51
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
52
|
Ordak M, Galazka A, Nasierowski T, Muszynska E, Bujalska-Zadrozny M. Reasons, Form of Ingestion and Side Effects Associated with Consumption of Amanita muscaria. TOXICS 2023; 11:383. [PMID: 37112610 PMCID: PMC10142736 DOI: 10.3390/toxics11040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
In recent months, there has been a new trend involving the consumption of Amanita muscaria. The aim of this article was to investigate the reasons for consumption, the form taken and the adverse symptoms that were indicated by those consuming Amanita muscaria. After analysing 5600 comments, 684 people were included in the study, who, in social media groups such as Facebook, stated the purpose of consuming the mushroom (n = 250), the form of mushroom they were taking (n = 198) or the adverse symptoms they experienced (n = 236). The gender of the subjects differentiated the parameters analysed. In the study group of women, the main purpose of consuming Amanita muscaria was to reduce pain, as well as to reduce skin problems, while in men it was mainly to relieve stress, reduce the severity of depressive symptoms and reduce insomnia (p < 0.001). With regard to the form of mushroom ingested, tincture was predominant in the women's study group, while dried was predominant in the men (p < 0.001). In terms of side effects, women reported primarily headaches, while men reported nausea, vomiting, abdominal pain and drowsiness (p < 0.001). Advanced research on Amanita muscaria should be carried out to make the community aware of the toxicity of this fungus.
Collapse
Affiliation(s)
- Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (A.G.)
| | - Aleksandra Galazka
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (A.G.)
| | - Tadeusz Nasierowski
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland;
| | - Elzbieta Muszynska
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (A.G.)
| |
Collapse
|
53
|
Wang X, Xing C, Li G, Dai X, Gao X, Zhuang Y, Cao H, Hu G, Guo X, Yang F. The key role of proteostasis at mitochondria-associated endoplasmic reticulum membrane in vanadium-induced nephrotoxicity using a proteomic strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161741. [PMID: 36693574 DOI: 10.1016/j.scitotenv.2023.161741] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Excessive vanadium (V) contamination is an attracting growing concern, which can negatively affect the health of human and ecosystems. But how V causes nephrotoxicity and the role of mitochondria-associated endoplasmic reticulum membrane (MAM) in V-induced nephrotoxicity have remained elusive. To explore the detailed mechanism and screen of potential effective drugs for V-evoked nephrotoxicity, a total of 72 ducks were divided into two groups, control group and V group (30 mg/kg V). Results showed that excessive V damaged kidney function of ducks including causing histopathological abnormality, biochemical makers derangement and oxidative stress. Then MAM of duck kidneys was extracted to investigate differentially expressed proteins (DEPs) under V exposure using proteomics analysis. Around 4240 MAM-localized proteins were identified, of which 412 DEPs showed dramatic changes, including 335 upregulated and 77 downregulated DEPs. On the basis of gene ontology (GO), string and KEGG database analysis, excessive V led to nephrotoxicity primarily by affecting MAM-mediated metabolic pathways, especially elevating the endoplasmic Reticulum (ER) proteostasis related pathway. Further validation analysis of the detected genes and proteins of ER proteostasis related pathway under V poisoning revealed a consistent relationship with proteome analysis, indicating that V disrupted MAM-mediated ER proteostasis. Accordingly, our data proved the critical role for MAM in V-evoked nephrotoxicity, particularly with MAM-mediated ER proteostasis, providing promising insights into the toxicological exploration mechanisms of V.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China; College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
54
|
Shobier AH, Ismail MM, Hassan SWM. Variation in Anti-inflammatory, Anti-arthritic, and Antimicrobial Activities of Different Extracts of Common Egyptian Seaweeds with an Emphasis on Their Phytochemical and Heavy Metal Contents. Biol Trace Elem Res 2023; 201:2071-2087. [PMID: 35665884 PMCID: PMC9931819 DOI: 10.1007/s12011-022-03297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
The anti-inflammatory, anti-arthritic, and antimicrobial activities of some common Egyptian seaweeds in addition to their phytochemical and heavy metal contents were investigated. Phytochemical screening of the seaweed extracts showed the presence of different primary and secondary metabolites with different concentrations according to their species and the used solvent. The ethanolic extract of Colpmenia sinuosa (CSBE2) exhibited the maximum anti-inflammatory and anti-arthritic activity at 1000 μg/ml concentration compared to other seaweed extracts. The dichloromethane extract of Corallina officinalis (CORM) exerted the highest antimicrobial activity with an average inhibition zone diameter (AV) = 15.29 mm and activity index (AI) = 1.53 and with the highest antagonistic activity against Escherichia coli (28 mm). It is followed by Ulva linza ethanolic extract (ULGE2) which recorded (AV) of 14.71 mm and (AI) of 1.30 with the highest antifungal activity against Candida albicans (30 mm). The collected seaweeds would therefore be a very promising source for treating inflammatory, arthritic, and microbial diseases. Moreover, the investigated seaweeds showed variable concentrations of heavy metals among various species. The mean concentrations of the heavy metals took the following order: Fe > Zn > Mn > Ba > Cu > As > Cr > Ni > Pb > V > Cd > Se > Co > Mo. Based on the permissible limits set by the WHO and CEVA, Pb and Ni in the studied seaweeds were found to be within the permissible limits, whereas Cd and Zn contents were at the borderline. Significant correlations were observed between studied parameters. The estimated daily intakes for most heavy metals were lower than the recommended daily intakes.
Collapse
Affiliation(s)
- Aida H. Shobier
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mona M. Ismail
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | |
Collapse
|
55
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:ijms24065382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| |
Collapse
|
56
|
Carvalho F, Aureliano M. Polyoxometalates Impact as Anticancer Agents. Int J Mol Sci 2023; 24:ijms24055043. [PMID: 36902473 PMCID: PMC10003337 DOI: 10.3390/ijms24055043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Polyoxometalates (POMs) are oxoanions of transition metal ions, such as V, Mo, W, Nb, and Pd, forming a variety of structures with a wide range of applications. Herein, we analyzed recent studies on the effects of polyoxometalates as anticancer agents, particularly their effects on the cell cycle. To this end, a literature search was carried out between March and June 2022, using the keywords "polyoxometalates" and "cell cycle". The effects of POMs on selected cell lines can be diverse, such as their effects in the cell cycle, protein expression, mitochondrial effects, reactive oxygen species (ROS) production, cell death and cell viability. The present study focused on cell viability and cell cycle arrest. Cell viability was analyzed by dividing the POMs into sections according to the constituent compound, namely polyoxovanadates (POVs), polyoxomolybdates (POMos), polyoxopaladates (POPds) and polyoxotungstates (POTs). When comparing and sorting the IC50 values in ascending order, we obtained first POVs, then POTs, POPds and, finally, POMos. When comparing clinically approved drugs and POMs, better results of POMs in relation to drugs were observed in many cases, since the dose required to have an inhibitory concentration of 50% is 2 to 200 times less, depending on the POMs, highlighting that these compounds could become in the future an alternative to existing drugs in cancer therapy.
Collapse
Affiliation(s)
- Fátima Carvalho
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-900-805
| |
Collapse
|
57
|
Wu T, Li T, Zhang C, Huang H, Wu Y. Association between Plasma Trace Element Concentrations in Early Pregnancy and Gestational Diabetes Mellitus in Shanghai, China. Nutrients 2022; 15:115. [PMID: 36615774 PMCID: PMC9824253 DOI: 10.3390/nu15010115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Trace elements play important roles in gestational diabetes mellitus (GDM), but the results from reported studies are inconsistent. This study aimed to examine the association between maternal exposure to V, Cr, Mn, Co, Ni, and Se in early pregnancy and GDM. (2) Methods: A nested case-control study with 403 GDM patients and 763 controls was conducted. Trace elements were measured using inductively coupled plasma-mass spectrometry in plasma collected from pregnant women in the first trimester of gestation. We used several statistical methods to explore the association between element exposure and GDM risk. (3) Results: Plasma V and Ni were associated with increased and decreased risk of GDM, respectively, in the single-element model. V and Mn were found to be positively, and Ni was found to be negatively associated with GDM risk in the multi-element model. Mn may be the main contributor to GDM risk and Ni the main protective factor against GDM risk in the quantile g computation (QGC). 6.89 μg/L~30.88 μg/L plasma Ni was identified as a safe window for decreased risk of GDM. (4) Conclusions: V was positively associated with GDM risk, while Ni was negatively associated. Ni has dual effects on GDM risk.
Collapse
Affiliation(s)
- Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Tao Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Chen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
- Women’s Hospital, School of Medicine, The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| | - Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
| |
Collapse
|
58
|
Missina JM, Ronqui Bottini RC, Baptistella GB, Santana FS, Stinghen D, Lemos de Sá E, Gioppo Nunes G. Synthesis, characterization, DFT calculations and bromoperoxidase activity of binuclear oxidovanadium complexes containing vitamin B6. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2135993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | - Danilo Stinghen
- Departamento de Química, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Eduardo Lemos de Sá
- Departamento de Química, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
59
|
Matusoiu F, Negrea A, Ciopec M, Duteanu N, Negrea P, Ianasi P, Ianasi C. Vanadium (V) Adsorption from Aqueous Solutions Using Xerogel on the Basis of Silica and Iron Oxide Matrix. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8970. [PMID: 36556774 PMCID: PMC9786883 DOI: 10.3390/ma15248970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Vanadium is considered a strategic metal with wide applications in various industries due to its unique chemical and physical properties. On the basis of these considerations, the recovery of vanadium (V) is mandatory because of the lack of raw materials. Various methods are used to recover vanadium (V) from used aqueous solutions. This study develops a clean and effective process for the recovery of vanadium (V) by using the adsorption method. At the same time, this study synthesizes a material starting from silica matrices and iron oxides, which is used as an adsorbent material. To show the phase composition, the obtained material is characterized by X-ray diffraction showing that the material is present in the amorphous phase, with a crystal size of 20 nm. However, the morphological texture of the material is determined by the N2 adsorption-desorption method, proving that the adsorbent material has a high surface area of 305 m2/g with a total pore volume of 1.55 cm3/g. To determine the efficiency of the SiO2FexOy material for the recovery of vanadium through the adsorption process, the role of specific parameters, such as the L-to-V ratio, pH, contact time, temperature, and initial vanadium concentration, must be evaluated. The adsorption process mechanism was established through kinetic, thermodynamic, and equilibrium studies. In our case, the process is physical, endothermic, spontaneous, and takes place at the interface of SiO2FexOy with V2O5. Following equilibrium studies, the maximum adsorption capacity of the SiO2FexOy material was 58.8 mg (V)/g of material.
Collapse
Affiliation(s)
- Florin Matusoiu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Paula Ianasi
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr. A.P. Podeanu Street, 300569 Timisoara, Romania
| | - Cătălin Ianasi
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania
| |
Collapse
|
60
|
Interaction with bioligands and in vitro cytotoxicity of a new dinuclear dioxido vanadium(V) complex. J Inorg Biochem 2022; 237:111980. [PMID: 36109193 DOI: 10.1016/j.jinorgbio.2022.111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
One centrosymmetric bis(μ-oxido)-bridged vanadium(V) dimer with molecular formula [(VVO2)2(pedf)2] (1) has been synthesized from the reaction of VOSO4·5H2O with a Schiff base ligand (abbreviated with pedf-) obtained from 2-acetylpyridine and 2-furoic hydrazide in methanol. Complex 1 was characterized by elemental analysis, UV-visible (UV-Vis), Fourier-transform infrared spectra (FT-IR), cyclic voltammetry (CV), electron paramagnetic resonance spectroscopy (EPR) and electrospray ionization-mass spectrometry (ESI-MS) techniques along with single crystal X-ray diffraction (SCXRD). The FT-IR spectral data of 1 indicated the involvement of oxygen and azomethine nitrogen in coordination to the central metal ion. The crystallographic studies revealed a dinuclear oxovanadium(V) complex with the Schiff base coordinated via the ONN donor set with formation of two five-membered chelate rings resulting in a distorted octahedral geometry. The interaction of 1 with calf thymus DNA (CT-DNA) was investigated by spectroscopic measurements and results suggested that the complex binds to CT-DNA via moderate intercalative mode with a binding constant (Kb) around 103 M-1. In addition, the in vitro protein binding behavior was studied by fluorescence spectrophotometric method using both bovine serum albumin (BSA) and human serum albumin (HSA) and a static quenching mechanism was observed for the interaction of the complex with both albumins that occurs with a Kb in the range (5-6) × 103 M-1. In vitro cytotoxicity of complex 1 on lung cancer cells (A549) and human skin carcinoma cell line (A431) demonstrated that the complex had a broad-spectrum of anti-proliferative activity with IC50 value of 64.2 μM and 56.2 μM.
Collapse
|
61
|
Santana CM, de Sousa TL, Latif ALO, Lobo LS, da Silva GR, Magalhães HIF, Lopes MV, de Jesus Benevides CM, Araujo RGO, Dos Santos DCMB, de Freitas Santos Júnior A. Multielement determination (essential and potentially toxic elements) in eye shadows exposed to consumption in Brazil using ICP OES. Biometals 2022; 35:1281-1297. [PMID: 36255608 DOI: 10.1007/s10534-022-00444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/10/2022] [Indexed: 12/14/2022]
Abstract
Worldwide, cosmetics (especially eye shadows) are widely consumed and have a great impact on the economy. The aim of this study was to determine the multielement composition, focusing on essential and potentially toxic elements, in cosmetics (eye shadow) exposed to consumption in Brazil. Concentrations of 17 elements (Al, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, V and Zn) were determined in samples (produced in China and Brazil) using a sequential optical emission spectrometer with inductively coupled plasma (ICP OES) after acid digestion, assisted by a closed digester block (6 mL of HNO3 + 2 mL of H2O2 + 1 mL of Triton ×-100 + 1 mL of ultrapure water). The method was validated by linearity, precision, accuracy, limits of detection (LoD) and quantification (LoQ). The elements were quantified (in µg g-1): Al (852-21,900), Ba (3.47-104), Cd (1.70-6.93), Cr (< 8.53-66.6), Cu (< 0.480-14.5), Mn (92.20-1,190), Ni (< 4.23-40.7), Pb (< 2.16-5.06), Sb (1.10-10.5), Sr (0.760-46.0), Ti (32.0-440), V (< 0.85-1.7) and Zn (24.90-2,600). As, Co, Mo and Se in all the investigated samples were found to be below the LoQ values of ICP OES. In this study, regardless of sample compositions and origins (Brazilian or Chinese), high levels of Al, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Ti, V and Zn were observed, exceeding the recommended maximum tolerable limits, according to Brazilian and global legislations, which may present potential risks to human health and the environment.
Collapse
Affiliation(s)
- Cinira Mello Santana
- Department of Exact and Earth Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil
| | - Thaís Luz de Sousa
- Chemistry Institute, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | | | - Lorena Santos Lobo
- Chemistry Institute, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | - Gleice Rayanne da Silva
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, 58051900, Brazil
| | | | - Mariângela Vieira Lopes
- Department of Life Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil
| | | | | | | | - Aníbal de Freitas Santos Júnior
- Department of Exact and Earth Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil. .,Department of Life Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil.
| |
Collapse
|
62
|
Papanikolaou M, Simaioforidou AV, Drouza C, Tsipis AC, Miras HN, Keramidas AD, Louloudi M, Kabanos TA. A Combined Experimental and Theoretical Investigation of Oxidation Catalysis by cis-[V IV(O)(Cl/F)(N 4)] + Species Mimicking the Active Center of Metal-Enzymes. Inorg Chem 2022; 61:18434-18449. [PMID: 36357045 PMCID: PMC9682486 DOI: 10.1021/acs.inorgchem.2c02526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/12/2022]
Abstract
Reaction of VIVOCl2 with the nonplanar tetradentate N4 bis-quinoline ligands yielded four oxidovanadium(IV) compounds of the general formula cis-[VIV(O)(Cl)(N4)]Cl. Sequential treatment of the two nonmethylated N4 oxidovanadium(IV) compounds with KF and NaClO4 resulted in the isolation of the species with the general formula cis-[VIV(O)(F)(N4)]ClO4. In marked contrast, the methylated N4 oxidovanadium(IV) derivatives are inert toward KF reaction due to steric hindrance, as evidenced by EPR and theoretical calculations. The oxidovanadium(IV) compounds were characterized by single-crystal X-ray structure analysis, cw EPR spectroscopy, and magnetic susceptibility. The crystallographic characterization showed that the vanadium compounds have a highly distorted octahedral coordination environment and the d(VIV-F) = 1.834(1) Å is the shortest to be reported for (oxido)(fluorido)vanadium(IV) compounds. The experimental EPR parameters of the VIVO2+ species deviate from the ones calculated by the empirical additivity relationship and can be attributed to the axial donor atom trans to the oxido group and the distorted VIV coordination environment. The vanadium compounds act as catalysts toward alkane oxidation by aqueous H2O2 with moderate ΤΟΝ up to 293 and product yields of up to 29% (based on alkane); the vanadium(IV) is oxidized to vanadium(V), and the ligands remain bound to the vanadium atom during the catalysis, as determined by 51V and 1H NMR spectroscopies. The cw X-band EPR studies proved that the mechanism of the catalytic reaction is through hydroxyl radicals. The chloride substitution reaction in the cis-[VIV(O)(Cl)(N4)]+ species by fluoride and the mechanism of the alkane oxidation were studied by DFT calculations.
Collapse
Affiliation(s)
- Michael
G. Papanikolaou
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
- Department
of Chemistry, University of Cyprus, Nicosia1678, Cyprus
| | - Anastasia V. Simaioforidou
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| | - Chryssoula Drouza
- Department
of Agricultural Production, Biotechnology and Food Science, Cyprus University of Technology, 3036Limassol, Cyprus
| | - Athanassios C. Tsipis
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| | | | | | - Maria Louloudi
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| | - Themistoklis A. Kabanos
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| |
Collapse
|
63
|
Zwolak I, Wnuk E, Świeca M. Identification of Potential Artefacts in In Vitro Measurement of Vanadium-Induced Reactive Oxygen Species (ROS) Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15214. [PMID: 36429933 PMCID: PMC9691132 DOI: 10.3390/ijerph192215214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
We investigated vanadium, i.e., a redox-active heavy metal widely known for the generation of oxidative stress in cultured mammalian cells, to determine its ability to interfere with common oxidative stress-related bioassays in cell-free conditions. We first assessed the prooxidant abilities (H2O2 level, oxidation of DHR 123, and DCFH-DA dyes) and antioxidant capacity (ABTS, RP, OH, and DPPH methods) of popular mammalian cell culture media, i.e., Minimal Essential Medium (MEM), Dulbecco's Minimal Essential Medium (DMEM), Dulbecco's Minimal Essential Medium-F12 (DMEM/F12), and RPMI 1640. Out of the four media studied, DMEM has the highest prooxidant and antioxidant properties, which is associated with the highest concentration of prooxidant and antioxidant nutrients in its formulation. The studied vanadium compounds, vanadyl sulphate (VOSO4), or sodium metavanadate (NaVO3) (100, 500, and 1000 µM), either slightly increased or decreased the level of H2O2 in the studied culture media. However, these changes were in the range of a few micromoles, and they should rather not interfere with the cytotoxic effect of vanadium on cells. However, the tested vanadium compounds significantly stimulated the oxidation of DCFH-DA and DHR123 in a cell-independent manner. The type of the culture media and their pro-oxidant and antioxidant abilities did not affect the intensity of oxidation of these dyes by vanadium, whereas the vanadium compound type was important, as VOSO4 stimulated DCFH-DA and DHR oxidation much more potently than NaVO3. Such interactions of vanadium with these probes may artefactually contribute to the oxidation of these dyes by reactive oxygen species induced by vanadium in cells.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708 Lublin, Poland
| | - Ewa Wnuk
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708 Lublin, Poland
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland
| |
Collapse
|
64
|
Vanadium Modulates Proteolytic Activities and MMP-14-Like Levels during Paracentrotus lividus Embryogenesis. Int J Mol Sci 2022; 23:ijms232214238. [PMID: 36430713 PMCID: PMC9697301 DOI: 10.3390/ijms232214238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The increasing industrial use of vanadium (V), as well as its recent medical use in various pathologies has intensified its environmental release, making it an emerging pollutant. The sea urchin embryo has long been used to study the effects induced by metals, including V. In this study we used an integrated approach that correlates the biological effects on embryo development with proteolytic activities of gelatinases that could better reflect any metal-induced imbalances. V-exposure caused morphological/morphometric aberrations, mainly concerning the correct distribution of embryonic cells, the development of the skeleton, and the embryo volume. Moreover, V induced a concentration change in all the gelatinases expressed during embryo development and a reduction in their total proteolytic activity. The presence of three MMP-like gelatinases (MMP-2, -9, and -14) was also demonstrated and their levels depended on V-concentration. In particular, the MMP-14-like protein modified its expression level during embryo development in a time- and dose-dependent manner. This enzyme also showed a specific localization on filopodia, suggesting that primary mesenchyme cells (PMCs) could be responsible for its synthesis. In conclusion, these results indicate that an integrated study among morphology/morphometry, proteolytic activity, and MMP-14 expression constitutes an important response profile to V-action.
Collapse
|
65
|
Peel HR, Balogun FO, Bowers CA, Miller CT, Obeidy CS, Polizzotto ML, Tashnia SU, Vinson DS, Duckworth OW. Towards Understanding Factors Affecting Arsenic, Chromium, and Vanadium Mobility in the Subsurface. WATER 2022; 14:3687. [PMID: 36420182 PMCID: PMC9681123 DOI: 10.3390/w14223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arsenic (As), chromium (Cr), and vanadium (V) are naturally occurring, redox-active elements that can become human health hazards when they are released from aquifer substrates into groundwater that may be used as domestic or irrigation source. As such, there is a need to develop incisive conceptual and quantitative models of the geochemistry and transport of potentially hazardous elements to assess risk and facilitate interventions. However, understanding the complexity and heterogeneous subsurface environment requires knowledge of solid-phase minerals, hydrologic movement, aerobic and anaerobic environments, microbial interactions, and complicated chemical kinetics. Here, we examine the relevant geochemical and hydrological information about the release and transport of potentially hazardous geogenic contaminants, specifically As, Cr, and V, as well as the potential challenges in developing a robust understanding of their behavior in the subsurface. We explore the development of geochemical models, illustrate how they can be utilized, and describe the gaps in knowledge that exist in translating subsurface conditions into numerical models, as well as provide an outlook on future research needs and developments.
Collapse
Affiliation(s)
- Hannah R. Peel
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Fatai O. Balogun
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | - Christopher A. Bowers
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea S. Obeidy
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | | | - Sadeya U. Tashnia
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - David S. Vinson
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Owen W. Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
66
|
Chen S, Yan J, Zhang C, Wang C, Lu D. Determination of Vanadium(IV) and Vanadium(V) in Beverages by Two-Step Direct Immersion Single-Drop Microextraction with Graphite Furnace Atomic Absorption Spectrometry (GFAAS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Shizhong Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Juntao Yan
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chenghao Zhang
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chunlei Wang
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Dengbo Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
67
|
Schons AB, Correa JS, Appelt P, Meneguzzi D, Cunha MAA, Bittencourt C, Toma HE, Anaissi FJ. Eco-Friendly Synthesis of an Oxovanadium(IV)- bis(abietate) Complex with Antimicrobial Action. Molecules 2022; 27:molecules27196679. [PMID: 36235216 PMCID: PMC9573124 DOI: 10.3390/molecules27196679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
The search for less expensive and viable products is always one of the challenges for research development. Commonly, the synthesis of coordination compounds involves expensive ligands, through expensive and low-yield routes, in addition to generating toxic and unusable residues. In this work, the organic ligand used is derived from the resin of a reforestation tree, Pinus elliottii var. elliottii. The synthesis method used Pinus resin and an aqueous solution of vanadium(III) chloride at a temperature of 80 °C. The procedure does not involve organic solvents and does not generate toxic residues, thus imparting the complex formation reaction a green chemistry character. The synthesis resulted in an unprecedented oxovanadium(IV)-bis(abietate) complex, which was characterized by mass spectrometry (MS), chemical analysis (CHN), vibrational (FTIR) and electronic spectra (VISIBLE), X-ray diffraction (XRD), and thermal analysis (TG/DTA). Colorimetric studies were performed according to the CIELAB color space. The structural formula found, consisted of a complex containing two abietate ligands, [VO(C20H29O2)2]. The VO(IV)-bis(abietate) complex was applied against microorganisms and showed promising results in antibacterial and antifungal activity. The best result of inhibitory action was against the strains of Gram-positive bacteria S. aureus and L. monocytogenes, with minimum inhibitory concentration (MIC) values of 62.5 and 125 μmol L−1, respectively. For Gram-negative strains the results were 500 μmol L−1 for E. coli; and 1000 μmol L−1 for Salmonella enterica Typhimurium. Antifungal activity was performed against Candida albicans, where the MIC was 15.62 μmol L−1, and for C. tropicalis it was 62.5 μmol L−1. According to the MFC analysis, the complex presented, in addition to the fungistatic action, a fungicidal action, as there was no growth of fungi on the plates tested. The results found for the tests demonstrate that the VO(IV)-bis(abietate) complex has great potential as an antimicrobial and mainly antifungal agent. In this way, the pigmented ink with antimicrobial activity could be used in environments with a potential risk of contamination, preventing the spread of microorganisms harmful to health.
Collapse
Affiliation(s)
- Aline B. Schons
- Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Jamille S. Correa
- Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Patricia Appelt
- Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Daiane Meneguzzi
- Department of Chemistry, Universidade Tecnológica Federal do Paraná, UTFPR, Via do Conhecimento, KM 01, Fraron, Pato Branco 85503-390, PR, Brazil
| | - Mário A. A. Cunha
- Department of Chemistry, Universidade Tecnológica Federal do Paraná, UTFPR, Via do Conhecimento, KM 01, Fraron, Pato Branco 85503-390, PR, Brazil
| | - Carla Bittencourt
- Department of Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Henrique E. Toma
- Institute of Chemistry, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Fauze J. Anaissi
- Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence:
| |
Collapse
|
68
|
Tan S, Ouyang P, Zhang Q, Yang S, Wang H. Removal of Vanadium(IV) Ions from Aqueous Solution by Graphene Oxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202202311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shi‐Ying Tan
- Institute of Nanochemistry and Nanobiology Shanghai University NO.99 Shangda Road Shanghai 200444 China
| | - Peng Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University NO. 16, South Section 1st Ring Road Chengdu 610041 Sichuan China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology Shanghai University NO.99 Shangda Road Shanghai 200444 China
| | - Sheng‐Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University NO. 16, South Section 1st Ring Road Chengdu 610041 Sichuan China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology Shanghai University NO.99 Shangda Road Shanghai 200444 China
| |
Collapse
|
69
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
70
|
Aureliano M, Mitchell SG, Yin P. Editorial: Emerging polyoxometalates with biological, biomedical, and health applications. Front Chem 2022; 10:977317. [PMID: 36017169 PMCID: PMC9397140 DOI: 10.3389/fchem.2022.977317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal
- *Correspondence: Manuel Aureliano, ; Scott G. Mitchell, ; Panchao Yin,
| | - Scott G. Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Manuel Aureliano, ; Scott G. Mitchell, ; Panchao Yin,
| | - Panchao Yin
- South China University of Technology, Guangzhou, China
- *Correspondence: Manuel Aureliano, ; Scott G. Mitchell, ; Panchao Yin,
| |
Collapse
|
71
|
Essghaier B, Smiri M, Sehimi H, ben Jalloul A, Zid MF, Sadfi‐Zouaoui N. Antifungal potential of two synthetic vanadium (IV) oxalate compounds to control blue mold of oranges and apples under storage conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Badiaa Essghaier
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| | - Marwa Smiri
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| | - Hiba Sehimi
- Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, LR15ES01, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
- Faculty of Sciences of Gabes University of Gabes, University Campus City Erriadh Zrig Gabes Tunisia
| | - Amel ben Jalloul
- Laboratory of Materials, Molecules and Applications, IPEST, Preparatory Institute of Scientific and Technical Studies of Tunis University of Carthage La Marsa Tunisia
| | - Mohamed Faouzi Zid
- Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, LR15ES01, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| | - Najla Sadfi‐Zouaoui
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| |
Collapse
|
72
|
De Sousa-Coelho AL, Aureliano M, Fraqueza G, Serrão G, Gonçalves J, Sánchez-Lombardo I, Link W, Ferreira BI. Decavanadate and metformin-decavanadate effects in human melanoma cells. J Inorg Biochem 2022; 235:111915. [PMID: 35834898 DOI: 10.1016/j.jinorgbio.2022.111915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 μM) than the previously described for decavanadate (15 μM). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Escola Superior de Saúde (ESS), Universidade do Algarve, Faro, Portugal.
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, Faro, Portugal; Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal.
| | - Gil Fraqueza
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal; Instituto Superior de Engenharia (ISE), Universidade do Algarve, Faro, Portugal
| | - Gisela Serrão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal
| | - João Gonçalves
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Irma Sánchez-Lombardo
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Madrid, Spain
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
73
|
Physicochemical studies of iron/vanadate doped hydroxyapatite/polycaprolactone nanofibers scaffolds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
74
|
Alipour H, Najafi H, Rastegarian A, Dortaj H, Ghasemian S, Zeraatpisheh Z, Nemati MM, Alizadeh A, Alavi O. Anti-melanogenic activity of vanadium incorporated PVA chitosan electrospun fibers: An in vitro model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
75
|
Álvarez-Barrera L, Rodríguez-Mercado JJ, Mateos-Nava RA, Ocampo-Aguilera NA, Altamirano-Lozano MA. Vanadium(IV) oxide affects embryonic development in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1587-1596. [PMID: 35243760 DOI: 10.1002/tox.23508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Vanadium(V) and vanadium(IV) are the predominant redox forms present in the environment, and epidemiological studies have reported that prenatal vanadium exposure is associated with restricted fetal growth and adverse birth outcomes. However, data about the toxic effects of vanadium(IV) oxide (V2 O4 ) on the development of mammals are still limited. Therefore, in this work, 4.7, 9.4, or 18.7 mg/kg body weight/injection/day V2 O4 was administered through an intraperitoneal (ip) injection to pregnant mice from gestational days 6 to 16. The results showed that V2 O4 produced maternal and embryo-fetal toxicity and external abnormalities in the offspring, such as malrotated and malpositioned hind limbs, hematomas and head injuries. Moreover, the skeletons of the fetuses presented reduced ossification of the cranial bones, including the frontal and parietal bones, corresponding to head injuries observed in the external assessment of the fetuses. These results demonstrate that administration of V2 O4 to pregnant females in the organogenesis period adversely affects embryonic development.
Collapse
Affiliation(s)
- Lucila Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Nydia Angélica Ocampo-Aguilera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Mario Agustín Altamirano-Lozano
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| |
Collapse
|
76
|
Heteroleptic oxidovanadium(IV)-malate complex improves glucose uptake in HepG2 and enhances insulin action in streptozotocin-induced diabetic rats. Biometals 2022; 35:903-919. [PMID: 35778658 DOI: 10.1007/s10534-022-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
Abstract
Diabetes mellitus, a complex and heterogeneous disease associated with hyperglycemia, is a leading cause of mortality and reduces life expectancy. Vanadium complexes have been studied for the treatment of diabetes. The effect of complex [VO(bpy)(mal)]·H2O (complex A) was evaluated in a human hepatocarcinoma (HepG2) cell line and in streptozotocin (STZ)-induced diabetic male Wistar rats conditioned in seven groups with different treatments (n = 10 animals per group). Electron paramagnetic resonance and 51V NMR analyses of complex A in high-glucose Dulbecco's Modified Eagle Medium (DMEM) revealed the oxidation and hydrolysis of the oxidovanadium(IV) complex over a period of 24 h at 37 °C to give low-nuclearity vanadates "V1" (H2VO4-), "V2" (H2V2O72-), and "V4" (V4O124-). In HepG2 cells, complex A exhibited low cytotoxic effects at concentrations 2.5 to 7.5 μmol L-1 (IC50 10.53 μmol L-1) and increased glucose uptake (2-NBDG) up to 93%, an effect similar to insulin. In STZ-induced diabetic rats, complex A at 10 and 30 mg kg-1 administered by oral gavage for 12 days did not affect the animals, suggesting low toxicity or metabolic impairment during the experimental period. Compared to insulin treatment alone, complex A (30 mg kg-1) in association with insulin was found to improve glycemia (30.6 ± 6.3 mmol L-1 vs. 21.1 ± 8.6 mmol L-1, respectively; p = 0.002), resulting in approximately 30% additional reduction in glycemia. The insulin-enhancing effect of complex A was associated with low toxicity and was achieved via oral administration, suggesting the potential of complex A as a promising candidate for the adjuvant treatment of diabetes.
Collapse
|
77
|
Szewczyk OK, Roszczenko P, Czarnomysy R, Bielawska A, Bielawski K. An Overview of the Importance of Transition-Metal Nanoparticles in Cancer Research. Int J Mol Sci 2022; 23:6688. [PMID: 35743130 PMCID: PMC9223356 DOI: 10.3390/ijms23126688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Several authorities have implied that nanotechnology has a significant future in the development of advanced cancer therapies. Nanotechnology makes it possible to simultaneously administer drug combinations and engage the immune system to fight cancer. Nanoparticles can locate metastases in different organs and deliver medications to them. Using them allows for the effective reduction of tumors with minimal toxicity to healthy tissue. Transition-metal nanoparticles, through Fenton-type or Haber-Weiss-type reactions, generate reactive oxygen species. Through oxidative stress, the particles induce cell death via different pathways. The main limitation of the particles is their toxicity. Certain factors can control toxicity, such as route of administration, size, aggregation state, surface functionalization, or oxidation state. In this review, we attempt to discuss the effects and toxicity of transition-metal nanoparticles.
Collapse
Affiliation(s)
- Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| |
Collapse
|
78
|
Roy S, Böhme M, Lima S, Mohanty M, Banerjee A, Buchholz A, Plass W, Rathnam S, Banerjee I, Kaminsky W, Dinda R. Methoxido‐Bridged Lacunary Heterocubane Oxidovanadium(IV) Cluster with Azo Ligands: Synthesis, X‐ray Structure, Magnetic Properties, and Antiproliferative Activity. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Satabdi Roy
- National Institute of Technology Rourkela department of chemistry INDIA
| | - Michael Böhme
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Sudhir Lima
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Monalisa Mohanty
- National Institute of Technology Rourkela Department of Chemisry INDIA
| | - Atanu Banerjee
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Axel Buchholz
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Winfried Plass
- Friedrich-Schiller-Universitat Jena Anorganische und Analytische Chemie Humboldtstr. 8 7743 Jena GERMANY
| | - Sharan Rathnam
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Indranil Banerjee
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Werner Kaminsky
- University of Washington Department of Chemistry UNITED STATES
| | - Rupam Dinda
- National Institute of Technology Rourkela Department of Chemsitry INDIA
| |
Collapse
|
79
|
Chiarelli R, Scudiero R, Memoli V, Roccheri MC, Martino C. Toxicity of Vanadium during Development of Sea Urchin Embryos: Bioaccumulation, Calcium Depletion, ERK Modulation and Cell-Selective Apoptosis. Int J Mol Sci 2022; 23:ijms23116239. [PMID: 35682917 PMCID: PMC9181554 DOI: 10.3390/ijms23116239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Vanadium toxicology is a topic of considerable importance as this metal is widely used in industrial and biomedical fields. However, it represents a potential emerging environmental pollutant because wastewater treatment plants do not adequately remove metal compounds that are subsequently released into the environment. Vanadium applications are limited due to its toxicity, so it is urgent to define this aspect. This metal is associated with sea urchin embryo toxicity as it perturbs embryogenesis and skeletogenesis, triggering several stress responses. Here we investigated its bioaccumulation and the correlation with cellular and molecular developmental pathways. We used cytotoxic concentrations of 1 mM and 500 μM to perform quantitative analyses, showing that vanadium accumulation interferes with calcium uptake during sea urchin development and provokes a disruption in the biomineralization process. At the end of the whole treatment, the accumulation of vanadium was about 14 and 8 μg for embryos treated respectively with 1 mM and 500 μM, showing a dose-dependent response. Then, we monitored the cell signaling perturbation, analyzing key molecular markers of cell survival/cell death mechanisms and the DNA fragmentation associated with apoptosis. This paper clarifies vanadium’s trend to accumulate directly into embryonic cells, interfering with calcium uptake. In addition, our results indicate that vanadium can modulate the ERK pathway and activate a cell-selective apoptosis. These results endorse the sea urchin embryo as an adequate experimental model to study metal-related cellular/molecular responses.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (M.C.R.); (C.M.)
- Correspondence:
| | - Rosaria Scudiero
- Department of Biology, University Federico II, 80126 Napoli, Italy; (R.S.); (V.M.)
| | - Valeria Memoli
- Department of Biology, University Federico II, 80126 Napoli, Italy; (R.S.); (V.M.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (M.C.R.); (C.M.)
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (M.C.R.); (C.M.)
| |
Collapse
|
80
|
Effect of Bis(maltolato)oxovanadium(IV) on Zinc, Copper, and Manganese Homeostasis and DMT1 mRNA Expression in Streptozotocin-Induced Hyperglycemic Rats. BIOLOGY 2022; 11:biology11060814. [PMID: 35741335 PMCID: PMC9219771 DOI: 10.3390/biology11060814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Our aim was to examine whether vanadium (IV) corrects alterations in zinc, copper and manganese homeostasis, observed in streptozotocin-induced hyperglycemic rats, and whether such changes are related to divalent metal transporter 1 (DMT1) mRNA expression, and antioxidant and proinflammatory parameters. Four groups of Wistar rats were examined: control; hyperglycemic (H); hyperglycemic treated with 1 mg V/day (HV); and hyperglycemic treated with 3 mg V/day (HVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(IV) for five weeks. Zinc, copper and manganese were measured in food, excreta, serum and tissues. DMT1 mRNA expression was quantified in the liver. Hyperglycemic rats showed increased Zn and Cu absorption and content in the liver, serum, kidneys and femurs; DMT1 expression also increased (p < 0.05 in all cases). HV rats showed no changes compared to H rats other than decreased DMT1 expression (p < 0.05). In the HVH group, decreased absorption and tissular content of studied elements (p < 0.05 in all cases) and DMT1 expression compared to H (p < 0.05) were observed. Liver zinc, copper and manganese content correlated positively with glutathione peroxidase activity and negatively with catalase activity (p < 0.05 in both cases). In conclusion, treatment with 3 mg V/d reverted the alterations in zinc and copper homeostasis caused by hyperglycemia, possibly facilitated by decreased DMT1 expression.
Collapse
|
81
|
Wang L, Pan Y, Yang F, Guo X, Peng J, Wang X, Fang Y, Chen J, Yi X, Cao H, Hu G. New sight into interaction between endoplasmic reticulum stress and autophagy induced by vanadium in duck renal tubule epithelial cells. Chem Biol Interact 2022; 362:109981. [PMID: 35588787 DOI: 10.1016/j.cbi.2022.109981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
Abstract
Vanadium (V) is a common environmental and industrial pollutant that can cause nephrotoxicity in animals in excess. The purpose of this research was to explore the interaction between endoplasmic reticulum (ER) stress and autophagy induced by V in the kidney of ducks. Duck renal tubule epithelial cells were exposed to different concentrations of sodium metavanadate (NaVO3) (0, 100 and 200 μM) and PERK inhibitor (GSK, 1 μM), or autophagy inhibitor (chloroquine, 50 μM) alone for 24 h (chloroquine for the last 4 h). The results showed that exposure to V caused the dilatation and swelling of the ER and intracellular calcium overload, and upregulated PERK, eIF2α, ATF4 and CHOP mRNA levels and p-PERK and CHOP protein levels associated with ER stress in cells. Additionally, V markedly increased the number of autophagosomes, acidic vesicular organelles (AVOs) and LC3 puncta, as well as the mRNA levels of Beclin1, Atg5, Atg12, LC3A and LC3B and protein levels of Beclin1, Atg5 and LC3B-II/LC3B-I, but decreased the imRNA and protein levels of p62. Moreover, treatment with the PERK inhibitor ameliorated the changed factors above induced by V, but the V-induced variation of ER-stress related factors were aggravated after treatment with the autophagy inhibitor. Together, our data suggested that excessive V could induce ER stress and autophagy in duck renal tubular epithelial cells. ER stress might promote V-induced autophagy via the PERK/ATF4/CHOP signaling pathway, and autophagy may play a role in alleviating ER stress induced by V.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yueying Pan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| | - Xiaowang Guo
- Yichun Agriculture and Rural Affairs Bureau, Yichun, 336000, Jiangxi, PR China
| | - Junjun Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yukun Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xin Yi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| |
Collapse
|
82
|
ORHAN N, TUNALI S, YANARDAĞ R. Ameliorative Effects of Vanadyl Sulfate on Some Biochemical Parameters of Experimental Diabetic Rat Kidneys. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
83
|
Effects of Sodium Pyruvate on Vanadyl Sulphate-Induced Reactive Species Generation and Mitochondrial Destabilisation in CHO-K1 Cells. Antioxidants (Basel) 2022; 11:antiox11050909. [PMID: 35624773 PMCID: PMC9137755 DOI: 10.3390/antiox11050909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vanadium is ranked as one of the world’s critical metals considered important for economic growth with wide use in the steel industry. However, its production, applications, and emissions related to the combustion of vanadium-containing fuels are known to cause harm to the environment and human health. Pyruvate, i.e., a glucose metabolite, has been postulated as a compound with multiple cytoprotective properties, including antioxidant and anti-inflammatory effects. The aim of the present study was to examine the antioxidant potential of sodium pyruvate (4.5 mM) in vanadyl sulphate (VOSO4)-exposed CHO-K1 cells. Dichloro-dihydro-fluorescein diacetate and dihydrorhodamine 123 staining were performed to measure total and mitochondrial generation of reactive oxygen species (ROS), respectively. Furthermore, mitochondrial damage was investigated using MitoTell orange and JC-10 staining assays. We demonstrated that VOSO4 alone induced a significant rise in ROS starting from 1 h to 3 h after the treatment. Additionally, after 24 and 48 h of exposure, VOSO4 elicited both extensive hyperpolarisation and depolarisation of the mitochondrial membrane potential (MMP). The two-way ANOVA analysis of the results showed that, through antagonistic interaction, pyruvate prevented VOSO4-induced total ROS generation, which could be observed at the 3 h time point. In addition, through the independent action and antagonistic interaction with VOSO4, pyruvate provided a pronounced protective effect against VOSO4-mediated mitochondrial toxicity at 24-h exposure, i.e., prevention of VOSO4-induced hyperpolarisation and depolarisation of MMP. In conclusion, we found that pyruvate exerted cytoprotective effects against vanadium-induced toxicity at least in part by decreasing ROS generation and preserving mitochondrial functions
Collapse
|
84
|
Ghalichi F, Ostadrahimi A, Saghafi-Asl M. Vanadium and diabetic dyslipidemia: A systematic review of animal studies. J Trace Elem Med Biol 2022; 71:126955. [PMID: 35303513 DOI: 10.1016/j.jtemb.2022.126955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Diabetic dyslipidemia is caused by hyperglycemia and excessive mobilization of storage lipids, leading to increasing concentrations of triglycerides and total cholesterol. Due to the insulin-mimetic or insulin-enhancer features of vanadium, it has been recognized as a regulator of cell metabolism with hypoglycemic and hypolipidemic properties. The purpose of the current animal systematic review was to evaluate the effect of vanadium administration on diabetic dyslipidemia in diabetic animals. METHODS This is, to our knowledge, the first systematic review with the aim of investigating the relationship between vanadium and diabetic dyslipidemia among diabetes induced animals. Searches were performed in PubMed, Scopus, and web of science databases for animal studies examining the effect of vanadium on diabetic dyslipidemia in diabetic animals. RESULTS Of 124 full-text articles assessed, 48 animal studies were included in the present study with minor risk of bias. The majority of the studies confirmed the beneficial effects of different vanadium compounds in at least one of the parameters of lipid profile, especially regarding triglyceride and total cholesterol. CONCLUSION Current findings lend support to assess the long-term effects of different forms and doses of vanadium on lipid profile through well-designed clinical trials.
Collapse
Affiliation(s)
- Faezeh Ghalichi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences (TBZMED), Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences (TBZMED), Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition & Food Sciences, Tabriz university of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
85
|
Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3150. [PMID: 35591484 PMCID: PMC9104688 DOI: 10.3390/ma15093150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
This review addresses the different aspects of the use of titanium and its alloys in the production of dental implants, the most common causes of implant failures and the development of improved surfaces capable of stimulating osseointegration and guaranteeing the long-term success of dental implants. Titanium is the main material for the development of dental implants; despite this, different surface modifications are studied aiming to improve the osseointegration process. Nanoscale modifications and the bioactivation of surfaces with biological molecules can promote faster healing when compared to smooth surfaces. Recent studies have also pointed out that gradual changes in the implant, based on the microenvironment of insertion, are factors that may improve the integration of the implant with soft and bone tissues, preventing infections and osseointegration failures. In this context, the understanding that nanobiotechnological surface modifications in titanium dental implants improve the osseointegration process arouses interest in the development of new strategies, which is a highly relevant factor in the production of improved dental materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste-Cetene, Av. Prof. Luiz Freire, 01, Cidade Universitária, Recife CEP 50740-545, PE, Brazil; (R.C.S.S.); (A.A.); (A.N.A.); (C.L.M.-M.); (I.R.S.A.); (L.R.L.S.); (N.F.V.)
| |
Collapse
|
86
|
Overview of Research on Vanadium-Quercetin Complexes with a Historical Outline. Antioxidants (Basel) 2022; 11:antiox11040790. [PMID: 35453475 PMCID: PMC9029821 DOI: 10.3390/antiox11040790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
The present review was conducted to gather the available literature on some issues related to vanadium-quercetin (V-QUE) complexes. It was aimed at collecting data from in vitro and in vivo studies on the biological activity, behavior, antioxidant properties, and radical scavenging power of V-QUE complexes. The analysis of relevant findings allowed summarizing the evidence for the antidiabetic and anticarcinogenic potential of V-QUE complexes and suggested that they could serve as pharmacological agents for diabetes and cancer. These data together with other well-documented biological properties of V and QUE (common for both), which are briefly summarized in this review as well, may lay the groundwork for new therapeutic treatments and further research on a novel class of pharmaceutical molecules with better therapeutic performance. Simultaneously, the results compiled in this report point to the need for further studies on complexation of V with flavonoids to gain further insight into their behavior, identify species responsible for their physiological activity, and fully understand their mechanism of action.
Collapse
|
87
|
Peng J, Peng C, Wang L, Cao H, Xing C, Li G, Hu G, Yang F. Endoplasmic reticulum-mitochondria coupling attenuates vanadium-induced apoptosis via IP 3R in duck renal tubular epithelial cells. J Inorg Biochem 2022; 232:111809. [PMID: 35421768 DOI: 10.1016/j.jinorgbio.2022.111809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Vanadium (V) is necessary for the health and growth of animals, but excessive V has harmful effects on the ecosystem health. Endoplasmic reticulum (ER)-mitochondria coupling as a membrane structure connects the mitochondrial outer membrane with the ER. The mitochondria-associated ER membrane (MAM) is a region of the ER-mitochondria coupling and is essential for normal cell function. Currently, the crosstalk between ER-mitochondrial coupling and apoptosis in the toxic mechanism of V on duck kidney is still unclear. In this study, duck renal tubular epithelial cells were incubated with different concentrations of sodium metavanadate (NaVO3) and/or inositol triphosphate receptor (IP3R) inhibitor 2-aminoethyl diphenyl borate (2-APB) for 24 h. The results showed that V could significantly increase lactate dehydrogenase (LDH) release, the mitochondrial calcium level and the numbers of the fluorescent signal points of IP3R; shortened the length ER-mitochondria coupling and reduced its formation; markedly upregulate the mRNA levels of MAM-related genes and protein levels, causing MAM dysfunction. Additionally, V treatment appeared to upregulate pro-apoptotic genes and downregulate anti-apoptotic genes, followed by cell apoptosis. The V-induced changes were alleviated by treatment with IP3R inhibitor. In summary, V could induce the dysfunction of ER-mitochondrial coupling and apoptosis, and inhibition of ER-mitochondrial coupling could attenuate V-induced apoptosis in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Junjun Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China; Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005, Guangxi, PR China
| | - Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
88
|
Inverse Association of Plasma Vanadium Concentrations with Gestational Diabetes Mellitus. Nutrients 2022; 14:nu14071415. [PMID: 35406027 PMCID: PMC9002363 DOI: 10.3390/nu14071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Vanadium compounds were identified to be beneficial for the control of glucose homeostasis. We aimed to explore the association of plasma vanadium (V) with gestational diabetes mellitus (GDM). We performed a case-control study including 252 newly diagnosed GDM cases and 252 controls matched by age, parity, and gestational age. Fasting blood samples were collected from each participant at GDM screening (≥24 weeks of gestation). The plasma concentrations of V were determined utilizing inductively coupled plasma mass spectrometry. Plasma V levels were significantly lower in the GDM group than those in the control group (p < 0.001). The adjusted OR (95% CI) of GDM comparing the highest V tertile with the lowest tertile was 0.35 (0.20−0.61). According to the cubic spline model, the relation between plasma V and odds of GDM was potentially nonlinear (p < 0.001). Moreover, plasma V was negatively correlated with 1-h post-glucose load, 2-h post-glucose load, and lipid metabolism indices (all p < 0.05). The present study indicates an inverse association of plasma V with GDM. Further prospective cohort studies are required to validate our results.
Collapse
|
89
|
Valentini F, Galloni P, Brancadoro D, Conte V, Sabuzi F. A Stoichiometric Solvent-Free Protocol for Acetylation Reactions. Front Chem 2022; 10:842190. [PMID: 35355791 PMCID: PMC8959667 DOI: 10.3389/fchem.2022.842190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Considering the remarkable relevance of acetylated derivatives of phenols, alcohols, and aryl and alkyl thiols in different areas of biology, as well as in synthetic organic chemistry, a sustainable solvent-free approach to perform acetylation reactions is proposed here. Acetylation reactions are classically performed using excess of acetic anhydride (Ac2O) in solvent-free conditions or by eventually working with stoichiometric amounts of Ac2O in organic solvents; both methods require the addition of basic or acid catalysts to promote the esterification. Therefore, they usually lead to the generation of high amounts of wastes, which sensibly raise the E-factor of the process. With the aim to develop a more sustainable system, a solvent-free, stoichiometric acetylation protocol is, thus, proposed. The naturally occurring phenol, thymol, can be converted to the corresponding-biologically active-ester with good yields, in the presence of 1% of VOSO4. Interestingly, the process can be efficiently adopted to synthesize other thymyl esters, as well as to perform acetylation of alcohols and aryl and alkyl thiols. Remarkably, a further improvement has been achieved replacing Ac2O with its greener alternative, isopropenyl acetate (IPA).
Collapse
Affiliation(s)
- Francesca Valentini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
- BT-InnoVaChem Srl, Rome, Italy
| | | | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
- BT-InnoVaChem Srl, Rome, Italy
| |
Collapse
|
90
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
91
|
Cappai R, Fantasia A, Crisponi G, Garribba E, Santos MA, Nurchi VM. A Multi-Technique Investigation of the Complex Formation Equilibria between Bis-Deferiprone Derivatives and Oxidovanadium (IV). Molecules 2022; 27:1555. [PMID: 35268654 PMCID: PMC8924880 DOI: 10.3390/molecules27051555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The increasing biomedical interest in high-stability oxidovanadium(IV) complexes with hydroxypyridinone ligands leads us to investigate the complex formation equilibria of VIVO2+ ion with a tetradentate ligand, named KC21, which contains two 3-hydroxy-1,2-dimethylpyridin-4(1H)-one (deferiprone) moieties, and with the simple bidentate ligand that constitutes the basic unit of KC21, for comparison, named L5. These equilibrium studies were conducted with joined potentiometric-spectrophotometric titrations, and the results were substantiated with EPR measurements at variable pH values. This multi-technique study gave evidence of the formation of an extremely stable 1:1 complex between KC21 and oxidovanadium(IV) at a physiological pH, which could find promising pharmacological applications.
Collapse
Affiliation(s)
- Rosita Cappai
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Monserrato-Cagliari, Italy; (R.C.); (A.F.); (G.C.)
| | - Alessandra Fantasia
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Monserrato-Cagliari, Italy; (R.C.); (A.F.); (G.C.)
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Monserrato-Cagliari, Italy; (R.C.); (A.F.); (G.C.)
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy;
| | - M. Amélia Santos
- Centro de Quimica Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Valeria Marina Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Monserrato-Cagliari, Italy; (R.C.); (A.F.); (G.C.)
| |
Collapse
|
92
|
Neurobehavioral effects of chronic low-dose vanadium administration in young male rats. Behav Brain Res 2022; 419:113701. [PMID: 34863808 DOI: 10.1016/j.bbr.2021.113701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Exposure to the metal vanadium, in both animals and humans has been linked to various physiological consequences including respiratory and gastrointestinal conditions. Research on the neurobehavioral effects of vanadium exposure is limited. Hence, the purpose of the current study was to examine the effects of chronic low-dose vanadium administration (0.04 mg/week) on the behavior of young male rats. Four weeks following the administration of vanadium, rats were tested on the open field, object recognition, and Morris Water maze tasks. Vanadium did not affect exploration, locomotion, or anxiety-like behavior as measured by the open field task. Vanadium administration affected novel object recognition performance. Intriguingly, rats exposed to vanadium exhibited lower latency times on day 2 of the Morris Water maze. These findings suggest that vanadium's behavioral effects are complex and warrant further investigation to better understand the potential benefits and consequences of its exposure.
Collapse
|
93
|
Vanadium Toxicity Monitored by Fertilization Outcomes and Metal Related Proteolytic Activities in Paracentrotus lividus Embryos. TOXICS 2022; 10:toxics10020083. [PMID: 35202269 PMCID: PMC8878891 DOI: 10.3390/toxics10020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023]
Abstract
Metal pharmaceutical residues often represent emerging toxic pollutants of the aquatic environment, as wastewater treatment plants do not sufficiently remove these compounds. Recently, vanadium (V) derivatives have been considered as potential therapeutic factors in several diseases, however, only limited information is available about their impact on aquatic environments. This study used sea urchin embryos (Paracentrotus lividus) to test V toxicity, as it is known they are sensitive to V doses from environmentally relevant to very cytotoxic levels (50 nM; 100 nM; 500 nM; 1 µM; 50 µM; 100 µM; 500 µM; and 1 mM). We used two approaches: The fertilization test (FT) and a protease detection assay after 36 h of exposure. V affected the fertilization percentage and increased morphological abnormalities of both egg and fertilization envelope, in a dose-dependent manner. Moreover, a total of nine gelatinases (with apparent molecular masses ranging from 309 to 22 kDa) were detected, and their proteolytic activity depended on the V concentration. Biochemical characterization shows that some of them could be aspartate proteases, whereas substrate specificity and the Ca2+/Zn2+ requirement suggest that others are similar to mammalian matrix metalloproteinases (MMPs).
Collapse
|
94
|
Hao L, He Y, Wang X, Wang B, Hao X. Optimizing the added ratio of mixed auxiliary packings for enhancing the biological vanadium (V) removal. BIORESOURCE TECHNOLOGY 2022; 346:126670. [PMID: 34995781 DOI: 10.1016/j.biortech.2021.126670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Developing sustainable and low-cost bio-reduction technologies is essential for vanadium (V) bioremediation in groundwater. With both agricultural waste (wheat stalk) being a solid carbon source and ceramsite and medical stone being auxiliary packings, V(V) removal was confirmed and optimized in this study. The ratio of ceramsite to medical stone was maintained at 1:3 in Group I, which accomplished a V(V) removal efficiency up to 97.5% within 120 h and an average removal rate was around 0.305 mg/(L·h). The dissolution and utilization of carbon and trace elements (Mg, Fe, Mo and Ni) by microbes also contributed to the V(V) bio-reduction enhancement. The main components of DOM (tryptophan and humic acid-like substances) were vital in the V(V) binding and electron transfer processes. This study could promote the current knowledge on the sustainable V(V) bioremediation by using agricultural waste and auxiliary packings.
Collapse
Affiliation(s)
- Liting Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Yuanyuan He
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xinli Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Bangyan Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
95
|
Carpéné C, Boulet N, Grolleau JL, Morin N. High doses of catecholamines activate glucose transport in human adipocytes independently from adrenoceptor stimulation or vanadium addition. World J Diabetes 2022; 13:37-53. [PMID: 35070058 PMCID: PMC8771263 DOI: 10.4239/wjd.v13.i1.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND When combined with vanadium salts, catecholamines strongly activate glucose uptake in rat and mouse adipocytes.
AIM To test whether catecholamines activate glucose transport in human adipocytes.
METHODS The uptake of 2-deoxyglucose (2-DG) was measured in adipocytes isolated from pieces of abdominal subcutaneous tissue removed from women undergoing reconstructive surgery. Pharmacological approaches with amine oxidase inhibitors, adrenoreceptor agonists and antioxidants were performed to unravel the mechanisms of action of noradrenaline or adrenaline (also named epinephrine).
RESULTS In human adipocytes, 45-min incubation with 100 µmol/L adrenaline or noradrenaline activated 2-DG uptake up to more than one-third of the maximal response to insulin. This stimulation was not reproduced with millimolar doses of dopamine or serotonin and was not enhanced by addition of vanadate to the incubation medium. Among various natural amines and adrenergic agonists tested, no other molecule was more efficient than adrenaline and noradrenaline in stimulating 2-DG uptake. The effect of the catecholamines was not impaired by pargyline and semicarbazide, contrarily to that of benzylamine or methylamine, which are recognized substrates of semicarbazide-sensitive amine oxidase. Hydrogen peroxide at 1 mmol/L activated hexose uptake but not pyrocatechol or benzoquinone, and only the former was potentiated by vanadate. Catalase and the phosphoinositide 3-kinase inhibitor wortmannin inhibited adrenaline-induced activation of 2-DG uptake.
CONCLUSION High doses of catecholamines exert insulin-like actions on glucose transport in human adipocytes. At submillimolar doses, vanadium did not enhance this catecholamine activation of glucose transport. Consequently, this dismantles our previous suggestion to combine the metal ion with catecholamines to improve the benefit/risk ratio of vanadium-based antidiabetic approaches.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse 31432, France
| | - Nathalie Boulet
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse 31432, France
| | | | - Nathalie Morin
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, Paris 75006, France
| |
Collapse
|
96
|
Semiz S. Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects. J Trace Elem Med Biol 2022; 69:126887. [PMID: 34798510 PMCID: PMC8555110 DOI: 10.1016/j.jtemb.2021.126887] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
An increasing evidence suggests that vanadium compounds are novel potential drugs in the treatment of diabetes, atherosclerosis, and cancer. Vanadium has also demonstrated activities against RNA viruses and is a promising candidate for treating acute respiratory diseases. The antidiabetic, antihypertensive, lipid-lowering, cardioprotective, antineoplastic, antiviral, and other potential effects of vanadium are summarized here. Given the beneficial antihyperglycemic and antiinflammatory effects as well as the potential mechanistic link between the COVID-19 and diabetes, vanadium compounds could be considered as a complement to the prescribed treatment of COVID-19. Thus, further clinical trials are warranted to confirm these favorable effects of vanadium treatment in COVID-19 patients, which appear not to be studied yet.
Collapse
Affiliation(s)
- Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Association South East European Network for Medical Research-SOVE.
| |
Collapse
|
97
|
Response of Cytoprotective and Detoxifying Proteins to Vanadate and/or Magnesium in the Rat Liver: The Nrf2-Keap1 System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8447456. [PMID: 34950419 PMCID: PMC8689234 DOI: 10.1155/2021/8447456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 10/15/2021] [Indexed: 01/11/2023]
Abstract
Oxidative stress (OS) is a mechanism underlying metal-induced toxicity. As a redox-active element, vanadium (V) can act as a strong prooxidant and generate OS at certain levels. It can also attenuate the antioxidant barrier and intensify lipid peroxidation (LPO). The prooxidant potential of V reflected in enhanced LPO, demonstrated by us previously in the rat liver, prompted us to analyze the response of the nuclear factor erythroid-derived 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) system involved in cellular regulation of OS to administration of sodium metavanadate (SMV, 0.125 mg V/mL) and/or magnesium sulfate (MS, 0.06 mg Mg/mL). The levels of some Nrf2-dependent cytoprotective and detoxifying proteins, i.e., glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), glutamate cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), NAD(P) H dehydrogenase quinone 1 (NQO1), UDP-glucumno-syltransferase 1 (UGT1), and heme oxygenase 1 (HO-1); glutathione (GSH); metallothionein (MT1); and glutamate-cysteine ligase (GCL) mRNA were measured. We also focused on the V-Mg interactive effects and trends toward interactive action as well as relationships between the examined indices. The elevated levels of Nrf2, GCL mRNA, and GCL catalytic subunit (GCLC) confirm OS in response to SMV and point to the capacity to synthesize GSH. The results also suggest a limitation of the second step in GSH synthesis reflected by the unchanged glutathione synthetase (GSS) and GSH levels. The positive correlations between certain cytoprotective/detoxifying proteins (which showed increasing trends during the SMV and/or MS administration, compared to the control) and between them and malondialdehyde (MDA), the hepatic V concentration/total content, and/or V dose (discussed by us previously) point to cooperation between the components of antioxidant defense in the conditions of the hepatic V accumulation and SMV-induced LPO intensification. The V-Mg interactive effect and trend are involved in changes in Nrf2 and UGT1, respectively. The p62 protein has to be determined in the context of potential inhibition of degradation of Keap1, which showed a visible upward trend, in comparison with the control. The impact of Mg on MT1 deserves further exploration.
Collapse
|
98
|
Ni L, Chang W, Zhu S, Zhang Y, Chen P, Zhang H, Zhao H, Zha J, Jiang S, Tao L, Zhou Z, Wang X, Liu Y, Diao G. Exploring Anticancer Activities and Structure-Activity Relationships of Binuclear Oxidovanadium(IV) Complexes. ACS APPLIED BIO MATERIALS 2021; 4:8571-8583. [PMID: 35005923 DOI: 10.1021/acsabm.1c01037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dimeric mixed-ligand oxidovanadium complexes [V2O2(1,3-pdta)(bpy)2]·9H2O (1) and [V2O2(1,3-pdta)(phen)2]·6H2O (2) feature a symmetric binuclear structure bridged by 1,3-pdta, which is different from our previous reported asymmetric binuclear complex [V2O2(edta)(phen)2]·11H2O (3).In this study, a wide range of analytical techniques were carried out to fully characterize the complexes 1 and 2 and further investigate their structural stabilities. Density functional theory calculations of 1 and 2 also suggest that they might have good reactivity with biomolecules as anticancer agents. To assess and screen the antitumor activities of compounds 1-3 together with their four corresponding monomeric complexes [VO(ida)(phen)], [VO(ida)(bpy)], [VO(OH)(phen)2]Cl, and [VO(Hedta)]-, we have performed in vitro experiments with hepatocellular carcinoma HepG2 and SMMC-7721 cell lines by MTT analyses. Complex 2 was found to have the highest inhibitory potency against the growth of HepG2 and SMMC-7721 cells (IC50 = 2.07 ± 0.72 μM for HepG2; 13.00 ± 3.06 μM for SMMC-7721) compared to other compounds. The structure-activity relationship studies showed that the antitumor effect of compound 2 is higher than that of other compounds. After studying the monomeric compounds of 1-3, their effects were also ranked. Moreover, complex 2 displayed stronger binding affinity toward calf thymus DNA (Kb = 5.71 × 104 M-1) and cleavage activities than the other complexes (Kb = 1.34 × 104 M-1 for 1 and 5.22 × 104 M-1 for 3, respectively). We further extended the cellular mechanisms of drug action and found that 2 could block DNA synthesis and cell division of HepG2 and 7721 cells and further induce apoptosis by flow cytometry assays. In short, these results indicate that binuclear oxidovanadium compounds could have potential as simple, effective, and safe antitumor agents.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Wenhui Chang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Shuangshuang Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Peng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Hanzhi Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Hongxia Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Junjie Zha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Shengsheng Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Zhaohui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiqing Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yanqing Liu
- College of Medicine, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| |
Collapse
|
99
|
Ferraro G, Demitri N, Vitale L, Sciortino G, Sanna D, Ugone V, Garribba E, Merlino A. Spectroscopic/Computational Characterization and the X-ray Structure of the Adduct of the V IVO-Picolinato Complex with RNase A. Inorg Chem 2021; 60:19098-19109. [PMID: 34847328 PMCID: PMC8693189 DOI: 10.1021/acs.inorgchem.1c02912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/12/2022]
Abstract
The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Nicola Demitri
- Elettra−Sincrotrone
Trieste, S.S. 14 km 163.5
in Area Science Park, 34149 Trieste, Italy
| | - Luigi Vitale
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| |
Collapse
|
100
|
Jiang Q, Xiao Y, Long P, Li W, Yu Y, Liu Y, Liu K, Zhou L, Wang H, Yang H, Li X, He M, Wu T, Yuan Y. Associations of plasma metal concentrations with incident dyslipidemia: Prospective findings from the Dongfeng-Tongji cohort. CHEMOSPHERE 2021; 285:131497. [PMID: 34273700 DOI: 10.1016/j.chemosphere.2021.131497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Metal exposures are ubiquitous around the world, while it is lack of prospective studies to evaluate the associations of exposure to multiple metal/metalloids with incident dyslipidemia. A total of 2947 participants without dyslipidemia at baseline were included in the analyses. We utilized inductively coupled plasma mass spectrometry to measure the baseline plasma metal concentrations. Unconditional logistic regression models were applied to estimate the relations between plasma metals and risk of incident dyslipidemia, and principal component analysis was performed to extract principal components of metals. During 5.01 ± 0.31 years of follow-up, 521 subjects were diagnosed with incident dyslipidemia. After multivariable adjustment, the odds ratios (ORs) of dyslipidemia comparing the highest quartiles to the lowest were 1.58 (95% CI: 1.20, 2.08; Ptrend = 0.001) for aluminum, 1.34 (95% CI: 1.03, 1.75; Ptrend = 0.03) for arsenic, 1.44 (1.09, 1.91; Ptrend = 0.03) for strontium, and 1.47 (95% CI: 1.09, 2.00; Ptrend = 0.005) for vanadium. The four metals also showed significant associations with the subtypes of dyslipidemia, including low HDL-C and high LDL-C. The first principal component, which mainly represented aluminum, arsenic, barium, lead, vanadium, and zinc, was associated with increased risk of incident dyslipidemia, and the adjusted OR was 1.40 (95% CI: 1.07, 1.84; Ptrend = 0.02) comparing extreme quartiles. The study indicated that elevated plasma aluminum, arsenic, strontium, and vanadium concentrations were associated with a higher incidence of dyslipidemia. These findings highlight the importance of controlling metal exposures for dyslipidemia prevention.
Collapse
Affiliation(s)
- Qin Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiulou Li
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|