51
|
Zheng F, Zhang M, Ding Q, Sethna F, Yan L, Moon C, Yang M, Wang H. Voluntary running depreciates the requirement of Ca2+-stimulated cAMP signaling in synaptic potentiation and memory formation. ACTA ACUST UNITED AC 2016; 23:442-9. [PMID: 27421897 PMCID: PMC4947239 DOI: 10.1101/lm.040642.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/25/2016] [Indexed: 11/24/2022]
Abstract
Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term potentiation (LTP) and memory formation in mice lacking type 1 adenylyl cyclase (AC1), a neurospecific synaptic enzyme that contributes to Ca(2+)-stimulated cAMP production. Following 1 mo of voluntary running-wheel exercise, the impaired LTP and object recognition memory in AC1 knockout (KO) mice were significantly attenuated. Running up-regulated exon II mRNA level of BDNF (brain-derived neurotrophic factor), though it failed to increase exon I and IV mRNAs in the hippocampus of AC1 KO mice. Intrahippocampal infusion of recombinant BDNF was sufficient to rescue LTP and object recognition memory defects in AC1 KO mice. Therefore, voluntary running and exogenous BDNF application overcome the defective Ca(2+)-stimulated cAMP signaling. Our results also demonstrate that alteration in Ca(2+)-stimulated cAMP can affect the molecular outcome of physical exercise.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ming Zhang
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China
| | - Qi Ding
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Lily Yan
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Changjong Moon
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Miyoung Yang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
52
|
Wang M, Li D, Yun D, Zhuang Y, Repunte-Canonigo V, Sanna PP, Behnisch T. Translation of BDNF-gene transcripts with short 3' UTR in hippocampal CA1 neurons improves memory formation and enhances synaptic plasticity-relevant signaling pathways. Neurobiol Learn Mem 2016; 138:121-134. [PMID: 27394686 DOI: 10.1016/j.nlm.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
While the brain-derived neurotrophic factor (BDNF) gene and its multiple transcripts have been recognized as a key factor for learning, but the specific involvement of BDNF translated from BDNF transcripts with short-3' untranslated region (short 3' UTR) in learning and memory requires further analysis. In this paper, we present data to show that the transduction of hippocampal CA1 neurons with AAV9-5' UTR-BDNF (short 3' UTR)-IRES-ZsGreen and the subsequent expression of BDNF enhanced the phosphorylation of synaptic plasticity relevant proteins and improved passive avoidance and object location, but not object recognition memory. In addition, BDNF improved the relearning of object location. At higher BDNF overexpression levels, the fear behavior was accompanied with a decline in the passive avoidance memory 24h post training, and with an enhanced fear conditioning performance. In addition, these animals developed spontaneous seizures. Thus, the expression of BDNF in the hippocampal CA1 region has the potential to improve fear and object location memory in wild type mouse strains when the region and expression levels of BDNF are well controlled.
Collapse
Affiliation(s)
- Man Wang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dongxue Li
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Di Yun
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yinghan Zhuang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Vez Repunte-Canonigo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
53
|
Zunino G, Messina A, Sgadò P, Baj G, Casarosa S, Bozzi Y. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice. Neuroscience 2016; 324:252-61. [PMID: 26987954 DOI: 10.1016/j.neuroscience.2016.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
Abstract
Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD.
Collapse
Affiliation(s)
- G Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Italy
| | - A Messina
- Laboratory of Developmental Neurobiology, Centre for Integrative Biology, University of Trento, Italy
| | - P Sgadò
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Italy
| | - G Baj
- Laboratory of Cellular and Developmental Neurobiology, Department of Life Sciences, University of Trieste, Italy
| | - S Casarosa
- Laboratory of Developmental Neurobiology, Centre for Integrative Biology, University of Trento, Italy; CNR Institute of Neuroscience, CNR, Pisa, Italy
| | - Y Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Italy; CNR Institute of Neuroscience, CNR, Pisa, Italy.
| |
Collapse
|
54
|
Calabrese F, Riva MA, Molteni R. Synaptic alterations associated with depression and schizophrenia: potential as a therapeutic target. Expert Opin Ther Targets 2016; 20:1195-207. [PMID: 27167520 DOI: 10.1080/14728222.2016.1188080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, the concept of 'synaptopathy' has been extended from neurodegenerative and neurological disorders to psychiatric diseases. According to this nascent line of research, disruption in synaptic structure and function acts as the main determinant of mental illness. Therefore, molecular systems and processes crucial for synaptic activity may represent promising therapeutic targets. AREAS COVERED We review data on synaptic structural alterations in depression and schizophrenia and on specific molecular systems and/or mechanisms important for the maintenance of proper synaptic function. Specifically, we examine the involvement of the neuroligin system, the local protein translation, and the neurotrophin BDNF by reviewing clinical and preclinical studies, with particular attention to results provided by using animal models based on the role of stress in psychiatric diseases. Finally, we also discuss the impact of pharmacological treatment on these molecular systems/mechanisms. EXPERT OPINION The relevance of synaptic dysfunctions in psychiatric diseases is undoubted and the potential to normalize, ameliorate, and shape such alterations by acting on molecular systems crucial to ensure synaptic function property is fascinating. However, future studies are required to elucidate several open issues.
Collapse
Affiliation(s)
- Francesca Calabrese
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - Marco A Riva
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - Raffaella Molteni
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
55
|
Falcicchia C, Trempat P, Binaschi A, Perrier-Biollay C, Roncon P, Soukupova M, Berthommé H, Simonato M. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors. PLoS One 2016; 11:e0150995. [PMID: 26954758 PMCID: PMC4783051 DOI: 10.1371/journal.pone.0150995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/21/2016] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
- * E-mail:
| | - Pascal Trempat
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Anna Binaschi
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | | | - Paolo Roncon
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Marie Soukupova
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Hervé Berthommé
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Michele Simonato
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| |
Collapse
|
56
|
Mizui T, Ishikawa Y, Kumanogoh H, Kojima M. Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: Multi-ligand model of growth factor signaling. Pharmacol Res 2015; 105:93-8. [PMID: 26747403 DOI: 10.1016/j.phrs.2015.12.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/20/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most active members of the neurotrophin family. BDNF not only regulates neuronal survival and differentiation, but also functions in activity-dependent plasticity processes such as long-term potentiation (LTP), long-term depression (LTD), learning, and memory. Like other growth factors, BDNF is produced by molecular and cellular mechanisms including transcription and translation, and functions as a bioactive molecule in the nervous system. Among these mechanisms, a particular post-translational mechanism, namely the conversion of precursor BDNF into mature BDNF by proteolytic cleavage, was not fully understood. In this review, we discuss the manner through which this post-translational mechanism alters the biological actions of BDNF protein. In addition to the initially elucidated findings on BDNF, the biological roles of precursor BDNF and the BDNF pro-peptide, especially synaptic plasticity, will be extensively discussed. Recent findings on the BDNF pro-peptide will provide new insights for understanding the mechanisms of action of the pro-peptides of growth factors.
Collapse
Affiliation(s)
- Toshiyuki Mizui
- Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Haruko Kumanogoh
- Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Masami Kojima
- Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| |
Collapse
|
57
|
Martínez-Levy GA, Rocha L, Lubin FD, Alonso-Vanegas MA, Nani A, Buentello-García RM, Pérez-Molina R, Briones-Velasco M, Recillas-Targa F, Pérez-Molina A, San-Juan D, Cienfuegos J, Cruz-Fuentes CS. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy. Neuroscience 2015; 314:12-21. [PMID: 26621122 DOI: 10.1016/j.neuroscience.2015.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022]
Abstract
A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.
Collapse
Affiliation(s)
- G A Martínez-Levy
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - L Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - F D Lubin
- Department of Neurobiology, Lubin Lab, University at Birmingham in Alabama, USA
| | - M A Alonso-Vanegas
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - A Nani
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - R M Buentello-García
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - R Pérez-Molina
- Institute of Cell Physiology, National University of Mexico, UNAM, Mexico City, Mexico
| | - M Briones-Velasco
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - F Recillas-Targa
- Institute of Cell Physiology, National University of Mexico, UNAM, Mexico City, Mexico
| | - A Pérez-Molina
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - D San-Juan
- Clinical Research Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - J Cienfuegos
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - C S Cruz-Fuentes
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico.
| |
Collapse
|
58
|
Vicario A, Colliva A, Ratti A, Davidovic L, Baj G, Gricman Ł, Colombrita C, Pallavicini A, Jones KR, Bardoni B, Tongiorgi E. Dendritic targeting of short and long 3' UTR BDNF mRNA is regulated by BDNF or NT-3 and distinct sets of RNA-binding proteins. Front Mol Neurosci 2015; 8:62. [PMID: 26578876 PMCID: PMC4624863 DOI: 10.3389/fnmol.2015.00062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Sorting of mRNAs in neuronal dendrites relies upon inducible transport mechanisms whose molecular bases are poorly understood. We investigated here the mechanism of inducible dendritic targeting of rat brain-derived neurotrophic factor (BDNF) mRNAs as a paradigmatic example. BDNF encodes multiple mRNAs with either short or long 3' UTR, both hypothesized to harbor inducible dendritic targeting signals. However, the mechanisms of sorting of the two 3' UTR isoforms are controversial. We found that dendritic localization of BDNF mRNAs with short 3' UTR was induced by depolarization and NT3 in vitro or by seizures in vivo and required CPEB-1, -2 and ELAV-2, -4. Dendritic targeting of long 3' UTR was induced by activity or BDNF and required CPEB-1 and the relief of soma-retention signals mediated by ELAV-1, -3, -4, and FXR proteins. Thus, long and short 3' UTRs, by using different sets of RNA-binding proteins provide a mechanism of selective targeting in response to different stimuli which may underlay distinct roles of BDNF variants in neuronal development and plasticity.
Collapse
Affiliation(s)
- Annalisa Vicario
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Andrea Colliva
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience - IRCCS Istituto Auxologico Italiano Milano, Italy ; Department of Pathophysiology and Transplantation, "Dino Ferrari Center", Università degli Studi di Milano Milano, Italy
| | | | - Gabriele Baj
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Łukasz Gricman
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Claudia Colombrita
- Laboratory of Neuroscience - IRCCS Istituto Auxologico Italiano Milano, Italy ; Department of Pathophysiology and Transplantation, "Dino Ferrari Center", Università degli Studi di Milano Milano, Italy
| | | | - Kevin R Jones
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder CO, USA
| | | | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste Trieste, Italy
| |
Collapse
|
59
|
Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry 2015; 5:e657. [PMID: 26460481 PMCID: PMC4930127 DOI: 10.1038/tp.2015.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
In patients suffering from post-traumatic stress disorder (PTSD), fear evoked by trauma-related memories lasts long past the traumatic event and it is often complicated by general anxiety and depressed mood. This poses a treatment challenge, as drugs beneficial for some symptoms might exacerbate others. For example, in preclinical studies, antagonists of the NR2B subunit of N-methyl-d-aspartate receptors and activators of cAMP-dependent protein kinase (PKA) act as potent antidepressants and anxiolytics, but they block fear extinction. Using mice, we attempted to overcome this problem by interfering with individual NR2B and PKA signaling complexes organized by scaffolding proteins. We infused cell-permeable Tat peptides that displaced either NR2B from receptor for activated C kinase 1 (RACK1), or PKA from A-kinase anchor proteins (AKAPs) or microtubule-associated proteins (MAPs). The infusions were targeted to the retrosplenial cortex, an area involved in both fear extinction of remotely acquired memories and in mood regulation. Tat-RACK1 and Tat-AKAP enhanced fear extinction, all peptides reduced anxiety and none affected baseline depression-like behavior. However, disruption of PKA complexes distinctively interfered with the rapid antidepressant actions of the N-methyl-D-aspartate receptors antagonist MK-801 in that Tat-MAP2 blocked, whereas Tat-AKAP completely inverted the effect of MK-801 from antidepressant to depressant. These effects were unrelated to the MK-801-induced changes of brain-derived neurotrophic factor messenger RNA levels. Together, the findings suggest that NR2B-RACK1 complexes specifically contribute to fear extinction, and may provide a target for the treatment of PTSD. AKAP-PKA, on the other hand, appears to modulate fear extinction and antidepressant responses in opposite directions.
Collapse
|
60
|
Du X, Hill R. 7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders. Neurochem Int 2015. [DOI: 10.1016/j.neuint.2015.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
61
|
Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 2015; 20:916-30. [PMID: 25824305 DOI: 10.1038/mp.2015.27] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has a primary role in neuronal development, differentiation and plasticity in both the developing and adult brain. A single-nucleotide polymorphism in the proregion of BDNF, termed the Val66Met polymorphism, results in deficient subcellular translocation and activity-dependent secretion of BDNF, and has been associated with impaired neurocognitive function in healthy adults and in the incidence and clinical features of several psychiatric disorders. Research investigating the Val66Met polymorphism has increased markedly in the past decade, and a gap in integration exists between and within academic subfields interested in the effects of this variant. Here we comprehensively review the role and relevance of the Val66Met polymorphism in psychiatric disorders, with emphasis on suicidal behavior and anxiety, eating, mood and psychotic disorders. The cognitive and molecular neuroscience of the Val66Met polymorphism is also concisely reviewed to illustrate the effects of this genetic variant in healthy controls, and is complemented by a commentary on the behavioral neuroscience of BDNF and the Val66Met polymorphism where relevant to specific disorders. Lastly, a number of controversies and unresolved issues, including small effect sizes, sampling of allele inheritance but not genotype and putative ethnicity-specific effects of the Val66Met polymorphism, are also discussed to direct future research.
Collapse
Affiliation(s)
- M Notaras
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - R Hill
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M van den Buuse
- 1] Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia [2] School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
62
|
Jagirdar R, Drexel M, Kirchmair E, Tasan RO, Sperk G. Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Exp Neurol 2015; 273:92-104. [PMID: 26238735 DOI: 10.1016/j.expneurol.2015.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 11/20/2022]
Abstract
A prominent role of epigenetic mechanisms in manifestation of epilepsy has been proposed. Thus altered histone H3 and H4 acetylation has been demonstrated in experimental models of temporal lobe epilepsy (TLE). We now investigated changes in the expression of the class I and class IV histone deacetylases (HDAC) in two complementary mouse TLE models. Unilateral intrahippocampal injection of kainic acid (KA) induced a status epilepticus lasting 6 to 24h, development of spontaneous limbic seizures (2 to 3 days after KA injection) and chronic epilepsy, as revealed by telemetric recordings of the EEGs. Mice were killed at different intervals after KA injection and expression of HDAC mRNAs was investigated by in situ hybridization. We observed marked decreases in the expression of HDACs 1, 2 and 11 (by up to 75%) in the granule cell and pyramidal cell layers of the hippocampus during the acute status epilepticus (2 to 6h after KA injection). This was followed by increased expression of all class I HDAC mRNAs in all principal cell layers of the hippocampus after 12 to 48 h. In the chronic phase, 14 and 28 days after KA, only modest increases in the expression of HDAC1 mRNA were observed in granule and pyramidal cells. Immunohistochemistry using an antibody detecting HDAC2 revealed results consistent with the mRNA data and indicates also expression in glial cells on the injection side. Similar changes as seen in the KA model were observed after a pilocarpine-induced status epilepticus except that decreases in HDACs 2, 3 and 8 were also seen at the chronic 28 day interval. The prominent decreases in HDAC expression during status epilepticus are consistent with the previously demonstrated increased expression of numerous proteins and with the augmented acetylation of histone H4. It is suggested that respective putative gene products could facilitate proconvulsive as well as anticonvulsive mechanisms. The increased expression of all class I HDACs during the "silent phase", on the other hand, may be related to decreased histone acetylation, which could cause a decrease in expression of certain proteins, a mechanism that could also promote epileptogenesis. Thus, addressing HDAC expression may have a therapeutic potential in interfering with a status epilepticus and with the manifestation of TLE.
Collapse
Affiliation(s)
- Rohan Jagirdar
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Elke Kirchmair
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
63
|
Mallei A, Baj G, Ieraci A, Corna S, Musazzi L, Lee FS, Tongiorgi E, Popoli M. Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism. Int J Neuropsychopharmacol 2015; 18:pyv069. [PMID: 26108221 PMCID: PMC4675980 DOI: 10.1093/ijnp/pyv069] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/12/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. METHODS In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF(Met) allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. RESULTS BDNF-4 and BDNF-6 transcripts were reduced in BDNF(Met/Met) mice, compared with BDNF(Val/Val) mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNF(Met/Met). The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNF(Met/Met) mice, while no changes were found for BDNF-2 and BDNF-4. CONCLUSIONS Impaired BDNF expression and dendritic targeting in BDNF(Met/Met) mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy (Drs Mallei, Ieraci, Corna, Musazzi, and Popoli); Department of Life Sciences, BRAIN Centre for Neuroscience, University of Trieste, Trieste, Italy (Drs Baj and Tongiorgi); Department of Psychiatry, Weill Cornell Medical College Cornell University, New York, NY (Dr Lee).
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons. J Neurosci 2015; 35:5606-24. [PMID: 25855176 DOI: 10.1523/jneurosci.3650-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline β, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated.
Collapse
|
65
|
Cranial irradiation regulates CREB-BDNF signaling and variant BDNF transcript levels in the mouse hippocampus. Neurobiol Learn Mem 2015; 121:12-9. [PMID: 25792232 DOI: 10.1016/j.nlm.2015.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
The brain can be exposed to ionizing radiation in various ways, and such irradiation can trigger adverse effects, particularly on learning and memory. However, the precise mechanisms of cognitive impairments induced by cranial irradiation remain unknown. In the hippocampus, brain-derived neurotrophic factor (BDNF) plays roles in neurogenesis, neuronal survival, neuronal differentiation, and synaptic plasticity. The significance of BDNF transcript variants in these contexts is becoming clearer. In the present study, both object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice were assessed 1 month after a single exposure to cranial irradiation (10 Gy) to evaluate hippocampus-related behavioral dysfunction following such irradiation. Furthermore, changes in the levels of BDNF, the cAMP-response element binding protein (CREB) phosphorylation, and BDNF transcript variants were measured in the hippocampus 1 month after cranial irradiation. On object recognition memory and contextual fear conditioning tasks, mice evaluated 1 month after irradiation exhibited significant memory deficits compared to sham-irradiated controls, but no apparent change was evident in locomotor activity. Both phosphorylated CREB and BDNF protein levels were significantly downregulated after irradiation of the hippocampus. Moreover, the levels of mRNAs encoding common BDNF transcripts, and exons IIC, III, IV, VII, VIII, and IXA, were significantly downregulated after irradiation. The reductions in CREB phosphorylation and BDNF expression induced by differential regulation of BDNF hippocampal exon transcripts may be associated with the memory deficits evident in mice after cranial irradiation.
Collapse
|
66
|
Vanevski F, Xu B. HuD interacts with Bdnf mRNA and is essential for activity-induced BDNF synthesis in dendrites. PLoS One 2015; 10:e0117264. [PMID: 25692578 PMCID: PMC4332865 DOI: 10.1371/journal.pone.0117264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/23/2014] [Indexed: 12/19/2022] Open
Abstract
Highly specific activity-dependent neuronal responses are necessary for modulating synapses to facilitate learning and memory. We present evidence linking a number of important processes involved in regulating synaptic plasticity, suggesting a mechanistic pathway whereby activity-dependent signaling, likely through protein kinase C (PKC)-mediated phosphorylation of HuD, can relieve basal repression of Bdnf mRNA translation in dendrites, allowing for increased TrkB signaling and synaptic remodeling. We demonstrate that the neuronal ELAV family of RNA binding proteins associates in vivo with several Bdnf mRNA isoforms present in the adult brain in an activity-dependent manner, and that one member, HuD, interacts directly with sequences in the long Bdnf 3' untranslated region (3'UTR) and co-localizes with Bdnf mRNA in dendrites of hippocampal neurons. Activation of PKC leads to increased dendritic translation of mRNAs containing the long Bdnf 3'UTR, a process that is dependent on the presence of HuD and its phosphorylation at threonine residues 149 and/or 165. Thus, we found a direct effect of HuD on regulating translation of dendritic Bdnf mRNAs to mediate local and activity-dependent increases in dendritic BDNF synthesis.
Collapse
Affiliation(s)
- Filip Vanevski
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Baoji Xu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
67
|
Peregud DI, Panchenko LF, Gulyaeva NV. Elevation of BDNF exon I-specific transcripts in the frontal cortex and midbrain of rat during spontaneous morphine withdrawal is accompanied by enhanced pCreb1 occupancy at the corresponding promoter. Neurochem Res 2015; 40:130-8. [PMID: 25392083 DOI: 10.1007/s11064-014-1476-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is believed to play a crucial role in the mechanisms underlying opiate dependence; however, little is known about specific features and mechanisms regulating its expression in the brain under these conditions. The aim of this study was to investigate the effects of acute morphine intoxication and withdrawal from chronic intoxication on expression of BDNF exon I-, II-, IV-, VI- and IX-containing transcripts in the rat frontal cortex and midbrain. We also have studied whether alterations of BDNF exon-specific transcripts are accompanied by changes in association of well-known transcriptional regulators of BDNF gene-phosphorylated (active form) cAMP response element binding protein (pCreb1) and methyl-CpG binding protein 2 (MeCP2) with corresponding regulatory regions of the BDNF gene. Acute morphine intoxication did not affect levels of BDNF exons in brain regions, while spontaneous morphine withdrawal in dependent rats was accompanied by an elevation of the BDNF exon I-containing mRNAs both in the frontal cortex and midbrain. During spontaneous morphine withdrawal, increased associations of pCreb1 were found with promoter of exon I in the frontal cortex and promoters of exon I, IV and VI in the midbrain. The association of MeCP2 with BDNF promoters during spontaneous morphine withdrawal did not change. Thus, BDNF exon-specific transcripts are differentially expressed in brain regions during spontaneous morphine withdrawal in dependent rats and pCreb1 may be at least partially responsible for these alterations.
Collapse
Affiliation(s)
- Danil I Peregud
- National Research Centre on Addictions, Ministry of Health and Social Development of the Russian Federation, Moscow, 119002, Russia
| | | | | |
Collapse
|
68
|
Gallego X, Cox RJ, Funk E, Foster RA, Ehringer MA. Voluntary exercise decreases ethanol preference and consumption in C57BL/6 adolescent mice: sex differences and hippocampal BDNF expression. Physiol Behav 2014; 138:28-36. [PMID: 25447477 DOI: 10.1016/j.physbeh.2014.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
Adolescence is a period of high vulnerability for alcohol use and abuse. Early alcohol use has been shown to increase the risk for alcohol-related problems later in life; therefore effective preventive treatments targeted toward adolescents would be very valuable. Many epidemiological and longitudinal studies in humans have revealed the beneficial effects of exercise for prevention and treatment of alcohol addiction. Pre-clinical studies have demonstrated that access to a running wheel leads to decreased voluntary alcohol consumption in adult mice, hamsters, and rats. However, age and sex may also influence the effects of exercise on alcohol use. Herein, we studied male and female C57BL/6 adolescent mice using a 24-hour two-bottle choice paradigm to evaluate 21 days of concurrent voluntary exercise on alcohol consumption and preference. Given previously known effects of exercise in increasing the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus and its role in regulating the reward system, BDNF mRNA and protein levels were measured at the end of the behavioral experiment. Our results demonstrate sex differences in the efficacy of voluntary exercise and its effects on decreasing alcohol consumption and preference. We also report increased BDNF expression after 21 days of voluntary exercise in both male and female mice. Interestingly, the distance traveled played an important role in alcohol consumption and preference in female mice but not in male mice. Overall, this study demonstrates sex differences in the effects of voluntary exercise on alcohol consumption in adolescent mice and points out the importance of distance traveled as a limiting factor to the beneficial effects of wheel running in female mice.
Collapse
Affiliation(s)
- X Gallego
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R J Cox
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - E Funk
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R A Foster
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA; Department of Integrative Physiology, University of Colorado Boulder, CO 80303, USA.
| |
Collapse
|
69
|
Rieger DK, Cunha RMS, Lopes MW, Costa AP, Budni J, Rodrigues ALS, Walz R, Teixeira EH, Nascimento KS, Cavada BS, Leal RB. ConBr, a lectin fromCanavalia brasiliensisseeds, modulates signaling pathways and increases BDNF expression probably via a glycosylated target. J Mol Recognit 2014; 27:746-54. [DOI: 10.1002/jmr.2401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Débora K. Rieger
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | | | - Mark William Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Ana Paula Costa
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Josiani Budni
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Ana Lúcia S. Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Roger Walz
- Departamento de Clínica Médica, Hospital Universitário (HU), Centro de Ciências da Saúde; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Edson H. Teixeira
- BioMolLab; Universidade Federal do Ceará; Fortaleza CE 60455-970 Brazil
| | | | - Benildo S. Cavada
- BioMolLab; Universidade Federal do Ceará; Fortaleza CE 60455-970 Brazil
| | - Rodrigo B. Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| |
Collapse
|
70
|
Developmental and degenerative modulation of brain-derived neurotrophic factor transcript variants in the mouse hippocampus. Int J Dev Neurosci 2014; 38:68-73. [PMID: 25124374 DOI: 10.1016/j.ijdevneu.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 02/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is regarded as an important factor for neurogenesis, synaptic plasticity, and neuronal network organization in brain circuits. However, little is known about the regulation of BDNF transcript variants in the hippocampus during postnatal development and following chemically induced neurotoxicity. In the present study, we examined the expression of individual BDNF transcript variants in the mouse hippocampus on postnatal day (PD) 3, 7, 14, 21, and 56, as well as in the adult hippocampus 1, 2, 4, and 8 days after trimethyltin (TMT) treatment. During postnatal development, the expression levels of common BDNF-coding transcripts and BDNF transcript variants increased gradually in the hippocampus, but the temporal patterns of each exon transcript showed significant differences. In the TMT-treated hippocampus, the levels of common BDNF-coding transcripts and exon I, IIC, III, VII, VIII, and IXA transcripts were significantly increased 1 day post-treatment. These observations suggest that the differential regulation of BDNF exon transcripts may be associated with neuronal and synaptic maturation during postnatal development, and neuronal survival and synaptic plasticity in chemically induced neurodegeneration.
Collapse
|
71
|
Vaghi V, Polacchini A, Baj G, Pinheiro VLM, Vicario A, Tongiorgi E. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code". J Biol Chem 2014; 289:27702-13. [PMID: 25074925 DOI: 10.1074/jbc.m114.586719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests.
Collapse
Affiliation(s)
- Valentina Vaghi
- From the Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessio Polacchini
- From the Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Baj
- From the Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Vera L M Pinheiro
- From the Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Annalisa Vicario
- From the Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Enrico Tongiorgi
- From the Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
72
|
Ratnu VS, Wei W, Bredy TW. Activation-induced cytidine deaminase regulates activity-dependent BDNF expression in post-mitotic cortical neurons. Eur J Neurosci 2014; 40:3032-9. [PMID: 25041363 DOI: 10.1111/ejn.12678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/22/2023]
Abstract
Activity-dependent gene expression depends, in part, on transcriptional regulation that is coordinated by rapid changes in the chromatin landscape as well as the covalent modification of DNA. Here we demonstrate that the expression of brain-derived neurotrophic factor (BDNF), a gene that is critically involved in neural plasticity and subject to epigenetic regulation, is regulated by the RNA/DNA editing enzyme, activation-induced cytidine deaminase (AID). Similar to previous reports, we observed an activity-dependent induction of BDNF exon IV mRNA expression, which correlated with a reduction in DNA methylation within the BDNF P4 promoter. Lentiviral-mediated knockdown of AID disrupted these effects and inhibited BDNF exon IV mRNA expression, an effect that was associated with decreased cAMP response element-binding protein occupancy within the BDNF P4 promoter. Thus, together with other epigenetic mechanisms, AID plays a key role in regulating activity-dependent BDNF expression in post-mitotic cortical neurons.
Collapse
Affiliation(s)
- Vikram S Ratnu
- Psychiatric Epigenomics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, 4072, Australia
| | | | | |
Collapse
|
73
|
Jaanson K, Sepp M, Aid-Pavlidis T, Timmusk T. BAC-based cellular model for screening regulators of BDNF gene transcription. BMC Neurosci 2014; 15:75. [PMID: 24943717 PMCID: PMC4071165 DOI: 10.1186/1471-2202-15-75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) belongs to a family of structurally related proteins called neurotrophins that have been shown to regulate survival and growth of neurons in the developing central and peripheral nervous system and also to take part in synaptic plasticity related processes in adulthood. Since BDNF is associated with several nervous system disorders it would be beneficial to have cellular reporter system for studying its expression regulation. Methods Using modified bacterial artificial chromosome (BAC), we generated several transgenic cell lines expressing humanised Renilla luciferase (hRluc)-EGFP fusion reporter gene under the control of rat BDNF gene regulatory sequences (rBDNF-hRluc-EGFP) in HeLa background. To see if the hRluc-EGFP reporter was regulated in response to known regulators of BDNF expression we treated cell lines with substances known to regulate BDNF and also overexpressed transcription factors known to regulate BDNF gene in established cell lines. Results rBDNF-hRluc-EGFP cell lines had high transgene copy numbers when assayed with qPCR and FISH analysis showed that transgene was maintained episomally in all cell lines. Luciferase activity in transgenic cell lines was induced in response to ionomycin-mediated rise of intracellular calcium levels, treatment with HDAC inhibitors and by over-expression of transcription factors known to increase BDNF expression, indicating that transcription of the transgenic reporter is regulated similarly to the endogenous BDNF gene. Conclusions Generated rBDNF-hRluc-EGFP BAC cell lines respond to known modulators of BDNF expression and could be used for screening of compounds/small molecules or transcription factors altering BDNF expression.
Collapse
Affiliation(s)
- Kaur Jaanson
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | | | | | | |
Collapse
|
74
|
Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation. Int J Neuropsychopharmacol 2014; 17:779-91. [PMID: 24451568 DOI: 10.1017/s1461145713001685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compelling evidence has shown that the effects of antidepressants, increasing extracellular serotonin and noradrenaline as a primary mechanism of action, involve neuroplastic and neurotrophic mechanisms. Brain-derived neurotrophic factor (BDNF) has been shown to play a key role in neuroplasticity and synaptic function, as well as in the pathophysiology of neuropsychiatric disorders and the mechanism of action of antidepressants. The expression of BDNF is mediated by the transcription of different mRNAs derived by the splicing of one of the eight 5' non-coding exons with the 3' coding exon (in rats). The transcription of each non-coding exon is driven by unique and different promoters. We generated a gene reporter system based on hippocampal and cortical neuronal cultures, in which the transcription of luciferase is regulated by BDNF promoters I, II, IV or by cAMP response element (CRE), to investigate the activation of selected promoters induced by monoaminergic antidepressants and by serotonin or noradrenaline agonists. We found that incubation with fluoxetine or reboxetine failed to induce any activation of BDNF promoters or CRE. On the other hand, the incubation of cultures with selective agonists of serotonin or noradrenaline receptors induced a specific and distinct profile of activation of BDNF promoters I, II, IV and CRE, suggesting that the monoaminergic input, absent in dissociated cultures, is essential for the modulation of BDNF expression. In summary, we applied a rapidly detectable and highly sensitive reporter gene assay to characterize the selective activation profile of BDNF and CRE promoters, through specific and different pharmacological stimuli.
Collapse
|
75
|
Gomes C, Merianda TT, Lee SJ, Yoo S, Twiss JL. Molecular determinants of the axonal mRNA transcriptome. Dev Neurobiol 2014; 74:218-32. [PMID: 23959706 PMCID: PMC3933445 DOI: 10.1002/dneu.22123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Tanuja T. Merianda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Seung Joon Lee
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29201
| |
Collapse
|
76
|
Abstract
Neurotrophins are powerful molecules. Small quantities of these secreted proteins exert robust effects on neuronal survival, synapse stabilization, and synaptic function. Key functions of the neurotrophins rely on these proteins being expressed at the right time and in the right place. This is especially true for BDNF, stimulus-inducible expression of which serves as an essential step in the transduction of a broad variety of extracellular stimuli into neuronal plasticity of physiologically relevant brain regions. Here we review the transcriptional and translational mechanisms that control neurotrophin expression with a particular focus on the activity-dependent regulation of BDNF.
Collapse
Affiliation(s)
- A E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA,
| | | | | |
Collapse
|
77
|
Mizui T, Tanima Y, Komatsu H, Kumanogoh H, Kojima M. The Biological Actions and Mechanisms of Brain-Derived Neurotrophic Factor in Healthy and Disordered Brains. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nm.2014.54021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
78
|
Luoni A, Fumagalli F, Racagni G, Riva MA. Repeated aripiprazole treatment regulates Bdnf, Arc and Npas4 expression under basal condition as well as after an acute swim stress in the rat brain. Pharmacol Res 2013; 80:1-8. [PMID: 24309096 DOI: 10.1016/j.phrs.2013.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022]
Abstract
Despite the rapid control of schizophrenic symptoms is due to the ability of antipsychotic drugs (APDs) to block D2 receptors in the mesolimbic pathway, it is now well-established that the therapeutic effects rely on adaptive mechanisms set in motion by their long-term administration. Such neuroplastic mechanisms depend on the pharmacological profile of the drug employed, with marked differences existing between first and second generation APDs. On these bases, the major accomplishment of this work was to investigate neuroadaptive changes set in motion by repeated treatment with aripiprazole, a novel APD that is unique for being a partial agonist at dopamine D2 receptors. Moreover, given that stress plays a critical role in the exacerbation of disease symptoms, we also investigated whether aripiprazole could influence the dynamic response of the brain to an acute challenge. We found that repeated aripiprazole treatment in rats regulates the expression of different markers of neuroplasticity such as Bdnf, Arc and Npas4 in a brain-region specific fashion; more importantly, the expression of these molecules was significantly up-regulated by an acute swim stress only in aripiprazole-treated animals, which is suggestive of increased ability to cope with the adverse event. We indeed found an overall facilitation of Bdnf expression, an effect that is mainly evident in the prefrontal cortex on the pool of transcripts undergoing dendritic localization. Overall, our results provide novel information regarding the mechanisms through which aripiprazole may regulate brain function and could contribute to improve neuroplastic defects that are associated with schizophrenia symptomatology.
Collapse
Affiliation(s)
- Alessia Luoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Racagni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
79
|
Perovic M, Tesic V, Mladenovic Djordjevic A, Smiljanic K, Loncarevic-Vasiljkovic N, Ruzdijic S, Kanazir S. BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2057-2070. [PMID: 23255148 PMCID: PMC3824987 DOI: 10.1007/s11357-012-9495-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Neurotrophins are established molecular mediators of neuronal plasticity in the adult brain. We analyzed the impact of aging on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) protein isoforms, their receptors, and on the expression patterns of multiple 5' exon-specific BDNF transcripts in the rat cortex and hippocampus throughout the life span of the rat (6, 12, 18, and 24 months of age). ProNGF was increased during aging in both structures. Mature NGF gradually decreased in the cortex, and, in 24-month-old animals, it was 30% lower than that in adult 6-month-old rats. The BDNF expression did not change during aging, while proBDNF accumulated in the hippocampus of aged rats. Hippocampal total BDNF mRNA was lower in 12-month-old animals, mostly as a result of a decrease of BDNF transcripts 1 and 2. In contrast to the region-specific regulation of specific exon-containing BDNF mRNAs in adult animals, the same BDNF RNA isoforms (containing exons III, IV, or VI) were present in both brain structures of aged animals. Deficits in neurotrophin signaling were supported by the observed decrease in Trk receptor expression which was accompanied by lower levels of the two main downstream effector kinases, pAkt and protein kinase C. The proteolytic processing of p75NTR observed in 12-month-old rats points to an additional regulatory mechanism in early aging. The changes described herein could contribute to reduced brain plasticity underlying the age-dependent decline in cognitive function.
Collapse
Affiliation(s)
- Milka Perovic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Vesna Tesic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | | | - Kosara Smiljanic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | | | - Sabera Ruzdijic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Selma Kanazir
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
- />Laboratory of Molecular Neurobiology, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
80
|
Baj G, Carlino D, Gardossi L, Tongiorgi E. Toward a unified biological hypothesis for the BDNF Val66Met-associated memory deficits in humans: a model of impaired dendritic mRNA trafficking. Front Neurosci 2013; 7:188. [PMID: 24198753 PMCID: PMC3812868 DOI: 10.3389/fnins.2013.00188] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/29/2013] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents promotesa key molecule for the survival and differentiation of specific populations of neurons in the central nervous system. BDNF also regulates plasticity-related processes underlying memory and learning. A common single nucleotide polymorphism (SNP) rs6265 has been identified on the coding sequence of human BDNF located at 11p13. The SNP rs6265 is a single base mutation with an adenine instead of a guanine at position 196 (G196A), resulting in the amino acid substitution Val66Met. This polymorphism only exists in humans and has been associated with a plethora of effects ranging from molecular, cellular and brain structural modifications in association with deficits in social and cognitive functions. To date, the literature on Val66Met polymorphism describes a complex and often conflicting pattern of effects. In this review, we attempt to provide a unifying model of the Val66Met effects. We discuss the clinical evidence of the association between Val66Met and memory deficits, as well as the molecular mechanisms involved including the reduced transport of BDNF mRNA to the dendrites as well as the reduced processing and secretion of BDNF protein through the regulated secretory pathway.
Collapse
Affiliation(s)
- Gabriele Baj
- Department of Life Sciences, Brain Centre for Neurosciences, University of Trieste Trieste, Italy
| | | | | | | |
Collapse
|
81
|
Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, Burnet PWJ. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 2013; 63:756-64. [PMID: 24140431 PMCID: PMC3858812 DOI: 10.1016/j.neuint.2013.10.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Abstract
Prebiotic feeding elevated BDNF and NR1subunit mRNAs, in the rat hippocampus. The GOS prebiotic increased cortical NR1, d-serine, and hippocampal NR2A subunits. GOS feeding elevated plasma levels of the gut peptide PYY. GOS plasma increased BDNF release from human SH-SY5Y neuroblastoma cells. BDNF secretion from cells by GOS plasma was blocked by PYY antisera.
The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helene M Savignac
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | | | | | | | | | | | | |
Collapse
|
82
|
Behavioural and neuroplastic properties of chronic lurasidone treatment in serotonin transporter knockout rats. Int J Neuropsychopharmacol 2013; 16:1319-30. [PMID: 23164505 DOI: 10.1017/s1461145712001332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Second-generation antipsychotics (SGA) are multi-target agents widely used for the treatment of schizophrenia and bipolar disorder that also hold potential for the treatment of impaired emotional control, thanks to their diverse receptor profiles as well as their potential in modulating neuroadaptive changes in key brain regions. The aim of this study was thus to establish the ability of lurasidone, a novel SGA characterized by a multi-receptor signature, to modulate behavioural and molecular defects associated with a genetic model of impaired emotional control, namely serotonin transporter knockout (SERT KO) rats. At behavioural level, we found that chronic lurasidone treatment significantly increased fear extinction in SERT KO rats, but not in wild-type control animals. Moreover, at molecular level, lurasidone was able to normalize the reduced expression of the neurotrophin brain-derived neurotrophic factor in the prefrontal cortex of SERT KO rats, an effect that occurred through the regulation of specific neurotrophin transcripts (primarily exon VI). Furthermore, chronic lurasidone treatment was also able to restore the reduced expression of different GABAergic markers that is present in these animals. Our results show that lurasidone can improve emotional control in SERT KO rats, with a primary impact on the prefrontal cortex. The adaptive changes set in motion by repeated treatment with lurasidone may in fact contribute to the amelioration of functional capacities, closely associated with neuronal plasticity, which are deteriorated in patients with schizophrenia, bipolar disease and major depression.
Collapse
|
83
|
Molteni R, Macchi F, Riva MA. Gene expression profiling as functional readout of rodent models for psychiatric disorders. Cell Tissue Res 2013; 354:51-60. [DOI: 10.1007/s00441-013-1648-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
84
|
Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 2013; 76 Pt C:639-56. [PMID: 23602987 DOI: 10.1016/j.neuropharm.2013.04.005] [Citation(s) in RCA: 491] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | |
Collapse
|
85
|
Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology 2013; 76 Pt C:709-18. [PMID: 23587647 DOI: 10.1016/j.neuropharm.2013.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 01/11/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Nina N Karpova
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.
| |
Collapse
|
86
|
Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci Bull 2013; 29:216-28. [PMID: 23558590 DOI: 10.1007/s12264-013-1321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/26/2013] [Indexed: 12/12/2022] Open
Abstract
Myelination by oligodendroglial cells (OLs) enables the propagation of action potentials along neuronal axons, which is essential for rapid information flow in the central nervous system. Besides saltatory conduction, the myelin sheath also protects axons against inflammatory and oxidative insults. Loss of myelin results in axonal damage and ultimately neuronal loss in demyelinating disorders. However, accumulating evidence indicates that OLs also provide support to neurons via mechanisms beyond the insulating function of myelin. More importantly, an increasing volume of reports indicates defects of OLs in numerous neurodegenerative diseases, sometimes even preceding neuronal loss in pre-symptomatic episodes, suggesting that OL pathology may be an important mechanism contributing to the initiation and/or progression of neurodegeneration. This review focuses on the emerging picture of neuronal support by OLs in the pathogenesis of neurodegenerative disorders through diverse molecular and cellular mechanisms, including direct neuron-myelin interaction, metabolic support by OLs, and neurotrophic factors produced by and/or acting on OLs.
Collapse
|
87
|
Baj G, Del Turco D, Schlaudraff J, Torelli L, Deller T, Tongiorgi E. Regulation of the spatial code for BDNF mRNA isoforms in the rat hippocampus following pilocarpine-treatment: A systematic analysis using laser microdissection and quantitative real-time PCR. Hippocampus 2013; 23:413-23. [DOI: 10.1002/hipo.22100] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 01/18/2023]
|
88
|
Abstract
Mutations that alter signaling through the mammalian target of rapamycin complex 1 (mTORC1), a well established regulator of neuronal protein synthesis, have been linked to autism and cognitive dysfunction. Although previous studies have established a role for mTORC1 as necessary for enduring changes in postsynaptic function, here we demonstrate that dendritic mTORC1 activation in rat hippocampal neurons also drives a retrograde signaling mechanism promoting enhanced neurotransmitter release from apposed presynaptic terminals. This novel mode of synaptic regulation conferred by dendritic mTORC1 is locally implemented, requires downstream synthesis of brain-derived neurotrophic factor as a retrograde messenger, and is engaged in an activity-dependent fashion to support homeostatic trans-synaptic control of presynaptic function. Our findings thus reveal that mTORC1-dependent translation in dendrites subserves a unique mode of synaptic regulation, highlighting an alternative regulatory pathway that could contribute to the social and cognitive dysfunction that accompanies dysregulated mTORC1 signaling.
Collapse
|
89
|
Abstract
Local, synaptic synthesis of new proteins in response to neuronal stimulation plays a key role in the regulation of synaptic morphogenesis. Recent studies indicate that matrix metalloproteinase-9 (MMP-9), an endopeptidase that regulates the pericellular environment through cleavage of its protein components, plays a critical role in regulation of spine morphology and synaptic plasticity. Here, we sought to determine whether MMP-9 mRNA is transported to dendrites for local translation and protein release. First, dendritic transport of MMP-9 mRNA was seen in primary hippocampal neuronal cultures treated with glutamate and in dentate gyrus granule cells in adult anesthetized rats after induction of long-term potentiation. Second, rapid, activity-dependent polyadenylation of MMP-9 mRNA; association of the mRNA with actively translating polysomes; and de novo MMP-9 protein synthesis were obtained in synaptoneurosomes isolated from rat hippocampus. Third, glutamate stimulation of cultured hippocampal neurons evoked a rapid (in minutes) increase in MMP-9 activity, as measured by cleavage of its native substrate, β-dystroglycan. This activity was reduced by the polyadenylation inhibitor, thus linking MMP-9 translation with protein function. In aggregate, our findings show that MMP-9 mRNA is transported to dendrites and locally translated and that the protein is released in an activity-dependent manner. Acting in concert with other dendritically synthesized proteins, locally secreted MMP-9 may contribute to the structural and functional plasticity of the activated synapses.
Collapse
|
90
|
Ottem EN, Bailey DJ, Jordan CL, Breedlove SM. With a little help from my friends: androgens tap BDNF signaling pathways to alter neural circuits. Neuroscience 2012; 239:124-38. [PMID: 23262234 DOI: 10.1016/j.neuroscience.2012.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022]
Abstract
Gonadal androgens are critical for the development and maintenance of sexually dimorphic regions of the male nervous system, which is critical for male-specific behavior and physiological functioning. In rodents, the motoneurons of the spinal nucleus of the bulbocavernosus (SNB) provide a useful example of a neural system dependent on androgen. Unless rescued by perinatal androgens, the SNB motoneurons will undergo apoptotic cell death. In adulthood, SNB motoneurons remain dependent on androgen, as castration leads to somal atrophy and dendritic retraction. In a second vertebrate model, the zebra finch, androgens are critical for the development of several brain nuclei involved in song production in males. Androgen deprivation during a critical period during postnatal development disrupts song acquisition and dimorphic size-associated nuclei. Mechanisms by which androgens exert masculinizing effects in each model system remain elusive. Recent studies suggest that brain-derived neurotrophic factor (BDNF) may play a role in androgen-dependent masculinization and maintenance of both SNB motoneurons and song nuclei of birds. This review aims to summarize studies demonstrating that BDNF signaling via its tyrosine receptor kinase (TrkB) receptor may work cooperatively with androgens to maintain somal and dendritic morphology of SNB motoneurons. We further describe studies that suggest the cellular origin of BDNF is of particular importance in androgen-dependent regulation of SNB motoneurons. We review evidence that androgens and BDNF may synergistically influence song development and plasticity in bird species. Finally, we provide hypothetical models of mechanisms that may underlie androgen- and BDNF-dependent signaling pathways.
Collapse
Affiliation(s)
- E N Ottem
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA.
| | | | | | | |
Collapse
|
91
|
Duncan JR. Current perspectives on the neurobiology of drug addiction: a focus on genetics and factors regulating gene expression. ISRN NEUROLOGY 2012; 2012:972607. [PMID: 23097719 PMCID: PMC3477671 DOI: 10.5402/2012/972607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
Collapse
Affiliation(s)
- Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
92
|
Suri D, Vaidya VA. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience 2012; 239:196-213. [PMID: 22967840 DOI: 10.1016/j.neuroscience.2012.08.065] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022]
Abstract
Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.
Collapse
Affiliation(s)
- D Suri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | |
Collapse
|
93
|
Baj G, D'Alessandro V, Musazzi L, Mallei A, Sartori CR, Sciancalepore M, Tardito D, Langone F, Popoli M, Tongiorgi E. Physical exercise and antidepressants enhance BDNF targeting in hippocampal CA3 dendrites: further evidence of a spatial code for BDNF splice variants. Neuropsychopharmacology 2012; 37:1600-11. [PMID: 22318196 PMCID: PMC3358751 DOI: 10.1038/npp.2012.5] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is encoded by multiple BDNF transcripts, whose function is unclear. We recently showed that a subset of BDNF transcripts can traffic into distal dendrites in response to electrical activity, while others are segregated into the somatoproximal domains. Physical exercise and antidepressant treatments exert their beneficial effects through upregulation of BDNF, which is required to support survival and differentiation of newborn dentate gyrus (DG) neurons. While these DG processes are required for the antidepressant effect, a role for CA1 in antidepressant action has been excluded, and the effect on CA3 neurons remains unclear. Here, we show for the first time that physical exercise and antidepressants induce local increase of BDNF in CA3. Voluntary physical exercise for 28 consecutive days, or 2-week treatment with 10 mg/kg per day fluoxetine or reboxetine, produced a global increase of BDNF mRNA and protein in the neuronal somata of the whole hippocampus and a specific increase of BDNF in dendrites of CA3 neurons. This increase was accounted for by BDNF exon 6 variant. In cultured hippocampal neurons, application of serotonin or norepinephrine (10-50 μM) induced increase in synaptic transmission and targeting of BDNF mRNA in dendrites. The increased expression of BDNF in CA3 dendrites following antidepressants or exercise further supports the neurotrophin hypothesis of antidepressants action and confirms that the differential subcellular localization of BDNF mRNA splice variants provides a spatial code for a selective expression of BDNF in specific subcellular districts. This selective expression may be exploited to design more specific antidepressants.
Collapse
Affiliation(s)
- Gabriele Baj
- Department of Life Sciences, BRAIN Centre for Neuroscience, University of Trieste, Trieste, Italy
| | - Valentina D'Alessandro
- Department of Life Sciences, BRAIN Centre for Neuroscience, University of Trieste, Trieste, Italy
| | - Laura Musazzi
- Center of Neuropharmacology—Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Alessandra Mallei
- Center of Neuropharmacology—Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Cesar R Sartori
- Department of Physiology and Biophysics, Institute of Biology, State University of Campinas, UNICAMP, Campinas, Brazil
| | - Marina Sciancalepore
- Department of Life Sciences, BRAIN Centre for Neuroscience, University of Trieste, Trieste, Italy
| | - Daniela Tardito
- Center of Neuropharmacology—Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Francesco Langone
- Department of Physiology and Biophysics, Institute of Biology, State University of Campinas, UNICAMP, Campinas, Brazil
| | - Maurizio Popoli
- Center of Neuropharmacology—Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, BRAIN Centre for Neuroscience, University of Trieste, Trieste, Italy,Department of Life Sciences, BRAIN Centre for Neuroscience, University of Trieste, Via Giorgieri, 5, Building Q, Trieste 34127, Italy, Tel: +39 040 558 8724, Fax: +39 040 558 2425, E-mail:
| |
Collapse
|
94
|
Abstract
Abnormal brain-derived neurotrophic factor (BDNF) signaling seems to have a central role in the course and development of various neurological and psychiatric disorders. In addition, positive effects of psychotropic drugs are known to activate BDNF-mediated signaling. Although the BDNF gene has been associated with several diseases, molecular mechanisms other than functional genetic variations can impact on the regulation of BDNF gene expression and lead to disturbed BDNF signaling and associated pathology. Thus, epigenetic modifications, representing key mechanisms by which environmental factors induce enduring changes in gene expression, are suspected to participate in the onset of various psychiatric disorders. More specifically, various environmental factors, particularly when occurring during development, have been claimed to produce long-lasting epigenetic changes at the BDNF gene, thereby affecting availability and function of the BDNF protein. Such stabile imprints on the BDNF gene might explain, at least in part, the delayed efficacy of treatments as well as the high degree of relapses observed in psychiatric disorders. Moreover, BDNF gene has a complex structure displaying differential exon regulation and usage, suggesting a subcellular- and brain region-specific distribution. As such, developing drugs that modify epigenetic regulation at specific BDNF exons represents a promising strategy for the treatment of psychiatric disorders. Here, we present an overview of the current literature on epigenetic modifications at the BDNF locus in psychiatric disorders and related animal models.
Collapse
|
95
|
Ma B, Savas JN, Chao MV, Tanese N. Quantitative analysis of BDNF/TrkB protein and mRNA in cortical and striatal neurons using α-tubulin as a normalization factor. Cytometry A 2012; 81:704-17. [PMID: 22649026 DOI: 10.1002/cyto.a.22073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/20/2012] [Accepted: 04/26/2012] [Indexed: 01/15/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB serve important regulatory roles for multiple aspects of the biology of neurons including cell death, survival, growth, differentiation, and plasticity. Regulation of the local availability of BDNF/TrkB at distinct subcellular domains such as soma, dendrites, axons, growth cones, nerve terminals, and spines appears to contribute to their specific functions. In view of the variance in size and shape of neurons and their compartments, previous quantitative studies of the BDNF/TrkB protein and mRNA lacked a robust normalization procedure. To overcome this problem, we have established methods that use immunofluorescence detection of α-tubulin as a normalization factor for the quantitative analysis of protein and mRNA in primary rat cortical and striatal neurons in culture. The efficacy of this approach is demonstrated by studying the dynamic distribution of proteins and mRNA at different growth stages or conditions. Treatment of cultured neurons with KCl resulted in increased levels of TrkB protein, reduced levels of BDNF mRNA (composite of multiple transcripts) and a slight reduction in BDNF protein levels in the dendrites from the cortex. The KCl treatment also lowered the percentage of BDNF and TrkB proteins in the soma indicative of protein transport. Finally, analysis of the rat cortical and striatal neurons demonstrated comparable or even higher levels of BDNF/TrkB protein and BDNF mRNA in the neurons from the striatum. Thus, in contrast to previous observations made in vivo, striatal neurons are capable of synthesizing BDNF mRNA when cultured in growth media in vitro. The analytical approach presented here provides a detailed understanding of BDNF/TrkB levels in response to a variety of neuronal activities. Our methods could be used broadly, including applications in cell and tissue cytometry, to yield accurate quantitative data of gene expression in cellular and subcellular contexts. © 2012 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Bin Ma
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
96
|
Weatheritt RJ, Davey NE, Gibson TJ. Linear motifs confer functional diversity onto splice variants. Nucleic Acids Res 2012; 40:7123-31. [PMID: 22638587 PMCID: PMC3424572 DOI: 10.1093/nar/gks442] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pre-translational modification of messenger ribonucleic acids (mRNAs) by alternative promoter usage and alternative splicing is an important source of pleiotropy. Despite intensive efforts, our understanding of the functional implications of this dynamically created diversity is still incomplete. Using the available knowledge of interaction modules, particularly within intrinsically disordered regions (IDRs), we analysed the occurrences of protein modules within alternative exons. We find that regions removed or included by pre-translational variation are enriched in linear motifs suggesting that the removal or inclusion of exons containing these interaction modules is an important regulatory mechanism. In particular, we observe that PDZ-, PTB-, SH2- and WW-domain binding motifs are more likely to occur within alternative exons. We also determine that regions removed or included by alternative promoter usage are enriched in IDRs suggesting that protein isoform diversity is tightly coupled to the modulation of IDRs. This study, therefore, demonstrates that short linear motifs are key components for establishing protein diversity between splice variants.
Collapse
Affiliation(s)
- Robert J Weatheritt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | | | | |
Collapse
|
97
|
Kabir ZD, Lourenco F, Byrne ME, Katzman A, Lee F, Rajadhyaksha AM, Kosofsky BE. Brain-derived neurotrophic factor genotype impacts the prenatal cocaine-induced mouse phenotype. Dev Neurosci 2012; 34:184-97. [PMID: 22572518 DOI: 10.1159/000337712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal cocaine exposure leads to persistent alterations in the growth factor brain-derived neurotrophic factor (BDNF), particularly in the medial prefrontal cortex (mPFC) and hippocampus, brain regions important in cognitive functioning. BDNF plays an important role in the strengthening of existing synaptic connections as well as in the formation of new contacts during learning. A single nucleotide polymorphism in the BDNF gene (Val66Met), leading to a Met substitution for Val at codon 66 in the prodomain, is common in human populations, with an allele frequency of 20-30% in Caucasians. To study the interaction between prenatal cocaine exposure and BDNF, we have utilized a line of BDNF Val66Met transgenic mice on a Swiss Webster background in which BDNF(Met) is endogenously expressed. Examination of baseline levels of mature BDNF protein in the mPFC of prenatally cocaine-treated wild-type (Val66Val) and Val66Met mice revealed significantly lower levels compared to prenatally saline-treated mice. In contrast, in the hippocampus of prenatally saline- and cocaine-treated adult Val66Met mice, there were significantly lower levels of mature BDNF protein compared to Val66Val mice. In extinction of a conditioned fear, we found that prenatally cocaine-treated Val66Met mice had a deficit in recall of extinction. Examination of mature BDNF protein levels immediately after the test for extinction recall revealed lower levels in the mPFC of prenatally cocaine-treated Val66Met mice compared to saline-treated mice. However, 2 h after the extinction test, there was increased BDNF exons I, IV, and IX mRNA expression in the prelimbic cortex of the mPFC in the prenatally cocaine-treated BDNF Val66Met mice compared to prenatally saline-treated mice. Taken together, our results suggest the possibility that prenatal cocaine-induced constitutive alterations in BDNF mRNA and protein expression in the mPFC differentially poises animals for alterations in behaviorally induced gene activation, which are interactive with BDNF genotype and differentially impact those behaviors. Such findings in our prenatal cocaine mouse model suggest a gene X environment interaction of potential clinical relevance.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Modulation of BDNF expression by repeated treatment with the novel antipsychotic lurasidone under basal condition and in response to acute stress. Int J Neuropsychopharmacol 2012; 15:235-46. [PMID: 21349227 DOI: 10.1017/s1461145711000150] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is known that long-term treatment with antipsychotic drugs (APDs) produces neuroadaptive changes through the modulation of different proteins that, by enhancing neuronal plasticity and cellular resiliency, may improve core disease symptoms. The aim of this study was to investigate the ability of chronic treatment with the novel antipsychotic lurasidone to modulate BDNF expression in hippocampus and prefrontal cortex, under basal conditions or in response to an acute stress, a major precipitating element in psychiatric disorders. By means of real-time PCR, we found that (1) chronic lurasidone treatment increases total BDNF mRNA levels in rat prefrontal cortex and, to less extent, in hippocampus; (2) the modulation of BDNF mRNA levels in response to acute swim stress in lurasidone-treated rats was markedly potentiated in hippocampus, and to less extent in prefrontal cortex, through the selective regulation of different neurotrophin isoforms. The increase of BDNF mRNA levels in prefrontal cortex was paralleled by an enhancement of mature BDNF protein levels. In conclusion, repeated exposure to lurasidone regulates BDNF expression, through a finely tuned modulation of its transcripts. This effect may contribute to the amelioration of functions, such as cognition, closely associated with neuronal plasticity, which are deteriorated in schizophrenia patients.
Collapse
|
99
|
Stansfield KH, Pilsner JR, Lu Q, Wright RO, Guilarte TR. Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): implications for an environmental basis of neurodevelopmental disorders. Toxicol Sci 2012; 127:277-95. [PMID: 22345308 DOI: 10.1093/toxsci/kfs090] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of synaptic development and function has been implicated in the pathophysiology of neurodegenerative disorders and mental disease. A neurotrophin that has an important function in neuronal and synaptic development is brain-derived neurotrophic factor (BDNF). In this communication, we examined the effects of lead (Pb(2+)) exposure on BDNF-tropomyosin-related kinase B (TrkB) signaling during the period of synaptogenesis in cultured neurons derived from embryonic rat hippocampi. We show that Pb(2+) exposure decreases BDNF gene and protein expression, and it may also alter the transport of BDNF vesicles to sites of release by altering Huntingtin phosphorylation and protein levels. Combined, these effects of Pb(2+) resulted in decreased concentrations of extracellular mature BDNF. The effect of Pb(2+) on BDNF gene expression was associated with a specific decrease in calcium-sensitive exon IV transcript levels and reduced phosphorylation and protein expression of the transcriptional repressor methyl-CpG-binding protein (MeCP2). TrkB protein levels and autophosphorylation at tyrosine 816 were significantly decreased by Pb(2+) exposure with a concomitant increase in p75 neurotrophin receptor (p75(NTR)) levels and altered TrkB-p75(NTR) colocalization. Finally, phosphorylation of Synapsin I, a presynaptic target of BDNF-TrkB signaling, was significantly decreased by Pb(2+) exposure with no effect on total Synapsin I protein levels. This effect of Pb(2+) exposure on Synapsin I phosphorylation may help explain the impairment in vesicular release documented by us previously (Neal, A. P., Stansfield, K. H., Worley, P. F., Thompson, R. E., and Guilarte, T. R. (2010). Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: Potential role of N-Methyl-D-aspartate receptor (NMDAR) dependent BDNF signaling. Toxicol. Sci. 116, 249-263) because it controls vesicle movement from the reserve pool to the readily releasable pool. In summary, the present study demonstrates that Pb(2+) exposure during the period of synaptogenesis of hippocampal neurons in culture disrupts multiple synaptic processes regulated by BDNF-TrkB signaling with long-term consequences for synaptic function and neuronal development.
Collapse
Affiliation(s)
- Kirstie H Stansfield
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York 10031, USA
| | | | | | | | | |
Collapse
|
100
|
Ng T, Chand D, Song L, Al Chawaf A, Watson JD, Boutros PC, Belsham DD, Lovejoy DA. Identification of a novel Brain Derived Neurotrophic Factor (BDNF)-inhibitory factor: Regulation of BDNF by Teneurin C-terminal Associated Peptide (TCAP)-1 in immortalized embryonic mouse hypothalamic cells. ACTA ACUST UNITED AC 2012; 174:79-89. [DOI: 10.1016/j.regpep.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/13/2011] [Accepted: 12/12/2011] [Indexed: 12/28/2022]
|