notably including cardiovascular-kidney-metabolic outcomes, without restricting therapeutic perspectives to histological surrogates of liver-related outcomes alone.
Collapse
Affiliation(s)
- Amedeo Lonardo
- AOU—Modena—Ospedale Civile di Baggiovara, 41126 Modena, Italy;
| | | | - Alessandro Mantovani
- Section of Endocrinology and Diabetes, Department of Medicine, University of Verona, Piazzale Stefani, 37126 Verona, Italy
| | - Giovanni Targher
- Department of Medicine, University of Verona, 37126 Verona, Italy;
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore—Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
| | - Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA;
| |
Collapse
|
79
|
Nie T, Wang X, Li A, Shan A, Ma J. The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet. Food Funct 2024; 15:372-386. [PMID: 38099440 DOI: 10.1039/d3fo04348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reducing fat deposits in hepatocytes is a direct treatment for nonalcoholic fatty liver disease (NAFLD) and the fatty acid metabolic processes mediated by fatty acid β-oxidation are important for the prevention of NAFLD. In this study, we established high-fat-diet models in vitro and in vivo to investigate the mechanism by which hesperidin (HDN) prevents NAFLD by modulating fatty acid β oxidation. Based on LC-MS screening of differential metabolites, many metabolites involved in phospholipid and lipid metabolism were found to be significantly altered and closely associated with fatty acid β-oxidation. The results from COIP experiments indicated that HDN increased the deacetylation of PGC1α by SIRT1. In addition, the results of CETSA and molecular docking experiments suggest that HDN targeting of SIRT1 plays an important role in their stable binding. Meanwhile, it was found that HDN reduced fatty acid uptake and synthesis and promoted the expression of SIRT1/PGC1α and fatty acid β-oxidation, and the latter process was inhibited after transfection to knockdown SIRT1. The results suggest that HDN improves NAFLD by promoting fatty acid β-oxidation through activating SIRT1/PGC1α. Thus, the findings indicate that HDN may be a potential drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, P.R. China
| |
Collapse
|
80
|
Song I, Thompson EW, Verma A, MacLean MT, Duda J, Elahi A, Tran R, Raghupathy P, Swago S, Hazim M, Bhattaru A, Schneider C, Vujkovic M, Torigian DA, Kahn CE, Gee JC, Borthakur A, Kripke CM, Carson CC, Carr R, Jehangir Q, Ko YA, Litt H, Rosen M, Mankoff DA, Schnall MD, Shou H, Chirinos J, Damrauer SM, Serper M, Chen J, Rader DJ, Witschey WRT, Sagreiya H. Clinical correlates of CT imaging-derived phenotypes among lean and overweight patients with hepatic steatosis. Sci Rep 2024; 14:53. [PMID: 38167550 PMCID: PMC10761858 DOI: 10.1038/s41598-023-49470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The objective of this study is to define CT imaging derived phenotypes for patients with hepatic steatosis, a common metabolic liver condition, and determine its association with patient data from a medical biobank. There is a need to further characterize hepatic steatosis in lean patients, as its epidemiology may differ from that in overweight patients. A deep learning method determined the spleen-hepatic attenuation difference (SHAD) in Hounsfield Units (HU) on abdominal CT scans as a quantitative measure of hepatic steatosis. The patient cohort was stratified by BMI with a threshold of 25 kg/m2 and hepatic steatosis with threshold SHAD ≥ - 1 HU or liver mean attenuation ≤ 40 HU. Patient characteristics, diagnoses, and laboratory results representing metabolism and liver function were investigated. A phenome-wide association study (PheWAS) was performed for the statistical interaction between SHAD and the binary characteristic LEAN. The cohort contained 8914 patients-lean patients with (N = 278, 3.1%) and without (N = 1867, 20.9%) steatosis, and overweight patients with (N = 1863, 20.9%) and without (N = 4906, 55.0%) steatosis. Among all lean patients, those with steatosis had increased rates of cardiovascular disease (41.7 vs 27.8%), hypertension (86.7 vs 49.8%), and type 2 diabetes mellitus (29.1 vs 15.7%) (all p < 0.0001). Ten phenotypes were significant in the PheWAS, including chronic kidney disease, renal failure, and cardiovascular disease. Hepatic steatosis was found to be associated with cardiovascular, kidney, and metabolic conditions, separate from overweight BMI.
Collapse
Affiliation(s)
- Isabel Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Elizabeth W Thompson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Duda
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ameena Elahi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Richard Tran
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Pavan Raghupathy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sophia Swago
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Mohamad Hazim
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Abhijit Bhattaru
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Carolin Schneider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew A Torigian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Charles E Kahn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - James C Gee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Arijitt Borthakur
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Colleen M Kripke
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Carson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rotonya Carr
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Qasim Jehangir
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-An Ko
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Mark Rosen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Mitchell D Schnall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julio Chirinos
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Serper
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinbo Chen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R T Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Hersh Sagreiya
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
81
|
Yang RX, Fan JG. Metabolic comorbidities, endocrine—Diabetes, polycystic ovarian syndrome, thyroid dysfunction. METABOLIC STEATOTIC LIVER DISEASE 2024:123-136. [DOI: 10.1016/b978-0-323-99649-5.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
82
|
Mantovani A, Morieri ML, Aldigeri R, Palmisano L, Masulli M, Bonomo K, Baroni MG, Cossu E, Cimini FA, Cavallo G, Buzzetti R, Mignogna C, Leonetti F, Bacci S, Trevisan R, Pollis RM, Cas AD, de Kreutzenberg SV, Targher G. MASLD, hepatic steatosis and fibrosis are associated with the prevalence of chronic kidney disease and retinopathy in adults with type 1 diabetes mellitus. DIABETES & METABOLISM 2024; 50:101497. [PMID: 37992857 DOI: 10.1016/j.diabet.2023.101497] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
AIM We examined whether metabolic dysfunction-associated steatotic liver disease (MASLD) with or without significant fibrosis (assessed by validated non-invasive biomarkers) was associated with an increased risk of prevalent chronic kidney disease (CKD) or diabetic retinopathy in people with type 1 diabetes mellitus (T1DM). METHODS We performed a retrospective multicenter cross-sectional study involving 1,409 adult outpatients with T1DM, in whom hepatic steatosis index (HSI) and fibrosis (FIB)-4 index were calculated for non-invasively detecting hepatic steatosis (defined by HSI > 36), with or without coexisting significant fibrosis (FIB-4 index ≥ 1.3 or < 1.3). CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 or urine albumin/creatinine ratio ≥ 3.0 mg/mmol. The presence of diabetic retinopathy was also recorded in all participants. RESULTS Patients with MASLD and significant fibrosis (n = 93) had a remarkably higher prevalence of CKD and diabetic retinopathy than their counterparts with MASLD without fibrosis (n = 578) and those without steatosis (n = 738). After adjustment for sex, diabetes duration, hemoglobin A1c, hypertension, and use of antihypertensive or lipid-lowering medications, patients with SLD and significant fibrosis had a higher risk of prevalent CKD (adjusted-odds ratio 1.76, 95 % confidence interval 1.05-2.96) than those without steatosis. Patients with MASLD without fibrosis had a higher risk of prevalent retinopathy (adjusted-odds ratio 1.49, 95 % CI 1.13-1.46) than those without steatosis. CONCLUSION This is the largest cross-sectional study showing that MASLD with and without coexisting significant fibrosis was associated, independently of potential confounders, with an increased risk of prevalent CKD and retinopathy in adults with T1DM.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Mario Luca Morieri
- Metabolic Diseases, Department of Medicine, University of Padua, Padua, Italy
| | | | - Luisa Palmisano
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria Masulli
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Katia Bonomo
- Diabetes and Metabolic Diseases Unit, San Luigi Gonzaga University Hospital, Turin, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Life, Health & Environmental Sciences, University of Aquila, L'Aquila, Italy; Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Italy
| | - Efisio Cossu
- Diabetology Unit, Policlinico Universitario of Cagliari, Cagliari, Italy
| | | | - Gisella Cavallo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Carmen Mignogna
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy
| | - Simonetta Bacci
- Section of Endocrinology, Department of Medicine, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Roberto Trevisan
- Metabolic Diseases, Department of Medicine, University of Padua, Padua, Italy; Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | | | - Alessandra Dei Cas
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy; IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
83
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
84
|
Scurt FG, Ganz MJ, Herzog C, Bose K, Mertens PR, Chatzikyrkou C. Association of metabolic syndrome and chronic kidney disease. Obes Rev 2024; 25:e13649. [PMID: 37783465 DOI: 10.1111/obr.13649] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
The prevalence of kidney disease is increasing rapidly worldwide, reflecting rising rates of obesity, diabetes, and associated metabolic syndrome (MetS). Chronic kidney disease and related comorbidities such as obesity, diabetes, and hypertension place a significant financial burden on healthcare systems. Despite the widespread use of RAAS inhibitors, intensive blood pressure and glycemic control, and newer therapeutic options consisting of sodium/glucose cotransporter-2 (SGLT-2) inhibitors or glucagon-like peptide-1 (GLP-1) receptor agonists, a significant risk of progression to end-stage renal disease remains in the high-risk obese and diabetic population. The MetS is a cluster of cardiovascular risk factors that adversely affect the development and progression of chronic kidney failure. According to the criteria of the World Health Organization, it is defined by visceral adiposity, impaired glucose tolerance or insulin resistance, atherogenic dyslipidemia, raised blood pressure, and microalbuminuria with a albumin-to-creatinine ratio ≥30 mg/g. At molecular level MetS is marked by a proinflammatory state and increased oxidative stress leading to various pathophysiological changes causing endothelial dysfunction and a hypercoagulable state. Because the kidney is a highly vascularized organ, it is especially susceptible for those microvascular changes. Therefore, the MetS and its individual components are associated with the premature development, acceleration, and progression of chronic kidney disease. Therefore, it is becoming increasingly important to elucidate the underlying mechanisms of MetS-associated chronic kidney disease in order to develop new strategies for preventing and slowing the progression of renal disease. In this review, we will elucidate (i) the renal structural, hemodynamic, and metabolic changes that occur in obesity and obesity-related kidney injury; (ii) the clinicopathological characteristics of obesity-related kidney injury, primarily focusing on obesity-associated glomerulopathy; (iii) the potential additional factors or predisposing factors that may turn patients more susceptible to renal structural or functional compensatory failure and subsequent injury.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Maximilian J Ganz
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Carolin Herzog
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
85
|
Perakakis N, Bornstein SR, Birkenfeld AL, Linkermann A, Demir M, Anker SD, Filippatos G, Pitt B, Rossing P, Ruilope LM, Kolkhof P, Lawatscheck R, Scott C, Bakris GL. Efficacy of finerenone in patients with type 2 diabetes, chronic kidney disease and altered markers of liver steatosis and fibrosis: A FIDELITY subgroup analysis. Diabetes Obes Metab 2024; 26:191-200. [PMID: 37814928 DOI: 10.1111/dom.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
AIM Investigating the effect of finerenone on liver function, cardiovascular and kidney composite outcomes in patients with chronic kidney disease and type 2 diabetes, stratified by their risk of liver steatosis, inflammation and fibrosis. MATERIALS AND METHODS Post hoc analysis stratified patients (N = 13 026) by liver fibrosis and enzymes: high risk of steatosis (hepatic steatosis index >36); elevated transaminases [alanine transaminase (ALT) >33 (males) and >25 IU/L (females)]; and fibrosis-4 (FIB-4) index scores >3.25, >2.67 and >1.30. Liver enzymes were assessed by changes in ALT, aspartate aminotransferase and gamma-glutamyl transferase. Composite kidney outcome was defined as onset of kidney failure, sustained estimated glomerular filtration rate decline ≥57% from baseline over ≥4 weeks or kidney death. Composite cardiovascular outcome was defined as cardiovascular death, non-fatal myocardial infarction, non-fatal stroke or hospitalization for heart failure. RESULTS ALT, aspartate aminotransferase and gamma-glutamyl transferase levels were consistent between treatment groups and remained stable throughout. Finerenone consistently reduced the risk of composite kidney outcome, irrespective of altered liver tests. Higher FIB-4 score was associated with higher incidence rates of composite cardiovascular outcome. Finerenone reduced the risk of composite cardiovascular outcome versus placebo in FIB-4 subgroups by 52% (>3.25), 39% (>2.67) and 24% (>1.30) (p values for interaction = .01, .13 and .03, respectively). CONCLUSIONS Finerenone has neutral effects on liver parameters in patients with chronic kidney disease and type 2 diabetes. Finerenone showed robust and consistent kidney benefits in patients with altered liver tests, and profound cardiovascular benefits even in patients with higher FIB-4 scores who were at high risk of developing cardiovascular complications.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- University Study Center for Metabolic Diseases, Department of Internal Medicine III, Carl Gustav Carus University Clinic, TU Dresden, Dresden, Germany
- University Hospital and Faculty of Medicine, TU Dresden, Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Stefan R Bornstein
- University Study Center for Metabolic Diseases, Department of Internal Medicine III, Carl Gustav Carus University Clinic, TU Dresden, Dresden, Germany
- University Hospital and Faculty of Medicine, TU Dresden, Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Andreas L Birkenfeld
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Department of Diabetology, Endocrinology and Nephrology, University Clinic, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
| | - Andreas Linkermann
- University Study Center for Metabolic Diseases, Department of Internal Medicine III, Carl Gustav Carus University Clinic, TU Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Münevver Demir
- Hepatology Outpatient Clinic, Charité Universitätsmedizin, Berlin, Germany
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12, Madrid, Spain
- CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
| | - Peter Kolkhof
- Research and Development, Preclinical Research Cardiovascular, Wuppertal, Germany
| | | | | | - George L Bakris
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
86
|
Kasem HES, Abdelatty EA, Yahia AMM, Abdalla EM. The association between non-alcoholic fatty liver disease and chronic kidney disease in Egyptian patients. EGYPTIAN LIVER JOURNAL 2023; 13:63. [DOI: 10.1186/s43066-023-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
NAFLD is a spectrum of disorders ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH related cirrhosis and hepatocellular carcinoma (HCC). There is sparse data on the prevalence CKD in Egyptian patients with NAFLD. The aim of this study is to estimate the prevalence of CKD in the subjects with NAFLD and to assess the risk factors of CKD among them.
Methods
A cross-sectional study was conducted on 430 patients from the Internal Medicine Department, Menoufia University Hospitals, including 215 patients with NAFLD, and 215 patients without NAFLD. NAFLD was diagnosed by abdominal ultrasonography. The liver fibrosis was assessed by NAFLD fibrosis score (NFS) and fibrosis-4 index (FIB-4). CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m2 and/or abnormal albuminuria (urinary albumin-to-creatinine ratio ⩾ 30 mg/gm). The logistic regression analysis was performed to examine the association between NAFLD and risk of CKD.
Results
The prevalence of CKD was higher in individuals with NAFLD than in those without NAFLD (38.1% vs 7.4%, p < 0.001). Logistic regression analysis demonstrated that both NAFLD and CKD were risk factors of each other. The presence of hypertension, high levels of BMI and waist circumference were the other independent risk factors of NAFLD. While the presence of DM, and the high level of BMI were the other significant risk factors of CKD in the NAFLD group.
Conclusion
The presence and severity of NAFLD are associated with an increased risk of CKD.
Collapse
|
87
|
Deng M, Wen Y, Yan J, Fan Y, Wang Z, Zhang R, Ren L, Ba Y, Wang H, Lu Q, Fan H. Comparative effectiveness of multiple different treatment regimens for nonalcoholic fatty liver disease with type 2 diabetes mellitus: a systematic review and Bayesian network meta-analysis of randomised controlled trials. BMC Med 2023; 21:447. [PMID: 37974258 PMCID: PMC10655371 DOI: 10.1186/s12916-023-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are closely related and mutually contribute to the disease's development. There are many treatment options available to patients. We provide a comprehensive overview of the evidence on the treatment effects of several potential interventions for NAFLD with T2DM. METHODS This systematic review and network meta-analysis included searches of PubMed, Embase, Cochrane Library, and Web of Science from inception to June 30, 2023, for randomised controlled trials of treatment of NAFLD with T2DM. We performed Bayesian network meta-analyses to summarise effect estimates of comparisons between interventions. We applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) frameworks to rate all comparative outcomes' certainty in effect estimates, categorise interventions, and present the findings. This study was registered with PROSPERO, CRD42022342373. RESULTS Four thousand three hundred and sixty-nine records were retrieved from the database and other methods, of which 24 records were eligible for studies enrolling 1589 participants. Eight clinical indicators and 14 interventions were finally in focus. Referring to the lower surface under the cumulative ranking curves (SUCRA) and the league matrix table, exenatide and liraglutide, which are also glucagon-like peptide-1 receptor agonists (GLP-1RAs), showed excellent potential to reduce liver fat content, control glycemia, reduce body weight, and improve liver function and insulin resistance. Exenatide was more effective in reducing glycated haemoglobin (HbA1c) (mean difference (MD) 0.32, 95%CI 0.12 to 0.52), lowering BMI (MD 0.81, 95%CI 0.18 to 1.45), and lowering alanine transaminase (ALT) (MD 10.96, 95%CI 5.27 to 16.66) compared to liraglutide. However, this evidence was assessed as low certainty. Omega-3 was the only intervention that did not have a tendency to lower HbA1c, with standard-treatment (STA-TRE) as reference (MD - 0.17, 95%CI - 0.42 to 0.07). Glimepiride is the only intervention that causes an increase in ALT levels, with standard-treatment (STA-TRE) as reference (MD - 11.72, 95%CI - 17.82 to - 5.57). Based on the available evidence, the treatment effects of pioglitazone, dapagliflozin, and liraglutide have a high degree of confidence. CONCLUSIONS The high confidence mandates the confident application of these findings as guides for clinical practice. Dapagliflozin and pioglitazone are used for glycaemic control in patients with NAFLD combined with T2DM, and liraglutide is used for weight loss therapy in patients with abdominal obesity. The available evidence does not demonstrate the credibility of the effectiveness of other interventions in reducing liver fat content, visceral fat area, ALT, and insulin resistance. Future studies should focus on the clinical application of GLP-1Ras and the long-term prognosis of patients.
Collapse
Affiliation(s)
- Manjun Deng
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yonghao Wen
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - JingXin Yan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Department of Interventional Therapy, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Yichen Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Ruixia Zhang
- Department of Endocrinology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yinggui Ba
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Qian Lu
- Department of Hepatopancreatobiliary Surgery, Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China.
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China.
| |
Collapse
|
88
|
Yoneda M, Kobayashi T, Iwaki M, Nogami A, Saito S, Nakajima A. Nonalcoholic Fatty Liver Disease as a Systemic Disease and the Need for Multidisciplinary Care. Gut Liver 2023; 17:843-852. [PMID: 37560797 PMCID: PMC10651384 DOI: 10.5009/gnl220545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 08/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease, and there has been a rapid increase in cases worldwide. NAFLD is rapidly becoming the leading cause of hepatocellular carcinoma and is also associated with an increased risk of cardiovascular disease or exacerbation of other organ diseases, thus posing a significant health problem from both a medical and a socioeconomic perspective. NAFLD is a systemic disease and requires the involvement of numerous medical professionals. Multidisciplinary collaboration, in which different professionals within different specialties come together and work together toward a common goal, supports better patient care by integrating perspectives of multiple experts and facilitating the exchange of opinions. Due to the large number of potential patients, gastroenterologists and hepatologists cannot manage the patients alone, and collaboration between specialists in various fields, including family doctors, dentists, nutritionists, and pharmacists is required for treatment of NAFLD. This review will discuss NAFLD from the perspective of various specialties and introduce multidisciplinary collaboration.
Collapse
Affiliation(s)
- Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
89
|
Xing M, Ni Y, Zhang Y, Zhao X, Yu X. The relationship between skeletal muscle mass to visceral fat area ratio and metabolic dysfunction-associated fatty liver disease subtypes in middle-aged and elderly population: a single-center retrospective study. Front Nutr 2023; 10:1246157. [PMID: 38024359 PMCID: PMC10663359 DOI: 10.3389/fnut.2023.1246157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background It has been reported that decreased muscle mass combined with excessive visceral adipose tissue are significantly correlated with the risk of non-alcoholic fatty liver disease (NAFLD). However, it has not been explored among populations with metabolic dysfunction-associated fatty liver disease (MAFLD) subtypes. We aimed to investigate whether appendicular skeletal muscle mass to visceral fat area ratio (SVR), an indicator of sarcopenic obesity, influences on the risk of MAFLD subtypes and its hepatic condition in middle-aged and elderly population. Methods A total of 4,003 middle-aged and elderly subjects were finally enrolled in this single-center retrospective study. Abdominal ultrasonography was employed for hepatic steatosis diagnosis. Participants were divided into four groups: diabetes-MAFLD, overweight/obese-MAFLD, lean-MAFLD and no MAFLD. Appendicular skeletal muscle mass as well as visceral fat area (VAF) was estimated by bioimpedance analysis measurements. Liver fibrosis was defined as a Fibrosis-4 index (FIB-4) and the NAFLD Fibrosis Score (NFS). Multivariate logistic regression analysis was performed to estimate the odds ratio and 95% confidence interval between SVR and MAFLD subtypes/hepatic condition stratified by sex. Results Participants with MAFLD subtypes had a significant lower value of SVR compared with those without MAFLD (P<0.001), while high quartiles of FIB-4 and NFS also showed a decreasing value of SVR in comparison with its lower quartiles (Pfor trend<0.001). The lowest quartile of SVR increased the prevalence of MAFLD subtypes [adjusted OR (95%CI): 2.96 (1.48 ~ 5.93) male /3.30(1.46 ~ 7.46) female for diabetes-MAFLD, 1.91(1.26 ~ 2.88) male /4.48(1.91 ~ 10.49) female for overweight/obese-MAFLD and 4.01(1.46 ~ 10.98) male/2.53(1.19 ~ 5.37) female for lean-MAFLD groups] compared with the highest quartile of SVR (all Pfor trend<0.001). Besides, the interaction effect of gender on the relationship between SVR and MAFLD subtypes was statistically significant (all Pfor interaction<0.001).Restricted cubic spline indicated an inverse association between SVR and the risk of MAFLD subtypes with linearity (all P for non-linearity>0.05). The lowest quartile of SVR also increases the risk of MAFLD fibrosis in both males and females. Conclusion Our study concluded that a decrease in SVR (appendicular skeletal muscle mass divided by visceral fat area) is significantly associated with an increased prevalence of developing MAFLD subtypes and liver fibrosis in middle-aged and older persons of both genders.
Collapse
Affiliation(s)
- Mengchen Xing
- Department of Thyroid, Breast, and Gastrointestinal Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yanlan Ni
- Department of Thyroid, Breast, and Gastrointestinal Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ye Zhang
- Department of Minimally Invasive Laparoscopy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoqian Zhao
- Emergency Intensive Care Unit, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
90
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
91
|
Rivera-Esteban J, Pons M, Planas A, Manzano-Nuñez R, Hernández C, Simó-Servat O, Bañeras J, Soler MJ, Seron D, Boixadera A, Augustin S, Simó R, Ferreira-González I, Genescà J, Pericàs JM. Prediction of clinical events by liver stiffness and chronic kidney disease by NAFLD in patients with type-2 diabetes. GASTROENTEROLOGIA Y HEPATOLOGIA 2023; 46:682-691. [PMID: 36435379 DOI: 10.1016/j.gastrohep.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is associated with poorer glycemic control and a higher risk of type-2 diabetes (T2D) complications, extrahepatic and cardiovascular disease (CVD). Our study aim was to evaluate the association between NAFLD, T2D complications, and the development of overall clinical events (OCE) (CV, liver-related, and mortality) in patients with T2D. METHODS Prospective single-center study comprising T2D subjects with no history of CVD and non-T2D matched controls. Patients were selected from the Outpatient Diabetes Clinic of Vall d'Hebron Hospital and related primary care centers. RESULTS 186 diabetics and 57 controls were included. Amongst T2D, 124/186 subjects had NAFLD (66.6%). T2D-NAFLD subjects showed a heavier metabolic burden and higher median liver stiffness (5.6kPa [4.5-7.3] vs 4.8 [4.2-5.8]; p=0.004) compared to non-NAFLD diabetics. During a median follow-up of 5.6 years, 33 (17.7%) T2D patients developed OCE vs 4 (7.0%) controls (p=0.049). No differences were found for OCE between NAFLD and non-NAFLD diabetics (16.9% vs 19.4%; p=0.68). CV was the most reported outcome and only one liver event occurred. NAFLD diabetics showed more often chronic kidney disease (CKD), whereas T2D complications and subclinical CVD rates were similar. A higher liver stiffness, older age, and male gender were independently associated with OCE amongst the entire T2D population and NAFLD diabetics. CONCLUSIONS NAFLD and liver stiffness were associated with CKD and clinical outcomes in diabetics, respectively. A hepatic evaluation is recommended to identify high-risk T2D patients that would benefit from early referral to specialized care.
Collapse
Affiliation(s)
- Jesús Rivera-Esteban
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Mònica Pons
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBEREHD, ISCIII, Madrid, Spain
| | - Alejandra Planas
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBERDEM, ISCIII, Madrid, Spain
| | - Ramiro Manzano-Nuñez
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Hernández
- Universitat Autònoma de Barcelona, Bellaterra, Spain; Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBERDEM, ISCIII, Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBERDEM, ISCIII, Madrid, Spain
| | - Jordi Bañeras
- Cardiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBERESP, ISCIII, Madrid, Spain
| | - María José Soler
- Nephrology Department, Vall d'Hebron Research Institute, Vall d'Hebron Hospital, Barcelona, Spain; REDinREN, ISCIII, Madrid, Spain
| | - Daniel Seron
- Nephrology Department, Vall d'Hebron Research Institute, Vall d'Hebron Hospital, Barcelona, Spain; REDinREN, ISCIII, Madrid, Spain
| | - Anna Boixadera
- Ophthalmology Department, Vall d'Hebron Research Institute, Vall d'Hebron Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Salvador Augustin
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBEREHD, ISCIII, Madrid, Spain; Therapeutic Area Cardio-Metabolism and Respiratory Medicine, Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Rafael Simó
- Universitat Autònoma de Barcelona, Bellaterra, Spain; Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBERDEM, ISCIII, Madrid, Spain
| | - Ignacio Ferreira-González
- Universitat Autònoma de Barcelona, Bellaterra, Spain; Cardiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBERESP, ISCIII, Madrid, Spain
| | - Joan Genescà
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBEREHD, ISCIII, Madrid, Spain.
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBEREHD, ISCIII, Madrid, Spain
| |
Collapse
|
92
|
Perez-Diaz-Del-Campo N, Dileo E, Castelnuovo G, Nicolosi A, Guariglia M, Caviglia GP, Rosso C, Armandi A, Bugianesi E. A nutrigenetic precision approach for the management of non-alcoholic fatty liver disease. Clin Nutr 2023; 42:2181-2187. [PMID: 37788561 DOI: 10.1016/j.clnu.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND & AIMS The Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 single nucleotide polymorphism (SNP) is one of the major genetic determinant of non-alcoholic fatty liver disease (NAFLD) and is strongly regulated by changes in energy balance and dietary factors. We aimed to investigate the association between the PNPLA3 rs738409 SNP, nutrient intake and NAFLD severity. METHOD PNPLA3-rs738409 SNP was genotyped in 181 patients with NAFLD who completed the EPIC Food Frequency Questionnaire. Liver steatosis was evaluated by Controlled Attenuation Parameter (CAP) (Fibroscan®530, Echosens). According to the established cut-off, a CAP value ≥ 300 dB/m was used to identify severe steatosis (S3). An independent group of 46 biopsy-proven NAFLD subjects was used as validation cohort. RESULTS Overall, median age was 53 years (range 44; 62) and 60.2% of patients were male. Most subjects (56.3%) had S3 and showed increased liver stiffness (p < 0.001), AST (p = 0.003) and ALT levels (p < 0.001) compared to those with CAP<300 dB/m. At logistic regression analyses we found that the interaction between carbohydrates intake and the carriers of the PNPLA3 G risk allele was significantly associated with S3 (p = 0.001). The same result was confirmed in the validation cohort, were the interaction between high carbohydrate intake (48%) and PNPLA3 SNP was significantly associated with steatosis ≥33% (p = 0.038). CONCLUSION The intake of greater than or equal to 48% carbohydrate in NAFLD patients carriers of the CG/GG allele of PNPLA3 rs738409 may increase the risk of significant steatosis.
Collapse
Affiliation(s)
| | - Eleonora Dileo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Aurora Nicolosi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marta Guariglia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Metabolic Liver Disease Research Program, I. Department of Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Gastroenterology Unit, Città della Salute e della Scienza-Molinette Hospital, 10126 Turin, Italy.
| |
Collapse
|
93
|
Wu Z, Xiao H, Rao D, Wang J, Lv X, Wang D, Yao P, Huang F, Chen H, Wei F. Analytical Strategy for Oxylipin Annotation by Combining Chemical Derivatization-Based Retention Index Algorithm and Feature Tandem Mass Spectrometric Fragmentation as a Biomarker Discovery Tool. Anal Chem 2023; 95:15933-15942. [PMID: 37852209 DOI: 10.1021/acs.analchem.3c02789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Accurate oxylipin annotation is crucial for advancing our understanding of physiological processes in health and disease and identifying biomarkers. However, a full view of oxylipins for early diagnosis needs further attention due to the lack of proper analytical methods, which may be attributed to the wide dynamic range, poor sensitivity, extreme molecular complexity, and limited commercially available standards of oxylipins. Here, we devised a novel method by combining a chemical derivatization (CD)-based retention index (RI) algorithm and feature tandem mass spectrometric fragmentation annotation (CD-RI-LC-MS/MS) for identification and quantification of oxylipins. To this end, N,N-diethyl-1,3-diaminopropane (DEPA) was used for fast labeling of oxylipin (within 0.5 min at room temperature) to improve separation resolution and detection sensitivity. The RI algorithm was established to calibrate the retention time variances and assist the identification of oxylipins during liquid chromatography-tandem mass spectrometry (LC-MS) analysis. MS/MS analysis of in total 58 DEPA derivatives of authentic oxylipin standards was subsequently employed to obtain the tandem mass spectrometric feature fragmentation rules for further structure elucidation of the unknown regio-isomers. Finally, a method based upon CD-RI-LC-MS/MS was established for profiling oxylipins from Standard Reference Material (SRM) 1950 human plasma and nonalcoholic fatty liver disease (NAFLD) mouse liver tissue samples. A total of 87 and 96 potential oxylipins including 12 and 14 unreported oxylipins were detected and identified from human plasma and mouse liver tissues, respectively. The results showed that compared to the control group, in the liver samples of the NAFLD mouse, the content levels of prostaglandin (PG) E2, PGF2a, 8-hydroxy-eicosatrienoic acid (8-HETrE), and the newly discovered 2-hydroxy-octadecatrienoic acid (2-HOTrE) were remarkably increased, while the oxidation product of n-3 PUFA (p < 0.05) and all hydroperoxy oxylipins significantly decreased. On balance, this method contributes to future studies on oxylipin screening and application in other biological samples for facilitating the understanding of oxylipin roles in metabolic regulation of numerous diseases.
Collapse
Affiliation(s)
- Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huaming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Di Rao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jie Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dan Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430062, PR China
| |
Collapse
|
94
|
Klisić A, Radoman-Vujačić I, Kostadinović J, Ninić A. The correlation of metabolic and renal biomarkers with vitamin D status in postmenopausal women. J Med Biochem 2023; 42:565-573. [PMID: 38084240 PMCID: PMC10710804 DOI: 10.5937/jomb0-41044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/26/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND To our knowledge, the mutual involvement of a variety of metabolic and renal biomarkers and vitamin D (determined as 25-hydroxyvitamin D [25(OH)D]) in postmenopausal women has not been examined yet. Therefore, we aimed to explore such a relationship by a thorough statistical multimarker approach. METHODS A total of 150 (diabetes and cardiovascular disease-free) postmenopausal women were included. Anthropometric and biochemical parameters were measured. The fatty liver index (FLI) and Homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. Univariate and multivariate binary logistic regression analyses were used to test the predictions of cardiometabolic markers for [25(OH)D] status. Principal component analysis (PCA) was applied to explore the effect of examined biomarkers on [25(OH)D] status.
Collapse
Affiliation(s)
- Aleksandra Klisić
- University of Montenegro, Faculty of Medicine, Primary Health Care Center, Podgorica, Montenegro
| | - Irena Radoman-Vujačić
- University of Montenegro - Faculty of Medicine, Clinical Center of Montenegro, Department of Internal medicine, Podgorica, Montenegro
| | | | - Ana Ninić
- University of Belgrade, Faculty of Pharmacy, Department for Medical Biochemistry, Belgrade
| |
Collapse
|
95
|
Zhang C, Sui Y, Liu S, Yang M. Molecular mechanisms of metabolic disease-associated hepatic inflammation in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. EXPLORATION OF DIGESTIVE DISEASES 2023:246-275. [DOI: https:/doi.org/10.37349/edd.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/05/2023] [Indexed: 11/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, with a progressive form of non-alcoholic steatohepatitis (NASH). It may progress to advanced liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD/NASH is a comorbidity of many metabolic disorders such as obesity, insulin resistance, type 2 diabetes, cardiovascular disease, and chronic kidney disease. These metabolic diseases are often accompanied by systemic or extrahepatic inflammation, which plays an important role in the pathogenesis and treatment of NAFLD or NASH. Metabolites, such as short-chain fatty acids, impact the function, inflammation, and death of hepatocytes, the primary parenchymal cells in the liver tissue. Cholangiocytes, the epithelial cells that line the bile ducts, can differentiate into proliferative hepatocytes in chronic liver injury. In addition, hepatic non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, and innate and adaptive immune cells, are involved in liver inflammation. Proteins such as fibroblast growth factors, acetyl-coenzyme A carboxylases, and nuclear factor erythroid 2-related factor 2 are involved in liver metabolism and inflammation, which are potential targets for NASH treatment. This review focuses on the effects of metabolic disease-induced extrahepatic inflammation, liver inflammation, and the cellular and molecular mechanisms of liver metabolism on the development and progression of NAFLD and NASH, as well as the associated treatments.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
96
|
Heerkens L, van Westing AC, Voortman T, Kardys I, Boersma E, Geleijnse JM. Serum uric acid is related to liver and kidney disease and 12-year mortality risk after myocardial infarction. Front Endocrinol (Lausanne) 2023; 14:1240099. [PMID: 37886649 PMCID: PMC10599137 DOI: 10.3389/fendo.2023.1240099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Objective To study the associations of non-alcoholic fatty liver disease (NAFLD), chronic kidney disease (CKD), and serum uric acid (SUA) in patients with post-myocardial infarction (MI) patients, and the relationship of SUA with 12-year mortality risk. Methods We included 3,396 patients (60-80 years old, 78% men) of the Alpha Omega Cohort. Multivariable prevalence ratios (PRs) were obtained for the association of NAFLD [fatty liver index (FLI), ≥77 (women) and ≥79 (men)] with CKD [estimated glomerular filtration rate (eGFR), <60 mL/min per 1.73 m2]. We calculated sensitivity and specificity of SUA to detect the (combined) presence and absence of NAFLD and CKD. Cause-specific mortality was monitored from enrolment (2002-2006) through December 2018. Hazard ratios (HRs) for all-cause and cardiovascular disease (CVD) mortality in SUA categories were obtained from multivariable Cox models. Results Median baseline FLI was 67 (men, 68; women, 64), and mean ± SD eGFR was 81 ± 20 mL/min per 1.73 m2 (17% with CKD). Sex-specific FLI was associated with higher CKD prevalence (PRtertile3 vs. tertile1, 1.94; 95% confidence interval: 1.57, 2.39). Baseline SUA was 0.36 ± 0.09 mmol/L. With increasing SUA concentrations, specificity for the presence of NAFLD, CKD, or both increased, and sensitivity decreased. During 12 (interquartile range, 9-14) years of follow-up, 1,592 patients died (713 from CVD). HRs ranged from 1.08 (0.88, 1.32) for SUA ≤0.25 mmol/L to 2.13 (1.75, 2.60) for SUA >0.50 mmol/L vs. SUA >0.30-0.35 mmol/L for all-cause mortality. For CVD mortality, HRs ranged from 1.05 (0.77, 1.44) to 2.43 (1.83, 3.25). Conclusions NAFLD and CKD were strongly associated, which was reflected by higher SUA concentrations. SUA was a strong predictor of 12-year mortality risk after MI.
Collapse
Affiliation(s)
- Luc Heerkens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Anniek C. van Westing
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Johanna M. Geleijnse
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
97
|
Yang C, Wu S, Lan Y, Chen S, Zhang D, Wang Y, Sun Y, Liao W, Wang L. Association Between Blood Calcium, Magnesium, and Non-alcoholic Fatty Liver Disease in Adults: a Cohort-Based Case-Control Study. Biol Trace Elem Res 2023; 201:4625-4636. [PMID: 36598741 DOI: 10.1007/s12011-022-03543-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Previous studies have shown that calcium (Ca), magnesium (Mg), and Ca/Mg ratio are associated with inflammation and metabolic disorders, but their relationship with non-alcoholic fatty liver disease (NAFLD) is unclear. Thus, we aimed to explore the association between Ca, Mg, Ca/Mg ratio, and NAFLD in Chinese adults. We conducted a case-control study based on the Kailuan Cohort in China, including 1816 cases and 1111 gender- and age-matched controls. Dose-response relationships between blood Ca, Mg, Ca/Mg ratio, and NAFLD were evaluated using restricted cubic splines. Odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated by logistic regression models. A negative association between blood Ca (overall association P < 0.001 and linear association P < 0.001) and NAFLD as well as Ca/Mg ratio (overall association P = 0.002 and linear association P = 0.024) and NAFLD was observed. Compared with the highest quartile, the adjusted OR (95% CI) for the lowest quartile of Ca and Ca/Mg ratio was 2.116 (1.679-2.667) and 1.358 (1.076-1.713), respectively. A U-shaped relationship was found for blood Mg and NAFLD, with the highest OR of 1.685 in the lowest quartile group when using the second quartile as a reference. Additionally, we observed the interaction between alanine aminotransferase and blood Ca (P = 0.024), total cholesterol (P = 0.017), low-density lipoprotein-cholesterol (P = 0.013), and blood Mg, as well as total cholesterol and Ca/Mg ratio (P = 0.014). Lower blood Ca and Ca/Mg ratio were significantly associated with the risk of NAFLD. Liver function or lipid metabolism parameters may modify their association, suggesting an individualized prevention strategy for NAFLD.
Collapse
Affiliation(s)
- Chenlu Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Yanqi Lan
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Di Zhang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Yanhong Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Yuanyuan Sun
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.
| |
Collapse
|
98
|
Huang L, Bai Q, Wang Z, Zhang X, Liu K, Cui J, Du L, Liu S, Fu Y, Wang H, Li D, Sun H. Carbon Dots as Potential Therapeutic Agents for Treating Non-Alcoholic Fatty Liver Disease and Associated Inflammatory Bone Loss. Bioconjug Chem 2023; 34:1704-1715. [PMID: 37639623 DOI: 10.1021/acs.bioconjchem.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as one of the most significant metabolic diseases worldwide and is associated with heightened systemic inflammation, which has been shown to foster the development of extrahepatic complications. So far, there is no definitive, effective, and safe treatment for NAFLD. Although antidiabetic agents show potential for treating NAFLD, their efficacy is significantly limited by inadequate liver accumulation at safe doses and unwanted side effects. Herein, we demonstrate that pharmacologically active carbon dots (MCDs) derived from metformin can selectively accumulate in the liver and ameliorate NAFLD by activating hepatic PPARα expression while maintaining an excellent biosafety. Interestingly, MCDs can also improve the function of extrahepatic organs and tissues, such as alleviating alveolar inflammatory bone loss, in the process of treating NAFLD. This study proposes a feasible and safe strategy for designing pharmacologically active MCDs to target the liver, which regulates lipid metabolism and systemic inflammation, thereby treating NAFLD and its related extrahepatic complications.
Collapse
Affiliation(s)
- Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Qinzhu Bai
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Liuyi Du
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
99
|
De Masi A, Li X, Lee D, Jeon J, Wang Q, Baek S, Park O, Mottis A, Strotjohann K, Rapin A, Jung HY, Auwerx J. Cyclo(His-Pro): A further step in the management of steatohepatitis. JHEP Rep 2023; 5:100815. [PMID: 37600955 PMCID: PMC10432811 DOI: 10.1016/j.jhepr.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) have become the world's most common liver diseases, placing a growing strain on healthcare systems worldwide. Nonetheless, no effective pharmacological treatment has been approved. The naturally occurring compound cyclo histidine-proline (His-Pro) (CHP) is an interesting candidate for NAFLD management, given its safety profile and anti-inflammatory effects. Methods Two different mouse models of liver disease were used to evaluate protective effects of CHP on disease progression towards fibrosis: a model of dietary NAFLD/NASH, achieved by thermoneutral housing (TN) in combination with feeding a western diet (WD), and liver fibrosis caused by repeated injections with carbon tetrachloride (CCl4). Results Treatment with CHP limited overall lipid accumulation, lowered systemic inflammation, and prevented hyperglycaemia. Histopathology and liver transcriptomics highlighted reduced steatosis and demonstrated remarkable protection from the development of inflammation and fibrosis, features which herald the progression of NAFLD. We identified the extracellular signal-regulated kinase (ERK) pathway as an early mediator of the cellular response to CHP. Conclusions CHP was active in both the preventive and therapeutic setting, reducing liver steatosis, fibrosis, and inflammation and improving several markers of liver disease. Impact and implications Considering the incidence and the lack of approved treatments, it is urgent to identify new strategies that prevent and manage NAFLD. CHP was effective in attenuating NAFLD progression in two animal models of the disease. Overall, our work points to CHP as a novel and effective strategy for the management of NAFLD, fuelling optimism for potential clinical studies.
Collapse
Affiliation(s)
- Alessia De Masi
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Jongsu Jeon
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Seoyeong Baek
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Onyu Park
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis Rapin
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
100
|
Gellert-Kristensen H, Tybjaerg-Hansen A, Nordestgaard BG, Ghouse J, Fuchs A, Kühl JT, Sigvardsen PE, Kofoed KF, Stender S. Genetic risk of fatty liver disease and mortality in the general population: A Mendelian randomization study. Liver Int 2023; 43:1955-1965. [PMID: 37269170 DOI: 10.1111/liv.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND & AIMS Fatty liver disease has been associated with higher all-cause as well as liver-related, ischemic heart disease (IHD)-related and extrahepatic cancer-related mortality in observational epidemiological studies. We tested the hypothesis that fatty liver disease is a causal risk factor for higher mortality. METHODS We genotyped seven genetic variants known to be associated with fatty liver disease (in PNPLA3, TM6SF2, HSD17B13, MTARC1, MBOAT7, GCKR, and GPAM) in 110 913 individuals from the Danish general population. Hepatic steatosis was measured by hepatic computed tomography in n = 6965. Using a Mendelian randomization framework, we tested whether genetically proxied hepatic steatosis and/or elevated plasma alanine transaminase (ALT) was associated with liver-related mortality. RESULTS During a median follow-up of 9.5 years, 16 119 individuals died. In observational analyses, baseline elevated plasma ALT was associated with higher all-cause (1.26-fold), liver-related (9-fold), and extrahepatic cancer-related (1.25-fold) mortality. In genetic analyses, the risk alleles in PNPLA3, TM6SF2, and HSD17B13 were individually associated with higher liver-related mortality. The largest effects were seen for the PNPLA3 and TM6SF2 risk alleles, for which homozygous carriers had 3-fold and 6-fold, respectively, higher liver-related mortality than non-carriers. None of the risk alleles, individually or combined into risk scores, were robustly associated with all-cause, IHD-related, or extrahepatic cancer-related mortality. In instrumental variable analyses, genetically proxied hepatic steatosis and higher plasma ALT were associated with liver-related mortality. CONCLUSIONS Human genetic data support that fatty liver disease is a causal driver of liver-related mortality.
Collapse
Affiliation(s)
- Helene Gellert-Kristensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital - Bispebjerg Frederiksberg, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital - Bispebjerg Frederiksberg, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark
| | - Jonas Ghouse
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Andreas Fuchs
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jørgen T Kühl
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Per E Sigvardsen
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|