51
|
Yan C, Wan WD, Wang RN, Lai TN, Ali W, He SS, Liu S, Li X, Nasir ZA, Coulon F. Quantitative health risk assessment of microbial hazards from water sources for community and self-supply drinking water systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133324. [PMID: 38150760 DOI: 10.1016/j.jhazmat.2023.133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In low and medium income countries (LMIC) drinking water sources (wells and boreholes) often contain a high number of pathogenic microorganisms, that can pose significant human and environmental health risks. In this study, a quantitative microbial risk assessment approach based on existing literature was conducted to evaluate and compare the quantitative health risks associated with different age groups using various drinking water supply systems. Results showed that both community-supply and self-supply modes exhibit similar levels of risk. However, the self-supply water source consistently showed higher risks compared to the community-supply one. Borehole water was found to be a more suitable option than well water, consistently showing between 5 and 8 lower health risks for E. coli and fecal coliform levels, respectively. The sensitivity analysis further showed the importance of prioritizing the reduction of E. coli concentration in well water and fecal coliform concentration in borehole water. This study offers a fresh perception on quantifying the impact of exposure concentration and age groups, shedding light on how they affect environmental health risks. These findings provide valuable insights for stakeholders involved in the management and protection of water sources.
Collapse
Affiliation(s)
- Cheng Yan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Wei-di Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Rui-Ning Wang
- Jiangsu Yancheng Port Holding Group Co., LTD., Yancheng 320900, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, PR China
| | - Sai Liu
- CITIC Treated Water into River Engineering Investment Co., Ltd., Wuhan 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
52
|
Alipour E, Aghapour AA, Bahrami Asl F. Concentration, spatial distribution, and non-carcinogenic risk assessment of arsenic, cadmium, chromium, and lead in drinking water in rural areas of eight cities of West Azarbaijan province, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20222-20233. [PMID: 38369658 DOI: 10.1007/s11356-024-32433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Exposure to heavy metals through drinking water can cause significant adverse health effects. The aim of the present study was to investigate the concentration, spatial distribution, and assessment of non-carcinogenic risk attributed to exposure to arsenic (As), chromium (Cr), cadmium (Cd), and lead (Pb) in rural areas of eight cities of the West Azerbaijan province of Iran. Eighty-five water samples were taken from randomly selected drinking water wells in the rural areas, and the concentration of the heavy metals was measured by using standard methods. The concentration distribution maps were drawn, and the non-carcinogenic health risks for ingestion and dermal exposure pathways were calculated in four age groups (including infants, children, teenagers, and adults). According to the obtained results, arsenic is considered as the most worrying pollutant among the investigated heavy metals. The maximum measured concentration for arsenic was 371.9 μg/L, which is 37 times the maximum permissible limit. The results of the health risk assessment illustrate that exposure to heavy metals via dermal contact do not pose significant non-carcinogenic risks. However, the calculated non-carcinogenic risks for oral exposure to arsenic were very high and concerning. The highest hazard quotient for oral exposure to arsenic was related to rural of city G (82.64). It is recommended to take the necessary measures as soon as possible regarding the supply of safe drinking water in the studied areas.
Collapse
Affiliation(s)
- Elnaz Alipour
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Ahmad Aghapour
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Farshad Bahrami Asl
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
53
|
Chuang YS, Berekute AK, Hsu HY, Wei HS, Gong WC, Hsu YY, Tsai CJ, Yu KP. Assessment of emissions and exposure in 3D printing workplaces in Taiwan. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:270-286. [PMID: 38451632 DOI: 10.1080/15459624.2024.2313655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Three-dimensional (3D) printing is an emerging and booming industry in Taiwan. Compared to traditional manufacturing, 3D printing has various advantages, such as advanced customization, additive manufacturing, reduced mold opening time, and reduced consumption of precursors. In this study, the real-time monitoring of particulate matter (PM) and total volatile organic compound (TVOC) emissions from various filaments is investigated using fused deposition modeling with material extrusion technology, a liquid-crystal display, a stereolithography apparatus based on vat photopolymerization technology, and binder jetting for occupational settings. An exposure assessment for nearby workers using the 3D printing process was performed, and improvement measures were recommended. Nine 3D printing fields were measured. The generation rate of ultrafine particles ranged from 1.19 × 1010 to 4.90 × 1012 #/min, and the geometric mean particle size ranged from 30.91 to 55.50 nm. The average concentration of ultrafine particles ranged from 2.31 × 103 to 7.36 × 104 #/cm3, and the PM2.5 and PM10 concentrations in each field ranged from 0.74 ± 0.27 to 12.46 ± 5.61 μg/m3 and from 2.39 ± 0.60 to 30.65 ± 21.26 μg/m3, respectively. The TVOC concentration ranged from 0.127 ± 0.012 to 1.567 ± 0.172 ppm. The respiratory deposition (RDUFPs) dose ranged from 2.02 × 1013 to 5.54 × 1014 nm2/day. Depending on the operating conditions, appropriate control and protective measures should be employed to protect workers' health.
Collapse
Affiliation(s)
- Yung-Sheng Chuang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Abiyu Kerebo Berekute
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - Hsuan-Yu Hsu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ho-Sheng Wei
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Cheng Gong
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - Ya-Yuan Hsu
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
54
|
Khodadadi R, Sohrabi M, Loppi S, Tahmasebi Birgani Y, Babaei AA, Neisi A, Baboli Z, Dastoorpoor M, Goudarzi G. Atmospheric pollution by potentially toxic elements: measurement and risk assessment using lichen transplants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1270-1283. [PMID: 36787704 DOI: 10.1080/09603123.2023.2174256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The lichen Usnea articulata collected from an unpolluted area was exposed for 6 months at 26 sites for the sample chosenusing a stratified random design, and the content of potentially toxic elements (PTEs) including As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sn, V, and Zn, was assessed using ICP-MS. The health risk for both adults and children was then calculated using the PTEs concentrations. The results showed that despite the hostile urban conditions, transplanted lichens depicted clear deposition patterns of airborne PTEs, mostly associated with industrial sites, where As and other elements showed remarkably high values. The cumulative hazard index was below the risk threshold, both for adults and children. For the entire population (particularly children) residing in areas surrounding industrial sites, As and Cr appeared to be potentially carcinogenic elements.
Collapse
Affiliation(s)
- Ruhollah Khodadadi
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sohrabi
- The Museum of Iranian Lichens, Iranian Research Organization for Science and Technology, Tehran, Iran
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Yaser Tahmasebi Birgani
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolkazem Neisi
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeynab Baboli
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Dastoorpoor
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Iranian Scientific Association of Clean Air, Tehran, Iran
| |
Collapse
|
55
|
Moradnia M, Attar HM, Hajizadeh Y, Lundh T, Salari M, Darvishmotevalli M. Assessing the carcinogenic and non-carcinogenic health risks of metals in the drinking water of Isfahan, Iran. Sci Rep 2024; 14:5029. [PMID: 38424133 PMCID: PMC10904872 DOI: 10.1038/s41598-024-55615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Metals are significant contributors to water pollution, posing serious threats to human health. This study aims to assess the carcinogenic and non-carcinogenic health risks associated with metals in Isfahan drinking water. Eighty water samples were randomly collected from the city's distribution network between January and March 2020-2021. Inductively coupled plasma Optical Emission Spectrometry was used to measure toxic metals, namely Pb, Cr, Cd, Ni, and As concentrations. Results revealed that the mean concentration of Ni (70.03 µg/L) exceeded the WHO reference value (70 µg/L), while the other metals were below the standard values. The average chronic daily intake order of toxic metals was Ni > Cr > Pb > As > Cd. Non-carcinogenic risk assessment through hazard quotient (HQ) and hazard index (HI) demonstrated that both THI for adults (HQingestion + HQdermal = 4.02E-03) and THI for children (HIingestion + HIdermal = 3.83E-03) were below the acceptable limit (less than 1). This indicated no non-carcinogenic risk to residents through water ingestion or dermal exposure. However, findings indicated that the ingestion route was the primary exposure pathway, with HQ values for ingestion exceeding HQ values for dermal adsorption. Carcinogenic risk assessment showed that the risk associated with As metal exceeded the acceptable limit (1 × 10-6). Therefore, implementing treatment improvement programs and appropriate control measures is essential to safeguard the health of Isfahan City residents.
Collapse
Affiliation(s)
- Maryam Moradnia
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hossein Movahedian Attar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaghoub Hajizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, University of Medical Sciences, Isfahan, Iran
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehdi Salari
- Department of Environmental Health Engineering, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Darvishmotevalli
- Research Center for Health, Safety, and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran.
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
56
|
Aryan Y, Pon T, Panneerselvam B, Dikshit AK. A comprehensive review of human health risks of arsenic and fluoride contamination of groundwater in the South Asia region. JOURNAL OF WATER AND HEALTH 2024; 22:235-267. [PMID: 38421620 PMCID: wh_2023_082 DOI: 10.2166/wh.2023.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The present study found that ∼80 million people in India, ∼60 million people in Pakistan, ∼70 million people in Bangladesh, and ∼3 million people in Nepal are exposed to arsenic groundwater contamination above 10 μg/L, while Sri Lanka remains moderately affected. In the case of fluoride contamination, ∼120 million in India, >2 million in Pakistan, and ∼0.5 million in Sri Lanka are exposed to the risk of fluoride above 1.5 mg/L, while Bangladesh and Nepal are mildly affected. The hazard quotient (HQ) for arsenic varied from 0 to 822 in India, 0 to 33 in Pakistan, 0 to 1,051 in Bangladesh, 0 to 582 in Nepal, and 0 to 89 in Sri Lanka. The cancer risk of arsenic varied from 0 to 1.64 × 1-1 in India, 0 to 1.07 × 10-1 in Pakistan, 0 to 2.10 × 10-1 in Bangladesh, 0 to 1.16 × 10-1 in Nepal, and 0 to 1.78 × 10-2 in Sri Lanka. In the case of fluoride, the HQ ranged from 0 to 21 in India, 0 to 33 in Pakistan, 0 to 18 in Bangladesh, 0 to 10 in Nepal, and 0 to 10 in Sri Lanka. Arsenic and fluoride have adverse effects on animals, resulting in chemical poisoning and skeletal fluorosis. Adsorption and membrane filtration have demonstrated outstanding treatment outcomes.
Collapse
Affiliation(s)
- Yash Aryan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India E-mail:
| | - Thambidurai Pon
- Department of Coastal Disaster Management, School of Physical, Chemical and Applied Sciences, Pondicherry University, Port Blair Campus - 744112, Andaman and Nicobar Islands, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anil Kumar Dikshit
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
57
|
Kundu D, Dutta D, Joseph A, Jana A, Samanta P, Bhakta JN, Alreshidi MA. Safeguarding drinking water: A brief insight on characteristics, treatments and risk assessment of contamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:180. [PMID: 38244090 DOI: 10.1007/s10661-024-12311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Water pollution stands as a critical worldwide concern, bearing extensive repercussions that extend to human health and the natural ecosystem. The sources of water pollution can be diverse, arising from natural processes and human activities and the pollutants may range from chemical and biological agents to physical and radiological contaminants. The contamination of water disrupts the natural functioning of the system, leading to both immediate and prolonged health problems. Various technologies and procedures, ranging from conventional to advanced, have been developed to eliminate water impurities, with the choice depending on the type and level of contamination. Assessing risks is a crucial element in guaranteeing the safety of drinking water. Till now, research is continuing the removal of contaminates for the sake of supplying safe drinking water. The study examined physical, inorganic, organic, biological and radiological contaminants in drinking water. It looked at where these contaminants come from, their characteristics, the impact they have and successful methods used in real-world situations to clean the contaminated water. Risk assessment methodologies associated with the use of unsafe drinking water as future directives are also taken into consideration in the present study for the benefit of public concern. The manuscript introduces a comprehensive study on water pollution, focusing on assessing and mitigating risks associated with physical, inorganic, organic, biological and radiological contaminants in drinking water, with a novel emphasis on future directives and sustainable solutions for public safety.
Collapse
Affiliation(s)
- Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India.
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Ankan Jana
- Malaviya National Institute of Technology, Jaipur, Rajasthan, 302 017, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, Jalpaiguri, 735 210, India
| | - Jatindra Nath Bhakta
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, 741 235, India
| | | |
Collapse
|
58
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
59
|
Islam N, Zamir R, Faruque MO. Health Risk Assessment of Metals in Antidiabetic Herbal Preparations: A Safety Screening. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:6507185. [PMID: 39145043 PMCID: PMC11324365 DOI: 10.1155/2024/6507185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 08/16/2024]
Abstract
The present study evaluates the human health risk of metals in locally consumed herbal preparations used to treat diabetes. Atomic absorption spectroscopy (AAS) was used after microwave-assisted digestion to mineralize the samples. Toxic metal assessment was done by adopting mathematical modeling for carcinogenic and noncarcinogenic risks in the exposed population and comparing the raw results with maximum residue limits (MRLs) set by regulatory authorities. Hazard quotient (HQ) values for Fe, Hg, Cu, Pb, and Zn were recorded above 1. Noncarcinogenic health risks remain in 29% of samples for Fe, 67% of samples for Hg, 17% of samples for Cu, 33% of samples for Pb, and 4% of samples for Zn. Hazard index (HI) values in 33% of samples were above 1. Carcinogenic risks for Pb, Cr, Cd, and Ni were higher than the acceptable limit (1 × 10-6). Carcinogenic health risks exist in 54% of samples for Pb, 58% of samples for Cr, 46% of samples for Cd, and 58% of samples for Ni. MRLs for metals were crossed in samples in varying degrees. This is a harrowing account and may put public health safety at risk. Considering these facts, there should be more investigation into toxic metals in other frequently marketed herbal drugs in the antidiabetic and other therapeutic classes. Pre- and postmarket monitoring strategies for the preparations should also be in place to ensure safe consumption.
Collapse
Affiliation(s)
- Nazmul Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of General Educational Development, Daffodil International University, Dhaka, Bangladesh
| | - Rausan Zamir
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
60
|
Jolaosho TL, Elegbede IO, Ndimele PE, Falebita TE, Abolaji OY, Oladipupo IO, Ademuyiwa FE, Mustapha AA, Oresanya ZO, Isaac OO. Occurrence, distribution, source apportionment, ecological and health risk assessment of heavy metals in water, sediment, fish and prawn from Ojo River in Lagos, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:109. [PMID: 38172417 DOI: 10.1007/s10661-023-12148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
The study investigates the occurrence and bioaccumulation of heavy metals in water, sediment, fish, and prawn from the Ojo River with a view to identify the source of origin and the associated ecological and human health risks. The result shows that heavy metal concentrations in water [As = 0.010, Cd = 0.001, Cr = 0.041, Cu = 0.019, Co = 0.050, Fe = 0.099, Pb = 0.006, Ni = 0.003, and Zn = 0.452(mg/L)] were within the acceptable limits. The heavy metals in the sediment [As = 0.050, Cd = 0.287, Cr = 0.509, Cu = 0.207, Co = 0.086, Fe = 33.093, Pb = 0.548, Ni = 0.153 and Zn = 4.249 (mg/kg)] were within their respective background levels or earth's crust and the TEL and PEL standard limits. The bioaccumulation of heavy metals in fish and prawn tissues are in this hierarchical form: Fe > Zn > Cu > Cr > Ni > Co > Pb > Ar > Cd and Fe > Zn > Cu > Cr > Pb > Ar > Ni > Co > Cd, respectively. The bioaccumulation factors of heavy metals in fish ranged from 0.893 - 16.611 and 1.056 - 49.204 in prawn, which were higher than the biota-sedimentation factors (BSAF) values, inferring that the fish and prawns of this study ingested heavy metals highly from water column. The aggregated BSAF scores (fish = 5.584 and prawn = 9.137) showed that these organisms are good concentrators of heavy metals in sediments. The water quality index and other pollution indices (Single pollution index, Heavy metal assessment index, and Heavy metal pollution index) demonstrates slightly clean water, with a moderate level of contamination. The HI values of heavy metals in water, fish, and prawn were lower than 1, implying non-carcinogenic risk in children or adults. The ADD and EDI values of the metals were within their respective oral reference doses (RfD). The TCR values showed that exposure to water, either by ingestion or dermal absorption and the consumption of P. obscura and M. vollenhovenii from the Ojo River would not induce cancer risks in people, though As, Cr, Cd, and Pb showed carcinogenic potentials. The sediment contamination indices such as CF, mCd, EF, and Igeo showed a moderate level of pollution. The ecological risk values (NMPI, mCd = 0.068, PLI = 0.016, and R.I = 86.651) of heavy metals implies "no-moderate risk" except for Cd, which showed high risk. The ecotoxicological parameters, m-PEL-Q (0.024) and m-ERM-Q (0.016) denotes low contamination and no probability of acute toxicity. The CV analysis showed high dispersions and variabilities in the distributions of the heavy metals in water. Other source analyses (Pearson's correlation matrix, PCA, and HCA) showed that both natural processes and anthropogenic activities are responsible for the occurrence of heavy metals in water and sediment from the Ojo River.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Department of Fisheries, Lagos State University, Ojo, Lagos State, Nigeria.
- Department of Fisheries Technology, Lagos State Polytechnic, Ikorodu, Nigeria.
| | - Isa Olalekan Elegbede
- Department of Fisheries, Lagos State University, Ojo, Lagos State, Nigeria
- Department of Environmental Planning, University of Technology, Cottbus-Senftenberg, Brandenburg, Germany
| | | | - Taiwo Elijah Falebita
- Department of Zoology and Environmental Biology, Lagos State University, Ojo, Lagos State, Nigeria
| | | | | | | | | | | | | |
Collapse
|
61
|
Di Duca F, Montuori P, De Rosa E, De Simone B, Russo I, Nubi R, Triassi M. Assessing Heavy Metals in the Sele River Estuary: An Overview of Pollution Indices in Southern Italy. TOXICS 2024; 12:38. [PMID: 38250994 PMCID: PMC10819315 DOI: 10.3390/toxics12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Rapid industrialization, coupled with a historical lack of understanding in toxicology, has led in an increase in estuary pollution, frequently resulting in unexpected environmental situations. Therefore, the occurrence of heavy metals (HMs) constitutes a major environmental issue, posing a serious risk both to aquatic ecosystems and public health. This study aimed to evaluate the levels of eight HMs (As, Hg, Cd, Cr, Cu, Ni, Pb, and Zn) in water, suspended particles, and sediment near the Sele River estuary (Italy) in order to assess their environmental impacts on the sea and health risks for humans. The results revealed an increasing order of HM concentration according to the scheme suspended particulate matter (SPM) > sediment (SED) > dissolved phase (DP) and a moderate contamination status in sediment. The health risk assessment indicated that the non-carcinogenic risk was negligible. Carcinogenic risk, expressed as the incremental lifetime cancer risk (ILCR), was negligible for Cd and Ni and within tolerable limits for As, Pb, and Cr. The findings suggested that, even if there are currently no specific limits for chemical parameters in the transitional waters of Italy, monitoring systems should be implemented to determine pollution levels and implement effective steps to improve river water quality and reduce human health risks.
Collapse
Affiliation(s)
| | - Paolo Montuori
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy (R.N.)
| | | | | | | | | | | |
Collapse
|
62
|
Abdelaal A, Lasheen ESR, Mansour AM, Mohamed AW, Osman MR, Khaleal FM, Tahoon MA, Al-Mur BA. Assessing the ecological and health risks associated with heavy metal pollution levels in sediments of Big Giftun and Abu Minqar Islands, East Hurghada, Red Sea, Egypt. MARINE POLLUTION BULLETIN 2024; 198:115930. [PMID: 38101059 DOI: 10.1016/j.marpolbul.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
This study assessed pollution levels, ecological and health risk, and spatial distribution of eight heavy metals in sediments of Big Giftun and Abu Minqar Islands, Red Sea, Egypt. Iron (Fe) and manganese (Mn) had the highest contents in both island sediments, while cobalt (Co) in Big Giftun and cadmium (Cd) in Abu Mingar had the lowest values. The obtained PCA data exhibited positively significant loadings of Cd, Co, copper (Cu), nickel (Ni), and zinc (Zn) with 51.03 % of data variance in Big Giftun, and lead (Pb), Cu, Mn, Ni, Zn, and Fe (37.7 %) in Abu Minqar sediments. The contamination factor (CF) showed low contamination for all metals, except cadmium; Cd (moderate). The geo-accumulation index (Igeo) values showed uncontaminated (Cd, Co), moderately (Cu), extremely contaminated (Fe, Mn) (Igeo > 5) in Big Giftun, and uncontaminated (Cd), moderately to strongly contaminated (Cu, Ni), and extremely contaminated (Fe, Mn, and Zn) in Abu Minqar sediments. The pollution load index (PLI) values indicated baseline level of contamination (PLI <1), and degree of contamination (DC) indicated low degree of contamination (DC < n) in all sediments. Nemerow pollution index (NPI) showed unpolluted sediments in Abu Minqar (NPI ≤1) and slight pollution (1 < NPI ≤2) in Big Giftun. Cd showed moderate potential ecological risk (40 ≤ Eri < 80) in Big Giftun sediments. Potential ecological risk index (PERI) indicated low risk sediments (PERI <150). Mean effects range median quotient (MERMQ) indicated low-priority risk of toxicity (MERMQ ≤0.1), and toxic risk index (TRI) showed no toxic risk in all sediments (TRI <5). The modified hazard quotient (mHQ) indicated very low severity of contamination (mHQ <0.5). The hazard quotient (HQ) levels of all metals were below the safe value (HQ <1). The hazard index (HI) levels indicated that no chronic risks occur (HI <1). The total cancer risk (TCR) for all metals were below the safe level (1 × 10-4) of the United States Environmental Protection Agency (U.S. EPA) guidelines.
Collapse
Affiliation(s)
- Ahmed Abdelaal
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said 42522, Egypt.
| | - El Saeed R Lasheen
- Geology Department, Faculty of Science, Al-Azhar University, P.O. 11884, Cairo, Egypt
| | - Abbas M Mansour
- Geology Department, Faculty of Science, South Valley University, 83511 Qena, Egypt
| | - Ahmed W Mohamed
- National Institute of Oceanography and Fisheries, Hurghada Research Station, Red Sea Branch, 84511, Egypt
| | - Mohamed R Osman
- Geology Department, Faculty of Science, South Valley University, 83511 Qena, Egypt
| | | | - Mohamed A Tahoon
- Wadi El Gemal National Park, Egyptian Environmental Affairs Agency, 84721, Egypt
| | - Bandar A Al-Mur
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
63
|
Real MKH, Varol M, Rahman MS, Islam ARMT. Pollution status and ecological risks of metals in surface water of a coastal estuary and health risk assessment for recreational users. CHEMOSPHERE 2024; 348:140768. [PMID: 38000553 DOI: 10.1016/j.chemosphere.2023.140768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Since the areas close to the Sundarbans mangrove estuary, which is one of the most dynamic and productive ecosystems in the world, are very suitable for urban and industrial activities, the coastal areas of this ecosystem are constantly exposed to metal contamination. In this study, we analyzed the levels, spatial distributions, sources, pollution status, ecological risks, and health risks for recreational users of 16 metals in surface water collected from 18 sampling sites in the Sundarbans estuary. Considering the mean values of metals, Sr (2523 μg/L), Al (1731 μg/L), B (1692 μg/L) and Fe (1321 μg/L) were the most abundant metals in the coastal waters of the estuary, while Cd (0.977 μg/L), Ni (3.11 μg/L), Cu (5.98 μg/L) and Cr (9.77 μg/L) were the less abundant metals. All metals except Zr had the coefficient of variation (CV) values of over 35%, suggesting that other metals showed strong variation between sampling sites due to anthropogenic activities. Al, Fe and Pb levels of all sampling sites were above the limit values set for coastal and marine waters. Similarly, Pb levels of all sites exceeded the USEPA chronic criterion set for saltwater aquatic life. The results of pollution indices indicated that there was a serious metal pollution in almost all sampling sites. Low ecological risk (ER) at four sites, moderate ER at five sites and considerable ER at nine sites were recorded. Dual hierarchical clustering analysis grouped 16 metals into four clusters based on their potential sources and 18 sampling sites into three clusters based on their similar pollution characteristics. Health risk assessment results indicated that total hazard index (THI) values of all sites for recreational children were above the acceptable level of 1, indicating that water of all sites is not safe for health of children. However, THI values of all sites except ST8 (1.1) and ST11 (1.19) for recreational adults were below 1. Among the metals studied, Zr was found to be metal that contributes the most (75.89%) to total health risk in this coastal estuary. This finding reveals the necessity of monitoring of such less-studied metals such as Zr in the surface water of coastal estuaries. Carcinogenic risk values of As were within or below the acceptable range at all sites, indicating that carcinogenic risks would not be expected for recreational users.
Collapse
Affiliation(s)
- Md Khalid Hassan Real
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Memet Varol
- Malatya Turgut Özal University, Agriculture Faculty, Aquaculture Department, Malatya, Turkey.
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
64
|
Alsohaimi IH. Quantitative determination of trace elements in frozen and chilled chicken using ICP OES and related health risk assessment. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2196235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
65
|
Ezenwa IM, Omoigberale M, Abulu R, Biose E, Okpara B, Uyi O. Burial leakage: A human accustomed groundwater contaminant sources and health hazards study near cemeteries in Benin City, Nigeria. PLoS One 2023; 18:e0292008. [PMID: 38096312 PMCID: PMC10721053 DOI: 10.1371/journal.pone.0292008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 12/17/2023] Open
Abstract
This study was carried out to assess the levels of physico-chemical parameters that could be impacted by burial leakage and associated human health risks in Benin City, Nigeria. A total of thirty groundwater samples were collected from two cemeteries and analysed for pH, alkalinity, chloride, sulphate, nitrate, phosphate, ammonia- N, calcium, sodium, potassium, BOD₅, COD, Mn, Cd, Cu, Ni, Pb, Zn and Fe. The concentrations of the parameters were compared to national and international standards. The results revealed that the groundwater is highly acidic in nature. Principal component analysis (PCA) revealed that except for alkalinity, all other parameters characterised contributed significantly to various principal components (PC) with eigenvalues ≥ 1. Moreover, the significance of the PC depicted decomposition of the body corpse and associated burial materials. Water quality index (WQI), heavy metal evaluation index (HEI) and Nemerov pollution index (NI) indicated that groundwater from the study area is of poor quality, and highly contaminated by heavy metals. We determined the Chronic health risk through exposure by calculating the hazard quotient (HQ) and hazard index (HI), for both children and adults. For the oral exposure, approximately 33% of samples suggest the high category of chronic risk for children while the medium category was indicated for adults. We found that oral exposure showed relatively higher risk than dermal exposure, and chronic risk for children and adults ranged from low to negligible. However, the carcinogenic risk of Ni and Pb via oral exposure route suggests, very high risk for Ni and medium risk for Pb. In consideration that long term exposure to low concentrations of some heavy metals (including Pb, Cd, and Ni) could result in different manifestations of cancer, we recommend that residents of these areas should find an alternative source of water for drinking and other domestic uses.
Collapse
Affiliation(s)
- Ifeanyi Maxwell Ezenwa
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Michael Omoigberale
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Rachel Abulu
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Geography Department, N431 Rose Building, York University, Toronto, Canada
| | - Ekene Biose
- Department of Environmental Management and Toxicology, University of Benin, Benin City, Nigeria
| | - Benjamin Okpara
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Osariyekemwen Uyi
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Entomology, University of Georgia, Tifton, GA, United States of America
| |
Collapse
|
66
|
Vinci G, Prencipe SA, Pucinischi L, Perrotta F, Ruggeri M. Sustainability assessment of waste and wastewater recovery for edible mushroom production through an integrated nexus. A case study in Lazio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166044. [PMID: 37572921 DOI: 10.1016/j.scitotenv.2023.166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
With a global population of eight billion people, improving the sustainability and nutritional quality of diets has become critical. Mushrooms offer a promising solution because of their nutritional value and ability to be grown from agricultural residues, in line with the circular economy. This study, therefore, focuses on assessing the environmental compatibility of Agaricus bisporus mushroom production in Italy, the world's third largest per capita consumer, by using a Life Cycle Assessment (LCA) and an integrated Water-Energy-Nitrogen-Carbon-Food (WENCF) nexus analysis. The LCA results reveal that for a functional unit of 23,000 kg of the substrate, the production process emits 2.55 × 104 kg of CO2 eq. Sensitivity analysis shows that changing input quantities can reduce environmental impacts by about 5 %. In addition, one scenario evaluates the environmental effects of recycling resources by introducing water and ammonium sulfate from scratch instead of continuous recycling, along with water purification. The study shows that sustainable food production can mitigate resource depletion, climate-altering emissions, and intersectoral competition. Using agro residues for mushroom cultivation and optimizing resource management contribute to environmental sustainability. This approach could not only improve the resilience and efficiency of the food system but could also improve the sustainability of diets. In conclusion, this study highlights the importance of adopting sustainable and circular approaches in mushroom production to address global challenges related to food sustainability.
Collapse
Affiliation(s)
- G Vinci
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano, 9, 00161 Rome, Italy.
| | - S A Prencipe
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano, 9, 00161 Rome, Italy
| | - L Pucinischi
- Funghitex S.S. Società Agricola, Via Colle San Clemente 36, 00049 Velletri, RM, Italy
| | - F Perrotta
- Funghitex S.S. Società Agricola, Via Colle San Clemente 36, 00049 Velletri, RM, Italy
| | - M Ruggeri
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano, 9, 00161 Rome, Italy
| |
Collapse
|
67
|
Kharkwal V, Choudhary M, Bains K, Bishnoi M. Non-carcinogenic and carcinogenic health risk assessment of heavy metals in cooked beans and vegetables in Punjab, North India. Food Sci Nutr 2023; 11:7581-7593. [PMID: 38107137 PMCID: PMC10724614 DOI: 10.1002/fsn3.3678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/19/2023] Open
Abstract
Beans and vegetables are consumed with cereals in India on daily basis. The aim of the study was to assess carcinogenic and non-carcinogenic risk of heavy metals in cooked beans and cooked vegetables consumed by adults (18-59 years) and elderly (≥60 years) subjects from two districts (Ludhiana and Bathinda) of Punjab. A total of 150 households were selected from 30 different locations covering both rural and urban areas. The mean daily consumption of beans and vegetables in Ludhiana was recorded as 35.09 and 215.93 g, respectively. The corresponding figures in Bathinda were observed as 26.85 and 230.54 g. The average amounts of arsenic, cadmium, lead, and mercury were 1.44 × 10-5, 8.21 × 10-5, 1.30 × 10-3, and 2.61 × 10-7 mg/kg for cooked vegetables in urban households of Ludhiana district, respectively. The corresponding values for rural households were 1.53 × 10-5, 5.58 × 10-5, and 2.98 × 10-4 mg/kg while mercury was not detected. The mean chronic daily intake (CDI) of arsenic from cooked beans was significantly (p ≤ .001) higher in urban adult males of Ludhiana (7.74 × 10-9 mg/kg/day) and Bathinda (5.31 × 10-9 mg/kg/day) compared to their rural counterparts. Similar trend was observed in CDI of heavy metals from vegetables. The mean CDI of cadmium from cooked vegetables in urban adult females of Ludhiana (3.76 × 10-7 mg/kg/day) was significantly (p ≤ .001) higher than their rural counterparts and both urban and rural adult females of Bathinda. The study concluded that the subjects of both districts were found safe from non-carcinogenic and carcinogenic risk associated with heavy metals present in cooked beans and vegetables, except for urban subjects and rural adult subjects of Ludhiana district who had cancer risk due to cadmium present in cooked vegetable samples.
Collapse
Affiliation(s)
- Vineeta Kharkwal
- Department of Food and Nutrition, College of Community SciencePunjab Agricultural UniversityLudhianaIndia
| | - Monika Choudhary
- Department of Food and Nutrition, College of Community SciencePunjab Agricultural UniversityLudhianaIndia
| | - Kiran Bains
- Department of Food and Nutrition, College of Community SciencePunjab Agricultural UniversityLudhianaIndia
| | - Mahendra Bishnoi
- Division of Food and Nutritional BiotechnologyNational Agri‐Food Biotechnology InstituteMohaliIndia
| |
Collapse
|
68
|
Nayak SK, Nandimandalam JR. Impacts of climate change and coastal salinization on the environmental risk of heavy metal contamination along the odisha coast, India. ENVIRONMENTAL RESEARCH 2023; 238:117175. [PMID: 37741567 DOI: 10.1016/j.envres.2023.117175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Climate change-mediated rise in sea level and storm surges, along with indiscriminate exploitation of groundwater along populous coastal regions have led to seawater intrusion. Studies on groundwater salinization and heavy metal contamination trends are limited. Present study investigated the heavy metal contamination, associated risks and provided initial information on the impacts of groundwater salinization on heavy metals along the coastal plains of Odisha, India. Total 50 groundwater samples (25 each in post- and pre-monsoon) were collected and analysed. Concentrations of Fe (44%), Mn (44%), As (4%) and Al (4%) in post-monsoon and Fe (32%), Mn (32%), As (4%), B (8%) and Ni (16%) in pre-monsoon exceeded Bureau of Indian Standards (BIS) drinking water limits. High concentrations of heavy metals (Fe, Sr, Mn, B, Ba, Li, Ni and Co) and high EC (>3000 μS/cm) indicated that the groundwater-seawater mixing process has enhanced the leaching and ion exchange of metallic ions in central part of the study area. Multivariate statistical analysis suggested leaching process, seawater intrusion and agricultural practices as the main heavy metal sources in the groundwater. 4% of samples in post- and 16% in pre-monsoon represented high heavy metal pollution index (HPI). Pollution indices indicated the central and south-central regions are highly polluted due to saline water intrusion and high agricultural activities. Ecological risks in the groundwater systems found low (ERI <110) in both seasons. Children population found more susceptible to health risks than adults. Hazard index (HI > 1) has shown significant non-carcinogenic risks where Fe, Mn, As, B, Li and Co are the potential contributors. Incremental lifetime cancer risk (ILCR >1.0E-03) has suggested high carcinogenic risks, where As and Ni are the major contributors. The study concluded that groundwater salinization could increase the heavy metal content and associated risks. This would help policymakers to take appropriate measures for sustainable coastal groundwater management.
Collapse
Affiliation(s)
- Soumya Kanta Nayak
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
69
|
Saeed O, Székács A, Jordán G, Mörtl M, Abukhadra MR, Eid MH. Investigating the impacts of heavy metal(loid)s on ecology and human health in the lower basin of Hungary's Danube River: A Python and Monte Carlo simulation-based study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9757-9784. [PMID: 37843689 PMCID: PMC10673977 DOI: 10.1007/s10653-023-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to determine the environmental and health risks of the heavy metal levels in the Danube River in Hungary. The metals, including Fe, Mn, Zn, Cu, Ni, Cr, Pb, and As, were measured in the period from 2013 to 2019. The Spearman correlation and heatmap cluster analysis were utilized to determine the origin of pollution and the factors that control surface water quality. Several indices, such as the heavy metal pollution index (HPI), metal index (MI), hazard quotient oral and dermal (HQ), hazard index oral and dermal (HI), and carcinogenic risk (CR), were conducted to evaluate the potential risks for the environment and human health. The values of the HPI were between the range of 15 < HPI < 30, which indicated moderate pollution; however, the MI results showed high pollution in Dunaföldvár and Hercegszántó cities. The ecological risk (RI < 30) and HI values (< 1) showed low environmental risks and non-carcinogenic impacts of the existing metals, either on adults or children. The mean CR value of oral arsenic was 2.2E-04 and 2.5E-04 during April-September and October-March, respectively, indicating that children were the most vulnerable to arsenic-carcinogenic oral effects. While lead's CR oral values for children during April-September exceeded the threshold of 1.0E-04, chromium's oral and dermal CR values for both adults and children were 2.08E-04, 6.11E-04, 1.97E-04, and 5.82E-04 during April-September and October-March, respectively. These results demonstrate the potential carcinogenic risks related to chromium exposure within the two pathways in Hungary and highlight the need for effective measures to mitigate these risks.
Collapse
Affiliation(s)
- Omar Saeed
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary.
| | - András Székács
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Győző Jordán
- Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Mohamed Hamdy Eid
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| |
Collapse
|
70
|
Umeoguaju FU, Akaninwor JO, Essien EB, Amadi BA, Igboekwe CO, Ononamadu CJ, Ikimi CG. Heavy metals contamination of seafood from the crude oil-impacted Niger Delta Region of Nigeria: A systematic review and meta-analysis. Toxicol Rep 2023; 11:58-82. [PMID: 37416859 PMCID: PMC10320387 DOI: 10.1016/j.toxrep.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
This study aims at computing the pooled mean estimate (PME) and health risks of heavy metals in seafood obtained from the Niger Delta Region of Nigeria (NDRN), using data from existing literatures. Pubmed, Scopus and Google Scholar were searched to retrieve articles that investigated the heavy metal contents of edible seafood from the NDRN. Search hits were screened against predetermined criteria following which relevant data were extracted from eligible articles. The PME for each metal was computed by performing a maximum likelihood random effect model meta-analysis using the R Studio Software. Outcome from the meta-analysis involving 58 studies and a total of 2983 seafood samples revealed the following PMEs (mg/kg dry wt seafood) for the investigated heavy metals: As (0.777), Cd (0.985), Co (4.039), Cr (2.26), Cu (11.45), Fe (143.39), Hg (0.0058), Mn (13.56), Ni (5.26), Pb (4.35), and Zn (29.32). The health risk assessment suggests that seafood from this region poses considerable carcinogenic and non-carcinogenic risks to human consumers. Our finding calls for urgent actions aimed at identifying and eliminating point sources of heavy metals pollution of the NDRN marine environment. Inhabitants of NDRN are encouraged to reduce seafood consumption while diversifying their protein sources to include non-seafood options.
Collapse
Affiliation(s)
- Francis Uchenna Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
| | - Joyce Oronne Akaninwor
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Eka Bassey Essien
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Benjamin Achor Amadi
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Chukwunonso Onyedika Igboekwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
| | - Chimaobi James Ononamadu
- Department of Biochemistry and Forensic Science, Nigeria Police Academy, Maiduguri Road, P.M.B 3474, Wudil, Kano State, Nigeria
| | - Charles German Ikimi
- Department of Biochemistry, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| |
Collapse
|
71
|
Castel R, Bertoldo R, Lebarillier S, Noack Y, Orsière T, Malleret L. Toward an interdisciplinary approach to assess the adverse health effects of dust-containing polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s on preschool children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122372. [PMID: 37598934 DOI: 10.1016/j.envpol.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Settled dust can function as a pollutant sink for compounds, such as polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s (MMs), which may lead to health issues. Thus, dust represents a hazard specifically for young children, because of their vulnerability and hand-to-mouth behavior favoring dust ingestion. The aim of the present study was to explore the influence of the season and the microenvironment on the concentrations of 15 PAHs and 17 MMs in indoor and outdoor settled dust in three preschools (suburban, urban, and industrial). Second, the potential sources and health risks among children associated with dust PAHs and MMs were assessed. Third, domestic factors (risk perception, knowledge and parental style) were described to explore protective parental behaviors toward dust hazards. The suburban preschool had the lowest concentrations of dust PAHs and MMs, while the industrial and urban preschools had higher but similar concentrations. Seasonal tendencies were not clearly observed. Indoor dusts reflected the outdoor environment, even if specific indoor sources were noted. Source analysis indicated mainly vehicular emissions, material release, and pyrogenic or industrial sources. The non-cancer health risks were non-existent, but potential cancer health risks (between 1.10-6 and 1.10-4) occurred at all sampling locations. Notably, the highest cancer risk was observed in a playground area (>1.10-4) and material release should be further addressed. Whereas we assessed higher risk indoors, parents perceived a higher risk in the open-air environment and at the preschool than at home. They also perceived a lower risk for their own children, revealing an optimism bias, which reduces parental anxiety.
Collapse
Affiliation(s)
- Rebecca Castel
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France; Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et Ecologie, FR ECCOREV, ITEM, Marseille, France
| | - Raquel Bertoldo
- Aix Marseille Univ, LPS, Laboratoire de Psychologie Sociale, FR ECCOREV, ITEM, Aix-en-Provence, France
| | - Stéphanie Lebarillier
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France
| | - Yves Noack
- Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France
| | - Thierry Orsière
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et Ecologie, FR ECCOREV, ITEM, Marseille, France
| | - Laure Malleret
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France.
| |
Collapse
|
72
|
Ngubane Z, Dzwairo B, Moodley B, Stenström TA, Sokolova E. Quantitative assessment of human health risks from chemical pollution in the uMsunduzi River, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118013-118024. [PMID: 37874515 PMCID: PMC10682212 DOI: 10.1007/s11356-023-30534-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
A quantitative chemical risk assessment was performed using published data as well as data from the official monitoring programme for the uMsunduzi River in KwaZulu-Natal, South Africa. The chemicals assessed were organochlorinated pesticides (OCPs), pharmaceuticals and personal care products (PPCPs), heavy metals, and nitrates and phosphates. The water from uMsunduzi River is used locally without treatment. Consequently, the exposure routes investigated were via ingestion during domestic drinking and incidental ingestion during recreational activities, which were swimming and non-competitive canoeing, for both adults and children. For the individual chemicals, non-carcinogenic risks using the hazard quotient (HQ) and carcinogenic risks using the cancer risk (CR) were quantified. It was found that the exposed population is likely to experience non-carcinogenic effects from pesticides and phosphates, but not from PPCPs, heavy metals and nitrates. This study also found that the carcinogenic risks for OCPs were higher than the tolerable limit of 10-5, while for lead the risk was below the tolerable limit. Some of the activities that potentially contribute to chemicals onto the uMsunduzi River are subsistence farming, small plantations, illegal dumping, industries, and broken sewers. The findings of this study may act as the technical foundation for the introduction of pollution reduction measures within the catchment, including public education.
Collapse
Affiliation(s)
- Zesizwe Ngubane
- Department of Civil Engineering, Midlands, Durban University of Technology, Pietermaritzburg, South Africa
| | - Bloodless Dzwairo
- Department of Civil Engineering, Midlands, Durban University of Technology, Pietermaritzburg, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | | |
Collapse
|
73
|
Islam MS, Chowdhury AI, Shill LC, Reza S, Alam MR. Heavy metals induced health risk assessment through consumption of selected commercially available spices in Noakhali district of Bangladesh. Heliyon 2023; 9:e21746. [PMID: 37954396 PMCID: PMC10638016 DOI: 10.1016/j.heliyon.2023.e21746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
There are growing concerns for food safety due to the risks associated with heavy metal contamination of culinary herbs and spices in developing countries like Bangladesh. The objective of the present cross-sectional study is to determine the concentrations of the heavy metals Lead (Pb), Cadmium (Cd), Chromium (Cr), Copper (Cu), and Iron (Fe) in the branded and non-branded spices collected from the Noakhali district by Atomic absorption spectrophotometry method, as well as to assess the health hazard risk associated with heavy metals intake via consumption of spices. The findings revealed that the greatest concentrations of Pb (15.47 ± 1.93), Cd (1.65 ± 0.011), Cr (31.99 ± 3.97), Cu (18.84 ± 1.97), and Fe (9.29 ± 1.71) were found in Cardamom, Coriander leaf, Bay leaf, Dried chili, and Black pepper respectively. Around 37 % of Cr and 5 % of Fe Estimated Daily Intake (EDI) were greater than reference doses (RfD). All spices had Total Hazard Quotient (THQ) values for Pb, Cd, Cu, and Fe that were below acceptable, and 37 % of all spices had Total Target Hazard Quotient (TTHQ) values for Pb, Cd, Cu, and Fe that were over the standard range, suggesting adverse health impacts for consumers. Green chili, ginger, coriander leaf, and all kinds of chili powder and turmeric powder have been reported to have exceptionally high TTHQ levels of Cr. The estimated carcinogenic risk for chromium in non-branded coriander leaf was found to be higher than safe levels. This study provides valuable insights into the commonly consumed spices in Bangladesh and their potential health risks associated with heavy metal contamination. The findings of this study can be used by regulatory authorities to develop effective strategies and actions to mitigate these risks and safeguard public health.
Collapse
Affiliation(s)
- Md Shahedul Islam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Akibul Islam Chowdhury
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Nutrition and Food Engineering, Daffodil International University, Savar, Dhaka, Bangladesh
| | - Lincon Chandra Shill
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sompa Reza
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
74
|
Degbe PL, Guembou Shouop CJ, Bongue D, Ndontchueng MM, Ngwa Ebongue A, Kwato Njock MG. Assessment of heavy metals' pollutions and potential risks associated to the rocks of Pouma subdivision-Cameroon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1292. [PMID: 37821743 DOI: 10.1007/s10661-023-11793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023]
Abstract
The present study aimed to assess the ecological and health risks of the Pouma rock samples. Twenty-three (23) trace element concentrations were evaluated. The concentrations of these trace elements were compared with those of quartzite from other countries and with global reported values. When compared with the world values, the concentrations of trace metals were below the world average values except that of Barium. The ecological risk assessment was carried out using the geo-accumulation index, contamination factors and the potential ecological risk index. The geo-accumulation index and contamination factors showed that the quartzite of Pouma subdivision are not polluted and not contaminated by the investigated metal except for Barium and Mercury. The health risk assessment using the USEPA (United States Environmental Protection Agency) method showed that there is a possible non-carcinogenic risk from Al2O3 (for children and adults) and from Cr for Children. However, there is a tolerable and high carcinogenic risk due to Cr for adults and children, respectively. It was found independently for non-carcinogenic and carcinogenic risk that the exposure via the ingestion route is the most dangerous for adults and children.
Collapse
Affiliation(s)
- Patricia-Laurelle Degbe
- Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon.
| | - Cebastien Joel Guembou Shouop
- National Radiation Protection Agency, P.O. Box. 33732, Yaounde, Cameroon
- Atomic and Nuclear Spectroscopy, Archeometry, University of Liège, Liege, Belgium
| | - Daniel Bongue
- Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon
- Department of Physics, Faculty of Sciences, University of Douala, P.O. Box. 24157, Douala, Cameroon
| | - Maurice Moyo Ndontchueng
- Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon
- Department of Physics, Faculty of Sciences, University of Douala, P.O. Box. 24157, Douala, Cameroon
- National Radiation Protection Agency, P.O. Box. 33732, Yaounde, Cameroon
| | - Alexandre Ngwa Ebongue
- Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon
- Department of Physics, Faculty of Sciences, University of Douala, P.O. Box. 24157, Douala, Cameroon
| | - Moïse Godfroy Kwato Njock
- Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon
| |
Collapse
|
75
|
Badeenezhad A, Soleimani H, Shahsavani S, Parseh I, Mohammadpour A, Azadbakht O, Javanmardi P, Faraji H, Babakrpur Nalosi K. Comprehensive health risk analysis of heavy metal pollution using water quality indices and Monte Carlo simulation in R software. Sci Rep 2023; 13:15817. [PMID: 37740101 PMCID: PMC10517167 DOI: 10.1038/s41598-023-43161-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
Rapid urbanization, population growth, agricultural practices, and industrial activities have led to widespread groundwater contamination. This study evaluated heavy metal contamination in residential drinking water in Shiraz, Iran (2021). The analysis involved 80 groundwater samples collected across wet and dry seasons. Water quality was comprehensively assessed using several indices, including the heavy metals evaluation index (HEI), heavy metal pollution index (HPI), contamination degree (CD), and metal index (MI). Carcinogenic and non-carcinogenic risk assessments were conducted using deterministic and probabilistic approaches for exposed populations. In the non-carcinogenic risk assessment, the chronic daily intake (CDI), hazard quotient (HQ), and hazard index (HI) are employed. The precision of risk assessment was bolstered through the utilization of Monte Carlo simulation, executed using the R software platform. Based on the results, in both wet and dry seasons, Zinc (Zn) consistently demonstrates the highest mean concentration, followed by Manganese (Mn) and Chromium (Cr). During the wet and dry seasons, 25% and 40% of the regions exhibited high CD, respectively. According to non-carcinogenic risk assessment, Cr presents the highest CDI and HQ in children and adults, followed by Mn, As and HI values, indicating elevated risk for children. The highest carcinogenic risk was for Cr in adults, while the lowest was for Cd in children. The sensitivity analysis found that heavy metal concentration and ingestion rate significantly impact both carcinogenic and non-carcinogenic risks. These findings provide critical insights for shaping policy and allocating resources towards effectively managing heavy metal contamination in residential drinking water.
Collapse
Affiliation(s)
- Ahmad Badeenezhad
- Department of Environmental Health Engineering, School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Shahsavani
- Department of Environmental Health Engineering, Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Parseh
- Department of Environmental Health Engineering, School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Azadbakht
- Department of Radiobiology and Radiation Protection, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Parviz Javanmardi
- Department of Environmental Health Engineering, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Hossein Faraji
- Health Systems Research, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Kamal Babakrpur Nalosi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
76
|
Nawaz R, Nasim I, Irfan A, Islam A, Naeem A, Ghani N, Irshad MA, Latif M, Nisa BU, Ullah R. Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. TOXICS 2023; 11:577. [PMID: 37505543 PMCID: PMC10385057 DOI: 10.3390/toxics11070577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
The present study was conducted to evaluate the quality of drinking water and assess the potential health hazards due to water contaminants in selected urban areas of Lahore, Pakistan. Water samples were collected from ten sites and analyzed for different physico-chemical parameters including turbidity, color, pH, total dissolved solids (TDS), nitrates, fluoride, residual chlorine, and total hardness. Additionally, heavy metal (arsenic) and microbial parameters (E. coli) were also determined in the water samples. Drinking water quality evaluation indices, including the water quality index (WQI) for physico-chemical and biological parameters and human health risk assessment (HHRA) for heavy metal were estimated using the analytical results of the target parameters. It was found in most of the areas that the levels of arsenic, fluoride, TDS, and residual chlorine were higher than those recommended by the National Environmental Quality Standard (NEQS) and World Health Organization (WHO) guidelines. In addition to the physico-chemical parameters, microbial content (E. coli) was also found in the drinking water samples of the selected areas. Statistical analysis of the results indicated that levels of target parameters in drinking water samples are significantly different between sampling sites. The WQI for all physico-chemical and microbial parameters indicated that drinking water in most of the areas was unfit and unsuitable (WQI > 100) for drinking purposes except for the water of Bhatti Gate and Chota Gaon Shahdara with a WQI of 87 and 91, respectively. Drinking water in these areas had a very poor WQI rating. According to HHRA, drinking water from the selected sites was found to be of high risk to children and adults. The carcinogenic risk of arsenic indicated that all samples were of high risk to both adults and children (4.60 and 4.37 × 10-3, respectively). Regular monitoring of drinking water quality is essential, and proactive measures must be implemented to ensure the treatment and availability of safe drinking water in urban areas.
Collapse
Affiliation(s)
- Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
- Research and Knowledge Transfer, INTI International University, Putra Nilai 71800, Malaysia
| | - Iqra Nasim
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
- Department of Environmental Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Amjad Islam
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515031, China
| | - Ayesha Naeem
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Nadia Ghani
- Department of Environmental Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Maria Latif
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Badar Un Nisa
- Department of Chemistry, The University of Lahore, Sargodha 40100, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
77
|
Roy D, Kim J, Lee M, Park J. Adverse impacts of Asian dust events on human health and the environment-A probabilistic risk assessment study on particulate matter-bound metals and bacteria in Seoul, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162637. [PMID: 36889412 DOI: 10.1016/j.scitotenv.2023.162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to assess the impact of Asian dust (AD) on the human health and the environment. Particulate matter (PM) and PM-bound trace elements and bacteria were examined to determine the chemical and biological hazards associated with AD days and compared with non-AD days in Seoul. On AD days, the mean PM10 concentration was ∼3.5 times higher than that on non-AD days. Elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb, Ni, and Cd) were identified as major contributors to coarse and fine particles, respectively. During AD days, the study area was recognized as "severe" for pollution index and pollution load index levels, and "moderately to heavily polluted" for geoaccumulation index levels. The potential cancer risk (CR) and non-CR were estimated for the dust generated during AD events. On AD days, total CR levels were significant (in 1.08 × 10-5-2.22 × 10-5), which were associated with PM-bound As, Cd, and Ni. In addition, inhalation CR was found to be similar to the incremental lifetime CR levels estimated using the human respiratory tract mass deposition model. In a short exposure duration (14 days), high PM and bacterial mass deposition, significant non-CR levels, and a high presence of potential respiratory infection-causing pathogens (Rothia mucilaginosa) were observed during AD days. Significant non-CR levels were observed for bacterial exposure, despite insignificant levels of PM10-bound elements. Therefore, the substantial ecological risk, CR, and non-CR levels for inhalation exposure to PM-bound bacteria, and the presence of potential respiratory pathogens, indicate that AD events pose a significant risk to both human lung health and the environment. This study provides the first comprehensive examination of significant non-CR levels for bacteria and carcinogenicity of PM-bound metals during AD events.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
78
|
Shakil S, Arooj A, Fatima S, Sadef Y. Geochemical distribution and environmental risk assessment of trace metals in groundwater released from e-waste management activities in Lahore, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3699-3714. [PMID: 36482136 DOI: 10.1007/s10653-022-01431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 06/01/2023]
Abstract
Non-sustainable e-waste recycling and dumping activities release trace metals into the ambient environment where they may threaten the biological communities and human health. A total of 45 groundwater and 21 leachate samples were collected from seven recycling, seven dumping, and one reference site in Lahore, Pakistan, and analyzed for Cu, Pb, Zn, Cd, Mn, and Fe in atomic absorption spectrophotometer. Comparing the results with the World Health Organization (WHO) standards of drinking water, only the concentrations of Cu, Zn, Mn, and Fe at all sites were found to be within the permissible limits, i.e., 2, 3, 0.5, and 1 mg/L, respectively. In leachates, only Cd and Mn at one site (0.204 and 8.636 mg/L, respectively) exceeded the allowable limits of National Environmental Quality Standards of Municipal and Liquid industrial effluents. Geo-accumulation index, contamination factor, contamination degree, and pollution load index values showed no to moderate contamination. The ecological risk index did not exceed 150, depicting low risk to nearby biological communities. The non-carcinogenic health risk assessment showed a hazard index value greater than 1 at all sites for children (2.04) and adults (1.52), with Pb being the major contributor to adverse health impacts via ingestion and dermal route. Children (1.21 × 10-4) were at a more significant threat of carcinogenic risk from Pb and Cd as compared to adults (8.10 × 10-5). Therefore, there is a dire need to introduce sustainable e-waste recycling and managing techniques to reduce further groundwater contamination via the percolation of trace metals and to reduce the current contamination level.
Collapse
Affiliation(s)
- Sidra Shakil
- College of Earth and Environmental Sciences, University of Punjab, Quaid-E-Azam Campus, Lahore, 54000, Pakistan.
| | - Aqsa Arooj
- College of Earth and Environmental Sciences, University of Punjab, Quaid-E-Azam Campus, Lahore, 54000, Pakistan
| | - Sidra Fatima
- College of Earth and Environmental Sciences, University of Punjab, Quaid-E-Azam Campus, Lahore, 54000, Pakistan
| | - Yumna Sadef
- College of Earth and Environmental Sciences, University of Punjab, Quaid-E-Azam Campus, Lahore, 54000, Pakistan
| |
Collapse
|
79
|
Aditya SK, Krishnakumar A, AnoopKrishnan K. Influence of COVID-19 lockdown on river water quality and assessment of environmental health in an industrialized belt of southern Western Ghats, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:72284-72307. [PMID: 37165269 PMCID: PMC10172072 DOI: 10.1007/s11356-023-27397-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
The COVID-19 pandemic and sudden lockdown have severely hampered the country's economic growth and socio-cultural activities while imparting a positive effect on the overall fitness of the environment especially air and water resources. Increased urbanization and rapid industrialization have led to rising pollution and deterioration of rivers and associated sectors such as agriculture, domestic and commercial needs. However, various available studies in different parts of the country indicate that the COVID-19 pandemic has changed the entire ecosystem. But it is noted that studies are lacking in the southern Western Ghats region of India. Therefore, the present study attempts to investigate how the continuous lockdowns affect the River Water Quality (RWQ) during lockdown (October 2020) and post-lockdown (January 2021) periods in the lower catchments (Eloor-Edayar industrialized belt) of Periyar river, Kerala state, South India. A total of thirty samples (15 samples each) were analyzed based on drinking water quality, irrigational suitability, and multivariate statistical methods to evaluate the physical and chemical status of RWQ. The results of the Water Quality Index (WQI) for assessing the drinking water suitability showed a total of 93% of samples in the excellent and good category during the lockdown, while only 47% of samples were found fit for drinking during the post-lockdown period. Irrigational suitability indices like Mg hazard, KR, PI, SAR, and Wilcox diagram revealed lockdown period samples as more suitable for irrigational activities compared to post-lockdown samples with site-specific changes. Spearman rank correlation analysis indicated EC and TDS with a strong positive correlation to Ca2+, Mg2+, Na+, K+, TH, SO42-, and Cl- during both periods as well as strong positive correlations within the alkaline earth elements (Ca2+ and Mg 2+) and alkalis (Na+ and K+). Three significant components were extracted from principal component analysis (PCA), explaining 88.89% and 96.03% of the total variance for lockdown and post-lockdown periods, respectively. Variables like DO, BOD, Ca2+, NO3-, and Cl- remained in the same component loading during both periods elucidating their natural origin in the basin. The results of health risk assessment based on US EPA represented hazard quotient and hazard index values below the acceptable limit signifying no potential noncarcinogenic risk via oral exposure except As, suggesting children as more vulnerable to the negative effects than adults. Furthermore, this study also shows rejuvenation of river health during lockdown offers ample scope to policymakers, administrators and environmentalists for deriving appropriate plans for the restoration of river health from anthropogenic stress.
Collapse
Affiliation(s)
- Sanal Kumar Aditya
- National Centre for Earth Science Studies (NCESS), Ministry of Earth Sciences, Akkulam, Thiruvananthapuram, Kerala, 695011, India
- Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Appukuttanpillai Krishnakumar
- National Centre for Earth Science Studies (NCESS), Ministry of Earth Sciences, Akkulam, Thiruvananthapuram, Kerala, 695011, India.
| | - Krishnan AnoopKrishnan
- National Centre for Earth Science Studies (NCESS), Ministry of Earth Sciences, Akkulam, Thiruvananthapuram, Kerala, 695011, India
| |
Collapse
|
80
|
Alharbi T, Abdelrahman K, El-Sorogy AS, Ibrahim E. Contamination and health risk assessment of groundwater along the Red Sea coast, Northwest Saudi Arabia. MARINE POLLUTION BULLETIN 2023; 192:115080. [PMID: 37263025 DOI: 10.1016/j.marpolbul.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Coastal groundwater is the major source of freshwater in coastal areas, due to shortage of the water resource in coastal zones. Groundwater samples were collected from 48 sites along the Saudi Red Sea coast between Rabigh and Yanbu to document the hydrogeochemical characteristics, water quality, and the health risks of nitrate, fluoride, nickel, copper, and zinc on adults and children. Groundwater chemistry indicated neutral to slightly alkaline nature, and the total dissolved salts (TDS) concentrations mainly increase towards the coastal plain. Major cations, major anions, and heavy metals (HMs) were in the order of Cl- > Na+ > SO42- > Ca2+ > HCO3- > NO3- > Mg2+ > K+, F- > Zn > Cu > Ni. Na-Cl, mixed Ca-Mg-Cl and Na-K-HCO3, CaCl, and Mg-HCO3 were the principal hydrochemical water types. Results of heavy metal pollution index (HPI), and water quality index (WQI) showed moderate to heavy pollution and unsuitable groundwater for human consumption mostly in the western side along the coastal plain, which might be influenced by the groundwater salinization. Principal component analysis (PCA) generated four components, which indicated the various sources of contamination. Hazard index (HI) of nitrate and fluoride were above the safety limit of 1, suggesting increase non-cancer health risk issues in both children and adults.
Collapse
Affiliation(s)
- Talal Alharbi
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Kamal Abdelrahman
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia.
| | - Elkhedr Ibrahim
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
81
|
Kharkwal V, Bains K, Bishnoi M, Devi K. Health risk assessment of arsenic, lead and cadmium from milk consumption in Punjab, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:723. [PMID: 37225915 DOI: 10.1007/s10661-023-11256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Milk is an integral part of the human diet and its contamination with heavy metals may alter the health of its consumers. The study was conducted to assess the health risk associated with the heavy metals in milk samples collected from urban and rural households of Ludhiana and Bathinda districts of Punjab, India. One hundred and fifty milk samples were analyzed for heavy metals i.e. arsenic, cadmium, lead and mercury using Inductively Coupled Plasma Mass Spectrometry ICP-MS. The health risks, such as non-carcinogenic and carcinogenic risks from heavy metals in milk samples, were calculated for selected males and females of adults, children and elderly subjects. The results indicated that the arsenic, cadmium and lead content in milk samples were within permissible limit whereas mercury was not detected in any sample. The mean values showed that the selected urban and rural population of both districts was safe from non-carcinogenic risk associated with heavy metal content of milk. However, urban (50% males and 86% females) and rural (25% males) children of Bathinda district were at risk of cancer from arsenic and cadmium present in milk samples, respectively. It was also observed that the selected population of both districts were safe from carcinogenic risk due to the combined effects of heavy metals. It was concluded that even with a small amount of heavy metal in milk samples, the rural adults, rural male children and urban female children of Bathinda district had carcinogenic risk due to milk consumption. Hence, regular monitoring and testing of milk samples must be done as a public health measure to prevent heavy metal contamination in milk to safeguard the health of consumers.
Collapse
Affiliation(s)
- Vineeta Kharkwal
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Kiran Bains
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mahendra Bishnoi
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kirti Devi
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
82
|
Abebe Y, Alamirew T, Whitehead P, Charles K, Alemayehu E. Spatio-temporal variability and potential health risks assessment of heavy metals in the surface water of Awash basin, Ethiopia. Heliyon 2023; 9:e15832. [PMID: 37215855 PMCID: PMC10196504 DOI: 10.1016/j.heliyon.2023.e15832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Increasing urbanization and industrialization are impacting on water quality globally. In the Awash River basin, Ethiopia, these drivers are impacting on water quality with further impacts created due to changes in water management releasing geogenic contaminants. The resulting water quality has potential to cause significant ecological and human health impacts. The physicochemical and heavy metals saptio-temporal variability and their associated risks to human health and ecology were assessed across twenty sampling stations in the Awash River basin. Over twenty-two physicochemical and ten heavy metals parameters were analyzed using different instruments including inductively coupled plasma mass spectrometer (ICP-MS). Elevated levels of heavy metals (As, V, Mo, Mn, and Fe) were detected in the surface water, surpassing the drinking water quality standards set by the World Health Organization (WHO). Seasonal variation was evident with peak concentration of As, Ni, Hg, and Cr were recorded in the dry season. A water quality index, hazard quotient, hazard index, heavy metal pollution index and heavy metal evaluation index were formulated to assess the potential risks to both human health and the environment. The highest values of heavy metal pollution index (HPI) above the threshold (>100) were observed in stations at Lake Beseka with HPI values ranged from 105 to 177. Similarly, the highest values of the heavy metals evaluation index (HEI) were observed in stations situated at cluster 3. The evaluation of health risk that is not related to cancer through hazard quotient demonstrated that in the case of both dermal and ingestion contact, cluster C3 > C1 > C4 > C2 and C3 > C4 > C2 > C1 were observed in children and adults, respectively. Overall, measures to reduce potential pollution risks must be taken in accordance with the standards in the river basin. Nevertheless, further research on the toxicity of heavy metals that pose risks to human health is also necessary.
Collapse
Affiliation(s)
- Yosef Abebe
- Africa Center of Excellence for Water Management, Addis Ababa University, Addis Ababa, Ethiopia
- Water and Land Resource Center, Addis Ababa University, Addis Ababa, Ethiopia
- Ecohydrology and Water Quality Desk, Ministry of Water and Energy, Addis Ababa, Ethiopia
| | - Tena Alamirew
- Water and Land Resource Center, Addis Ababa University, Addis Ababa, Ethiopia
| | - Paul Whitehead
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - Katrina Charles
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - Esayas Alemayehu
- Africa Center of Excellence for Water Management, Addis Ababa University, Addis Ababa, Ethiopia
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
83
|
Ferro P, Farfan-Solis R, Blanco-Shocosh D, Ferró-Gonzáles AL, Ferro-Gonzales PF. Determination of inorganic chemical parameters in drinking water in districts of the province of Puno in the region Puno-Peru. Heliyon 2023; 9:e15624. [PMID: 37139296 PMCID: PMC10149402 DOI: 10.1016/j.heliyon.2023.e15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
The inorganic chemical parameters in drinking water that include heavy metals are substances that exist in nature very widespread, nevertheless toxic metals such as lead, cadmium, arsenic, mercury, are very harmful to human health and to all forms of life, these toxic metals are silents contaminants. Therefore, the present study aims to determine the presence of inorganic chemical parameters in the drinking water from districts of the province of Puno. The results were compared based on the parametric test T-student and the non-parametric tests Kolmogorov-Smirnov. Finding the highest values (mg/L) in districts as Capachica Ba (0.8458) and Pb (0.5255), Mañazo Al (3.08) and Pb (0.0185), San Antonio de Esquilache Fe (0.49) and Pb (0.9513), Vilque As (0.0193) and Pb (15.34), and Pichacani As (0.0193) and Pb (0.0215), as it is observed the samples do not comply with the regulation of the quality of drinking water in Peru, making it unsuitable for human consumption.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Facultad de Ciencias Naturales y Aplicadas de la Universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua, Jr. Ancash 520, Bagua, 01721, Amazonas, Peru
| | - Rosa Farfan-Solis
- Facultad de Enfermería, Universidad Nacional del Altiplano, Av. Floral No 1153, Puno, 21001, Peru
| | - Darwin Blanco-Shocosh
- Ministerio de Salud, Dirección Regional de Salud, Red de Salud Puno. Av. El Sol No 1122, Puno, 21001, Peru
| | - Ana Lucia Ferró-Gonzáles
- Departamento de Gestión y Ciencias Sociales, Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, Juliaca, 21101, Puno, Peru
| | - Polan Franbalt Ferro-Gonzales
- Departamento Académico de la Facultad de Ingeniería Económica, Universidad Nacional del Altiplano, Av. Floral No 1153, Puno, 21001, Peru
- Corresponding author.
| |
Collapse
|
84
|
Navaretnam R, Soong AC, Goo AQ, Isa NM, Aris AZ, Haris H, Looi LJ. Human health risks associated with metals in paddy plant (Oryza sativa) based on target hazard quotient and target cancer risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2309-2327. [PMID: 35947312 DOI: 10.1007/s10653-022-01344-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/17/2022] [Indexed: 05/27/2023]
Abstract
Paddy plants (Oryza sativa) contaminated with metals could be detrimental to human health if the concentrations of metals exceed the permissible limit. Thus, this study aims to assess the risk of the concentrations of As, Se, Cu, Cr, Co, and Ni and their distributions in various parts (roots, stems, leaves, and grains) of paddy plants collected from Sekinchan, Malaysia. Both soil and plant samples were digested according to the United States Environmental Protection Agency (USEPA) Method 3050B and the metal concentrations were determined by the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The highest mean translocation factor (TF) was from soil to roots (TF roots/soil ranged from 0.12 to 6.15) and the lowest was from leaves to grain (TF grain/leaves ranged from 0.06 to 0.87). Meanwhile, the bioaccumulation factor (BAF) for all metals was less than 1.0 indicating that paddy plants only absorb metals from the soil but do not accumulate in the grains. The average daily intake for As (1.15 ± 0.25 µg/kg/day) has exceeded the limit proposed by ATSDR and IRIS USEPA (0.30 µg/kg/day). Target cancer risk (TR) of 1.10 × 10-3 for As through rice consumption indicates that the potential cancer risk exists in one out of 1000 exposed individuals. The results from this study could serve as a reference for researchers and policymakers to monitor and formulate strategies in managing As and other metals in paddy plants, especially in Southeast Asian countries.
Collapse
Affiliation(s)
- Raneesha Navaretnam
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia , 43400, UPM Serdang, Selangor, Malaysia
| | - Ai Cheng Soong
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia , 43400, UPM Serdang, Selangor, Malaysia
| | - An Qi Goo
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia , 43400, UPM Serdang, Selangor, Malaysia
| | - Noorain Mohd Isa
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia , 43400, UPM Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia , 43400, UPM Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
| | - Hazzeman Haris
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia , 43400, UPM Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
85
|
Abedin MJ, Khan R, Siddique MAB, Khan AHAN, Islam MT, Rashid MB. Metal(loid)s in tap-water from schools in central Bangladesh (Mirpur): Source apportionment, water quality, and health risks appraisals. Heliyon 2023; 9:e15747. [PMID: 37206050 PMCID: PMC10189184 DOI: 10.1016/j.heliyon.2023.e15747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Considering the health risks originating from the exposure of metal(loid)s in tap-water and the concomitant vulnerability of school-going students, 25 composite tap water samples from different schools and colleges of central Bangladesh (Mirpur, Dhaka) were analyzed by atomic absorption spectroscopic technique. Elemental abundances of Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb in the studied tap water samples varied from 4520 to 62250, 2760-29580, 210-3000, 15780-78130, 1.54-5.32, 7.00-196, 2.00-450, 0.04-1.45, 8.23-24.4, 0.10-813, 0.10-10.5, 0.002-0.212, and 1.55-15.8 μgL-1, respectively. Dissolved metal(loid)s' concentrations were mostly within the national and international threshold values with few exceptions which were also consistent with the entropy-based water quality assessment. Multivariate statistical approaches demonstrated that hydro-geochemical processes like water-rock interactions mostly govern the major elemental (Na, Mg, K, Ca) compositions in tap water. However, anthropogenic processes typically control the trace elemental compositions where supply pipeline scaling was identified as the major source. Cluster analysis on sampling sites separated two groups of schools and colleges depending on their establishment years where tap water from older schools and colleges possesses relatively higher levels of metal(loid)s. Hence, gradual pipeline scaling on a temporal scale augmented the metal(loid)s' concentrations in tap-water. In terms of non-carcinogenic health risks estimation, studied tap-water seems to be safe, whereas elemental abundances of Pb and As can cause carcinogenic risks to school-going people. However, progressive deterioration of water quality by pipeline scaling will be supposed to cause significant health risks in the future, for which preventative measures should be adopted.
Collapse
Affiliation(s)
- Md. Joynal Abedin
- Centre for Higher Studies and Research, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Mirpur, Dhaka 1216, Bangladesh
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
- Corresponding author.
| | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Abdul Hadi Al Nafi Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Md. Tariqul Islam
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Md. Bazlar Rashid
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka 1000, Bangladesh
| |
Collapse
|
86
|
Tokatlı C, Varol M, Ustaoğlu F. Ecological and health risk assessment and quantitative source apportionment of dissolved metals in ponds used for drinking and irrigation purposes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52818-52829. [PMID: 36849683 DOI: 10.1007/s11356-023-26078-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, dissolved metal levels of 10 different ponds used as irrigation and drinking water sources in the north of Saros Bay (Türkiye) were evaluated using multivariate statistical methods, contamination and ecological risk indices, and absolute principal component score-multiple linear regression (APCS-MLR). The mean levels of metals in the ponds ranged from 0.045 µg/L (Cd) to 127 µg/L (Mn). Pond 7 used for drinking water source had the lowest total metal level. Only Mn levels in two ponds (P1 and P2) slightly exceeded the critical value set by EU Drinking Water Directive. However, the levels of all metals in all ponds were lower than the critical values set for irrigation water and aquatic life. According to the heavy metal pollution index (HPI), five ponds showed low metal pollution in terms of drinking water quality, four ponds showed moderate metal pollution, and one pond (P1) showed moderate to heavy pollution. According to the Nemerow pollution index (NPI) values (0.26-1.82), ponds P1 and P2 showed slight metal pollution, while other ponds showed insignificant metal pollution. Contamination degree (CD) values of ponds varied between 0.95 and 3.33, indicating that all ponds showed low pollution. In terms of irrigation water quality, all ponds showed low or insignificant metal pollution according to the HPI, NPI, and CD values. According to the ecological risk index (ERI) values, metals in all ponds posed low ecological risks for both drinking and irrigation purposes. Factor analysis identified two potential sources: mixed sources and natural sources. The APCS-MLR model results revealed that mixed sources and natural sources contributed 78.99% and 21.01% to dissolved metals in the ponds, respectively. Health risk assessment results indicated that both individual and combined metals in the ponds would not cause non-carcinogenic risks to both adults and children. Similarly, it was found that Cr and As would not cause carcinogenic risks to the residents of the region.
Collapse
Affiliation(s)
- Cem Tokatlı
- İpsala Laboratory Technology Department, Trakya University, Edirne, Turkey
| | - Memet Varol
- Department of Aquaculture, Doğanşehir V.K. Vocational School, Malatya Turgut Özal University, Malatya, Turkey.
| | - Fikret Ustaoğlu
- Biology Department, Faculty of Arts and Science, Giresun University, Giresun, Turkey
| |
Collapse
|
87
|
Niknejad H, Ala A, Ahmadi F, Mahmoodi H, Saeedi R, Gholami-Borujeni F, Abtahi M. Carcinogenic and non-carcinogenic risk assessment of exposure to trace elements in groundwater resources of Sari city, Iran. JOURNAL OF WATER AND HEALTH 2023; 21:501-513. [PMID: 37119150 DOI: 10.2166/wh.2023.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The daily intake of trace elements through water resources and their adverse health effects is a critical issue. The purpose of this research was to assess the carcinogenic and non-carcinogenic risks of exposure to iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), chromium (Cr), lead (Pb), and arsenic (As) in groundwater resources of Sari city, Iran. The concentrations of the trace elements in a total number of 66 samples from the groundwater sources were measured using inductively coupled plasma mass spectrometry (ICP-MS). The hazard index (HI) levels of exposure to the trace elements from the groundwater sources for adults, teenagers, and children were 0.65, 0.83, and 1.08, respectively. The carcinogenic risk values of Cr and As in the groundwater sources for children, teenagers, and adults were 0.0001, 0.00009, 0.00007, 0.0003, 0.0002, and 0.0001, respectively, causing a total carcinogenic risk value higher than the acceptable range, and removing Cr and As from the groundwater resources is recommended for safe community water supply.
Collapse
Affiliation(s)
- Hadi Niknejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Alireza Ala
- Department of Environmental Health Engineering, Health Sciences Research Center, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Hamed Mahmoodi
- Information Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Saeedi
- Department of Health, Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fathollah Gholami-Borujeni
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| |
Collapse
|
88
|
Evaluation of adsorption behaviour of selenium onto zeolite-based composite barrier material for intermediate deep radioactive waste repository. PROGRESS IN NUCLEAR ENERGY 2023. [DOI: 10.1016/j.pnucene.2023.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
89
|
Amerizadeh A, Gholizadeh M, Karimi R. Meta-analysis and health risk assessment of toxic heavy metals in muscles of commercial fishes in Caspian Sea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:457. [PMID: 36892688 DOI: 10.1007/s10661-023-11076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals from contaminated seafood can have serious consequences for human health. Several studies on the amount of heavy metals in Caspian Sea fish have been conducted to ensure their food safety. This meta-analysis aimed to investigate the levels of five toxic heavy metals; Lead (Pb), Cadmium (Cd), Mercury (Hg), Chromium (Cr), and Arsenic (As) in muscles of commercial fishes of the Caspian Sea with assessing their health risk of developing oral cancer in terms of fish collection place and fish type. A systematic search was performed, and the random effect model was applied for meta-analysis. Finally, 14 studies with 30 different sets of results were included. Our results showed that the pooled estimates for Pb, Cd, Hg, Cr, and As were 0.65 mg/kg (0.52, 0.79), 0.08 mg/kg (0.07, 0.10), 0.11 mg/kg (0.07, 0.15), 1.77 mg/kg (1.26, 2.27), and 0.10 mg/kg (- 0.06, 0.26) respectively. The levels of Pb and Cd were higher than their (FAO/WHO) maximum limits. The Estimated Daily Intake (EDI) of Pb and Cd in Mazandaran, and Hg in Gilan were more than Total Daily Intake (TDI) limits. The consumers' non-carcinogenic risk (THQ) for Hg in Mazandaran and Gilan, and As in Gilan, was unsafe. Carcinogenic risk (CR) for Cr and Cd in all three provinces, and for As in Mazandaran and Gilan, was greater than 1*10 - 4 and was unsafe. The lowest and highest risk levels of oral cancer were for Rutilus kutum and Cyprinus carpio respectively.
Collapse
Affiliation(s)
- Atefeh Amerizadeh
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Gholizadeh
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad-E Kavus, P.O. box: 163, Iran.
| | - Raheleh Karimi
- Epidemiology and Biostatistics Department, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
90
|
Rahman M, Abdullah-Al-Mamun M, Khatun MS, Khan AS, Sarkar OS, Islam OK, Sakib N, Hasan MS, Islam MT. Contamination of Selected Toxic Elements in Integrated Chicken-Fish Farm Settings of Bangladesh and Associated Human Health Risk Assessments. Biol Trace Elem Res 2023; 201:1465-1477. [PMID: 35449492 DOI: 10.1007/s12011-022-03244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The presence of trace elements in the environment can contaminate a food chain of an agro farm in various ways. Integrated chicken-fish farms (i.e., where poultry chicken and fish are cultivated in same places) are getting popular nowadays to meet the demands of a balanced diet. The present study conducted a health risk assessment on the basis of selected heavy metal (i.e., Cr and Pb) and metalloid (i.e., As) contamination in this type of farm in Bangladesh. Samples of various types were collected from different farms between September 2019 and March 2020. The concentrations of the elements were checked by Flame-AAS and HG-AAS. Our findings demonstrated that the elements' concentrations in fishes were simultaneously induced by the habitation and bioaccumulation through the food chain of the farm. The concentrations of As and Pb in the chicken parts and Cr and As in some fishes were greater than the highest limits set by different permissible standards. Overall, the metal concentration obtained in different samples was in descending order: sediment > droppings > different fish parts > various species of chicken > pond water. Among the pollutants, As gave target hazard quotient (THQ) values higher than 1 for all the species, suggesting health risks from the intake of fishes and chicken. However, there was non-target cancer risk present while considering all the elements together. Notably, the study found carcinogenic risks of As, Pb, and Cr for humans due to poultry and/or fish consumption; the identified health risks associated with the integrated farming setting will be crucial in further tackling strategies. Investigation of the possible sources of heavy metals in commercial chicken feeds and regular monitoring of groundwater used for agro-farming are highly recommended to reduce the burden.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnabati, Puleehat, Jashore, 7400, Bangladesh
| | - M Abdullah-Al-Mamun
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Mst Sathi Khatun
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Abu Shamim Khan
- Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnabati, Puleehat, Jashore, 7400, Bangladesh
| | - Omar Sadi Sarkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Ovinu Kibria Islam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Najmuj Sakib
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Shazid Hasan
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Tanvir Islam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
91
|
Mohammadpour A, Emadi Z, Samaei MR, Ravindra K, Hosseini SM, Amin M, Samiei M, Mohammadi L, Khaksefidi R, Zarei AA, Motamed-Jahromi M, Mousavi Khaneghah A. The concentration of potentially toxic elements (PTEs) in drinking water from Shiraz, Iran: a health risk assessment of samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23295-23311. [PMID: 36322352 PMCID: PMC9938828 DOI: 10.1007/s11356-022-23535-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The existence of potentially toxic elements (PTEs) in water bodies has posed a menace to human health. Thus, water resources should be protected from PTEs, and their effect on the exposed population should be investigated. In the present investigation, the concentrations of PTEs such as lead (Pb), mercury (Hg), manganese (Mn), and iron(Fe) in the drinking water of Shiraz, Iran, were determined for the first time. In addition, hazard quotient, hazard index, cancer risk, and sensitivity analysis were applied to estimate the noncarcinogenic and carcinogenic impacts of Pb, Hg, Mn, and Fe on exposed children and adults through ingestion. The mean concentrations (µg/L) of Pb, Hg, Mn, and Fe were 0.36, 0.32, 2.28, and 8.72, respectively, in winter and 0.50, 0.20, 0.55, and 10.36, respectively, in summer. The results displayed that Fe concentration was more than the other PTEs. PTE concentrations were lower than the standard values of the Environment Protection Agency and World Health Organization. Values of the degree of contamination and heavy metal pollution index for lead, mercury, manganese, and iron were significantly low (< 1) and excellent (< 50), respectively. Based on the Spearman rank correlation analysis, positive and negative relationships were observed in the present study. The observations of the health risk assessment demonstrated that mercury, lead, iron, and manganese had an acceptable level of noncarcinogenic harmful health risk in exposed children and adults (hazard quotients < 1 and hazard index < 1). The carcinogenic risk of lead was low (< E - 06), which can be neglected. Monte Carlo simulation showed that water intake rate and mercury concentration were the most critical parameters in the hazard index for children and adults. Lead concentration was also the most crucial factor in the cancer risk analysis. The results of the present study proved that the drinking water of Shiraz is safe and healthy and can be confidently consumed by people.
Collapse
Affiliation(s)
- Amin Mohammadpour
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Emadi
- Department of Environmental Health Engineering, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khaiwal Ravindra
- Department of Community Medicine & School of Public Health, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Seyedeh Masoumeh Hosseini
- Department of Public Health and Food Hygiene, School of Veterinary Medicine, Shiraz University, PO Box 1731, Shiraz, Postal code 71345, Iran
| | - Mohammad Amin
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mojtaba Samiei
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Leili Mohammadi
- Environmental Health, Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Razyeh Khaksefidi
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Allah Zarei
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohadeseh Motamed-Jahromi
- Department of Medical-Surgical Nursing, Nursing School, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St, 02-532, Warsaw, Poland.
| |
Collapse
|
92
|
Hasan AB, Reza AHMS, Siddique MAB, Akbor MA, Nahar A, Hasan M, Zaman MN, Hasan MI, Moniruzzaman M. Spatial distribution, water quality, human health risk assessment, and origin of heavy metals in groundwater and seawater around the ship-breaking area of Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16210-16235. [PMID: 36181596 DOI: 10.1007/s11356-022-23282-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The concentrations of eleven heavy metals (Pb, Cd, Cr, Fe, Mn, Zn, Cu, Ni, Co, As, and Ag) were assessed in both groundwater and seawater collected from the ship-breaking industrial area of Bangladesh using an atomic absorption spectrometer. The investigation aimed to estimate the water quality and pollution level employing several indices, and its associated health risks for the first time in that area. This study found that Cd, Cr, Fe, Pb, Mn, and Ni were higher in both groundwater and seawater compared with WHO standards. Based on the WQI (water quality index) and EWQI (entropy water quality index) classifications, the quality of most of the groundwater is extremely poor or unsuitable for drinking purposes. Furthermore, the HPI (heavy metal pollution index), HEI (heavy metal evaluation index), and CD (degree of contamination) values of most groundwater and all seawater samples exhibit a higher degree of pollution. In addition, the results of NI (Nemerow pollution index) come to an end that both groundwater and seawater in the study area are mostly polluted by Fe, Mn, Pb, Cr, and Cd. Although the HI (hazard quotient index) values of almost all studied heavy metals in both cases of adults and children are within the safe limit, the HI value of Cr for an adult is near the threshold limit and the maximum HI value of Cr for children exceeds this limit. The carcinogenic risk reveals that Cr, Pb, As, and Cd produce detrimental effects on local people through the direct ingestion of groundwater. The pollution source is identified using principal component analysis and a Pearson correlation matrix as being primarily anthropogenic and attributed to intensive ship-breaking activities or other industries in the area.
Collapse
Affiliation(s)
- Asma Binta Hasan
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh.
- Institute of Mining, Mineralogy and Metallurgy (IMMM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat, Bangladesh.
| | - A H M Selim Reza
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Aynun Nahar
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mehedi Hasan
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mohammad Nazim Zaman
- Institute of Mining, Mineralogy and Metallurgy (IMMM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat, Bangladesh
| | - Md Irfanul Hasan
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Moniruzzaman
- Bangladesh Atomic Energy Commission (BAEC), Savar, 1000, Dhaka, Bangladesh
| |
Collapse
|
93
|
Haj Heidary R, Golzan SA, Mirza Alizadeh A, Hamedi H, Ataee M. Probabilistic health risk assessment of potentially toxic elements in the traditional and industrial olive products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10213-10225. [PMID: 36068456 DOI: 10.1007/s11356-022-22864-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Iran is recognized as one of the top olive producers globally, and it forms an integral part of the countries agriculture, particularly in Zanjan province. This study measured Hg, As, Pb, Cd, and Zn concentrations and evaluated probabilistic health risk in olive products. Results showed that Zn had the highest concentration (traditional and industrial table olive, Parvardeh, and olive oil: 4.912 ± 3.957 and 9.181 ± 6.385; 16.139 ± 6.986 and 18.330 ± 8.700; 41.385 ± 7.480 and 46.043 ± 15.773 μg g-1, respectively) compared to other potentially toxic elements (PTEs). Additionally, Cd in table olive (traditional: 0.137 ± 199 and industrial: 0.059 ± 0.041 μg g-1) and Parvardeh (traditional: 0.014 ± 0.009 and industrial: 0.019 ± 0.006 μg g-1), and As in olive oil (traditional: 0.025 ± 0.006 and industrial: 0.026 ± 0.009 μg g-1) had the lowest concentrations, respectively. As and Hg in table olive (0.224 ± 0.214 and 1.158 ± 0.974 μg g-1) and Hg in Parvardeh (0.210 ± 0.213 μg g-1) samples were significantly higher in traditional than industrial products (p < 0.05). Cd in Parvardeh (0.019 ± 0.006 μg g-1) and Zn in table olive (9.181 ± 6.385 μg g-1) samples were substantially more in industrial than traditional products (p < 0.05). Results suggest that industrially processed olive products are more likely to introduce higher levels of PTEs into the body. Nevertheless, based on the health risk assessment criteria, industrial products' hazard index (HI) values were lower than traditional types due to high Hg concentrations (HI = 0.01227 and 0.2708, respectively). Adults' total carcinogenic risk (TCR) in traditional olive products was higher than in industrial (sum TCR = 0.00016 and 0.00007, respectively). In conclusion, the results indicated that the consumption of olive products in the study area offered an increased non-carcinogenic and cancer risk to the population of this region owing to PTEs exposure, especially Hg.
Collapse
Affiliation(s)
- Rasool Haj Heidary
- Department of Food Safety and Hygiene, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Food and Drug Deputy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - S Amirhossein Golzan
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, Canada
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hassan Hamedi
- Department of Food Safety and Hygiene, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Ataee
- Department of Food Safety, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
94
|
Pavlovich-Cristopulos G, Schiavo B, Romero FM, Hernández-Mendiola E, Angulo-Molina A, Meza-Figueroa D. Oral bioaccessibility of metal(oid)s in commercial zeolite used as a dietary supplement: Implications to human health risk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
95
|
Varol M, Tokatlı C. Evaluation of the water quality of a highly polluted stream with water quality indices and health risk assessment methods. CHEMOSPHERE 2023; 311:137096. [PMID: 36334749 DOI: 10.1016/j.chemosphere.2022.137096] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The water quality of Çorlu Stream, located in the Thrace region of Türkiye, and exposed to intense industrial pressure, was evaluated by monitoring 10 toxic metals and 13 other water quality variables in the dry and wet seasons of 2021. Seven different water quality indices were applied to determine the pollution level at the sampling stations in the stream. In addition, human health risks from exposure to toxic metals in stream water via ingestion and dermal contact were evaluated. The results showed that the water quality at stations S2 and S3 of Çorlu Stream receiving domestic and industrial discharges are seriously polluted by NH4-N, PO4-P, COD, BOD5 and suspended solids according to surface water quality standards. In addition, these stations were highly polluted and had poor water quality according to the results of the water quality indices. The average Cr level at station S3 exceeded the permissible levels set for the protection of aquatic life due to effluent discharges from the leather factories. Considering the results of the health risk assessment methods, non-carcinogenic risks from ingestion of combined metals in stream water can be expected at station S3 for both children and adults and at station S2 for children. Also, it was estimated that Cr and As at station S3 may cause carcinogenic health risks for residents.
Collapse
Affiliation(s)
- Memet Varol
- Department of Aquaculture, Doğanşehir Vahap Küçük Vocational School, Malatya Turgut Özal University, Turkey.
| | - Cem Tokatlı
- Laboratory Technology Department, Trakya University, İpsala, Edirne, Turkey
| |
Collapse
|
96
|
Gu X, Mo H, Wang L, Zhang L, Ding Z. Co-transport of Cr(VI) and Bentonite Colloid in Saturated Porous Media. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:30. [PMID: 36580113 DOI: 10.1007/s00128-022-03675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Transport of Cr(VI) at the presence of bentonite colloid was carried out in saturated porous media of 16-18 mesh and 40-60 mesh sand columns. Effects of flow rate, pH, ion strength, humic acid and bentonite concentrations on Cr(VI) migration were investigated. The results show that the increase of flow rate accelerated the breakthrough of Cr(VI) and BP, but the transport mass of dissolved Cr(VI) decreased by ~ 15.0% when flow rate increased to 2.5 ml min-1. Increasing IS to 10mM resulted in decrease of Cr(VI) transport mass by 6.86%-21.4%. Increase of pH and decrease of bentonite concentration favored the transport of dissolved Cr(VI). Humic acid had little effect on transport amount of Cr at pH7. Cr(VI) transport was dominated by the dissolved Cr(VI). The transport data of dissolved Cr(VI) were well described by the two-site model. The presence of BP reduced total Cr(VI) transport mass in co-transport.
Collapse
Affiliation(s)
- Xinfeng Gu
- School of Environmental Science and Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, People's Republic of China
| | - Huijing Mo
- School of Environmental Science and Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, People's Republic of China
| | - Lei Wang
- School of Environmental Science and Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, People's Republic of China
| | - Lianyi Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, People's Republic of China
| | - Zhuhong Ding
- School of Environmental Science and Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
97
|
Irrigation suitability, health risk assessment and source apportionment of heavy metals in surface water used for irrigation near marble industry in Malakand, Pakistan. PLoS One 2022; 17:e0279083. [PMID: 36542623 PMCID: PMC9770375 DOI: 10.1371/journal.pone.0279083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Water is a vital, finite resource whose quantity and quality are deteriorating as the world population increases. The current study aims to investigate the concentration of heavy metals (HM) in surface water for irrigation purposes with associated human health risks and pollution sources near the marble industry in Malakand, Pakistan. Twenty-seven water samples were randomly collected and analyzed for HM concentration by inductively coupled plasma‒optical emission spectrometry (ICP‒OES). pH, electrical conductivity (EC), total dissolved solids (TDS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were measured using standard methods of American Public Health Association (APHA). Irrigation suitability was assessed using specific water quality parameters. The associated health risks from ingestion and dermal exposure to heavy metals were calculated by USEPA health risk indices. Pollution sources and spatial distribution mapping were studied using compositional data analysis (CoDa) and the application of a geographic information system (GIS) to understand the changing behavior of heavy metals in surface waters. The concentrations of BOD (89%), COD (89%), Al (89%), Ca (89%), Cr (56%), Cu (78%), Fe (56%), K (34%) Mg (23%), Mn (56%), Na (89%), Ni (56%), P (89%), and Zn (11%) exceeded the safety limits of National Environmental Quality standards (NEQs) of Pakistan. The results of Kelly's ratio (KR) classified surface water as unsuitable for irrigation. The average daily doses (ADD, mg/kg/day) for Al, Cu, Cr, Fe, Mn, Ni, and Zn were higher in children than in adults. The hazard index (HI) for children and adults was above the threshold (HI > 1), indicating a significant risk of non-carcinogenic toxicity. The carcinogenic risk values for Cr and Ni were above the USEPA limit (1 × 10-6 to 1 × 10-4), suggesting a potential carcinogenic risk for the target population. Principal component analysis (PCA), biplot (CLR), and the CoDa-dendrogram allowed for the identification of elemental associations, and their potential source was anthropogenic rather than natural in origin. Regular monitoring and phytoremediation strategies are proposed to safeguard crops and human health.
Collapse
|
98
|
Lemessa F, Simane B, Seyoum A, Gebresenbet G. Analysis of the concentration of heavy metals in soil, vegetables and water around the bole Lemi industry park, Ethiopia. Heliyon 2022; 8:e12429. [PMID: 36593829 PMCID: PMC9803712 DOI: 10.1016/j.heliyon.2022.e12429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Irrigation water contaminated with industrial waste could pollute the soil and vegetables with heavy metals. The objective of this study was to analyze the concentration of heavy metals in soil and vegetables after irrigation practices with wastewater emanating from industrial parks. 24 samples were collected from 8 sampling stations for vegetable, soil and water samples separately, following APHA procedures. Samples were collected using a composite sampling method in May and June 2021. Water samples were collected using clean polyethylene plastic bottles while soil and vegetables were sampled using clean plastic bags. Analysis was done for heavy metal concentrations such as Pb, Cr, Cd, and Zn for each sample using descriptive statistics of changes in concentrations, one-way analysis of variance (ANOVA), Principal Component Analysis and Pearson Correlation Coefficient. The mean concentration of heavy metals in soil, vegetables, and water samples was analyzed. Unlike the rest of the heavy metal concentrations, the result showed the highest levels for Zn, i.e., 7.82 mg/kg and 5.12 mg/kg for vegetables and soil samples, respectively. The maximum value of the bioconcentration factor (BCF), the highest value of Estimated Daily Intake (EDI), and the maximum Target Cancer Risk (TCR) value recorded were 19.39, 0.001, and 8.09 × 10-5 for Cd, Zn, and Cr, respectively. But, Hazard Index (HI) indicated no potential health effects. On the other hand, the concentration of heavy metals in the soil sample showed that Cr and Cd were strongly positively correlated with the concentration of Pb in vegetables during May. Cd concentration in the water sample was also strongly positively correlated with the concentration of Pb during May. The application of proper management for the reduction of contaminants, and suitable irrigation methods with treated wastewater is essential. The study can provide a basis for the City Administration of Addis Ababa to properly protect the water quality of rivers and provide a reference for river management around the industry parks across the country.
Collapse
Affiliation(s)
- Fituma Lemessa
- Addis Ababa University, Center for Environment and Development, Addis Ababa, Ethiopia,Corresponding author.
| | - Belay Simane
- Addis Ababa University, Center for Environment and Development, Addis Ababa, Ethiopia
| | - Assefa Seyoum
- Addis Ababa University, Center for Environment and Development, Addis Ababa, Ethiopia
| | | |
Collapse
|
99
|
Pujiwati A, Nakamura K, Wang J, Kawabe Y, Watanabe N, Komai T. Potentially toxic elements pose significant and long-term human health risks in river basin districts with abandoned gold mines. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4685-4702. [PMID: 35260970 DOI: 10.1007/s10653-022-01229-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Gold (Au) mining area is known to be one of the major sources of toxic elements; however, the potential risks of toxic elements from abandoned Au mines to the surrounding river basin districts and human exposure pathways to toxic elements need to be clarified. In this study, the distribution and mobilities of nine toxic elements (As, Cd, Cu, Pb, Sb, Zn, Cr, Ni and V) in Kesennuma City, Tohoku Region in Japan, a typical Au-mining district with several river basins, were studied through a geochemical survey (including element total concentrations and water-/acid-leaching concentrations determinations, as well as GB calculations), and environmental assessment on these elements in soil, river sediment, and river water samples from the study area. The contamination evaluation by index of geo-accumulation (Igeo) and enrichment factor (EF) suggested that As, Cu, Ni and Sb enrichments were greatly observed in the vicinity of the abandoned Au mines; moreover, calculated GB upper values for Cu in the river sediment surpass that of Tohoku Region. It has been found in this study that each element has particular mobility, which eventually influences its exposure pathway to humans. For instance, As in soil and sediment poses adverse non-carcinogenic risks and unacceptable carcinogenic risks to especially children mainly through groundwater ingestion. To minimize the potential risks associated with exposure to toxic elements in Au-mining districts, effective risk management measures should be implemented around river system by Au-mining companies even after their long-time closures, based on the consideration of each element's mobility.
Collapse
Affiliation(s)
- Arie Pujiwati
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- General Secretariat of National Energy Council, Ministry of Energy and Mineral Resources, Jl. Jend. Gatot Subroto Kav. 49 Jakarta, Selatan, 12950, Republic of Indonesia
| | - Kengo Nakamura
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Jiajie Wang
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| | - Yoshishige Kawabe
- Geo-Environmental Risk Research Group, Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Noriaki Watanabe
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Takeshi Komai
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
100
|
Im JK, Cho YC, Kim YS, Lee S, Kang T, Kim SH. Characteristics, Possible Origins, and Health Risk Assessment of Trace Elements in Surface Waters of the Han River Watershed, South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15822. [PMID: 36497894 PMCID: PMC9741419 DOI: 10.3390/ijerph192315822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
To safeguard aquatic environments in and around the Han River watershed in South Korea, a multivariate statistical evaluation of trace elements, a trace element concentration analysis and source determination, and a human health risk assessment were conducted on 10 trace elements at 25 sites. The results demonstrated that the Han River watershed was mainly affected by anthropogenic activities (traffic/industrial activity). The range of concentrations was arranged in descending order: Fe (217.13 ± 301.03 µg/L) > Mn (102.36 ± 153.04 µg/L) > Zn (23.33 ± 79.63 µg/L) > Ba (29.05 ± 12.37 µg/L) > Ni (5.14 ± 11.57 µg/L) > Cu (3.80 ± 3.56 µg/L) > Pb (0.46 ± 0.52 µg/L) > Se (0.06 ± 0.04 µg/L) > Cd (0.01 ± 0.01 µg/L) > Ag (0.004 ± 0.013 µg/L). The hazard index values of trace elements in surface water for combined pathways (ingestion and dermal contact) were < 1.0 for both adults and children, indicating no possible human health hazards. The estimated total cancer risk did not exceed the acceptable limit (1 × 10-4) for adults and children. The findings of this study provide data-driven guidelines for water environment policy decisions in the study area.
Collapse
|