51
|
Ibáñez CF, Simi A. p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 2012; 35:431-40. [DOI: 10.1016/j.tins.2012.03.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 12/28/2022]
|
52
|
Kalous A, Nangle MR, Anastasia A, Hempstead BL, Keast JR. Neurotrophic actions initiated by proNGF in adult sensory neurons may require peri-somatic glia to drive local cleavage to NGF. J Neurochem 2012; 122:523-36. [PMID: 22621370 DOI: 10.1111/j.1471-4159.2012.07799.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nerve growth factor (NGF) precursor, proNGF, is implicated in various neuropathological states. ProNGF signals apoptosis by forming a complex with the receptors p75 and sortilin, however, it can also induce neurite growth, proposed to be mediated by the receptor of mature NGF, tyrosine kinase receptor A (TrkA). The way in which these dual effects occur in adult neurons is unclear. We investigated the neurotrophic effects of proNGF on peptidergic sensory neurons isolated from adult mouse dorsal root ganglia and found that proNGF stimulated neurite extension and branching, requiring p75, sortilin and TrkA. Neurite growth rarely occurred in sortilin-expressing neurons but was commonly observed in TrkA-positive, sortilin-negative neurons that associated closely with sortilin-positive glia. ProNGF was unable to induce local trophic effects at growth cones where sortilin-positive glia was absent. We propose that in adult sensory neurons the neurotrophic response to proNGF is mediated by NGF and TrkA, and that peri-somatic glia may participate in sortilin- and p-75 dependent cleavage of proNGF. The potential ability of local glial cells to provide a targeted supply of NGF may provide an important way to promote trophic (rather than apoptotic) outcomes under conditions where regeneration or sprouting is required.
Collapse
Affiliation(s)
- Adrianna Kalous
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | | | | | |
Collapse
|
53
|
Taylor AR, Gifondorwa DJ, Robinson MB, Strupe JL, Prevette D, Johnson JE, Hempstead BL, Oppenheim RW, Milligan CE. Motoneuron programmed cell death in response to proBDNF. Dev Neurobiol 2012; 72:699-712. [PMID: 21834083 PMCID: PMC3233653 DOI: 10.1002/dneu.20964] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Motoneurons (MN) as well as most neuronal populations undergo a temporally and spatially specific period of programmed cell death (PCD). Several factors have been considered to regulate the survival of MNs during this period, including availability of muscle-derived trophic support and activity. The possibility that target-derived factors may also negatively regulate MN survival has been considered, but not pursued. Neurotrophin precursors, through their interaction with p75(NTR) and sortilin receptors have been shown to induce cell death during development and following injury in the CNS. In this study, we find that muscle cells produce and secrete proBDNF. ProBDNF through its interaction with p75(NTR) and sortilin, promotes a caspase-dependent death of MNs in culture. We also provide data to suggest that proBDNF regulates MN PCD during development in vivo.
Collapse
Affiliation(s)
- AR Taylor
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
| | - DJ Gifondorwa
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
| | - MB Robinson
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
| | - JL Strupe
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
| | - D Prevette
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
| | - JE Johnson
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
| | - BL Hempstead
- Department of Medicine Cornell University Medical Center, NY
| | - RW Oppenheim
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
- Interdisciplinary Neuroscience Program, Wake Forest University School of Medicine Winston-Salem, NC
- ALS Center, Wake Forest University School of Medicine Winston-Salem, NC
| | - CE Milligan
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC
- Interdisciplinary Neuroscience Program, Wake Forest University School of Medicine Winston-Salem, NC
- ALS Center, Wake Forest University School of Medicine Winston-Salem, NC
| |
Collapse
|
54
|
Sortilin participates in light-dependent photoreceptor degeneration in vivo. PLoS One 2012; 7:e36243. [PMID: 22558402 PMCID: PMC3338683 DOI: 10.1371/journal.pone.0036243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 04/03/2012] [Indexed: 11/20/2022] Open
Abstract
Both proNGF and the neurotrophin receptor p75 (p75NTR) are known to regulate photoreceptor cell death caused by exposure of albino mice to intense illumination. ProNGF-induced apoptosis requires the participation of sortilin as a necessary p75NTR co-receptor, suggesting that sortilin may participate in the photoreceptor degeneration triggered by intense lighting. We report here that light-exposed albino mice showed sortilin, p75NTR, and proNGF expression in the outer nuclear layer, the retinal layer where photoreceptor cell bodies are located. In addition, cone progenitor-derived 661W cells subjected to intense illumination expressed sortilin and p75NTR and released proNGF into the culture medium. Pharmacological blockade of sortilin with either neurotensin or the “pro” domain of proNGF (pro-peptide) favored the survival of 661W cells subjected to intense light. In vivo, the pro-peptide attenuated retinal cell death in light-exposed albino mice. We propose that an auto/paracrine proapoptotic mechanism based on the interaction of proNGF with the receptor complex p75NTR/sortilin participates in intense light-dependent photoreceptor cell death. We therefore propose sortilin as a putative target for intervention in hereditary retinal dystrophies.
Collapse
|
55
|
Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 2012; 35:261-70. [DOI: 10.1016/j.tins.2012.01.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
|
56
|
Targeting reactive astrogliosis by novel biotechnological strategies. Biotechnol Adv 2012; 30:261-71. [DOI: 10.1016/j.biotechadv.2011.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/16/2011] [Indexed: 12/21/2022]
|
57
|
Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, Shaw PJ. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 134:2627-41. [PMID: 21908873 DOI: 10.1093/brain/awr193] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease in which death of motoneurons leads to progressive failure of the neuromuscular system resulting in death frequently within 2-3 years of symptom onset. Focal onset and propagation of the disease symptoms to contiguous motoneuron groups is a striking feature of the human disease progression. Recent work, using mutant superoxide dismutase 1 murine models and in vitro culture systems has indicated that astrocytes are likely to contribute to the propagation of motoneuron injury and disease progression. However, the basis of this astrocyte toxicity and/or failure of motoneuron support has remained uncertain. Using a combination of in vivo and in vitro model systems of superoxide dismutase 1-related amyotrophic lateral sclerosis, linked back to human biosamples, we set out to elucidate how astrocyte properties change in the presence of mutant superoxide dismutase 1 to contribute to motoneuron injury. Gene expression profiling of spinal cord astrocytes from presymptomatic transgenic mice expressing mutant superoxide dismutase 1 revealed two striking changes. First, there was evidence of metabolic dysregulation and, in particular, impairment of the astrocyte lactate efflux transporter, with resultant decrease of spinal cord lactate levels. Second, there was evidence of increased nerve growth factor production and dysregulation of the ratio of pro-nerve growth factor to mature nerve growth factor, favouring p75 receptor expression and activation by neighbouring motoneurons. Functional in vitro studies showed that astrocytes expressing mutant superoxide dismutase 1 are toxic to normal motoneurons. We provide evidence that reduced metabolic support from lactate release and activation of pro-nerve growth factor-p75 receptor signalling are key components of this toxicity. Preservation of motoneuron viability could be achieved by increasing lactate provision to motoneurons, depletion of increased pro-nerve growth factor levels or p75 receptor blockade. These findings are likely to be relevant to human amyotrophic lateral sclerosis, where we have demonstrated increased levels of pro-nerve growth factor in cerebrospinal fluid and increased expression of the p75 receptor by spinal motoneurons. Taken together, these data confirm that altered properties of astrocytes are likely to play a crucial role in the propagation of motoneuron injury in superoxide dismutase 1-related amyotrophic lateral sclerosis and indicate that manipulation of the energy supply to motoneurons as well as inhibition of p75 receptor signalling may represent valuable neuroprotective strategies.
Collapse
Affiliation(s)
- Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, Faculty of Medicine, Dentistry and Health University of Sheffield 385A Glossop Road, Sheffield S10 2HQ, UK
| | | | | | | | | | | | | |
Collapse
|
58
|
Zeng F, Lu JJ, Zhou XF, Wang YJ. Roles of p75NTR in the pathogenesis of Alzheimer's disease: A novel therapeutic target. Biochem Pharmacol 2011; 82:1500-9. [DOI: 10.1016/j.bcp.2011.06.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 12/17/2022]
|
59
|
Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M. The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 2011; 221:515-26. [DOI: 10.1016/j.bbr.2010.02.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/10/2010] [Indexed: 01/02/2023]
|
60
|
Cirillo G, Colangelo AM, Bianco MR, Cavaliere C, Zaccaro L, Sarmientos P, Alberghina L, Papa M. BB14, a Nerve Growth Factor (NGF)-like peptide shown to be effective in reducing reactive astrogliosis and restoring synaptic homeostasis in a rat model of peripheral nerve injury. Biotechnol Adv 2011; 30:223-32. [PMID: 21620945 DOI: 10.1016/j.biotechadv.2011.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
Peptidomimetics hold a great promise as therapeutic agents for neurodegenerative disorders. We previously described a Nerve Growth Factor (NGF)-like peptide, now named BB14, which was found to act as a strong TrkA agonist and to be effective in the sciatic nerve injury model of neuropathic pain. In this report we present the effects of BB14 in reducing reactive astrocytosis and reverting neuroplastic changes of the glutamate/GABAergic circuitry in the lumbar spinal cord following spared nerve injury (SNI) of the sciatic nerve. Immunohistochemical analysis of spinal cord sections revealed that SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) responses, indicative of reactive gliosis. These changes were paralleled by (i) decreased glial aminoacid transporters (GLT1 and GlyT1) and increased levels of (ii) neuronal glutamate transporter EAAC1, (iii) neuronal vesicular GABA transporter (vGAT) and (iv) the GABAergic neuron marker GAD65/67. A remarkable increase of the Glutamate/GABA ratio and the reduction of glutathione (GSH) levels were also indicative of modifications of glial function in neuroprotection. All these molecular changes were found to be linked to an alteration of endogenous NGF metabolism, as demonstrated by decreased levels of mature NGF, increase of proNGF and increased activity of NGF-degrading methallo-proteinases (MMPs). Biochemical alterations and SNI-related neuropathic behavior, characterized by allodynia and hyperalgesia, were reversed by 7-days i.t. administration of the NGF-like peptide BB14, as well as by increasing endogenous NGF levels by i.t. infusion of GM6001, a MMPs inhibitor. All together, while confirming the correlation between reactive astrogliosis and perturbation of synaptic circuitry in the SNI model of peripheral nerve injury, these data strongly support the beneficial effect of BB14 in reducing reactive astrogliosis and restoring synaptic homeostasis under pathological conditions linked to alteration of NGF availability and signaling, thereby suggesting a potential role of BB14 as a therapeutic agent.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Department of Medicina Pubblica Clinica e Preventiva, Second University of Napoli, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Kiris E, Nuss JE, Burnett JC, Kota KP, Koh DC, Wanner LM, Torres-Melendez E, Gussio R, Tessarollo L, Bavari S. Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem Cell Res 2011; 6:195-205. [PMID: 21353660 PMCID: PMC3081902 DOI: 10.1016/j.scr.2011.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 11/21/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) inhibit cholinergic synaptic transmission by specifically cleaving proteins that are crucial for neurotransmitter exocytosis. Due to the lethality of these toxins, there are elevated concerns regarding their possible use as bioterrorism agents. Moreover, their widespread use for cosmetic purposes, and as medical treatments, has increased the potential risk of accidental overdosing and environmental exposure. Hence, there is an urgent need to develop novel modalities to counter BoNT intoxication. Mammalian motoneurons are the main target of BoNTs; however, due to the difficulty and poor efficiency of the procedures required to isolate the cells, they are not suitable for high-throughput drug screening assays. Here, we explored the suitability of embryonic stem (ES) cell-derived motoneurons as a renewable, reproducible, and physiologically relevant system for BoNT studies. We found that the sensitivity of ES-derived motoneurons to BoNT/A intoxication is comparable to that of primary mouse spinal motoneurons. Additionally, we demonstrated that several BoNT/A inhibitors protected SNAP-25, the BoNT/A substrate, in the ES-derived motoneuron system. Furthermore, this system is compatible with immunofluorescence-based high-throughput studies. These data suggest that ES-derived motoneurons provide a highly sensitive system that is amenable to large-scale screenings to rapidly identify and evaluate the biological efficacies of novel therapeutics.
Collapse
Affiliation(s)
- Erkan Kiris
- Department of Target Discovery and Experimental Microbiology, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jonathan E. Nuss
- Department of Target Discovery and Experimental Microbiology, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - James C. Burnett
- SAIC Frederick, Inc., Target Structure-Based Drug Discovery Group (TSBDDG), National Cancer Institute at Frederick, MD 21702, USA
- TSBDDG, Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, MD 2170, USA
| | - Krishna P. Kota
- Department of Target Discovery and Experimental Microbiology, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Dawn C. Koh
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Laura M. Wanner
- Department of Target Discovery and Experimental Microbiology, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Edna Torres-Melendez
- Department of Target Discovery and Experimental Microbiology, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Rick Gussio
- TSBDDG, Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, MD 2170, USA
| | - Lino Tessarollo
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sina Bavari
- Department of Target Discovery and Experimental Microbiology, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| |
Collapse
|
62
|
Ali TK, Al-Gayyar MMH, Matragoon S, Pillai BA, Abdelsaid MA, Nussbaum JJ, El-Remessy AB. Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury. Diabetologia 2011; 54:657-68. [PMID: 20957344 DOI: 10.1007/s00125-010-1935-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/08/2010] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy, the leading cause of blindness in working-age Americans, is characterised by reduced neurotrophic support and increased proinflammatory cytokines, resulting in neurotoxicity and vascular permeability. We sought to elucidate how oxidative stress impairs homeostasis of nerve growth factor (NGF) and its precursor, proform of NGF (proNGF), to cause neurovascular dysfunction in the eye of diabetic patients. METHODS Levels of NGF and proNGF were examined in samples from human patients, from retinal Müller glial cell line culture cells and from streptozotocin-induced diabetic animals treated with and without atorvastatin (10 mg/kg daily, per os) or 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinato iron (III) chloride (FeTPPs) (15 mg/kg daily, i.p.) for 4 weeks. Neuronal death and vascular permeability were assessed by TUNEL and extravasation of BSA-fluorescein. RESULTS Diabetes-induced peroxynitrite formation impaired production and activity of matrix metalloproteinase-7 (MMP-7), which cleaves proNGF extracellularly, leading to accumulation of proNGF and reducing NGF in samples from diabetic retinopathy patients and experimental models. Treatment of diabetic animals with atorvastatin exerted similar protective effects that blocked peroxynitrite using FeTPPs, restoring activity of MMP-7 and hence the balance between proNGF and NGF. These effects were associated with preservation of blood-retinal barrier integrity, preventing neuronal cell death and blocking activation of RhoA and p38 mitogen-activated protein kinase (p38MAPK) in experimental and human samples. CONCLUSIONS/INTERPRETATION Oxidative stress plays an unrecognised role in causing accumulation of proNGF, which can activate a common pathway, RhoA/p38MAPK, to mediate neurovascular injury. Oral statin therapy shows promise for treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- T K Ali
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Casella GTB, Almeida VW, Grumbles RM, Liu Y, Thomas CK. Neurotrophic factors improve muscle reinnervation from embryonic neurons. Muscle Nerve 2010; 42:788-97. [PMID: 20976782 DOI: 10.1002/mus.21757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Motoneurons die in diseases like amyotrophic lateral sclerosis and after spinal cord trauma, inducing muscle denervation. We tested whether transplantation of embryonic cells with neurotrophic factors into peripheral nerve of adult rats improves muscle reinnervation and motor unit function more than cells alone. One week after sciatic nerve section, embryonic ventral spinal cord cells were transplanted into the tibial nerve with or without glial cell line-derived neurotrophic factor, hepatocyte growth factor, and insulin-like growth factor-1. These cells represented the only neuron source for muscle reinnervation. Ten weeks after transplantation, all medial gastrocnemius muscles contracted in response to electrical stimulation of cell transplants with factors. Only 80% of muscles responded with cells alone. Factors and cells resulted in survival of more motoneurons and reinnervation of more muscle fibers for a given axon (motor unit) number. Greater reinnervation from embryonic cells may enhance muscle excitation by patterned electrical stimulation.
Collapse
Affiliation(s)
- Gizelda T B Casella
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
64
|
Hu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 2010; 68:654-67. [PMID: 21092856 PMCID: PMC2990962 DOI: 10.1016/j.neuron.2010.09.034] [Citation(s) in RCA: 425] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2010] [Indexed: 12/12/2022]
Abstract
VIDEO ABSTRACT The most common inherited form of Frontotemporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation and exhibits TDP-43 plus ubiquitin aggregates. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein is unclear. Here, we examined PGRN binding to the cell surface. PGRN binds to cortical neurons via its C terminus, and unbiased expression cloning identifies Sortilin (Sort1) as a binding site. Sort1⁻/⁻ neurons exhibit reduced PGRN binding. In the CNS, Sortilin is expressed by neurons and PGRN is most strongly expressed by activated microglial cells after injury. Sortilin rapidly endocytoses and delivers PGRN to lysosomes. Mice lacking Sortilin have elevations in brain and serum PGRN levels of 2.5- to 5-fold. The 50% PGRN decrease causative in FTLD-TDP cases is mimicked in GRN+/⁻ mice, and is fully normalized by Sort1 ablation. Sortilin-mediated PGRN endocytosis is likely to play a central role in FTLD-TDP pathophysiology.
Collapse
Affiliation(s)
- Fenghua Hu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Song W, Volosin M, Cragnolini AB, Hempstead BL, Friedman WJ. ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons. J Neurosci 2010; 30:15608-15. [PMID: 21084616 PMCID: PMC2996105 DOI: 10.1523/jneurosci.2581-10.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/03/2010] [Accepted: 09/22/2010] [Indexed: 01/16/2023] Open
Abstract
Proneurotrophins and mature neurotrophins activate different signaling pathways with distinct effects on their target cells: proneurotrophins can induce apoptotic signaling via p75(NTR), whereas mature neurotrophins activate Trk receptors to influence survival and differentiation. Here, we demonstrate that the PTEN (phosphatase and tensin homolog deleted on chromosome 10) phosphatase represents a novel switch between the survival and apoptotic signaling pathways in rat CNS neurons. Simultaneous activation of p75(NTR) by proNGF and TrkB signaling by BDNF elicited apoptosis despite TrkB phosphorylation. Apoptosis induced by p75(NTR) required suppression of TrkB-induced phosphoinositide-3 kinase signaling, mediated by induction of PTEN, for apoptosis to proceed. Inhibition of PTEN restored the ability of BDNF to phosphorylate Akt and protect cultured basal forebrain neurons from proNGF-induced death. In vivo, inhibition or knockdown of PTEN after pilocarpine-induced seizures protected CNS neurons from p75(NTR)-mediated death, demonstrating that PTEN is a crucial factor mediating the balance between p75(NTR)-induced apoptotic signaling and Trk-mediated survival signaling in brain neurons.
Collapse
Affiliation(s)
- Wenyu Song
- Department of Biological Science, Rutgers University, Newark, New Jersey 07102, and
| | - Marta Volosin
- Department of Biological Science, Rutgers University, Newark, New Jersey 07102, and
| | - Andrea B. Cragnolini
- Department of Biological Science, Rutgers University, Newark, New Jersey 07102, and
| | | | - Wilma J. Friedman
- Department of Biological Science, Rutgers University, Newark, New Jersey 07102, and
| |
Collapse
|
66
|
Marler KJM, Poopalasundaram S, Broom ER, Wentzel C, Drescher U. Pro-neurotrophins secreted from retinal ganglion cell axons are necessary for ephrinA-p75NTR-mediated axon guidance. Neural Dev 2010; 5:30. [PMID: 21044296 PMCID: PMC2987844 DOI: 10.1186/1749-8104-5-30] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/02/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Retinotectal map formation develops via topographically specific guidance and branching of retinal axons in their target area. This process is controlled, in part, by reverse signalling of ephrinAs expressed on retinal axons. As glycosylphosphatidylinositol-anchored molecules, ephrinAs require transmembrane co-receptors to exert this function, for which the two neurotrophin receptors, p75NTR and TrkB, were recently proposed. RESULTS We show here that the ligands for these receptors, the brain-derived neurotrophic factor precursor (proBDNF) and its processed form, BDNF, respectively, control the branching of retinal axons antagonistically, which they mediate by inducing the corresponding neurotrophin receptor-ephrinA complexes. Moreover, scavenging proneurotrophins, by adding antibodies specific for the pro-domain of proBNDF or a soluble extracellular domain of p75NTR, abolish repellent ephrinA reverse signalling in the stripe assay. CONCLUSIONS This indicates that retinal cells secrete proneurotrophins, inducing the ephrinA-p75NTR interaction and enabling repellent axon guidance. The antagonistic functions of proBDNF and BDNF raise the possibility that topographic branching is controlled by local control of processing of proneurotrophins.
Collapse
Affiliation(s)
- Katharine JM Marler
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- Centre for Neuroendocrinology, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Emma R Broom
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Corinna Wentzel
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, PO Box 2543, 4058 Basel, Switzerland
| | - Uwe Drescher
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
67
|
Sortilin Is Expressed in Cultured Human Keratinocytes and Is Regulated by Cutaneous Neuropeptides. J Invest Dermatol 2010; 130:2553-60. [DOI: 10.1038/jid.2010.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
68
|
ProBDNF inhibits infiltration of ED1+ macrophages after spinal cord injury. Brain Behav Immun 2010; 24:585-97. [PMID: 20083190 DOI: 10.1016/j.bbi.2010.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/17/2009] [Accepted: 01/03/2010] [Indexed: 12/27/2022] Open
Abstract
The central nervous system (CNS) does not regenerate partly due to the slow clearance of debris from the degenerated myelin sheath by Wallerian degeneration. The mechanism underlying the inefficiency in myelin clearance is not clear. Here we showed that endogenous proBDNF may inhibit the infiltration of ED1+ inflammatory cells after spinal cord injury. After injury, proBDNF and its receptors sortilin and p75NTR are expressed in the spinal cord as determined by Western blots and immunocytochemistry. ProBDNF and mature BDNF were released from macrophages in vitro. Macrophages in vivo (ED1+) and isolated in vitro (CD11b+) express moderate levels of proBDNF, sortilin and p75NTR. ProBDNF suppressed the migration of isolated macrophages in vitro and the antibody to proBDNF enhanced the migration. Suppression of proBDNF in vivo by administering the antiserum to the prodomain of BDNF after spinal cord injury (SCI) increased the infiltration of macrophages and increased number of neurons in the injured cord. BBB tests showed that the treatment of the antibody to proBDNF improved the functional recovery after spinal cord injury. Our data suggest that proBDNF is a suppressing factor for macrophage migration and infiltration and may play a detrimental role after SCI.
Collapse
|
69
|
Abstract
Neurotrophins are initially synthesized as larger precursors (proneurotrophins), which undergo proteolytic cleavage to yield mature forms. Although the functions of the mature neurotrophins have been well established during neural development and in the adult nervous system, roles for the proneurotrophins in developmental and injury-induced cell death, as well as in synaptic plasticity, have only recently been appreciated. Interestingly, both mature neurotrophins and proneurotrophins utilize dual-receptor complexes to mediate their actions. The mature neurotrophin coreceptors consist of the Trk receptor tyrosine kinases and p75(NTR), wherein Trk transduces survival and differentiative signaling, and p75(NTR) modulates the affinity and selectivity of Trk activation. On the other hand, proneurotrophins engage p75(NTR) and the structurally distinct coreceptor sortilin, to initiate p75(NTR)-dependent signal transduction cascade. Although the specificity of mature neurotrophins vs. proneurotrophins actions is due in part to the formation of distinct coreceptor complexes, a number of recent studies highlight how different p75(NTR)-mediated cellular actions are modulated. Here, we review emerging evidence for a novel transmembrane mechanism for ligand-specific p75(NTR) activation and several mechanisms by which p75(NTR)-dependent apoptotic and nonapoptotic responses can be selective activated.
Collapse
Affiliation(s)
- Kenneth K Teng
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | |
Collapse
|
70
|
Serup Andersen O, Boisguerin P, Glerup S, Skeldal S, Volkmer R, Willnow TE, Nykjaer A, Andersen OM. Identification of a linear epitope in sortilin that partakes in pro-neurotrophin binding. J Biol Chem 2010; 285:12210-22. [PMID: 20159974 DOI: 10.1074/jbc.m109.062364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sortilin acts as a cell surface receptor for pro-neurotrophins (pro-NT) that upon complex formation with the p75 neurotrophin receptor (p75(NTR)) is able to signal neuronal cell death. Here we screened a sortilin peptide library comprising 16-mer overlapping sequences for binding of the pro-domains of nerve growth factor and brain-derived neurotrophic factor. We find that a linear surface-exposed sequence, (163)RIFRSSDFAKNF(174), constitutes an important pro-NT binding epitope in sortilin. Systematic mutational analysis revealed residues Arg(163), Phe(165), Arg(166), and Phe(170) to be critical for the interaction. Expression of a sortilin mutant in which these four amino acids were substituted by alanines disrupted pro-NT binding without affecting receptor heterodimerization with p75(NTR) or binding of ligands that selectively engages the centrally located tunnel in the beta-propeller of sortilin. We furthermore demonstrate that a peptide comprising the ligand-binding epitope can prevent pro-NT-induced apoptosis in RN22 schwannoma cells.
Collapse
Affiliation(s)
- Olga Serup Andersen
- Department of Medical Biochemistry, Membrane Receptors in Neuronal Disease (MIND) Center, University of Aarhus, OleWorms Allé, Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Yano H, Torkin R, Martin LA, Chao MV, Teng KK. Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing. J Neurosci 2009; 29:14790-802. [PMID: 19940174 PMCID: PMC2824605 DOI: 10.1523/jneurosci.2059-09.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/01/2009] [Accepted: 10/13/2009] [Indexed: 12/20/2022] Open
Abstract
Although mature neurotrophins are well described trophic factors that elicit retrograde survival signaling, the precursor forms of neurotrophins (i.e., proneurotrophins) can function as high-affinity apoptotic ligands for selected neural populations. An outstanding question is whether target-derived proneurotrophins might affect neuronal survival/death decisions through a retrograde transport mechanism. Since neurotrophin-3 (NT-3) is highly expressed in non-neural tissues that receive peripheral innervation, we investigated the localized actions of its precursor (proNT-3) on sympathetic neurons in the present study. Pharmacological inhibition of intracellular furin proteinase activity in 293T cells resulted in proNT-3 release instead of mature NT-3, whereas membrane depolarization in cerebellar granule neurons stimulated endogenous proNT-3 secretion, suggesting that proNT-3 is an inducible bona fide ligand in the nervous system. Our data also indicate that recombinant proNT-3 induced sympathetic neuron death that is p75(NTR)- and sortilin-dependent, with hallmark features of apoptosis including JNK (c-Jun N-terminal kinase) activation and nuclear fragmentation. Using compartmentalized culture systems that segregate neuronal cell bodies from axons, proNT-3, acting within the distal axon compartment, elicited sympathetic neuron death and overrode the survival-promoting actions of NGF. Together, these results raise the intriguing possibility that dysregulation of proneurotrophin processing/release by innervated targets can be deleterious to the neurons projecting to these sites.
Collapse
Affiliation(s)
- Hiroko Yano
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Risa Torkin
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, and
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Laura Andrés Martin
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, and
| | - Moses V. Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Kenneth K. Teng
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, and
| |
Collapse
|
72
|
Papadimitriou D, Le Verche V, Jacquier A, Ikiz B, Przedborski S, Re DB. Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol Dis 2009; 37:493-502. [PMID: 19833209 DOI: 10.1016/j.nbd.2009.10.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/28/2009] [Accepted: 10/02/2009] [Indexed: 01/02/2023] Open
Abstract
Indices of neuroinflammation are found in a variety of diseases of the CNS including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Over the years, neuroinflammation, in degenerative disorders of the CNS, has evolved from being regarded as an innocent bystander accomplishing its housekeeping function secondary to neurodegeneration to being considered as a bona fide contributor to the disease process and, in some situations, as a putative initiator of the disease. Herein, we will review neuroinflammation in both ALS and SMA not only from the angle of neuropathology but also from the angle of its potential role in the pathogenesis and treatment of these two dreadful paralytic disorders.
Collapse
|
73
|
Cragnolini AB, Huang Y, Gokina P, Friedman WJ. Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor. Glia 2009; 57:1386-92. [PMID: 19229990 PMCID: PMC2735589 DOI: 10.1002/glia.20857] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The p75 neurotrophin receptor has been implicated in the regulation of multiple cellular functions that differ depending on the cell context. We have observed that p75(NTR) is strongly induced on astrocytes as well as neurons in the hippocampal CA3 region after seizures; however, the function of this receptor on these glial cells has not been defined. We have employed a primary culture system to investigate the effects of neurotrophins on astrocytes. Treatment of hippocampal astrocytes with nerve growth factor (NGF) caused a reduction in cell number, but did not elicit an apoptotic response, in contrast to hippocampal neurons. Instead, activation of p75(NTR) by NGF attenuated proliferation induced by mitogens such as EGF or serum. These studies demonstrate the cell type specificity of neurotrophin functions in the brain.
Collapse
Affiliation(s)
| | | | - Pradeepa Gokina
- Department of Biological Sciences, Rutgers University, 225 University Avenue, Newark, N. J. 07102
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers University, 225 University Avenue, Newark, N. J. 07102
| |
Collapse
|
74
|
Hempstead BL. Commentary: Regulating proNGF action: multiple targets for therapeutic intervention. Neurotox Res 2009; 16:255-60. [PMID: 19526280 PMCID: PMC3091386 DOI: 10.1007/s12640-009-9054-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/23/2009] [Accepted: 04/03/2009] [Indexed: 01/26/2023]
Abstract
Neurotrophins are initially synthesized as precursor forms that are cleaved to release C-terminal mature forms that bind to Trk receptors to initiate survival and differentiative responses. Recent studies suggest that the precursor form of NGF (proNGF) acts as a distinct ligand by binding to a receptor complex of p75 and sortilin to initiate cell death. Induction of proNGF and p75 has been observed in multiple pathological states and injury models in the central nervous system, and blockade of proNGF/p75 interaction is efficacious in limiting neuronal apoptosis. Multiple strategies that may act to limit proNGF action are considered as potential therapeutic targets for future development.
Collapse
Affiliation(s)
- Barbara L Hempstead
- Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA.
| |
Collapse
|
75
|
Douglas MR, Morrison KC, Jacques SJ, Leadbeater WE, Gonzalez AM, Berry M, Logan A, Ahmed Z. Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth. ACTA ACUST UNITED AC 2009; 132:3102-21. [PMID: 19783665 DOI: 10.1093/brain/awp240] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Inhibition of central nervous system axon growth is reportedly mediated in part by calcium-dependent phosphorylation of axonal epidermal growth factor receptor, with local administration of the epidermal growth factor receptor kinase inhibitors AG1478 and PD168393 to an optic nerve lesion site promoting adult retinal ganglion cell axon regeneration. Here, we show that epidermal growth factor receptor was neither constitutively expressed, nor activated in optic nerve axons in our non-regenerating and regenerating optic nerve injury models, a finding that is inconsistent with phosphorylated epidermal growth factor receptor-dependent intra-axonal signalling of central nervous system myelin-related axon growth inhibitory ligands. However, epidermal growth factor receptor was localized and activated within most glia in the retina and optic nerve post-injury, and thus an indirect glial-dependent mechanism for stimulated retinal ganglion cell axon growth by epidermal growth factor receptor inhibitors seemed plausible. Using primary retinal cultures with added central nervous system myelin extracts, we confirmed previous reports that AG1478/PD168393 blocks epidermal growth factor receptor activation and promotes disinhibited neurite outgrowth. Paradoxically, neurites did not grow in central nervous system myelin extract-containing cultures after short interfering ribonucleic acid-mediated knockdown of epidermal growth factor receptor. However, addition of AG1478 restored neurite outgrowth to short interfering ribonucleic acid-treated cultures, implying that epidermal growth factor receptor does not mediate AG1478-dependent effects. TrkA-/B-/C-Fc fusion proteins and the kinase blocker K252a abrogated the neuritogenic activity in these cultures, correlating with the presence of the neurotrophins brain derived neurotrophic factor, nerve growth factor and neurotrophin-3 in the supernatant and increased intracellular cyclic adenosine monophosphate activity. Neurotrophins released by AG1478 stimulated disinhibited retinal ganglion cell axon growth in central nervous system myelin-treated cultures by the induction of regulated intramembraneous proteolysis of p75(NTR) and Rho inactivation. Retinal astrocytes/Müller cells and retinal ganglion cells were the source of neurotrophins, with neurite outgrowth halved in the presence of glial inhibitors. We attribute AG1478-stimulated neuritogenesis to the induced release of neurotrophins together with raised cyclic adenosine monophosphate levels in treated cultures, leading to axon growth and disinhibition by neurotrophin-induced regulated intramembraneous proteolysis of p75(NTR). These off-target effects of epidermal growth factor receptor kinase inhibition suggest a novel therapeutic approach for designing treatments to promote central nervous system axon regeneration.
Collapse
Affiliation(s)
- Michael R Douglas
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 2009; 68:857-69. [PMID: 19606067 DOI: 10.1097/nen.0b013e3181aed9e6] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We previously reported that the precursor form of nerve growth factor (pro-NGF) and not mature NGF is liberated in the CNS in an activity-dependent manner, and that its maturation and degradation occur in the extracellular space by the coordinated action of proteases.Here, we present evidence of diminished conversion of pro-NGF to its mature form and of greater NGF degradation in Alzheimer disease (AD) brain samples compared with controls. These alterations of the NGF metabolic pathway likely resulted in the increased pro-NGF levels. The pro-NGF was largely in a peroxynitrited form in the AD samples. Intrahippocampal injection of amyloid-beta oligomers provoked similar upregulation of pro-NGF in naive rats that was accompanied by evidence of microglial activation (CD40), increased levels of inducible nitric oxide synthase, and increased activity of the NGF-degrading enzyme matrix metalloproteinase 9. The elevated inducible nitric oxide synthase provoked the generation of biologically inactive, peroxynitrite-modified pro-NGF in amyloid-beta oligomer-injected rats. These parameters were corrected by minocycline treatment. Minocycline also diminished altered matrix metalloproteinase 9, inducible nitric oxide synthase, and microglial activation (CD40); improved cognitive behavior; and normalized pro-NGF levels in a transgenic mouse AD model. The effects of amyloid-beta amyloid CNS burden on NGF metabolism may explain the paradoxical upregulation of pro-NGF in AD accompanied by atrophy of forebrain cholinergic neurons.
Collapse
|
77
|
Wang YJ, Valadares D, Sun Y, Wang X, Zhong JH, Liu XH, Majd S, Chen L, Gao CY, Chen S, Lim Y, Pollard A, Salegio EA, Aguilar E, Gai WP, Yang M, Zhou XF. Effects of proNGF on neuronal viability, neurite growth and amyloid-beta metabolism. Neurotox Res 2009; 17:257-67. [PMID: 19680737 DOI: 10.1007/s12640-009-9098-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/26/2009] [Accepted: 08/03/2009] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is characterized pathologically by the deposition of amyloid-beta peptides (Abeta), neurofibrillary tangles, distinctive neuronal loss and neurite dystrophy. Nerve growth factor (NGF) has been suggested to be involved in the pathogenesis of AD, however, the role of its precursor (proNGF) in AD remains unknown. In this study, we investigated the effect of proNGF on neuron death, neurite growth and Abeta production, in vitro and in vivo. We found that proNGF promotes the death of different cell lines and primary neurons in culture, likely dependent on the expression of p75(NTR). We for the first time found that proNGF has an opposite role in neurite growth to that of mature NGF, retarding neurite growth in both cell lines and primary neurons. proNGF is localized to the Abeta plaques in AD mice brain, however, it had no significant effect on Abeta production in vitro and in vivo. Our findings suggest that proNGF is an important factor involving AD pathogenesis.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Grumbles RM, Sesodia S, Wood PM, Thomas CK. Neurotrophic factors improve motoneuron survival and function of muscle reinnervated by embryonic neurons. J Neuropathol Exp Neurol 2009; 68:736-46. [PMID: 19535998 PMCID: PMC2727878 DOI: 10.1097/nen.0b013e3181a9360f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motoneuron death can occur over several spinal levels with disease or trauma, resulting in muscle denervation. We tested whether cotransplantation of embryonic neurons with 1 or more neurotrophic factors into peripheral nerve improved axon regeneration, muscle fiber area, reinnervation, and function to a greater degree than cell transplantation alone. Sciatic nerves of adult Fischer rats were cut to denervate muscles; 1 week later, embryonic ventral spinal cord cells (days 14-15) were transplanted into the tibial nerve stump as the only source of neurons for muscle reinnervation. Factors that promote motoneuron survival (cardiotrophin 1; fibroblast growth factor 2; glial cell line-derived neurotrophic factor; insulin-like growth factor 1; leukemia inhibitory factor; and hepatocyte growth factor) were added to the transplant individually or in combinations. Inclusion of a single factor with the cells resulted in comparable myelinated axon counts, muscle fiber areas, and evoked electromyographic activity to cells alone 10 weeks after transplantation. Only cell transplantation with glial cell line-derived neurotrophic factor, hepatocyte growth factor, and insulin-like growth factor 1 significantly increased motoneuron survival, myelinated axon counts, muscle reinnervation, and evoked electromyographic activity compared with cells alone. Thus, immediate application of a specific combination of factors to dissociated embryonic neurons improves survival of motoneurons and the long-term function of reinnervated muscle.
Collapse
Affiliation(s)
- Robert M. Grumbles
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjay Sesodia
- School of Graduate Medical Sciences, Barry University, Miami Shores, Florida
| | - Patrick M. Wood
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Christine K. Thomas
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
- School of Graduate Medical Sciences, Barry University, Miami Shores, Florida
| |
Collapse
|
79
|
Angelo MF, Aviles-Reyes RX, Villarreal A, Barker P, Reines AG, Ramos AJ. p75NTRExpression is induced in isolated neurons of the penumbra after ischemia by cortical devascularization. J Neurosci Res 2009; 87:1892-903. [DOI: 10.1002/jnr.21993] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
80
|
Kim T, Hempstead BL. NRH2 is a trafficking switch to regulate sortilin localization and permit proneurotrophin-induced cell death. EMBO J 2009; 28:1612-23. [PMID: 19407813 DOI: 10.1038/emboj.2009.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 03/30/2009] [Indexed: 12/25/2022] Open
Abstract
Proneurotrophins mediate neuronal apoptosis using a dual receptor complex of sortilin and p75(NTR). Although p75(NTR) is highly expressed on the plasma membrane and accessible to proneurotrophin ligands, sortilin is primarily localized to intracellular membranes, limiting the formation of a cell surface co-receptor complex. Here, we show that the mammalian p75(NTR) homologue NRH2 critically regulates the expression of sortilin on the neuronal cell surface and promotes p75(NTR) and sortilin receptor complex formation, rendering cells responsive to proneurotrophins. This is accomplished by interactions between the cytoplasmic domains of NRH2 and sortilin that impair lysosomal degradation of sortilin. In proneurotrophin-responsive neurons, acute silencing of endogenous NRH2 significantly reduces cell surface-expressed sortilin and abolishes proneurotrophin-induced neuronal death. Thus, these data suggest that NRH2 acts as a trafficking switch to impair lysosomal-dependant sortilin degradation and to redistribute sortilin to the cell surface, rendering p75(NTR)-expressing cells susceptible to proneurotrophin-induced death.
Collapse
Affiliation(s)
- Taeho Kim
- Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | |
Collapse
|
81
|
Pinteaux E, Trotter P, Simi A. Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 2009; 45:1-7. [PMID: 19026559 DOI: 10.1016/j.cyto.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 10/10/2008] [Indexed: 01/03/2023]
Abstract
Interleukin (IL)-1 is a pivotal pro-inflammatory cytokine and an important mediator of both acute and chronic central nervous system (CNS) injuries. Despite intense research in CNS IL-1 biology over the past two decades, its precise mechanism of action in inflammatory responses to acute brain disorders remains largely unknown. In particular, much effort has been focussed on using in vitro approaches to better understand the cellular and signalling mechanisms of actions of IL-1, yet some discrepancies in the literature regarding the effects produced by IL-1beta in in vitro paradigms of injury still exist, particularly as to whether IL-1 exerts neurotoxic or neuroprotective effects. Here we aim to review the cell-specific and concentration-dependent actions of IL-1 in brain cells, to depict the mechanism by which this cytokine induces neurotoxicity or neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
82
|
Mantilla CB, Sieck GC. Trophic factor expression in phrenic motor neurons. Respir Physiol Neurobiol 2008; 164:252-62. [PMID: 18708170 PMCID: PMC2642900 DOI: 10.1016/j.resp.2008.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/16/2008] [Accepted: 07/21/2008] [Indexed: 01/08/2023]
Abstract
The function of a motor neuron and the muscle fibers it innervates (i.e., a motor unit) determines neuromotor output. Unlike other skeletal muscles, respiratory muscles (e.g., the diaphragm, DIAm) must function from birth onwards in sustaining ventilation. DIAm motor units are capable of both ventilatory and non-ventilatory behaviors, including expulsive behaviors important for airway clearance. There is significant diversity in motor unit properties across different types of motor units in the DIAm. The mechanisms underlying the development and maintenance of motor unit diversity in respiratory muscles (including the DIAm) are not well understood. Recent studies suggest that trophic factor influences contribute to this diversity. Remarkably little is known about the expression of trophic factors and their receptors in phrenic motor neurons. This review will focus on the contribution of trophic factors to the establishment and maintenance of motor unit diversity in the DIAm, during development and in response to injury or disease.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology, Mayo Clinic, 4-184 W. Joseph SMH, 200 First St SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
83
|
Lombardi L, De Stefano ME, Paggi P. Components of the NGF signaling complex are altered in mdx mouse superior cervical ganglion and its target organs. Neurobiol Dis 2008; 32:402-11. [PMID: 18725298 DOI: 10.1016/j.nbd.2008.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/11/2008] [Accepted: 07/29/2008] [Indexed: 01/19/2023] Open
Abstract
We previously reported that in the superior cervical ganglion (SCG) of dystrophic mdx mice, which lack full-length dystrophin, there is a loss of neurons projecting to SCG muscular targets, like the iris. Nonetheless, surviving neurons, innervating either iris or submandibular gland (SuGl), a SCG non-muscular target, underwent reduced axon defasciculation and terminal branching. Here we report that, during early post-natal development, levels of pro-apoptotic proNGF in mdx mouse iris, but not in the SuGl, are higher than in the wild-type. This increase, along with reduced levels of NGF receptors (TrkA and p75NTR) in SCG, may be partly responsible for the observed loss of neurons projecting to the iris. These alterations, combined with a reduction in polysialylated-NCAM and neurofilament protein levels in SCG, may also account for reduced axon defasciculation and terminal branching in mdx mouse SCG targets.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Dyneins/genetics
- Dyneins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Gene Expression
- Immunohistochemistry
- Iris/innervation
- Iris/metabolism
- Male
- Mice
- Mice, Inbred mdx
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Nerve Growth Factor/biosynthesis
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Neural Cell Adhesion Molecule L1/genetics
- Neural Cell Adhesion Molecule L1/metabolism
- Protein Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sialic Acids/genetics
- Sialic Acids/metabolism
- Signal Transduction
- Submandibular Gland/innervation
- Submandibular Gland/metabolism
- Superior Cervical Ganglion/metabolism
Collapse
Affiliation(s)
- Loredana Lombardi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza Università di Roma, Italy
| | | | | |
Collapse
|
84
|
Song W, Bossy B, Martin OJ, Hicks A, Lubitz S, Knott AB, Bossy-Wetzel E. Assessing mitochondrial morphology and dynamics using fluorescence wide-field microscopy and 3D image processing. Methods 2008; 46:295-303. [PMID: 18952177 PMCID: PMC3992922 DOI: 10.1016/j.ymeth.2008.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial morphology and length change during fission and fusion and mitochondrial movement varies dependent upon the cell type and the physiological conditions. Here, we describe fundamental wide-field fluorescence microscopy and 3D imaging techniques to assess mitochondrial shape, number and length in various cell types including cancer cell lines, motor neurons and astrocytes. Furthermore, we illustrate how to assess mitochondrial fission and fusion events by 3D time-lapse imaging and to calculate mitochondrial length and numbers as a function of time. These imaging methods provide useful tools to investigate mitochondrial dynamics in health, aging and disease.
Collapse
Affiliation(s)
- Wenjun Song
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816
| | - Blaise Bossy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816
- The Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037
| | - Ola J. Martin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816
| | - Andrew Hicks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA
| | - Sarah Lubitz
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816
| | - Andrew B. Knott
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816
| | - Ella Bossy-Wetzel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816
- The Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
85
|
VPS10P-domain receptors — regulators of neuronal viability and function. Nat Rev Neurosci 2008; 9:899-909. [DOI: 10.1038/nrn2516] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
86
|
Sobottka B, Reinhardt D, Brockhaus M, Jacobsen H, Metzger F. ProNGF inhibits NGF-mediated TrkA activation in PC12 cells. J Neurochem 2008; 107:1294-303. [PMID: 18796003 DOI: 10.1111/j.1471-4159.2008.05690.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Degeneration of cholinergic basal forebrain neurons (CBFN) is a hallmark in the pathology of Alzheimer's disease (AD). Critically depending upon the neurotrophic support through nerve growth factor (NGF), CBFN in the AD brain face elevated concentrations of the pro-form of NGF (proNGF) and suffer from an imbalance between TrkA and p75(NTR) expression. Research for the underlying mechanisms of CBFN death suggested a pro-apoptotic activity of proNGF. However, this finding could not be confirmed by all investigators and other studies even observed a neurotrophic function of proNGF. In the presence of these controversial findings we investigated the activity of proNGF in PC12 cells with specific emphasis on its neurotoxic versus neurotrophic action. In this study, we show that proNGF can mediate TrkA receptor signaling directly, yet in the manner of a partial agonist with a lower maximum activity than NGF. A pro-apoptotic activity of proNGF could not be confirmed in our cellular system. Interestingly and surprisingly, pre-incubation with proNGF at low, sub-active concentrations inhibited TrkA-mediated neurotrophic NGF signaling in PC12 cells. Our data support a novel hypothesis for the role of elevated proNGF levels in CBFN pathology in AD. Thus, proNGF can indirectly contribute to the slow neurodegeneration in AD by reducing NGF-mediated trophic support.
Collapse
Affiliation(s)
- Bettina Sobottka
- F. Hoffmann-La Roche Ltd., CNS Preclinical Research, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | | | | |
Collapse
|
87
|
Lim YS, McLaughlin T, Sung TC, Santiago A, Lee KF, O’Leary DD. p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron 2008; 59:746-58. [PMID: 18786358 PMCID: PMC2677386 DOI: 10.1016/j.neuron.2008.07.032] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 03/07/2008] [Accepted: 07/21/2008] [Indexed: 01/08/2023]
Abstract
Reverse signaling by ephrin-As upon binding EphAs controls axon guidance and mapping. Ephrin-As are GPI-anchored to the membrane, requiring that they complex with transmembrane proteins that transduce their signals. We show that the p75 neurotrophin receptor (NTR) serves this role in retinal axons. p75(NTR) and ephrin-A colocalize within caveolae along retinal axons and form a complex required for Fyn phosphorylation upon binding EphAs, activating a signaling pathway leading to cytoskeletal changes. In vitro, retinal axon repulsion to EphAs by ephrin-A reverse signaling requires p75(NTR), but repulsion to ephrin-As by EphA forward signaling does not. Constitutive and retina-specific p75(NTR) knockout mice have aberrant anterior shifts in retinal axon terminations in superior colliculus, consistent with diminished repellent activity mediated by graded ephrin-A reverse signaling induced by graded collicular EphAs. We conclude that p75(NTR) is a signaling partner for ephrin-As and the ephrin-A- p75(NTR) complex reverse signals to mediate axon repulsion required for guidance and mapping.
Collapse
Affiliation(s)
- Yoo-Shick Lim
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Todd McLaughlin
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tsung-Chang Sung
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alicia Santiago
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dennis D.M. O’Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
88
|
|
89
|
Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int 2008; 53:56-62. [PMID: 18639597 DOI: 10.1016/j.neuint.2008.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/09/2008] [Accepted: 06/11/2008] [Indexed: 11/24/2022]
Abstract
Parkinson's disease is a common and severe debilitating neurological disease that results from massive and progressive degenerative death of dopamine neurons in the substantia nigra, but the mechanisms of neuronal degeneration and disease progression remains largely obscure. We are interested in possible implications of low-affinity p75 neurotrophin receptor (p75NTR), which may mediate neuronal apoptosis in the central nervous system, in triggering cell death of the nigral dopamine neurons. The RT-PCR and immunohistochemistry were carried out to detect if p75NTR is expressed in these nigral neurons and up-regulated by kainic acid (KA) insult in adult rats. It revealed p75NTR-positive immunoreactivity in the substantia nigra, and co-localization of p75NTR and tyrosine hydroxylase (TH) was found in a large number of substantia nigra neurons beside confirmation of p75NTR in the choline acetyltransferase (ChAT)-positive forebrain neurons. Cell count data further indicated that about 47-100% of TH-positive nigral neurons and 98-100% of ChAT-positive forebrain neurons express p75NTR. More interestingly, significant increasing in both p75NTR mRNA and p75NTR-positive neurons occurred rapidly following KA insult in the substantia nigra of animal model. The present study has provided first evidence on p75NTR expression and KA-inducing p75NTR up-regulation in substantia nigra neurons in rodent animals. Taken together with previous data on p75NTR functions in neuronal apoptosis, this study also suggests that p75NTR may play important roles in neuronal cell survival or excitotoxic degeneration of dopamine neurons in the substantia nigra in pathogenesis of Parkinson's disease in human beings.
Collapse
|
90
|
Haase G, Pettmann B, Raoul C, Henderson CE. Signaling by death receptors in the nervous system. Curr Opin Neurobiol 2008; 18:284-91. [PMID: 18725296 PMCID: PMC2668142 DOI: 10.1016/j.conb.2008.07.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 07/21/2008] [Indexed: 12/12/2022]
Abstract
Cell death plays an important role both in shaping the developing nervous system and in neurological disease and traumatic injury. In spite of their name, death receptors can trigger either cell death or survival and growth. Recent studies implicate five death receptors--Fas/CD95, TNFR1 (tumor necrosis factor receptor-1), p75NTR (p75 neurotrophin receptor), DR4, and DR5 (death receptors-4 and -5)--in different aspects of neural development or degeneration. Their roles may be neuroprotective in models of Parkinson's disease, or pro-apoptotic in ALS and stroke. Such different outcomes probably reflect the diversity of transcriptional and posttranslational signaling pathways downstream of death receptors in neurons and glia.
Collapse
Affiliation(s)
- Georg Haase
- Developmental Biology Institute of Marseille-Luminy, IBDML, CNRS UMR 6216, Marseille Cedex 09, France
| | | | | | | |
Collapse
|
91
|
Fan YJ, Wu LLY, Li HY, Wang YJ, Zhou XF. Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci 2008; 27:2380-90. [DOI: 10.1111/j.1460-9568.2008.06215.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
92
|
Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res 2008; 1208:204-16. [PMID: 18395188 DOI: 10.1016/j.brainres.2008.02.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/15/2008] [Accepted: 02/24/2008] [Indexed: 11/24/2022]
Abstract
The progressive spongiform encephalomyelopathy caused by ts1, a neuropathogenic temperature-sensitive mutant of Moloney murine leukemia virus (MoMuLV-ts1), results in motor neuronal loss without direct neuronal infection. We have previously reported that ts1-mediated neuronal degeneration in mice has a multifactorial pathogenesis. Here, we report that in the ts1-infected central nervous system (CNS) activated neural cells showed intense immunoreactivity for pro-nerve growth factor (proNGF), neurotrophin receptor p75 (p75(NTR)), and sortilin in the areas showing spongiform changes. Since recent studies suggested that proNGF is more active than mature NGF in inducing neuronal death after binding to co-receptors p75(NTR)/sortilin, we hypothesized that overexpression of proNGF, sortilin and p75(NTR) play a role in ts1-induced neurodegeneration. We found that proNGF and p75(NTR), but not sortilin, mRNA and protein were significantly elevated in ts1-infected brainstem compared to non-infected control tissue. There was extensive tyrosine phosphorylation of p75(NTR), a marker for its activation, in ts1-infected brainstem with abundance in degenerating neurons. We explored whether the increase in the in vivo proNGF expression also occurs in cultured immortalized C1 astrocytes infected by ts1 virus. The proNGF level was significantly increased in infected C1 cells compared to control cells only after addition of fibroblast growth factor (FGF-1). We also showed increased expression of FGF-1 in the CNS of ts1-infected mice. Our findings suggest that the FGF-1 signaling pathway may be responsible for the overexpression of proNGF in neural cells during pathogenesis of ts1-induced neurodegeneration. This study provides new in vivo insights into the possible role of proNGF and its receptors in ts1-induced neurodegeneration.
Collapse
|
93
|
Althaus HH, Klöppner S, Klopfleisch S, Schmitz M. Oligodendroglial Cells and Neurotrophins: A Polyphonic Cantata in Major and Minor. J Mol Neurosci 2008; 35:65-79. [DOI: 10.1007/s12031-008-9053-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/25/2008] [Indexed: 01/12/2023]
|
94
|
Cragnolini AB, Friedman WJ. The function of p75NTR in glia. Trends Neurosci 2008; 31:99-104. [PMID: 18199491 DOI: 10.1016/j.tins.2007.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 11/19/2022]
Abstract
The p75 neurotrophin receptor (p75(NTR)) is expressed on many cell types and can influence a variety of cellular functions. This receptor can mediate cell survival or cell death, can promote or inhibit axonal growth and can facilitate or attenuate proliferation, depending on the cell context. The emerging picture regarding p75(NTR) indicates that it can partner with different coreceptors to dictate specific responses. It then signals by recruiting intracellular binding proteins to activate different signaling pathways. The function of p75(NTR) has mainly been studied in neurons; however, it is also expressed in a variety of glial populations, especially during development and after injury, where its roles have been poorly defined. In this review, we will examine the potential roles for p75(NTR) in glial function.
Collapse
Affiliation(s)
- Andrea B Cragnolini
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | | |
Collapse
|
95
|
Abstract
The effects of neurotrophins during the middle and late stages of development are well known. It was previously thought that neurotrophins had no role during early development, but this is not the case and is the subject of this review article. The earliest neurotrophin receptor expressed is that for neurotrophin-3 (NT-3). TrkC is detected in the neural plate and is present in the neural tube. Initially, the distribution of TrkC is homogenous, but it becomes localized to specific regions of the neural tube as the neural tube differentiates. The receptor for brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), TrkB, is detected somewhat later than TrkC in the neural tube where it is also differentially localized. In contrast, the NGF receptor, TrkA, was not detected during early development. Both NT-3 and BDNF have been shown to have effects in vitro during early development. NT-3 caused an increase in neurite outgrowth and apoptosis in neural plate explants, and promoted differentiation of progenitors into motoneurons. BDNF increased the number of motoneurons in neural tube explants. These data suggest that NT-3 and BDNF may play a role during early development in vivo.
Collapse
Affiliation(s)
- Paulette Bernd
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn, NY, USA.
| |
Collapse
|
96
|
Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, Breiderhoff T, Gotthardt M, Lin F, Eilers A, Petersen CM, Lewin GR, Hempstead BL, Willnow TE, Nykjaer A. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 2007; 10:1449-57. [PMID: 17934455 DOI: 10.1038/nn2000] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 09/24/2007] [Indexed: 01/16/2023]
Abstract
Neurotrophins are essential for development and maintenance of the vertebrate nervous system. Paradoxically, although mature neurotrophins promote neuronal survival by binding to tropomyosin receptor kinases and p75 neurotrophin receptor (p75(NTR)), pro-neurotrophins induce apoptosis in cultured neurons by engaging sortilin and p75(NTR) in a death-signaling receptor complex. Substantial amounts of neurotrophins are secreted in pro-form in vivo, yet their physiological significance remains unclear. We generated a sortilin-deficient mouse to examine the contribution of the p75(NTR)/sortilin receptor complex to neuronal viability. In the developing retina, Sortilin 1 (Sort1)(-/-) mice showed reduced neuronal apoptosis that was indistinguishable from that observed in p75(NTR)-deficient (Ngfr(-/-)) mice. To our surprise, although sortilin deficiency did not affect developmentally regulated apoptosis of sympathetic neurons, it did prevent their age-dependent degeneration. Furthermore, in an injury protocol, lesioned corticospinal neurons in Sort1(-/-) mice were protected from death. Thus, the sortilin pathway has distinct roles in pro-neurotrophin-induced apoptotic signaling in pathological conditions, but also in specific stages of neuronal development and aging.
Collapse
Affiliation(s)
- Pernille Jansen
- MIND Center, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Neurotrophin receptors expression and JNK pathway activation in human astrocytomas. BMC Cancer 2007; 7:202. [PMID: 17971243 PMCID: PMC2180182 DOI: 10.1186/1471-2407-7-202] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 10/31/2007] [Indexed: 11/19/2022] Open
Abstract
Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade-dependent manner (p < 0.05). Interestingly, a statistically significant (p < 0.05) reverse relationship between Trk receptors LIs and pc-Jun/pJNK LIs was noted in some glioblastomas multiforme. Conclusion In the context of astrocytomas, Trk receptors (TrkA, TrkB, TrkC) expression may promote tumor growth independently of grade. Furthermore, activation of JNK pathway may contribute to progression towards malignancy. Considering the fact that regional tumor heterogeneity may be a limiting factor for immunohistochemical studies, the significance of the reverse relationship between Trk receptors and pc-Jun/pJNK LIs with respect to biological behavior of human astrocytomas requires further evaluation.
Collapse
|
98
|
Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther 2007; 117:52-76. [PMID: 17915332 DOI: 10.1016/j.pharmthera.2007.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 11/16/2022]
Abstract
The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.
Collapse
Affiliation(s)
- V Freund-Michel
- EA 3771 Inflammation and Environment in Asthma, University Louis Pasteur-Strasbourg I, Faculty of Pharmacy, Illkirch, France.
| | | |
Collapse
|