51
|
Tsai YH, Nattiv R, Dedhia PH, Nagy MS, Chin AM, Thomson M, Klein OD, Spence JR. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 2016; 144:1045-1055. [PMID: 27927684 PMCID: PMC5358103 DOI: 10.1242/dev.138453] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
The intestine plays a central role in digestion, nutrient absorption and metabolism, with individual regions of the intestine having distinct functional roles. Many examples of region-specific gene expression in the adult intestine are known, but how intestinal regional identity is established during development is a largely unresolved issue. Here, we have identified several genes that are expressed in a region-specific manner in the developing human intestine. Using human embryonic stem cell-derived intestinal organoids, we demonstrate that the duration of exposure to active FGF and WNT signaling controls regional identity. Short-term exposure to FGF4 and CHIR99021 (a GSK3β inhibitor that stabilizes β-catenin) resulted in organoids with gene expression patterns similar to developing human duodenum, whereas longer exposure resulted in organoids similar to ileum. When region-specific organoids were transplanted into immunocompromised mice, duodenum-like organoids and ileum-like organoids retained their regional identity, demonstrating that regional identity of organoids is stable after initial patterning occurs. This work provides insights into the mechanisms that control regional specification of the developing human intestine and provides new tools for basic and translational research. Summary: Human embryonic stem cell-derived intestinal organoids can be patterned into duodenum-like or ileum-like tissue, recapitulating in vivo human development.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roy Nattiv
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Priya H Dedhia
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melinda S Nagy
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA .,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
52
|
Muñoz-Bravo JL, Flores-Martínez A, Herrero-Martin G, Puri S, Taketo MM, Rojas A, Hebrok M, Cano DA. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity. PLoS One 2016; 11:e0164714. [PMID: 27736991 PMCID: PMC5063371 DOI: 10.1371/journal.pone.0164714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries.
Collapse
Affiliation(s)
- Jose Luis Muñoz-Bravo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Alvaro Flores-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Griselda Herrero-Martin
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Sapna Puri
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Makoto Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - David A. Cano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
53
|
Zhang X, Chen Y, Ye Y, Wang J, Wang H, Yuan G, Lin Z, Wu Y, Zhang Y, Lin X. Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation. Cell Signal 2016; 29:12-22. [PMID: 27693749 DOI: 10.1016/j.cellsig.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Wnt signaling plays essential roles in both embryonic pattern formation and postembryonic tissue homoestasis. High levels of Wnt activity repress foregut identity and facilitate hindgut fate through forming a gradient of Wnt signaling activity along the anterior-posterior axis. Here, we examined the mechanisms of Wnt signaling in hindgut development by differentiating human embryonic stem cells (hESCs) into the hindgut progenitors. We observed severe morphological changes when Wnt signaling was blocked by using Wnt antagonist Dkk1. We performed deep-transcriptome sequencing (RNA-seq) and identified 240 Wnt-activated genes and 2023 Wnt-repressed genes, respectively. Clusters of Wnt targets showed enrichment in specific biological functions, such as "gastrointestinal or skeletal development" in the Wnt-activated targets and "neural or immune system development" in the Wnt-repressed targets. Moreover, we adopted a high-throughput chromatin immunoprecipitation and deep sequencing (ChIP-seq) approach to identify the genomic regions through which Wnt-activated transcription factor TCF7L2 regulated transcription. We identified 83 Wnt direct target candidates, including the hindgut marker CDX2 and the genes relevant to morphogenesis (MSX1, MSX2, LEF1, T, PDGFRB etc.) through combinatorial analysis of the RNA-seq and ChIP-seq data. Together, our study identified a series of direct and indirect Wnt targets in hindgut differentiation, and uncovered the diverse mechanisms of Wnt signaling in regulating multi-lineage differentiation.
Collapse
Affiliation(s)
- Xiujuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Ye
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Wang
- Core Genomic Facility, CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guohong Yuan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Division of Developmental Biology, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
54
|
Abstract
The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
55
|
Davenport C, Diekmann U, Budde I, Detering N, Naujok O. Anterior-Posterior Patterning of Definitive Endoderm Generated from Human Embryonic Stem Cells Depends on the Differential Signaling of Retinoic Acid, Wnt-, and BMP-Signaling. Stem Cells 2016; 34:2635-2647. [PMID: 27299363 DOI: 10.1002/stem.2428] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/18/2016] [Accepted: 05/26/2016] [Indexed: 01/05/2023]
Abstract
As known from model organisms, such as frog, fish, mouse, and chicken, the anterior-posterior patterning of the definitive endoderm (DE) into distinct domains is controlled by a variety of signaling interactions between the DE and its surrounding mesoderm. This includes Wnt/FGFs and BMPs in the posterior half and all-trans-retinoic acid, TGF-β-ligands, Wnt-, and BMP-inhibitors in the anterior half of the DE sheet. However, it is currently unclear how these embryonic tissue interactions can be translated into a defined differentiation protocol for human embryonic stem cells. Activin A has been proposed to direct DE into a SOX2-positive foregut-like cell type. Due to the pleiotropic nature of SOX2 in pluripotency and developing cells of the foregut, we purified DE-cells by magnetic cell sorting and tested the effects of anteriorizing and posteriorizing factors on pure endoderm. We show in contrast to previous studies that the generation of the foregut marked by SOX2/FOXA2 double-positive cells does not depend on activin A/TGF-β-signaling but is mediated by the inhibition of Wnt- and BMP-signaling. Retinoic acid can posteriorize and at the same time dorsalize the foregut toward a PDX1-positive pancreatic duodenal cell type whereas active Wnt/beta-catenin signaling synergistically with FGF-2, BMP-4, and RA induces the formation of CDX2-positive posterior endoderm. Thus, these results provide new insights into the mechanisms behind cell specification of human DE derived from pluripotent stem cells. Stem Cells 2016;34:2635-2647.
Collapse
Affiliation(s)
- Claudia Davenport
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Nora Detering
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
56
|
Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR. LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation. Cell Mol Gastroenterol Hepatol 2016; 2:648-662.e8. [PMID: 28078320 PMCID: PMC5042889 DOI: 10.1016/j.jcmgh.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic contexts in mice. However, the function of LGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail. METHODS We interrogated the function and expression of LGR family members using human pluripotent stem cell-derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5-GFP-IRES-CreERT2 mice. RESULTS We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4 and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human-mouse species-specific differences at later time points of embryonic development. CONCLUSIONS Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.
Collapse
Key Words
- CDX2, caudal type homeobox2
- ChIPseq, chromatin immunoprecipitation sequencing
- Ct, cycle threshold
- DE, definitive endoderm
- E, embryonic day
- Endoderm
- GFP, green fluorescent protein
- Intestine
- LGR5
- Organoid
- Pluripotent Stem Cells
- Rspo, R-spondin protein
- WNT
- creER, cre recombinase protein fused to estrogen receptor
- hESC, human embryonic stem cell
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - David R. Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Namit Kumar
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alana M. Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Briana R. Dye
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Melinda S. Nagy
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael P. Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan,Correspondence Address correspondence to: Jason R. Spence, PhD, Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109. fax: (734) 763-4686.Division of GastroenterologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan 48109
| |
Collapse
|
57
|
Abstract
Gastric diseases cause considerable worldwide burden. However, the stomach is still poorly understood in terms of the molecular-cellular processes that govern its development and homeostasis. In particular, the complex relationship between the differentiated cell types located within the stomach and the stem and progenitor cells that give rise to them is significantly understudied relative to other organs. In this review, we will highlight the current state of the literature relating to specification of gastric cell lineages from embryogenesis to adulthood. Special emphasis is placed on substantial gaps in knowledge about stomach specification that we think should be tackled to advance the field. For example, it has long been assumed that adult gastric units have a granule-free stem cell that gives rise to all differentiated lineages. Here we will point out that there are also other models that fit all extant data, such as long-lived lineage-committed progenitors that might serve as a source of new cells during homeostasis.
Collapse
Affiliation(s)
- Spencer G. Willet
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence Address correspondence to: Jason C. Mills, MD, PhD, Washington University School of Medicine, Box 8124, 660 South Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 362-7487.Washington University School of MedicineBox 8124, 660 South Euclid AvenueSt. LouisMissouri 63110
| |
Collapse
|
58
|
Dye BR, Miller AJ, Spence JR. How to Grow a Lung: Applying Principles of Developmental Biology to Generate Lung Lineages from Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2016; 4:47-57. [PMID: 27340610 PMCID: PMC4882378 DOI: 10.1007/s40139-016-0102-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number and severity of diseases affecting human lung development and adult respiratory function has stimulated great interest in new in vitro models to study the human lung. This review summarizes the most recent breakthroughs deriving lung lineages in a dish by directing the differentiation of human pluripotent stem cells. A variety of culturing platforms have been developed, including two-dimensional and three-dimensional (organoid) culture platforms, to derive specific cell types and structures of the lung. These stem cell-derived lung models will further our understanding of human lung development, disease, and regeneration.
Collapse
Affiliation(s)
- Briana R. Dye
- />Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Alyssa J. Miller
- />Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Department of Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Jason R. Spence
- />Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Department of Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| |
Collapse
|
59
|
Fernandez Vallone V, Leprovots M, Strollo S, Vasile G, Lefort A, Libert F, Vassart G, Garcia MI. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage. Development 2016; 143:1452-63. [PMID: 26989172 PMCID: PMC4986166 DOI: 10.1242/dev.131490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Mouse fetal intestinal progenitors lining the epithelium prior to villogenesis grow as spheroids when cultured ex vivo and express the transmembrane glycoprotein Trop2 as a marker. Here, we report the characterization of Trop2-expressing cells from fetal pre-glandular stomach, growing as immortal undifferentiated spheroids, and their relationship with gastric development and regeneration. Trop2+ cells generating gastric spheroids differed from adult glandular Lgr5+ stem cells, but appeared highly related to fetal intestinal spheroids. Although they shared a common spheroid signature, intestinal and gastric fetal spheroid-generating cells expressed organ-specific transcription factors and were committed to intestinal and glandular gastric differentiation, respectively. Trop2 expression was transient during glandular stomach development, being lost at the onset of gland formation, whereas it persisted in the squamous forestomach. Undetectable under homeostasis, Trop2 was strongly re-expressed in glands after acute Lgr5+ stem cell ablation or following indomethacin-induced injury. These highly proliferative reactive adult Trop2+ cells exhibited a transcriptome displaying similarity with that of gastric embryonic Trop2+ cells, suggesting that epithelium regeneration in adult stomach glands involves the partial re-expression of a fetal genetic program. Summary: Trop2, a marker of gastric fetal glandular epithelium grown ex vivo, is re-expressed upon injury in adult regenerative cells together with a partial fetal-like genetic program.
Collapse
Affiliation(s)
- Valeria Fernandez Vallone
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Morgane Leprovots
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Sandra Strollo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Gabriela Vasile
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Marie-Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| |
Collapse
|
60
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
61
|
Tamminen K, Balboa D, Toivonen S, Pakarinen MP, Wiener Z, Alitalo K, Otonkoski T. Intestinal Commitment and Maturation of Human Pluripotent Stem Cells Is Independent of Exogenous FGF4 and R-spondin1. PLoS One 2015; 10:e0134551. [PMID: 26230325 PMCID: PMC4521699 DOI: 10.1371/journal.pone.0134551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/12/2015] [Indexed: 01/21/2023] Open
Abstract
Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC) into posterior endoderm (hindgut) and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an early role in repressing development towards the hepatic lineage. When hindgut stage cells were further cultured in 3D, they formed self-renewing organoid structures containing all major intestinal cell types even without exogenous R-spondin1 (RSPO1), a crucial factor for the culture of epithelial organoids derived from adult intestine. This may be explained by the presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-like organoids. Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro.
Collapse
Affiliation(s)
- Kaisa Tamminen
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | - Sanna Toivonen
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | - Mikko P. Pakarinen
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Zoltan Wiener
- Translational Cancer Biology Program and Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Biology Program and Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
62
|
Ikonomou L, Kotton DN. Derivation of Endodermal Progenitors From Pluripotent Stem Cells. J Cell Physiol 2015; 230:246-58. [PMID: 25160562 PMCID: PMC4344429 DOI: 10.1002/jcp.24771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 01/18/2023]
Abstract
Stem and progenitor cells play important roles in organogenesis during development and in tissue homeostasis and response to injury postnatally. As the regenerative capacity of many human tissues is limited, cell replacement therapies hold great promise for human disease management. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are prime candidates for the derivation of unlimited quantities of clinically relevant cell types through development of directed differentiation protocols, that is, the recapitulation of developmental milestones in in vitro cell culture. Tissue-specific progenitors, including progenitors of endodermal origin, are important intermediates in such protocols since they give rise to all mature parenchymal cells. In this review, we focus on the in vivo biology of embryonic endodermal progenitors in terms of key transcription factors and signaling pathways. We critically review the emerging literature aiming to apply this basic knowledge to achieve the efficient and reproducible in vitro derivation of endodermal progenitors such as pancreas, liver and lung precursor cells.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| |
Collapse
|
63
|
Hou J, Wei W, Saund RS, Xiang P, Cunningham TJ, Yi Y, Alder O, Lu DYD, Savory JGA, Krentz NAJ, Montpetit R, Cullum R, Hofs N, Lohnes D, Humphries RK, Yamanaka Y, Duester G, Saijoh Y, Hoodless PA. A regulatory network controls nephrocan expression and midgut patterning. Development 2014; 141:3772-81. [PMID: 25209250 DOI: 10.1242/dev.108274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.
Collapse
Affiliation(s)
- Juan Hou
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Ranajeet S Saund
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Ping Xiang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Thomas J Cunningham
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yuyin Yi
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Olivia Alder
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Daphne Y D Lu
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Joanne G A Savory
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nicole A J Krentz
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rachel Montpetit
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Nicole Hofs
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - David Lohnes
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Experimental Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, Montreal, Quebec H2W 1S6, Canada
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
64
|
Annunziata R, Arnone MI. A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin. Development 2014; 141:2462-72. [PMID: 24850857 DOI: 10.1242/dev.105775] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The anteroposterior patterning of the embryonic gut represents one of the most intriguing biological processes in development. A dynamic control of gene transcription regulation and cell movement is perfectly orchestrated to shape a functional gut in distinct specialized parts. Two ParaHox genes, Xlox and Cdx, play key roles in vertebrate and sea urchin gut patterning through molecular mechanisms that are still mostly unclear. Here, we have combined functional analysis methodologies with high-resolution imaging and RNA-seq to investigate Xlox and Cdx regulation and function. We reveal part of the regulatory machinery responsible for the onset of Xlox and Cdx transcription, uncover a Wnt10 signal that mediates Xlox repression in the intestinal cells, and provide evidence of Xlox- and Cdx-mediated control of stomach and intestine differentiation, respectively. Our findings offer a novel mechanistic explanation of how the control of transcription is linked to cell differentiation and morphogenesis for the development of a perfectly organized biological system such as the sea urchin larval gut.
Collapse
Affiliation(s)
- Rossella Annunziata
- Stazione Zoologica Anton Dohrn, Cellular and Developmental Biology, Villa Comunale, Napoli 80121, Italy
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Cellular and Developmental Biology, Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
65
|
Abstract
With the high prevalence of gastrointestinal disorders, there is great interest in establishing in vitro models of human intestinal disease and in developing drug-screening platforms that more accurately represent the complex physiology of the intestine. We will review how recent advances in developmental and stem cell biology have made it possible to generate complex, three-dimensional, human intestinal tissues in vitro through directed differentiation of human pluripotent stem cells. These are currently being used to study human development, genetic forms of disease, intestinal pathogens, metabolic disease and cancer.
Collapse
Affiliation(s)
- James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
66
|
Mahony S, Edwards MD, Mazzoni EO, Sherwood RI, Kakumanu A, Morrison CA, Wichterle H, Gifford DK. An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding. PLoS Comput Biol 2014; 10:e1003501. [PMID: 24675637 PMCID: PMC3967921 DOI: 10.1371/journal.pcbi.1003501] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/16/2014] [Indexed: 11/24/2022] Open
Abstract
Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS's multi-experiment modeling approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2 site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However, MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2 can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5. Many proteins that regulate the activity of other genes do so by attaching to the genome at specific binding sites. The locations that a given regulatory protein will bind, and the strength or frequency of such binding at an individual location, can vary depending on the cell type. We can profile the locations that a protein binds in a particular cell type using an experimental method called ChIP-seq, followed by computational interpretation of the data. However, since the experimental data are typically noisy, it is often difficult to compare the computational analyses of ChIP-seq data across multiple experiments in order to understand any differences in binding that may occur in different cell types. In this paper, we present a new computational method named MultiGPS for simultaneously analyzing multiple related ChIP-seq experiments in an integrated manner. By analyzing all the data together in an appropriate way, we can gain a more accurate picture of where the profiled protein is binding to the genome, and we can more easily and reliably detect differences in protein binding across cell types. We demonstrate the MultiGPS software using a new analysis of the regulatory protein Cdx2 in three different developmental cell types.
Collapse
Affiliation(s)
- Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (SM); (DKG)
| | - Matthew D. Edwards
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Esteban O. Mazzoni
- Department of Biology, New York University, New York, New York, United States of America
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akshay Kakumanu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Carolyn A. Morrison
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, New York, United States of America
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, New York, United States of America
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (SM); (DKG)
| |
Collapse
|
67
|
Nissim S, Sherwood RI, Wucherpfennig J, Saunders D, Harris JM, Esain V, Carroll KJ, Frechette GM, Kim AJ, Hwang KL, Cutting CC, Elledge S, North TE, Goessling W. Prostaglandin E2 regulates liver versus pancreas cell-fate decisions and endodermal outgrowth. Dev Cell 2014; 28:423-37. [PMID: 24530296 DOI: 10.1016/j.devcel.2014.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/18/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver versus pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate, whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell-fate decisions and outgrowth of the embryonic endodermal anlagen.
Collapse
Affiliation(s)
- Sahar Nissim
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | - Diane Saunders
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James M Harris
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Virginie Esain
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kelli J Carroll
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory M Frechette
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kim
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Katie L Hwang
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Claire C Cutting
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Susanna Elledge
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Wolfram Goessling
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
68
|
Sherwood RI, Hashimoto T, O'Donnell CW, Lewis S, Barkal AA, van Hoff JP, Karun V, Jaakkola T, Gifford DK. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol 2014; 32:171-178. [PMID: 24441470 PMCID: PMC3951735 DOI: 10.1038/nbt.2798] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 12/16/2013] [Indexed: 11/12/2022]
Abstract
We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.
Collapse
Affiliation(s)
- Richard I Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Tatsunori Hashimoto
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Charles W O'Donnell
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138
| | - Sophia Lewis
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Amira A Barkal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - John Peter van Hoff
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Vivek Karun
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Tommi Jaakkola
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138
| |
Collapse
|
69
|
Annunziata R, Perillo M, Andrikou C, Cole AG, Martinez P, Arnone MI. Pattern and process during sea urchin gut morphogenesis: the regulatory landscape. Genesis 2014; 52:251-68. [PMID: 24376127 DOI: 10.1002/dvg.22738] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 01/02/2023]
Abstract
The development of the endoderm is a multistage process. From the initial specification of the endodermal domain in the embryo to the final regionalization of the gut, there are multiple stages that require the involvement of complex gene regulatory networks. In one concrete case, the sea urchin embryo, some of these stages and their genetic control are (relatively) well understood. Several studies have underscored the relevance of individual transcription factor activities in the process, but very few have focused the attention on gene interactions within specific gene regulatory networks (GRNs). Sea urchins offer an ideal system to study the different factors involved in the morphogenesis of the gut. Here we review the knowledge gained over the last 10 years on the process and its regulation, from the early specification of endodermal lineages to the late events linked to the patterning of functional domains in the gut. A lesson of remarkable importance has been learnt from comparison of the mechanisms involved in gut formation in different bilaterian animals; some of these genetic mechanisms are particularly well conserved. Patterning the gut seems to involve common molecular players and shared interactions, whether we look at mammals or echinoderms. This astounding degree of conservation reveals some key aspects of deep homology that are most probably shared by all bilaterian guts.
Collapse
Affiliation(s)
- Rossella Annunziata
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
70
|
Loh KM, Ang LT, Zhang J, Kumar V, Ang J, Auyeong JQ, Lee KL, Choo SH, Lim CYY, Nichane M, Tan J, Noghabi MS, Azzola L, Ng ES, Durruthy-Durruthy J, Sebastiano V, Poellinger L, Elefanty AG, Stanley EG, Chen Q, Prabhakar S, Weissman IL, Lim B. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 2014; 14:237-52. [PMID: 24412311 DOI: 10.1016/j.stem.2013.12.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 01/11/2023]
Abstract
Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore, we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics, BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm), yet, 24 hr later, suppressed endoderm and induced mesoderm. At lineage bifurcations, cross-repressive signals separated mutually exclusive fates; TGF-β and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations, thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of "pre-enhancer" states before activation, reflecting the establishment of a permissive chromatin landscape as a prelude to differentiation.
Collapse
Affiliation(s)
- Kyle M Loh
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lay Teng Ang
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore.
| | - Jingyao Zhang
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Vibhor Kumar
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Jasmin Ang
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Jun Qiang Auyeong
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Siew Hua Choo
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Christina Y Y Lim
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Massimo Nichane
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Junru Tan
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Monireh Soroush Noghabi
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Lisa Azzola
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth S Ng
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jens Durruthy-Durruthy
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vittorio Sebastiano
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Andrew G Elefanty
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Shyam Prabhakar
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Irving L Weissman
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| |
Collapse
|
71
|
Toivonen S, Lundin K, Balboa D, Ustinov J, Tamminen K, Palgi J, Trokovic R, Tuuri T, Otonkoski T. Activin A and Wnt-dependent specification of human definitive endoderm cells. Exp Cell Res 2013; 319:2535-44. [DOI: 10.1016/j.yexcr.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/31/2022]
|
72
|
Iwao T, Toyota M, Miyagawa Y, Okita H, Kiyokawa N, Akutsu H, Umezawa A, Nagata K, Matsunaga T. Differentiation of human induced pluripotent stem cells into functional enterocyte-like cells using a simple method. Drug Metab Pharmacokinet 2013; 29:44-51. [PMID: 23822979 DOI: 10.2133/dmpk.dmpk-13-rg-005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem (iPS) cells were differentiated into the endoderm using activin A and were then treated with fibroblast growth factor 2 (FGF2) for differentiation into intestinal stem cell-like cells. These immature cells were then differentiated into enterocyte-like cells using epidermal growth factor (EGF) in 2% fetal bovine serum (FBS). At the early stage of differentiation, mRNA expression of caudal type homeobox 2 (CDX2), a major transcription factor related to intestinal development and differentiation, and leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), an intestinal stem cell marker, was markedly increased by treatment with FGF2. When cells were cultured in medium containing EGF and a low concentration of FBS, mRNAs of specific markers of intestinal epithelial cells, including sucrase-isomaltase, the intestinal oligopeptide transporter SLC15A1/peptide transporter 1 (PEPT1), and the major metabolizing enzyme CYP3A4, were expressed. In addition, sucrase-isomaltase protein expression and uptake of β-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid (β-Ala-Lys-AMCA), a fluorescence-labeled substrate of the oligopeptide transporter, were detected. These results demonstrate a simple and direct method for differentiating human iPS cells into functional enterocyte-like cells.
Collapse
Affiliation(s)
- Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules. Stem Cell Res 2013; 11:1003-12. [PMID: 23917481 DOI: 10.1016/j.scr.2013.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/21/2022] Open
Abstract
Anterior foregut endoderm (AFE) gives rise to therapeutically relevant cell types in tissues such as the esophagus, salivary glands, lung, thymus, parathyroid and thyroid. Despite its importance, reports describing the generation of AFE from pluripotent stem cells (PSCs) by directed differentiation have mainly focused on the Nkx2.1(+) lung and thyroid lineages. Here, we describe a novel protocol to derive a subdomain of AFE, identified by expression of Pax9, from PSCs using small molecules and defined media conditions. We generated a reporter PSC line for isolation and characterization of Pax9(+) AFE cells, which when transplanted in vivo, can form several distinct complex AFE-derived epithelia, including mucosal glands and stratified squamous epithelium. Finally, we show that the directed differentiation protocol can be used to generate AFE from human PSCs. Thus, this work both broadens the range of PSC-derived AFE tissues and creates a platform enabling the study of AFE disorders.
Collapse
|
74
|
Wong AP, Rossant J. Generation of Lung Epithelium from Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2013; 1:137-145. [PMID: 23662247 PMCID: PMC3646155 DOI: 10.1007/s40139-013-0016-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The understanding of key processes and signaling mechanisms in lung development has been mainly demonstrated through gain and loss of function studies in mice, while human lung development remains largely unexplored due to inaccessibility. Several recent reports have exploited the identification of key signaling mechanisms that regulate lineage commitment and restriction in mouse lung development, to direct differentiation of both mouse and human pluripotent stem cells towards lung epithelial cells. In this review, we discuss the recent advances in the generation of respiratory epithelia from pluripotent stem cells and the potential of these engineered cells for novel scientific discoveries in lung diseases and future translation into regenerative therapies.
Collapse
Affiliation(s)
- Amy P. Wong
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
| | - Janet Rossant
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| |
Collapse
|
75
|
Kim SE, An SY, Woo DH, Han J, Kim JH, Jang YJ, Son JS, Yang H, Cheon YP, Kim JH. Engraftment potential of spheroid-forming hepatic endoderm derived from human embryonic stem cells. Stem Cells Dev 2013; 22:1818-29. [PMID: 23373441 DOI: 10.1089/scd.2012.0401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transplantation and drug discovery programs for liver diseases are hampered by the shortage of donor tissue. While recent studies have shown that hepatic cells can be derived from human embryonic stem cells (hESCs), few cases have shown selective enrichment of hESC-derived hepatocytes and their integration into host liver tissues. Here we demonstrate that the dissociation and reaggregation procedure after an endodermal differentiation of hESC produces spheroids mainly consisted of cells showing hepatic phenotypes in vitro and in vivo. A combined treatment with Wnt3a and bone morphogenic protein 4 efficiently differentiated hESCs into definitive endoderm in an adherent culture. Dissociation followed by reaggregation of these cells in a nonadherent condition lead to the isolation of spheroid-forming cells that preferentially expressed early hepatic markers from the adherent cell population. Further differentiation of these spheroid cells in the presence of the hepatocyte growth factor, oncostatin M, and dexamethasone produced a highly enriched population of cells exhibiting characteristics of early hepatocytes, including glycogen storage, indocyanine green uptake, and synthesis of urea and albumin. Furthermore, we show that grafted spheroid cells express hepatic features and attenuate the serum aspartate aminotransferase level in a model of acute liver injury. These data suggest that hepatic progenitor cells can be enriched by the spheroid formation of differentiating hESCs and that these cells have engraftment potential to replace damaged liver tissues.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Division of Biotechnology, Laboratory of Stem Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Finkbeiner SR, Spence JR. A gutsy task: generating intestinal tissue from human pluripotent stem cells. Dig Dis Sci 2013; 58:1176-84. [PMID: 23532718 PMCID: PMC3661082 DOI: 10.1007/s10620-013-2620-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 02/22/2013] [Indexed: 02/07/2023]
Abstract
Many significant advances in our understanding of intestine development, intestinal stem cell homeostasis and differentiation have been made in recent years. These advances include novel techniques to culture primary human and mouse intestinal epithelium in three-dimensional matrices, and de novo generation of human intestinal tissue from embryonic and induced pluripotent stem cells. This short review will focus on the directed differentiation of human pluripotent stem cells into intestinal tissue, highlight novel uses of this tissue, and compare and contrast this system to primary intestinal epithelial cultures.
Collapse
Affiliation(s)
- Stacy R. Finkbeiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA ,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI USA ,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI USA
| |
Collapse
|
77
|
Arbab M, Mahony S, Cho H, Chick JM, Rolfe PA, van Hoff JP, Morris VW, Gygi SP, Maas RL, Gifford DK, Sherwood RI. A multi-parametric flow cytometric assay to analyze DNA-protein interactions. Nucleic Acids Res 2012; 41:e38. [PMID: 23143268 PMCID: PMC3554230 DOI: 10.1093/nar/gks1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interactions between DNA and transcription factors (TFs) guide cellular function and
development, yet the complexities of gene regulation are still far from being understood.
Such understanding is limited by a paucity of techniques with which to probe
DNA–protein interactions. We have devised magnetic protein immobilization on
enhancer DNA (MagPIE), a simple, rapid, multi-parametric assay using flow cytometric
immunofluorescence to reveal interactions among TFs, chromatin structure and DNA. In
MagPIE, synthesized DNA is bound to magnetic beads, which are then incubated with nuclear
lysate, permitting sequence-specific binding by TFs, histones and methylation by native
lysate factors that can be optionally inhibited with small molecules. Lysate
protein–DNA binding is monitored by flow cytometric immunofluorescence, which allows
for accurate comparative measurement of TF-DNA affinity. Combinatorial fluorescent
staining allows simultaneous analysis of sequence-specific TF-DNA interaction and
chromatin modification. MagPIE provides a simple and robust method to analyze complex
epigenetic interactions in vitro.
Collapse
Affiliation(s)
- Mandana Arbab
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Mahony
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Hyunjii Cho
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Joel M. Chick
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - P. Alexander Rolfe
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - John Peter van Hoff
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Viveca W.S. Morris
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
- *To whom correspondence should be addressed. Tel:
+1 617 525 4772; Fax: +1 617 525 4751;
| |
Collapse
|
78
|
Sheaffer KL, Kaestner KH. Transcriptional networks in liver and intestinal development. Cold Spring Harb Perspect Biol 2012; 4:a008284. [PMID: 22952394 DOI: 10.1101/cshperspect.a008284] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of the gastrointestinal tract is a complex process that integrates signaling processes with downstream transcriptional responses. Here, we discuss the regionalization of the primitive gut and formation of the intestine and liver. Anterior-posterior position in the primitive gut is important for establishing regions that will become functional organs. Coordination of signaling between the epithelium and mesenchyme and downstream transcriptional responses is required for intestinal development and homeostasis. Liver development uses a complex transcriptional network that controls the establishment of organ domains, cell differentiation, and adult function. Discussion of these transcriptional mechanisms gives us insight into how the primitive gut, composed of simple endodermal cells, develops into multiple diverse cell types that are organized into complex mature organs.
Collapse
Affiliation(s)
- Karyn L Sheaffer
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
79
|
Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C, Rajagopal J. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 2012; 10:385-97. [PMID: 22482504 DOI: 10.1016/j.stem.2012.01.018] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/15/2011] [Accepted: 01/19/2012] [Indexed: 12/15/2022]
Abstract
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.
Collapse
Affiliation(s)
- Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Kadzik RS, Morrisey EE. Directing lung endoderm differentiation in pluripotent stem cells. Cell Stem Cell 2012; 10:355-61. [PMID: 22482501 DOI: 10.1016/j.stem.2012.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The lung is composed of numerous epithelial lineages that arise from the anterior foregut endoderm. This review discusses how insights into the signaling mechanisms that regulate lung endoderm specification and subsequent differentiation have recently been exploited to direct differentiation of hESCs/iPSCs into expandable lung progenitors.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
81
|
Kraus MRC, Grapin-Botton A. Patterning and shaping the endoderm in vivo and in culture. Curr Opin Genet Dev 2012; 22:347-53. [PMID: 22742850 DOI: 10.1016/j.gde.2012.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 05/15/2012] [Indexed: 01/30/2023]
Abstract
The definitive endoderm (DE) was first defined as the innermost germ layer found in all metazoan embryos. During development, it gives rise to a vast array of specialized epithelial cell types lining the respiratory and digestive systems, and contributes to associated organs such as thyroid, thymus, lungs, liver, and pancreas. In the adult, the DE provides a protective barrier against the environment and assumes many essential functions including digestion, nutrient absorption, and glucose homeostasis. Since general endoderm formation and patterning have been reviewed recently in a comprehensive manner [1], we will only provide a brief summary of how extracellular signals and downstream transcription factors control endoderm patterning. We will then focus on emerging work addressing the chromatin remodeling events occurring during endoderm organ specification and discuss how these molecular tools can be used to engineer endodermal organs in vitro.
Collapse
Affiliation(s)
- Marine R C Kraus
- Swiss Institute for Experimental Cancer Research, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | | |
Collapse
|
82
|
McCracken KW, Wells JM. Molecular pathways controlling pancreas induction. Semin Cell Dev Biol 2012; 23:656-62. [PMID: 22743233 DOI: 10.1016/j.semcdb.2012.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/13/2012] [Indexed: 01/02/2023]
Abstract
Recent advances in generating pancreatic cell types from human pluripotent stem cells has depended on our knowledge of the developmental processes that regulate pancreas development in vivo. The developmental events between gastrulation and formation of the embryonic pancreatic primordia are both rapid and dynamic and studies in frog, fish, chick, and mouse have identified the molecular basis of how the pancreas develops from multipotent endoderm progenitors. Here, we review the current status of our understanding of molecular mechanisms that control endoderm formation, endoderm patterning, and pancreas specification and highlight how these discoveries have allowed for the development of robust methods to generate pancreatic cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
83
|
Kim BM, Thier MC, Oh S, Sherwood R, Kanellopoulou C, Edenhofer F, Choi MY. MicroRNAs are indispensable for reprogramming mouse embryonic fibroblasts into induced stem cell-like cells. PLoS One 2012; 7:e39239. [PMID: 22737231 PMCID: PMC3380844 DOI: 10.1371/journal.pone.0039239] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/22/2012] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs play a pivotal role in cellular maintenance, proliferation, and differentiation. They have also been implicated to play a key role in disease pathogenesis, and more recently, cellular reprogramming. Certain microRNA clusters can enhance or even directly induce reprogramming, while repressing key proteins involved in microRNA processing decreases reprogramming efficiency. Although microRNAs clearly play important roles in cellular reprogramming, it remains unknown whether microRNAs are absolutely necessary. We endeavored to answer this fundamental question by attempting to reprogram Dicer-null mouse embryonic fibroblasts (MEFs) that lack almost all functional microRNAs using a defined set of transcription factors. Transduction of reprogramming factors using either lentiviral or piggyBac transposon vector into two, independently derived lines of Dicer-null MEFs failed to produce cells resembling embryonic stem cells (ESCs). However, expression of human Dicer in the Dicer-null MEFs restored their reprogramming potential. Our study demonstrates for the first time that microRNAs are indispensable for dedifferentiation reprogramming.
Collapse
Affiliation(s)
- Byeong-Moo Kim
- Department of Medicine/GI Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc-Christian Thier
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Sangnam Oh
- Department of Medicine/GI Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Sherwood
- Harvard Medical School, Boston, Massachusetts, United States of America
- Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Chryssa Kanellopoulou
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frank Edenhofer
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Michael Y. Choi
- Department of Medicine/GI Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
84
|
Kim PTW, Ong CJ. Differentiation of definitive endoderm from mouse embryonic stem cells. Results Probl Cell Differ 2012; 55:303-19. [PMID: 22918814 DOI: 10.1007/978-3-642-30406-4_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient production of definitive endoderm from embryonic stem (ES) cells opens doors to the possibilities of differentiation of endoderm-derived tissues such as the intestines, pancreas, and liver that could address the needs of people with chronic diseases involving these organs. The lessons learned from developmental biology have contributed significantly to in vitro differentiation of definitive endoderm. Gastrulation, a process that results in the production of all three embryonic germ cell layers, definitive endoderm, mesoderm, and ectoderm, is an important step in embryonic development. Gastrulation occurs as a result of the events that are orchestrated by the signaling pathways involving Nodal, FGF, Wnt, and BMP. Understanding these signaling pathways has led to the introduction of key ingredients such as Activin A, FGF, Wnt, and BMP to the differentiation protocols that have been able to produce definitive endoderm from ES cells. Efficient production of definitive endoderm needs to meet the specific criteria that include (a) increase in the production of markers of definitive endoderm such as Sox 17, FOXA2, GSC, and Mixl1; (b) decrease in the production of markers of primitive/visceral/parietal endoderm, Sox 7 and OCT4; and (c) decrease in the mesoderm markers (Brachyury, MEOX) and ectoderm markers (Sox1 and ZIC1).
Collapse
Affiliation(s)
- Peter T W Kim
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
85
|
Liu L, Rao JN, Zou T, Xiao L, Smith A, Zhuang R, Turner DJ, Wang JY. Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. Am J Physiol Cell Physiol 2011; 302:C277-85. [PMID: 21975427 DOI: 10.1152/ajpcell.00341.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to mucosal injury, epithelial cells modify the patterns of expressed genes to repair damaged tissue rapidly. Our previous studies have demonstrated that the transcription factor c-Myc is necessary for stimulation of epithelial cell renewal during mucosal healing, but the up-stream signaling initiating c-Myc gene expression after injury remains unknown. Wnts are cysteine-rich glycoproteins that act as short-range ligands to locally activate receptor-mediated signaling pathways and correlate with the increased expression of the c-Myc gene. The current study tested the hypothesis that Wnt3a signaling is implicated in intestinal epithelial repair after wounding by stimulating c-Myc expression. Elevated Wnt3a signaling in intestinal epithelial cells (IEC-6 line) by coculturing with stable Wnt3a-transfected fibroblasts or ectopic overexpression of the Wnt3a gene enhanced intestinal epithelial repair after wounding. This stimulatory effect on epithelial repair was prevented by silencing the Wnt coreceptor LRP6 or by c-Myc silencing. Activation of the Wnt3a signaling pathway increased β-catenin nuclear translocation by decreasing its phosphorylation and stimulated c-Myc expression during epithelial repair after wounding. In stable Wnt3a-transfected IEC-6 cells, increased levels of c-Myc were associated with an increase in expression of c-Myc-regulated genes cyclcin D1 and cyclin E, whereas c-Myc silencing inhibited expression of cyclin D1 and cyclin E and delayed epithelial repair. These results indicate that elevated Wnt3a signaling in intestinal epithelial cells after wounding stimulates epithelial repair by promoting c-Myc-regulated gene expression.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|