51
|
Polydopamine-based surface modification of hemoglobin particles for stability enhancement of oxygen carriers. J Colloid Interface Sci 2020; 571:326-336. [PMID: 32208203 DOI: 10.1016/j.jcis.2020.03.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 11/22/2022]
Abstract
Templated assembly techniques have been extensively used to develop various types of hemoglobin (Hb) loaded particles with improved performance. However, several instability issues must still be solved, including Hb exposure, enhanced Hb auto-oxidation, and the relatively weak binding of Hb to cross-linkers. Herein, to meet the stability requirements for novel hemoglobin-based oxygen carriers (HBOCs), hemoglobin-polydopamine particles (Hb-PDA) were fabricated using a mild process that combines the co-precipitation of Hb and an inorganic template with the spontaneous adhesion of PDA. The Hb-PDA showed uniform size distribution, chemical integrity of both Hb and PDA, high biocompatibility, and robust oxygen delivery. Our results demonstrated that the use of polydopamine as a biocompatible coating material reduced Hb leakage from the particles under both static and flow conditions, thus mitigating the toxicity associated with free Hb and strengthening the stability of Hb particles. In addition, Hb-PDA reduced HUVEC (Human Umbilical Vein Cells) oxidative injury and scavenged 85% of the available hydroxyl radicals, exhibiting its potential to act as an antioxidant for encapsulated Hb. Hb-PDA therefore shows significant promise as a cell-like structurally and functionally stable HBOCs.
Collapse
|
52
|
Seddaoui N, Amine A. A sensitive colorimetric immunoassay based on poly(dopamine) modified magnetic nanoparticles for meat authentication. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
53
|
Teng X, Guo Y, Liu D, Li G, Yu C, Dai J. A polydopamine-coated polyamide thin film composite membrane with enhanced selectivity and stability for vanadium redox flow battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117906] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Huang Z, Nazifi S, Jafari P, Karim A, Ghasemi H. Networked Zwitterionic Durable Antibacterial Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:911-919. [DOI: 10.1021/acsabm.9b00982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zixu Huang
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Sina Nazifi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Parham Jafari
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Hadi Ghasemi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| |
Collapse
|
55
|
Lazarev SI, Abonosimov OA, Protasov DN, Shestakov KV. Mathematical Model of Electromembrane Separation of Copper-Electroplating Production Solutions. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2020. [DOI: 10.1134/s0040579519060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
56
|
Xia Y, He Y, Chen C, Wu Y, Zhong F, Chen J. Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104405] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Permeability hysteresis of polypyrrole-polysulfone blend ultrafiltration membranes: study of phase separation thermodynamics and pH responsive membrane properties. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Co-immobilization of ACH 11 antithrombotic peptide and CAG cell-adhesive peptide onto vascular grafts for improved hemocompatibility and endothelialization. Acta Biomater 2019; 97:344-359. [PMID: 31377424 DOI: 10.1016/j.actbio.2019.07.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
Abstract
Surface modification by conjugating biomolecules has been widely proved to enhance biocompatibility of small-caliber artificial vascular grafts. In this study, we aimed at developing a multifunctional vascular graft that provides not only good hemocompatibility but also in situ rapid endothelialization. Herein, a vascular graft (inner diameter ∼2 mm) was fabricated by electrospinning with poly(lactic acid-co-caprolactone) and gelatin, and then biofunctionalized with antithrombotic peptide with sequence LTFPRIVFVLG (ACH11) and cell adhesion peptide with sequence CAG through adhesive poly(dopamine) coating. We developed this graft with the synergistic properties of low thrombogenicity and rapid endothelialization. The successful grafting of both CAG and ACH11 peptides was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface micromorphology of the modified surfaces was observed by field emission scanning electron microscopy. Our results demonstrated that the multifunctional surface suppressed the denaturation of absorbed fibrinogen, hindered coagulation factor Xa activation, and inhibited platelet adhesion and aggregation. Importantly, this modified surface could selectively enhance endothelial cells adhesion, proliferation and release of nitric oxide. Upon in vivo implantation of 6 weeks, the multifunctional vascular graft showed improved patency and superior vascular endothelialization. Overall, the results effectively demonstrated that the co-immobilization of ACH11 and CAG provided a promising method for the improvement of hemocompatibility and endothelialization of vascular grafts. STATEMENT OF SIGNIFICANCE: Electrospun small-caliber vascular grafts are increasingly used to treat cardiovascular diseases. Despite their success related to their good biodegradation and mechanical strength, they have some drawbacks, such as low hemocompatibility and endothelialization. The single-function ligands are insufficient to modify surface with both good hemocompatibility and rapid endothelialization simultaneously. Therefore, we functionalized electrospun vascular graft by novel antithrombotic peptide and cell-adhesive peptide to construct superior anticoagulation and ECs-selective adhesion surface in present study. The multifunctional vascular grafts benefit for high long-term patency and rapid endothelialization.
Collapse
|
59
|
Zarghami S, Mohammadi T, Sadrzadeh M. Preparation, characterization and fouling analysis of in-air hydrophilic/underwater oleophobic bio-inspired polydopamine coated PES membranes for oily wastewater treatment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
60
|
Xie A, Cui J, Chen Y, Lang J, Li C, Yan Y, Dai J. Capillarity-driven both light and heavy oil/water separation via combined system of opposite superwetting meshes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
61
|
Shah AA, Cho YH, Choi HG, Nam SE, Kim JF, Kim Y, Park YI, Park H. Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
62
|
Mu Y, Zhu K, Luan J, Zhang S, Zhang C, Na R, Yang Y, Zhang X, Wang G. Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Dai Y, Dai S, Xie X, Ning J. Immobilizing argatroban and mPEG-NH2 on a polyethersulfone membrane surface to prepare an effective nonthrombogenic biointerface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:608-628. [PMID: 30907698 DOI: 10.1080/09205063.2019.1595891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yanling Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siyuan Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaohui Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianping Ning
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
64
|
Ouyang Z, Huang Z, Tang X, Xiong C, Tang M, Lu Y. A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
65
|
Cui J, Zhou Z, Xie A, Wang Q, Liu S, Lang J, Li C, Yan Y, Dai J. Facile preparation of grass-like structured NiCo-LDH/PVDF composite membrane for efficient oil–water emulsion separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.064] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
66
|
Gao J, Zhang M, Wang J, Liu G, Liu H, Jiang Y. Bioinspired Modification of Layer-Stacked Molybdenum Disulfide (MoS 2) Membranes for Enhanced Nanofiltration Performance. ACS OMEGA 2019; 4:4012-4022. [PMID: 31459610 PMCID: PMC6648815 DOI: 10.1021/acsomega.9b00155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 05/12/2023]
Abstract
Inorganic nanofiltration membranes with high flux are urgently needed in water purification processes. Herein, polydopamine (PDA)-modified layer-stacked molybdenum disulfide (MoS2) nanofiltration membranes (NFMs) were fabricated via a pressure-assisted self-assembly process. The separation performance of the as-prepared membranes with various MoS2 loadings at different dopamine polymerization times was evaluated. The pure water permeance of PDA-modified MoS2 NFMs, with MoS2 loading of 0.1103 mg/cm2 at 4 h modification, could reach 135.3 LMH/bar. The rejection toward methylene blue could reach 100% with molecular weight cutoff approximately 671 Da and a high permeability of salts. Furthermore, the resultant membrane also exhibited a satisfactory long-term stability toward dye solution and antifouling property toward bovine serum albumin. This work may give inspiration to the development of inorganic membranes with high performance, especially high pure water permeance, for water-related processes.
Collapse
Affiliation(s)
- Jing Gao
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Miyu Zhang
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering and Energy, Zhengzhou University, 100 Science Avenue, Zhengzhou City, Henan Province 450001, P. R. China
| | - Guanhua Liu
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Hengrao Liu
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Yanjun Jiang
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| |
Collapse
|
67
|
Ghorbani F, Zamanian A, Aidun A. Bioinspired polydopamine coating‐assisted electrospun polyurethane‐graphene oxide nanofibers for bone tissue engineering application. J Appl Polym Sci 2019. [DOI: 10.1002/app.47656] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical EngineeringTehran Science and Research Branch, Islamic Azad University Tehran Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
- Department of BiomaterialsAprin Advanced Technologies Development Company Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
- Department of BiomaterialsAprin Advanced Technologies Development Company Tehran Iran
| | - Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran Tehran Iran
- Tissues and Biomaterial Research Group (TBRG)Universal Scientific Education and Research Network (USERN) Tehran Iran
| |
Collapse
|
68
|
Solution Blown Nylon 6 Nanofibrous Membrane as Scaffold for Nanofiltration. Polymers (Basel) 2019; 11:polym11020364. [PMID: 30960348 PMCID: PMC6419378 DOI: 10.3390/polym11020364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, a nylon 6 nanofibrous membrane was prepared via solution blowing technology and followed hot-press as scaffold for nanofiltration. The structure and properties of the hot-pressed nylon 6 nanofibrous membrane (HNM) were studied the effect of hot-pressing parameters and areal densities. Then an ultra-thin polyamide (PA) active layer was prepared by interfacial polymerization on HNM. The effects of nanofibrous scaffolds on the surface properties of ultra-thin nanofiltration membranes and their filtration performance were studied. Results showed that the nylon 6 nanofibers prepared at a concentration of 15 wt % had a good morphology and diameter distribution and the nanofibers were stacked more tightly and significantly reduced in diameter after hot pressing at 180 °C under the pressure of 15 MPa for 10 s. When the porous scaffold was prepared, HNM with an areal density of 9.4 and 14.1 g/m2 has a better apparent structure, a smaller pore size, a higher porosity and a greater strength. At the same time, different areal densities of HNM have an important influence on the preparation and properties of nanofiltration membranes. With the increase of areal density, the uniformity of HNM increased while their surface roughness and pore size decreased, which is beneficial to the establishment of PA barrier layer. With areal density of 9.4 and 14.1 g/m2, the as-prepared nanofiltration membrane has a smoother surface and more outstanding filtration performance. The pure water flux is 13.1 L m−2 h−1 and the filtration efficiencies for NaCl and Na2SO4 are 81.3% and 85.1%, respectively.
Collapse
|
69
|
Dobosz KM, Kuo-LeBlanc CA, Emrick T, Schiffman JD. Antifouling Ultrafiltration Membranes with Retained Pore Size by Controlled Deposition of Zwitterionic Polymers and Poly(ethylene glycol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1872-1881. [PMID: 30145903 PMCID: PMC6363866 DOI: 10.1021/acs.langmuir.8b02184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate antifouling ultrafiltration membranes with retained selectivity and pure water flux through the controlled deposition of zwitterionic polymers and poly(ethylene glycol) (PEG). Molecules for polymerization were immobilized on the membrane's surface yet prevented from attaching to the membrane's pores due to a backflow of nitrogen (N2) gas achieved using an in-house constructed apparatus that we named the polymer prevention apparatus, or "PolyPrev". First, the operating parameters of the PolyPrev were optimized by investigating the polymerization of dopamine, which was selected due to its versatility in enabling further chemical reactions, published metrics for comparison, and its oxidative self-polymerization. Membrane characterization revealed that the polydopamine-modified membranes exhibited enhanced hydrophilicity; moreover, their size selectivity and pure water flux were statistically the same as those of the unmodified membranes. Because it is well documented that polydopamine coatings do not provide a long-lasting antifouling activity, poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC, Mn = 30 kDa) and succinimidyl-carboxymethyl-ester-terminated PEG ( Mn = 40 kDa) were codeposited while dopamine was polymerizing to generate antifouling membranes. Statistically, the molecular-weight cutoff of the polyMPC- and PEG-functionalized membranes synthesized in the PolyPrev was equivalent to that of the unmodified membranes, and the pure water flux of the PEG membranes was equivalent to that of the unmodified membranes. Notably, membranes prepared in the PolyPrev with polyMPC and PEG decreased bovine serum albumin fouling and Escherichia coli attachment. This study demonstrates that by restricting antifouling chemistries from attaching within the pores of membranes, we can generate high-performance, antifouling membranes appropriate for a wide range of water treatment applications without compromising intrinsic transport properties.
Collapse
Affiliation(s)
- Kerianne M. Dobosz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Christopher A. Kuo-LeBlanc
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Todd Emrick
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
70
|
Cui J, Zhou Z, Xie A, Liu S, Wang Q, Wu Y, Yan Y, Li C. Facile synthesis of degradable CA/CS imprinted membrane by hydrolysis polymerization for effective separation and recovery of Li+. Carbohydr Polym 2019; 205:492-499. [DOI: 10.1016/j.carbpol.2018.10.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 11/24/2022]
|
71
|
Wang C, Yin J, Wang R, Jiao T, Huang H, Zhou J, Zhang L, Peng Q. Facile Preparation of Self-Assembled Polydopamine-Modified Electrospun Fibers for Highly Effective Removal of Organic Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E116. [PMID: 30669378 PMCID: PMC6358777 DOI: 10.3390/nano9010116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/26/2022]
Abstract
Polydopamine (PDA) nanoparticles can be used as an adsorbent with excellent adsorption capacity. However, nanosized adsorbents are prone to aggregation and thus are severely limited in the field of adsorption. In order to solve this problem, we utilized polydopamine in-situ oxidation self-polymerization on the surface of polycaprolactone (PCL)/polyethylene oxide (PEO) electrospun fiber after solvent vapor annealing (SVA) treatment, and successfully designed and prepared a PCL/PEO@PDA composite membrane. The SVA treatment regulated the microscopic morphology of smooth PCL/PEO electrospun fibers that exhibited a pleated microstructure, increasing the specific surface area, and providing abundant active sites for the anchoring of PDA nanoparticles. The PCL/PEO@PDA composite obtained by chemical modification of PDA demonstrated numerous active sites for the adsorption of methylene (MB) and methyl orange (MO). In addition, the PCL/PEO@PDA composites were reusable several times with good reutilization as adsorbents. Therefore, we have developed a highly efficient and non-agglomerated dye adsorbent that exhibits potential large-scale application in dye removal and wastewater purification.
Collapse
Affiliation(s)
- Cuiru Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Juanjuan Yin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
72
|
Xia W, Xie M, Feng X, Chen L, Zhao Y. Surface Modification of Poly(vinylidene fluoride) Ultrafiltration Membranes with Chitosan for Anti-Fouling and Antibacterial Performance. Macromol Res 2019. [DOI: 10.1007/s13233-019-7019-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.03.054] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
74
|
Sri Abirami Saraswathi MS, Rana D, Alwarappan S, Gowrishankar S, Kanimozhi P, Nagendran A. Cellulose acetate ultrafiltration membranes customized with bio-inspired polydopamine coating and in situ immobilization of silver nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c8nj04511a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the surface modification of cellulose acetate membranes with self-polymerized dopamine and in situ immobilization of AgNPs.
Collapse
Affiliation(s)
| | - Dipak Rana
- Department of Chemical and Biological Engineering
- University of Ottawa
- Ottawa
- Canada
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
- Karaikudi – 630003
- India
| | | | - Paramasivam Kanimozhi
- Polymeric Materials Research Lab
- PG & Research Department of Chemistry
- Alagappa Government Arts College
- Karaikudi – 630 003
- India
| | - Alagumalai Nagendran
- Polymeric Materials Research Lab
- PG & Research Department of Chemistry
- Alagappa Government Arts College
- Karaikudi – 630 003
- India
| |
Collapse
|
75
|
Aged PVDF and PSF ultrafiltration membranes restored by functional polydopamine for adjustable pore sizes and fouling control. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
76
|
Zhang K, Wang Y, Sun T, Wang B, Zhang H. Bioinspired Surface Functionalization for Improving Osteogenesis of Electrospun Polycaprolactone Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15544-15550. [PMID: 30418771 DOI: 10.1021/acs.langmuir.8b03357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrospun nanofibers, with a typical interconnected porous structure mimicking the extracellular matrix, are commonly used in bone tissue engineering. However, to the best of our knowledge, few studies have been reported to investigate the enhancement of osteogenesis capability of electrospun polycaprolactone (PCL) nanofibers based on bioinspired surface functionalization. In this study, a universal and versatile approach was proposed to spontaneously modify the electrospun PCL nanofibers with bioactive nano-hydroxyapatite (nHA), using dopamine as an effective bioadhesive agent. The evaluation of scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and surface wettability indicated that nHA was successfully coated onto electrospun nanofibers (PCL-PDHA). Furthermore, in vitro cell experiment including adhesion, proliferation, and osteogenic capability and in vitro biomineralization test in simulated body fluid revealed that the PCL-PDHA nanofibers were biocompatible to MC3T3-E1 cells, and the osteogenesis and biomineralization capabilities were greatly improved in comparison with that of PCL nanofibers. In summary, the facile bioinspired surface functionalization method introduced in the present study, due to its universality and versatility, not only can be used to improve osteogenesis of electrospun nanofibers but also can be regarded as an avenue to achieve other predesigned purposes in biomedical engineering.
Collapse
Affiliation(s)
- Kuan Zhang
- Institute of Chemical Engineering, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yi Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Tao Sun
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Bo Wang
- Institute of Chemical Engineering, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
77
|
Tahroudi ZM, Razmjou A, Bagherian M, Asadnia M. Polydopamine surface modification with UV-shielding effect using KMnO4 as an efficient oxidizing agent. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
78
|
Zhang H, Bao C, Yang J. Sealing of through-holes on hollow glass bubbles with graphene oxide. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
79
|
Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.07.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Otitoju T, Saari R, Ahmad A. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
81
|
DeStefano A, Yin J, Kraus TJ, Parkinson BA, Li-Oakey KD. Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition. ACS OMEGA 2018; 3:10493-10502. [PMID: 31459174 PMCID: PMC6645287 DOI: 10.1021/acsomega.8b00864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 06/10/2023]
Abstract
Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. However, fundamental understanding of the interaction between PDA and nanoparticles is still limited, especially the impact of PDA on nanoparticle nucleation and growth. In this work, PDA is used to generate functional bonding sites for depositing titanium dioxide (TiO2) via atomic layer deposition (ALD) onto a nanoporous polymer substrate for a range of ALD cycles (<100). The resulting hybrid membranes are systematically characterized using water contact angle, scanning electron microscopy, atomic force microscopy, nitrogen adsorption and desorption, and X-ray photoelectron spectroscopy (XPS). An intriguing nonlinear relationship was observed between the number of ALD cycles and changes in surface properties (water contact angle and surface roughness). Together with XPS study, those changes in surface properties were exploited to probe the nanoparticle nucleation and growth process on complex PDA-coated porous polymer substrates. Molecular level understanding of inorganic and polymer material interfaces will shed light on fine-tuning nanoparticle-modified polymeric membrane materials.
Collapse
Affiliation(s)
- Audra DeStefano
- Department
of Chemical Engineering and Chemistry Department, University
of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071, United
States
| | - Jiashi Yin
- Department
of Chemical Engineering and Chemistry Department, University
of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071, United
States
| | - Theodore J. Kraus
- Department
of Chemical Engineering and Chemistry Department, University
of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071, United
States
| | - Bruce A. Parkinson
- Department
of Chemical Engineering and Chemistry Department, University
of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071, United
States
| | - Katie Dongmei Li-Oakey
- Department
of Chemical Engineering and Chemistry Department, University
of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071, United
States
| |
Collapse
|
82
|
Anti-thrombogenicity and permeability of polyethersulfone hollow fiber membrane with sulfonated alginate toward blood purification. Int J Biol Macromol 2018; 116:364-377. [DOI: 10.1016/j.ijbiomac.2018.04.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 11/18/2022]
|
83
|
Xing J, Wang Q, He T, Zhou Z, Chen D, Yi X, Wang Z, Wang R, Tan G, Yu P, Ning C. Polydopamine-Assisted Immobilization of Copper Ions onto Hemodialysis Membranes for Antimicrobial. ACS APPLIED BIO MATERIALS 2018; 1:1236-1243. [DOI: 10.1021/acsabm.8b00106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Xing
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qiyou Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Tianrui He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhengnan Zhou
- Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xin Yi
- Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Research institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | | | - Peng Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
84
|
Mansour Sharifloo M, Ghaee A, Salimi E, Sadatnia B, Mansourpour Z. Hemocompatibility and antifouling properties of PEGMA grafted Polyethersulfone/aminated halloysite nanotubes mixed matrix membrane. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1493688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mehdi Mansour Sharifloo
- Department of life science engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of life science engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Esmaeil Salimi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Semnan, Iran
| | - Behrouz Sadatnia
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Mansourpour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
85
|
Zouaghi S, Barry ME, Bellayer S, Lyskawa J, André C, Delaplace G, Grunlan MA, Jimenez M. Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel. BIOFOULING 2018; 34:769-783. [PMID: 30332896 DOI: 10.1080/08927014.2018.1502275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Pasteurization of dairy products is plagued by fouling, which induces significant economic, environmental and microbiological safety concerns. Herein, an amphiphilic silicone coating was evaluated for its efficacy against fouling by a model dairy fluid in a pilot pasteurizer and against foodborne bacterial adhesion. The coating was formed by modifying an RTV silicone with a PEO-silane amphiphile comprised of a PEO segment and flexible siloxane tether ([(EtO)3Si-(CH2)2-oligodimethylsiloxanem-block-(OCH2CH2)n-OCH3]). Contact angle analysis of the coating revealed that the PEO segments were able to migrate to the aqueous interface. The PEO-modified silicone coating applied to pretreated stainless steel was exceptionally resistant to fouling. After five cycles of pasteurization, these coated substrata were subjected to a standard clean-in-place process and exhibited a minor reduction in fouling resistance in subsequent tests. However, the lack of fouling prior to cleaning indicates that harsh cleaning is not necessary. PEO-modified silicone coatings also showed exceptional resistance to adhesion by foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Sawsen Zouaghi
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Mikayla E Barry
- b Biomedical Engineering, Materials Science & Engineering , Texas A&M University , College Station , Texas , USA
| | - Séverine Bellayer
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Joël Lyskawa
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Christophe André
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
- c Hautes Etudes d'Ingénieur , Lille , France
| | - Guillaume Delaplace
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
- d INRA (Institut National de la Recherche Agronomique) , Villeneuve d'Ascq , France
| | - Melissa A Grunlan
- b Biomedical Engineering, Materials Science & Engineering , Texas A&M University , College Station , Texas , USA
| | - Maude Jimenez
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| |
Collapse
|
86
|
Zhu J, Tsehaye MT, Wang J, Uliana A, Tian M, Yuan S, Li J, Zhang Y, Volodin A, Van der Bruggen B. A rapid deposition of polydopamine coatings induced by iron (III) chloride/hydrogen peroxide for loose nanofiltration. J Colloid Interface Sci 2018; 523:86-97. [DOI: 10.1016/j.jcis.2018.03.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
|
87
|
A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications: oil/water separation and cationic dyes removal. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
88
|
He M, Wang Q, Zhao W, Zhao C. A substrate-independent ultrathin hydrogel film as an antifouling and antibacterial layer for a microfiltration membrane anchored via a layer-by-layer thiol-ene click reaction. J Mater Chem B 2018; 6:3904-3913. [PMID: 32254318 DOI: 10.1039/c8tb00937f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, a substrate-independent ultrathin hydrogel film was constructed on a microfiltration membrane through layer-by-layer (LbL) thiol-ene click chemistry to improve the antifouling and antibacterial properties. In our strategy, ene-functionalized dopamine was synthesized and coated onto a model substrate (polyethersulfone membrane) to introduce double bonds as anchoring sites for the hydrogel film; thiol-functionalized poly[oligo(ethylene glycol)mercaptosuccinate] (POEGMS) and ene-functionalized P(SBMA-co-AA) were synthesized as hydrogel precursors. The membrane was alternately immersed in the precursor solutions to form the ultrathin hydrogel film. Finally, Ag nanoparticles (AgNPs) were loaded into the hydrogel layer by adsorption and reduction procedures. By coating the hydrogel films, the loaded AgNPs could kill almost all the contacting bacteria and the bacteria in the surroundings, and the enhanced hydrophilicity of the modified membrane could effectively prevent the attachment of the bacteria. The membrane flux showed no significant decrease, the rejection ratio of BSA increased from 51% to 89%, and the FRR increased from 36% to 90%. Moreover, the improvement of the hemocompatibility was confirmed by the decline in the plasma protein adsorption, prolonged clotting times, low hemolysis ratio, and prevention of platelet adhesion. Compared with that of other techniques for attaching hydrogel films, the main advantage of the current technique is that the hydrogel film thickness could be well controlled within the nanometer range; thus, it could significantly improve the antifouling and antibacterial properties of the membrane, but without compromising its permeability. Another advantage is that it is versatile for various substrates such as PVDF, PAN, and CA. This study opens up a facile and versatile route for anchoring ultrathin hydrogel film onto polymeric membranes to achieve excellent antifouling, antibacterial and hemocompatible properties.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | |
Collapse
|
89
|
Jiang B, Zhang N, Wang B, Yang N, Huang Z, Yang H, Shu Z. Deep eutectic solvent as novel additive for PES membrane with improved performance. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
90
|
Wu H, Liu Y, Huang J, Mao L, Chen J, Li M. Preparation and characterization of antifouling and antibacterial polysulfone ultrafiltration membranes incorporated with a silver-polydopamine nanohybrid. J Appl Polym Sci 2018. [DOI: 10.1002/app.46430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huiqing Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
- State Key Laboratory of Molecular Engineering of Polymers; Fudan University; Shanghai 200433 China
| | - Yuejun Liu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
| | - Jing Huang
- Department of Chemical Engineering; University of Washington; Seattle Washington 98105
| | - Long Mao
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
| | - Jianhong Chen
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
| | - Meng Li
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems (Ministry of Education of China), School of Power Engineering; Chongqing University; Chongqing 400044 China
| |
Collapse
|
91
|
Cui J, Zhang Y, Wang Y, Ding J, Yu P, Yan Y, Li C, Zhou Z. Fabrication of lithium ion imprinted hybrid membranes with antifouling performance for selective recovery of lithium. NEW J CHEM 2018. [DOI: 10.1039/c7nj03152a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The LIHMs showed a distinctive adsorption capacity (27.10 mg g−1) and permselectivity (βK/Li = 5.3780, βCa/Li = 21.9402, βMg/Li = 15.5620) for Li+, which resulted from the effect of the special imprinted sites.
Collapse
Affiliation(s)
- Jiuyun Cui
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yufeng Zhang
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yu Wang
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Jiyang Ding
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Penghu Yu
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Zhiping Zhou
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|
92
|
Bioinspired Synthesis of Mesoporous Gold-silica Hybrid Microspheres as Recyclable Colloidal SERS Substrates. Sci Rep 2017; 7:14728. [PMID: 29116214 PMCID: PMC5676677 DOI: 10.1038/s41598-017-15225-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/23/2017] [Indexed: 11/08/2022] Open
Abstract
Noble metal nanostructures have been intensively investigated as active substrates for surface-enhanced Raman spectroscopy (SERS) from visible to near-IR wavelengths. However, metal nanoparticle-based SERS analysis in solutions is very challenging due to uncontrollable and irreproducible colloid aggregation. Here we report the templated synthesis of porous gold-silica hybrid microspheres and their application as reusable colloidal SERS substrates. Mesoporous polymer microspheres are synthesized and used as templates for the synthesis of non-aggregated gold nanoparticles, followed by polydopamine-mediated silicification to fabricate mesoporous gold-silica hybrid microspheres. The mesoporous hybrid particles detect crystal violet in the order of 10-8 M and provide the structural durability of the immobilized gold nanoparticles, allowing them to be recycled for repeated SERS analyses for analytes in a solution with the similar sensitivity. This work suggests that the mesoporous gold-silica hybrid microspheres are attractive SERS substrates in terms of reusability, sensitivity, and stability.
Collapse
|
93
|
Alenazi NA, Hussein MA, Alamry KA, Asiri AM. Modified polyether-sulfone membrane: a mini review. Des Monomers Polym 2017; 20:532-546. [PMID: 29491825 PMCID: PMC5812116 DOI: 10.1080/15685551.2017.1398208] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/14/2017] [Indexed: 11/17/2022] Open
Abstract
Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.
Collapse
Affiliation(s)
- Noof A Alenazi
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A Hussein
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Polymer Chemistry Lab., Faculty of Science, Chemistry Department, Assiut University, Assiut, Egypt
| | - Khalid A Alamry
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
94
|
Chew NGP, Zhao S, Malde C, Wang R. Superoleophobic surface modification for robust membrane distillation performance. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.089] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
95
|
Elangovan M, Dharmalingam S. Effect of polydopamine on quaternized poly(ether ether ketone) for antibiofouling anion exchange membrane in microbial fuel cell. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
96
|
Investigation of the Hydrodynamic Flow Pattern in Tubular Membrane Devices. CHEMICAL AND PETROLEUM ENGINEERING 2017. [DOI: 10.1007/s10556-017-0328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
97
|
Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.03.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
98
|
Urper GM, Sengur-Tasdemir R, Turken T, Ates Genceli E, Tarabara VV, Koyuncu I. Hollow fiber nanofiltration membranes: A comparative review of interfacial polymerization and phase inversion fabrication methods. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1321668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gulsum Melike Urper
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Reyhan Sengur-Tasdemir
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| | - Turker Turken
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Esra Ates Genceli
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Volodymyr V. Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ismail Koyuncu
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
99
|
Vaselbehagh M, Karkhanechi H, Takagi R, Matsuyama H. Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
100
|
Song H, Yu H, Zhu L, Xue L, Wu D, Chen H. Durable hydrophilic surface modification for PTFE hollow fiber membranes. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|