51
|
Behzadi P, Sameer AS, Nissar S, Banday MZ, Gajdács M, García-Perdomo HA, Akhtar K, Pinheiro M, Magnusson P, Sarshar M, Ambrosi C. The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J Immunol Res 2022; 2022:2054431. [PMID: 35378905 PMCID: PMC8976653 DOI: 10.1155/2022/2054431] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Interleukins (ILs)-which are important members of cytokines-consist of a vast group of molecules, including a wide range of immune mediators that contribute to the immunological responses of many cells and tissues. ILs are immune-glycoproteins, which directly contribute to the growth, activation, adhesion, differentiation, migration, proliferation, and maturation of immune cells; and subsequently, they are involved in the pro and anti-inflammatory responses of the body, by their interaction with a wide range of receptors. Due to the importance of immune system in different organisms, the genes belonging to immune elements, such as ILs, have been studied vigorously. The results of recent investigations showed that the genes pertaining to the immune system undergo progressive evolution with a constant rate. The occurrence of any mutation or polymorphism in IL genes may result in substantial changes in their biology and function and may be associated with a wide range of diseases and disorders. Among these abnormalities, single nucleotide polymorphisms (SNPs) can represent as important disruptive factors. The present review aims at concisely summarizing the current knowledge available on the occurrence, properties, role, and biological consequences of SNPs within the IL-1 family members.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Aga Syed Sameer
- Molecular Disease & Diagnosis Division, Infinity Biochemistry Pvt. Ltd, Sajjad Abad, Chattabal, Srinagar, Kashmir, India
- Department of Biochemistry, Government Medical College, Karan Nagar, Srinagar, Kashmir, India
| | - Saniya Nissar
- Molecular Disease & Diagnosis Division, Infinity Biochemistry Pvt. Ltd, Sajjad Abad, Chattabal, Srinagar, Kashmir, India
- Department of Biochemistry, Government Medical College, Karan Nagar, Srinagar, Kashmir, India
| | - Mujeeb Zafar Banday
- Molecular Disease & Diagnosis Division, Infinity Biochemistry Pvt. Ltd, Sajjad Abad, Chattabal, Srinagar, Kashmir, India
- Department of Biochemistry, Government Medical College, Karan Nagar, Srinagar, Kashmir, India
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| | - Herney Andrés García-Perdomo
- Division of Urology, Department of Surgery, School of Medicine, UROGIV Research Group, Universidad del Valle, Cali, Colombia
| | - Kulsum Akhtar
- Department of Clinical Biochemistry, Sher I Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Marina Pinheiro
- Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CHUP, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Peter Magnusson
- School of Medical Sciences, Örebro University, SE, 701 82 Örebro, Sweden
- Cardiology Research Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Ambrosi
- IRCCS San Raffaele Roma, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| |
Collapse
|
52
|
Kudo Y, Tamagawa T, Nishio K, Kaneko T, Yonehara Y, Tsunoda M. Nuclear localization of propiece IL-1α in HeLa cells. J Oral Sci 2022; 64:151-155. [PMID: 35236814 DOI: 10.2334/josnusd.21-0540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The study aimed to examine the nuclear localization of propiece interleukin (IL)-1α (ppIL-1α) and extracellular release rates of ppIL-1α, pIL-1α, and mIL-1α. METHODS The subcellular localization of IL-1α molecules was observed in HeLa cells transfected with green fluorescent protein (GFP)-tagged IL-1α. Extracellular release efficiency was examined using N-terminal HiBiT-tagged IL-1α. The nuclear localization status of ppIL-1α was examined by incubating ppIL-1α transfectants with 0.1% Triton X-100 solution or with complete medium on ice. RESULTS The results indicated the diffuse cytoplasmic and nuclear localization for m and p and ppIL-1, respectively. All IL-1α forms were released from the cells even in the steady state, and the release efficiency was 25%, 13%, and 8% for mIL-1α, pIL-1α, and ppIL-1α, respectively. Under oxidative stress condition, GFP-mIL-1α was totally diminished, but weak staining of GFP-pIL-1α and GFP-ppIL-1α was detected; nuclear localization of GFP-ppIL-1α was completely abolished by 0.1% Triton X-100 treatment, however, it remained in the nucleus after culture in complete medium on ice. CONCLUSION The results of this study showed that ppIL-1α was localized in the nucleus and released extracellularly even in the steady state. Moreover, its cellular localization is not firm, and it is presumed to be floating in the nucleoplasm.
Collapse
Affiliation(s)
- Yoshihiro Kudo
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry.,Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Takaaki Tamagawa
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Mariko Tsunoda
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
53
|
Watts AM, West NP, Smith PK, Zhang P, Cripps AW, Cox AJ. Nasal immune gene expression in response to azelastine and fluticasone propionate combination or monotherapy. Immun Inflamm Dis 2022; 10:e571. [PMID: 34813682 PMCID: PMC8926499 DOI: 10.1002/iid3.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The combination of the antihistamine azelastine (AZE) with the corticosteroid fluticasone propionate (FP) in a single spray, has been reported to be significantly more effective at reducing allergic rhinitis (AR) symptoms than treatment with either corticosteroid or antihistamine monotherapy. However, the biological basis for enhanced symptom relief is not known. This study aimed to compare gene expression profiles (760 immune genes, performed with the NanoString nCounter) from peripheral blood and nasal brushing/lavage lysate samples in response to nasal spray treatment. METHODS Moderate/severe persistent dust mite AR sufferers received either AZE (125 μg/spray) nasal spray (n = 16), FP (50 μg/spray) nasal spray (n = 14) or combination spray AZE/FP (125 μg AZE and 50 μg FP/spray) (n = 14) for 7 days, twice daily. Self-reported symptom questionnaires were completed daily for the study duration. Gene expression analysis (760 immune genes) was performed with the NanoString nCounter on purified RNA from peripheral blood and nasal brushing/lavage lysate samples. RESULTS In nasal samples, 206 genes were significantly differentially expressed following FP treatment; 182 genes downregulated (-2.57 to -0.45 Log2 fold change [FC]), 24 genes upregulated (0.49-1.40 Log2 FC). In response to AZE/FP, only 16 genes were significantly differentially expressed; 10 genes downregulated (-1.53 to -0.58 Log2 FC), six genes upregulated (1.07-1.62 Log2 FC). Following AZE treatment only five genes were significantly differentially expressed; one gene downregulated (-1.68 Log2 FC), four genes upregulated (0.59-1.19 Log2 FC). Immune gene changes in peripheral blood samples following treatment were minimal. AR symptoms improved under all treatments, but improvements were less pronounced following AZE treatment. CONCLUSION AZE/FP, FP, and AZE had diverse effects on immune gene expression profiles in nasal mucosa samples. The moderate number of genes modulated by AZE/FP indicates alternative pathways in reducing AR symptoms whilst avoiding extensive local immune suppression.
Collapse
Affiliation(s)
- Annabelle M. Watts
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Nicholas P. West
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| | - Peter K. Smith
- Queensland Allergy Services ClinicSouthportQueenslandAustralia
| | - Ping Zhang
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| | - Allan W. Cripps
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
- School of MedicineGriffith UniversitySouthportQueenslandAustralia
| | - Amanda J. Cox
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| |
Collapse
|
54
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
55
|
Dosch AR, Singh S, Nagathihalli NS, Datta J, Merchant NB. Interleukin-1 signaling in solid organ malignancies. Biochim Biophys Acta Rev Cancer 2021; 1877:188670. [PMID: 34923027 DOI: 10.1016/j.bbcan.2021.188670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
As inflammation plays a critical role in the development and progression of cancer, therapeutic targeting of cytokine pathways involved in both tumorigenesis and dictating response to clinical treatments are of significant interest. Recent evidence has highlighted the importance of the pro-inflammatory cytokine interleukin-1 (IL-1) as a key mediator of tumor growth, metastatic disease spread, immunosuppression, and drug resistance in cancer. IL-1 promotes tumorigenesis through diverse mechanisms, including the activation of oncogenic signaling pathways directly in tumor cells and via orchestrating crosstalk between the cellular constituents of the tumor microenvironment (TME), thereby driving cancer growth. This review will provide an overview of IL-1 signaling and physiology and summarize the disparate mechanisms involving IL-1 in tumorigenesis and cancer progression. Additionally, clinical studies targeting IL-1 signaling in the management of solid organ tumors will be summarized herein.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
56
|
Distribution and Appearance of Ki-67, IL-1α, IL-10, and PGP 9.5 in Reinke's Oedema-Affected Larynx Tissue Compared with Control Tissue. Life (Basel) 2021; 11:life11121379. [PMID: 34947910 PMCID: PMC8706443 DOI: 10.3390/life11121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
Smoking, laryngopharyngeal reflux, and vocal fold abuse can promote the development of Reinke’s oedema, leading to vocal fold dysfunction and injury. The aim of the work was to investigate the appearance and distribution of proliferation marker Ki-67 (Ki-67), interleukin 10 (IL-10), interleukin 1 alpha (IL-1α), and protein gene peptide 9.5 (PGP 9.5) in Reinke’s oedema-affected larynx tissue. Methods: A routine histological and immunohistochemical Reinke’s oedema and control group patient analysis was conducted. We used the biotin–streptavidin biochemical method to detect Ki-67, IL-10, IL-1α, and PGP 9.5 The semiquantitative grading method was used to evaluate immunoreactive cells’ appearance and local distribution. A Mann–Whitney U test and Spearman’s rank coefficient were performed. Results: A low positive correlation between IL-1α epithelial and subepithelial immunoreactive cells in the patient group was found. Mann–Whitney U tests revealed significant patient and control group immunoreactive marker differences. All examined markers showed a higher number of immunoreactive structures in the patient group. Conclusions: Intensive proliferation of the surface epithelium was observed in patient tissues. The notable increase in IL-10 positive structures indicates the dominant anti-inflammatory tissue response. An increased number of IL-1α structures in the larynx epithelium and subepithelium in the patient group is linked to inflammation, proliferation, and tissue remodelling. The PGP 9.5 expression increase is involved in the morphopathogenesis of Reinke’s oedema.
Collapse
|
57
|
Takakura Y, Hori N, Terada N, Machida M, Yamaguchi N, Takano H, Yamaguchi N. VGLL3 activates inflammatory responses by inducing interleukin-1α secretion. FASEB J 2021; 35:e21996. [PMID: 34679187 DOI: 10.1096/fj.202100679rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/05/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
Vestigial-like family member 3 (VGLL3), a member of the vestigial-like family, is a cofactor of the TEA-domain-containing transcription factor (TEAD). Although elevation in VGLL3 expression is associated with inflammatory diseases, such as inflammatory sarcomas and autoimmune diseases, the molecular mechanisms underlying VGLL3-mediated inflammation remain largely unknown. In this study, we analyzed the relationship between elevated VGLL3 expression and the levels of NF-κB, a transcription factor that plays a pivotal role in inflammation. NF-κB was found to be activated in a cell line stably expressing VGLL3. Mechanistically, VGLL3 was shown to promote the expression and secretion of the potent NF-κB-activating cytokine interleukin (IL)-1α, probably through its association with TEADs. As VGLL3 is a target of transforming growth factor β (TGF-β) signaling, we analyzed IL-1α induction upon TGF-β stimulation. TGF-β stimulation was observed to induce IL-1α secretion and NF-κB activation, and VGLL3 was associated with this phenomenon. The TGF-β transcription factors Smad3 and Smad4 were shown to be necessary for inducing VGLL3 and IL-1α expression. Lastly, we found that VGLL3-dependent IL-1α secretion is involved in constitutive NF-κB activation in highly malignant breast cancer cells. Collectively, the findings suggested that VGLL3 expression and TGF-β stimulation activate the inflammatory response by inducing IL-1α secretion.
Collapse
Affiliation(s)
- Yuki Takakura
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoto Hori
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Natsumi Terada
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Moeka Machida
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Takano
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
58
|
Krabbendam L, Heesters BA, Kradolfer CMA, Haverkate NJE, Becker MAJ, Buskens CJ, Bemelman WA, Bernink JH, Spits H. CD127+ CD94+ innate lymphoid cells expressing granulysin and perforin are expanded in patients with Crohn's disease. Nat Commun 2021; 12:5841. [PMID: 34615883 PMCID: PMC8494908 DOI: 10.1038/s41467-021-26187-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Phenotypic definition of helper ILC1 and NK cells is problematic due to overlapping markers. Recently we showed the identification of cytotoxic ILC3s characterized by expression of CD94. Here we analyse CD127+ ILCs and NK cells in intestinal lamina propria from healthy donors and Crohn's disease patients and identify two populations of CD127+CD94+ ILCs, designated population A and B, that can be distinguished on the expression of CD117, CD18 and cytotoxic molecules. Population B expresses granulysin, a cytotoxic molecule linked to bacterial lysis and/or chemotaxis of monocytes. Granulysin protein is secreted by population B cells upon stimulation with IL-15. Activation of population B in the presence of TGF-β strongly reduces the expression of cytotoxic effector molecules of population B. Strikingly, samples from individuals that suffer from active Crohn's disease display enhanced frequencies of granulysin-expressing effector CD127+CD94+ ILCs in comparison to controls. Thus this study identifies group 1 ILC populations which accumulate in inflamed intestinal tissue of Crohn's disease patients and may play a role in the pathology of the disease.
Collapse
Affiliation(s)
- L Krabbendam
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - B A Heesters
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - C M A Kradolfer
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - N J E Haverkate
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M A J Becker
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - C J Buskens
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology & Metabolism (AG&M), Meibergdreef 9, Amsterdam, The Netherlands
| | - W A Bemelman
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology & Metabolism (AG&M), Meibergdreef 9, Amsterdam, The Netherlands
| | - J H Bernink
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584, CT, Utrecht, The Netherlands
| | - H Spits
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
59
|
Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell Discov 2021; 7:89. [PMID: 34580278 PMCID: PMC8476510 DOI: 10.1038/s41421-021-00321-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 outbreak has been declared by World Health Organization as a worldwide pandemic. However, there are many unknowns about the antigen-specific T-cell-mediated immune responses to SARS-CoV-2 infection. Here, we present both single-cell TCR-seq and RNA-seq to analyze the dynamics of TCR repertoire and immune metabolic functions of blood T cells collected from recently discharged COVID-19 patients. We found that while the diversity of TCR repertoire was increased in discharged patients, it returned to basal level ~1 week after becoming virus-free. The dynamics of T cell repertoire correlated with a profound shift of gene signatures from antiviral response to metabolism adaptation. We also demonstrated that the top expanded T cell clones (~10% of total T cells) display the key anti-viral features in CD8+ T cells, confirming a critical role of antigen-specific T cells in fighting against SARS-CoV-2. Our work provides a basis for further analysis of adaptive immunity in COVID-19 patients, and also has implications in developing a T-cell-based vaccine for SARS-CoV-2.
Collapse
|
60
|
Nagarajan UM, Cho C, Gyorke CE, Nagarajan S, Ezzell JA, Brochu H, Huntress I, Harrell E, Peng X. Tumor Necrosis Factor Alpha-Induced Interleukin-1 Alpha Synthesis and Cell Death Is Increased in Mouse Epithelial Cells Infected With Chlamydia muridarum. J Infect Dis 2021; 224:S47-S55. [PMID: 34396406 DOI: 10.1093/infdis/jiab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chlamydia trachomatis-genital infection in women can be modeled in mice using Chlamydia muridarum. Using this model, it has been shown that the cytokines tumor necrosis factor (TNF)α and interleukin (IL)-1α lead to irreversible tissue damage in the oviducts. In this study, we investigated the contribution of TNFα on IL-1α synthesis in infected epithelial cells. We show that C muridarum infection enhanced TNFα-induced IL-1α expression and release in a mouse epithelial cell line. In addition to IL-1α, several TNFα-induced inflammatory genes were also highly induced, and infection enhanced TNF-induced cell death. In the mouse model of genital infection, oviducts from mice lacking the TNFα receptor displayed minimal staining for IL-1α compared with wild-type oviducts. Our results suggest TNFα and IL-1α enhance each other's downstream effects resulting in a hyperinflammatory response to chlamydial infection. We propose that biologics targeting TNF-induced IL-1α synthesis could be used to mitigate tissue damage during chlamydial infection.
Collapse
Affiliation(s)
- Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Crescentia Cho
- Department of Pediatrics, University of North Carolina, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Clare E Gyorke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shanmugam Nagarajan
- Department of Pathology and Labortaory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hayden Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Erin Harrell
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
61
|
Matsunami A, Mizuno-Kamiya M, Kawaki H, Takayama E, Ueno K, Ando M, Morimoto-Ito H, Muramatsu Y, Sumitomo S, Kondoh N. Augmented secretion of IL-1α from mouse oral squamous cell carcinoma (OSCC) cells caused by serum deprivation and hypoxia promotes immune suppressive activity of mesenchymal stromal cells. J Oral Biosci 2021; 63:284-291. [PMID: 34153475 DOI: 10.1016/j.job.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We have previously reported that mouse oral squamous carcinoma (OSCC), Sq-1979-1, produces interleukin (IL)-1α, which specifically enhances the immunosuppressive activity of co-cultured mesenchymal stromal 10T1/2 cells. This study assessed the conditions promoting the production of IL-1α in Sq-1979-1 cells, which could further enhance the immunosuppressive function of 10T1/2 cells, and evaluated its expression in OSCC tissues. METHODS The expression of IL-1α was examined by RT-PCR, western blotting, and enzyme-linked immune sorbent assay (ELISA). The interferon (IFN)- γ-producing capability of anti-CD3 antibody-stimulated mouse spleen cells co-cultured with 10T1/2 cells and conditioned medium (CM) from Sq-1979-1 cells was examined by ELISA. The function of IL-1α was examined using an anti-IL1α antibody. Immunohistochemical analysis of the OSCC tissues was performed. RESULTS The production of IL-1α from Sq-1979-1 cells was synergistically enhanced in lower serum (0.5% or 1.0% FBS) at the transcriptional level, and under hypoxia (1.0% oxygen) at the release level compared to that in the control medium supplemented with 10% FBS under normoxia. The IFN-γ-producing capability of stimulated spleen cells co-cultured with 10T1/2 cells was significantly reduced in the CMs prepared with the lower serum or under hypoxia. These functions of CMs were completely abolished by the anti-IL-1α antibody. The expression of IL-1α in OSCC tissues was prominent in the midst of a carcinomatous cellular lesion or a nearby necrotic lesion, where a supply deficiency could occur. CONCLUSIONS IL-1α production by Sq-1979-1 cells was synergistically augmented under low serum and hypoxic conditions, which could promote the immunosuppressive activity of mesenchymal cells.
Collapse
Affiliation(s)
- Akihiro Matsunami
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan; Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kyohei Ueno
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Megumi Ando
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Hiroe Morimoto-Ito
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Yasunori Muramatsu
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan; Department of Oral Biochemistry, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan.
| |
Collapse
|
62
|
Castleman MJ, Dillon SM, Thompson TA, Santiago ML, McCarter MD, Barker E, Wilson CC. Gut Bacteria Induce Granzyme B Expression in Human Colonic ILC3s In Vitro in an IL-15-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 206:3043-3052. [PMID: 34117105 DOI: 10.4049/jimmunol.2000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/β/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.
Collapse
Affiliation(s)
- Moriah J Castleman
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephanie M Dillon
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tezha A Thompson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mario L Santiago
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Cara C Wilson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| |
Collapse
|
63
|
Mora Scarpetta GA, Carter JJ, Nemeño JGE, Dix RD. Evidence for the involvement of interleukin-1α during development of experimental cytomegalovirus retinitis in immunosuppressed mice. Cytokine 2021; 144:155596. [PMID: 34078571 DOI: 10.1016/j.cyto.2021.155596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Interleukin-1α (IL-1α) is an alarmin involved in the recruitment of macrophages and neutrophils during tissue inflammation. IL-1α can undergo cleavage by proteases, such as calpain-1, that enhances IL-1α binding to its receptor, although proteolytic cleavage is not necessary for biological activity. Macrophages and neutrophils are involved in the retinal inflammation associated with development of AIDS-related human cytomegalovirus (HCMV) retinitis. We therefore performed studies to test the hypothesis that IL-1α gene expression is stimulated intraocularly during retinitis development using two mouse models of murine cytomegalovirus (MCMV) retinitis that differ in method of immunosuppression, one by retrovirus-induced immunosuppression (MAIDS) and the other by corticosteroid-induced immunosuppression. MCMV-infected eyes of groups of retinitis-susceptible mice with MAIDS of 10 weeks duration (MAIDS-10 mice) and retinitis-susceptible corticosteroid-treated mice showed significant stimulation of IL-1α mRNA. Western blot analysis confirmed IL-1α protein production within the MCMV-infected eyes of MAIDS-10 mice. Whereas significant intraocular calpain-1 mRNA and protein production were also observed within MCMV-infected eyes of MAIDS-10 mice, the MCMV-infected eyes of retinitis-susceptible corticosteroid-treated mice showed a pattern of mRNA synthesis equivalent to that found within the MCMV-infected eyes of healthy mice that fail to develop retinitis. Our findings suggest a role for the alarmin IL-1α in the pathogenesis of MCMV retinitis in immunosuppressed mice. These findings may extend to the pathogenesis of HCMV retinitis in patients with AIDS or other forms of immunosuppression.
Collapse
Affiliation(s)
| | - Jessica J Carter
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA; Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Judee Grace E Nemeño
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA; Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
64
|
Levine M, Lohinai ZM. Resolving the Contradictory Functions of Lysine Decarboxylase and Butyrate in Periodontal and Intestinal Diseases. J Clin Med 2021; 10:jcm10112360. [PMID: 34072136 PMCID: PMC8198195 DOI: 10.3390/jcm10112360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a common, bacterially mediated health problem worldwide. Mastication (chewing) repeatedly traumatizes the gingiva and periodontium, causing traces of inflammatory exudate, gingival crevicular fluid (GCF), to appear in crevices between the teeth and gingiva. Inadequate tooth cleaning causes a dentally adherent microbial biofilm composed of commensal salivary bacteria to appear around these crevices where many bacteria grow better on GCF than in saliva. We reported that lysine decarboxylase (Ldc) from Eikenella corrodens depletes the GCF of lysine by converting it to cadaverine and carbon dioxide. Lysine is an amino acid essential for the integrity and continuous renewal of dentally attached epithelium acting as a barrier to microbial products. Unless removed regularly by oral hygiene, bacterial products invade the lysine-deprived dental attachment where they stimulate inflammation that enhances GCF exudation. Cadaverine increases and supports the development of a butyrate-producing microbiome that utilizes the increased GCF substrates to slowly destroy the periodontium (dysbiosis). A long-standing paradox is that acid-induced Ldc and butyrate production support a commensal (probiotic) microbiome in the intestine. Here, we describe how the different physiologies of the respective tissues explain how the different Ldc and butyrate functions impact the progression and control of these two chronic diseases.
Collapse
Affiliation(s)
- Martin Levine
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| | - Zsolt M. Lohinai
- Department of Conservative Dentistry, Semmelweis University, H-1088 Budapest, Hungary;
| |
Collapse
|
65
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
66
|
Wilson SE. Interleukin-1 and Transforming Growth Factor Beta: Commonly Opposing, but Sometimes Supporting, Master Regulators of the Corneal Wound Healing Response to Injury. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 33825855 PMCID: PMC8039470 DOI: 10.1167/iovs.62.4.8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Interleukin (IL)-1α/IL-1β and transforming growth factor (TGF)β1/TGFβ2 have both been promoted as “master regulators” of the corneal wound healing response due to the large number of processes each regulates after injury or infection. The purpose of this review is to highlight the interactions between these systems in regulating corneal wound healing. Methods We conducted a systematic review of the literature. Results Both regulator pairs bind to receptors expressed on keratocytes, corneal fibroblasts, and myofibroblasts, as well as bone marrow-derived cells that include fibrocytes. IL-1α and IL-1β modulate healing functions, such as keratocyte apoptosis, chemokine production by corneal fibroblasts, hepatocyte growth factor (HGF), and keratinocyte growth factor (KGF) production by keratocytes and corneal fibroblasts, expression of metalloproteinases and collagenases by corneal fibroblasts, and myofibroblast apoptosis. TGFβ1 and TGFβ2 stimulate the development of myofibroblasts from keratocyte and fibrocyte progenitor cells, and adequate stromal levels are requisite for the persistence of myofibroblasts. Conversely, TGFβ3, although it functions via the same TGF beta I and II receptors, may, at least in some circumstances, play a more antifibrotic role—although it also upregulates the expression of many profibrotic genes. Conclusions The overall effects of these two growth factor-cytokine-receptor systems in controlling the corneal wound healing response must be coordinated during the wound healing response to injury or infection. The activities of both systems must be downregulated in coordinated fashion to terminate the response to injury and eliminate fibrosis. Translational Relevance A better standing of the IL-1 and TGFβ systems will likely lead to better approaches to control the excessive healing response to infections and injuries leading to scarring corneal fibrosis.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
67
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
68
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
69
|
Tsuchiya K, Hosojima S, Hara H, Kushiyama H, Mahib MR, Kinoshita T, Suda T. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep 2021; 34:108887. [PMID: 33761363 DOI: 10.1016/j.celrep.2021.108887] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/05/2020] [Accepted: 02/27/2021] [Indexed: 01/13/2023] Open
Abstract
IL-1α serves as a pro-inflammatory cytokine. Although pro-IL-1α has cytokine activity, proteolytic maturation increases its potency and release from cells. IL-1α maturation occurs in a caspase-1-dependent manner following inflammasome activation. However, pro-IL-1α is not a substrate of caspase-1, and it remains unclear what mediates the maturation of this cytokine downstream of inflammasomes. Here, we show that gasdermin D (GSDMD), an executor of pyroptosis, is required for the rapid induction of IL-1α maturation by non-particulate inflammasome activators. Ablation of GSDMD abrogates the maturation of IL-1α, but not of IL-1β. Inflammasome-induced maturation of IL-1α relies on extracellular Ca2+ and calpains. Ca2+ influx and calpain activation are induced in a GSDMD-dependent manner. Glycine, which inhibits cell lysis, but not GSDMD pore formation, does not affect IL-1α maturation. These results suggest that during inflammasome activation, GSDMD processed by caspase-1 forms plasma membrane pores that mediate Ca2+ influx, resulting in the calpain-dependent maturation of IL-1α.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shoko Hosojima
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hideki Hara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Kushiyama
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mamunur Rashid Mahib
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong-4331, Bangladesh
| | - Takeshi Kinoshita
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
70
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
71
|
Iznardo H, Puig L. The interleukin-1 family cytokines in psoriasis: pathogenetic role and therapeutic perspectives. Expert Rev Clin Immunol 2021; 17:187-199. [PMID: 33538202 DOI: 10.1080/1744666x.2021.1886081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: IL-1 family cytokines play an important role in the innate immune system and their uncontrolled activation and expression can initiate a pathologic inflammatory response. Their role in psoriasis, pustular psoriasis, and psoriatic arthritis has been studied, and they offer potential interest as therapeutic targets.Areas covered: This review focuses on the role that interleukin (IL)-1 family cytokines play in psoriasis pathogenesis, with a special focus on pustular psoriasis, and how these cytokines can be used as therapeutic targets. Using PubMed, we review the literature for articles related to IL-1 family cytokines and psoriasis, focusing on pustular psoriasis, and including pathogenesis, genetics and therapeutic targets.Expert opinion: IL-1 and IL-36 cytokines act as critical drivers of the autoinflammatory responses involved in pustular psoriasis. Studies on the specific role of each IL-1 cytokine are needed, as well as of their regulatory pathways. Targeting of IL-1 family cytokines has been used in pustular psoriasis, with IL-1 and IL-36 R blockade showing promising results.
Collapse
Affiliation(s)
- Helena Iznardo
- Department of Dermatology, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain.,Department of Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain.,Department of Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
72
|
Qian Q, Chowdhury BP, Sun Z, Lenberg J, Alam R, Vivier E, Gorska MM. Maternal diesel particle exposure promotes offspring asthma through NK cell-derived granzyme B. J Clin Invest 2021; 130:4133-4151. [PMID: 32407293 DOI: 10.1172/jci130324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Mothers living near high-traffic roads before or during pregnancy are more likely to have children with asthma. Mechanisms are unknown. Using a mouse model, here we showed that maternal exposure to diesel exhaust particles (DEP) predisposed offspring to allergic airway disease (AAD, murine counterpart of human asthma) through programming of their NK cells; predisposition to AAD did not develop in DEP pups that lacked NK cells and was induced in normal pups receiving NK cells from WT DEP pups. DEP NK cells expressed GATA3 and cosecreted IL-13 and the killer protease granzyme B in response to allergen challenge. Extracellular granzyme B did not kill, but instead stimulated protease-activated receptor 2 (PAR2) to cooperate with IL-13 in the induction of IL-25 in airway epithelial cells. Through loss-of-function and reconstitution experiments in pups, we showed that NK cells and granzyme B were required for IL-25 induction and activation of the type 2 immune response and that IL-25 mediated NK cell effects on type 2 response and AAD. Finally, experiments using human cord blood and airway epithelial cells suggested that DEP might induce an identical pathway in humans. Collectively, we describe an NK cell-dependent endotype of AAD that emerged in early life as a result of maternal exposure to DEP.
Collapse
Affiliation(s)
- Qian Qian
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Bidisha Paul Chowdhury
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Zehua Sun
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Jerica Lenberg
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Rafeul Alam
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA.,Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.,Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix Marseille University, Marseille, France.,Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Magdalena M Gorska
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA.,Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
73
|
Hagn M, Jahrsdörfer B. Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway. Oncoimmunology 2021; 1:1368-1375. [PMID: 23243600 PMCID: PMC3518509 DOI: 10.4161/onci.22354] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
B cells are generally believed to operate as producers of high affinity antibodies to defend the body against microorganisms, whereas cellular cytotoxicity is considered as an exclusive prerogative of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In conflict with this dogma, recent studies have demonstrated that the combination of interleukin-21 (IL-21) and B-cell receptor (BCR) stimulation enables B cells to produce and secrete the active form of the cytotoxic serine protease granzyme B (GrB). Although the production of GrB by B cells is not accompanied by that of perforin as in the case of many other GrB-secreting cells, recent findings suggest GrB secretion by B cells may play a significant role in early antiviral immune responses, in the regulation of autoimmune responses, and in cancer immunosurveillance. Here, we discuss in detail how GrB-secreting B cells may influence a variety of immune processes. A better understanding of the role that GrB-secreting B cells are playing in the immune system may allow for the development and improvement of novel immunotherapeutic approaches against infectious, autoimmune and malignant diseases.
Collapse
Affiliation(s)
- Magdalena Hagn
- Cancer Immunology Program; Peter MacCallum Cancer Centre; Melbourne, Australia
| | | |
Collapse
|
74
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
75
|
Dorostkar F, Arashkia A, Roohvand F, Shoja Z, Navari M, Mashhadi Abolghasem Shirazi M, Shahosseini Z, Farahmand M, Shams Nosrati MS, Jalilvand S. Co-administration of 2'3'-cGAMP STING activator and CpG-C adjuvants with a mutated form of HPV 16 E7 protein leads to tumor growth inhibition in the mouse model. Infect Agent Cancer 2021; 16:7. [PMID: 33499895 PMCID: PMC7836183 DOI: 10.1186/s13027-021-00346-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with high-risk genotypes of human papillomavirus (HPV) is the leading cause of cervical cancer. The HPV oncoprotein E7 is constitutively expressed in cervical cancer and considered as an essential target for tumor-specific immunity. The goal of this study was to develop a candidate therapeutic vaccine based on the mutated E7 protein that had possibly reduced transformation capacity while was able to elicit a robust immune response. Therefore, the mutant type of HPV 16 E7 (E7GRG) protein was recombinantly expressed in E. coli. The protein was then purified and formulated with 2’-3’cGAMP CDN and/or CpG-C ODN adjuvants and subcutaneously injected to female C57BL/6 mice. To evaluate the immunogenic response, lymphocyte proliferation, secretion levels of IFN-γ and IL-4 cytokines, granzyme B level, and total IgG and subclasses of IgG antibody were measured. The anti-tumor activity was evaluated in tumor-harboring C57BL/6 mice. The highest rate of cell proliferation, IFN-γ and granzyme B levels, and amount of IgG antibody were found in mice group that were injected by E7GRG + 2′-3′cGAMP + CpG-C. Therapeutic immunization with E7GRG + 2′-3′cGAMP + CpG-C also significantly suppressed TC-1 tumor growth in mice. In conclusion, the results demonstrated that E7GRG + 2′-3′cGAMP + CpG-C induced strong cell-mediated and humoral immune responses that resulted in inhibition of tumor in mouse model.
Collapse
Affiliation(s)
- Fariba Dorostkar
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, 14155, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Zahra Shahosseini
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, 14155, Tehran, Iran
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, 14155, Tehran, Iran.
| |
Collapse
|
76
|
Martínez Cuesta L, Pérez SE. Perforin and granzymes in neurological infections: From humans to cattle. Comp Immunol Microbiol Infect Dis 2021; 75:101610. [PMID: 33453589 DOI: 10.1016/j.cimid.2021.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Perforin and granzymes are essential components of the cytotoxic granules present in cytotoxic T lymphocytes and natural killer cells. These proteins play a crucial role in a variety of conditions, including viral infections, tumor immune surveillance, and tissue rejection. Besides their beneficial effect in most of these situations, perforin and granzymes have also been associated with tissue damage and immune diseases. Moreover, it has been reported that perforin and granzymes released during viral infections could contribute to the pathogenesis of diseases. In this review, we summarize the information available on human perforin and granzymes and their relationship with neurological infections and immune disorders. Furthermore, we compare this information with that available for bovine and present data on perforin and granzymes expression in cattle infected with bovine alphaherpesvirus types1 and -5. To our knowledge, this is the first review analyzing the impact of perforin and granzymes on neurological infections caused by bovine herpesviruses.
Collapse
Affiliation(s)
- Lucía Martínez Cuesta
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina.
| |
Collapse
|
77
|
Jeong KH, Kim SK, Seo JK, Shin MK, Lee MH. Association of GZMB polymorphisms and susceptibility to non-segmental vitiligo in a Korean population. Sci Rep 2021; 11:397. [PMID: 33431938 PMCID: PMC7801456 DOI: 10.1038/s41598-020-79705-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
Non-segmental vitiligo (NSV) is the most common type of vitiligo, which is characterized by chronic and progressive loss of melanocytes. Genetic factors have been shown to play a key role in NSV in association and family studies. Granzyme B is a serine protease found in the cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells that play an important role in inducing apoptotic changes of target cells. Several recent studies have provided evidence that polymorphism in the GZMB gene might be associated with autoimmune disease. A total of 249 NSV patients and 455 healthy controls were recruited to determine whether single nucleotide polymorphisms (SNPs) [rs2236337 (3′ untranslated region, UTR), rs2236338 (Tyr247His), rs11539752 (Pro94Ala), rs10909625 (Lys80Lys), rs8192917 (Arg55Gln), and rs7144366 (5′ near gene)] in GZMB gene contribute to the risk of developing NSV. Genotyping was performed using a single 192.24 Dynamic Array IFC. Data were analyzed using EP1 SNP Genotyping Analysis software to obtain genotype calls. Among the six SNPs tested, five SNPs (rs2236337, rs2236338, rs11539752, rs10909625, and rs8192917) showed significant association with NSV susceptibility. Among them, rs2236338, rs11539752, rs10909625, and rs8192917 remained a statistically significant association following multiple correction test. The five SNPs were located within a block of linkage disequilibrium. Haplotypes T–A–G–T–T and C–G–C–C–C consisting of rs2236337, rs2236338, rs11539752, rs10909625, and rs8192917 demonstrated significant association with NSV. Our results suggest that GZMB polymorphisms are associated with the development of NSV.
Collapse
Affiliation(s)
- Ki-Heon Jeong
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, 02453, Republic of Korea.
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Jong-Kil Seo
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Min Kyung Shin
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Mu-Hyoung Lee
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, 02453, Republic of Korea
| |
Collapse
|
78
|
Chiu JW, Binte Hanafi Z, Chew LCY, Mei Y, Liu H. IL-1α Processing, Signaling and Its Role in Cancer Progression. Cells 2021; 10:E92. [PMID: 33430381 PMCID: PMC7827341 DOI: 10.3390/cells10010092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin-1α (IL-1α) is a major alarmin cytokine which triggers and boosts the inflammatory responses. Since its discovery in the 1940s, the structure and bioactivity of IL-1α has been extensively studied and emerged as a vital regulator in inflammation and hematopoiesis. IL-1α is translated as a pro-form with minor bioactivity. The pro-IL-1α can be cleaved by several proteases to generate the N terminal and C terminal form of IL-1α. The C terminal form of IL-1α (mature form) has several folds higher bioactivity compared with its pro-form. IL-1α is a unique cytokine which could localize in the cytosol, membrane, nucleus, as well as being secreted out of the cell. However, the processing mechanism and physiological significance of these differentially localized IL-1α are still largely unknown. Accumulating evidence suggests IL-1α is involved in cancer pathogenesis. The role of IL-1α in cancer development is controversial as it exerts both pro- and anti-tumor roles in different cancer types. Here, we review the recent development in the processing and signaling of IL-1α and summarize the functions of IL-1α in cancer development.
Collapse
Affiliation(s)
| | | | | | - Yu Mei
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.W.C.); (Z.B.H.); (L.C.Y.C.)
| | - Haiyan Liu
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.W.C.); (Z.B.H.); (L.C.Y.C.)
| |
Collapse
|
79
|
Tsuchiya K. Switching from Apoptosis to Pyroptosis: Gasdermin-Elicited Inflammation and Antitumor Immunity. Int J Mol Sci 2021; 22:E426. [PMID: 33406603 PMCID: PMC7794676 DOI: 10.3390/ijms22010426] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pyroptosis is a necrotic form of regulated cell death. Gasdermines (GSDMs) are a family of intracellular proteins that execute pyroptosis. While GSDMs are expressed as inactive forms, certain proteases proteolytically activate them. The N-terminal fragments of GSDMs form pores in the plasma membrane, leading to osmotic cell lysis. Pyroptotic cells release pro-inflammatory molecules into the extracellular milieu, thereby eliciting inflammation and immune responses. Recent studies have significantly advanced our knowledge of the mechanisms and physiological roles of pyroptosis. GSDMs are activated by caspases and granzymes, most of which can also induce apoptosis in different situations, for example where the expression of GSDMs is too low to cause pyroptosis; that is, caspase/granzyme-induced apoptosis can be switched to pyroptosis by the expression of GSDMs. Pyroptosis appears to facilitate the killing of tumor cells by cytotoxic lymphocytes, and it may also reprogram the tumor microenvironment to an immunostimulatory state. Understanding pyroptosis may help the development of cancer immunotherapy. In this review article, recent findings on the mechanisms and roles of pyroptosis are introduced. The effectiveness and limitations of pyroptosis in inducing antitumor immunity are also discussed.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; ; Tel.: +81-76-264-6721
- Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
80
|
Takemoto T, Kaetsu R, Hanayama M, Ishiyama Y, Sadamura M, Nishio K, Tsunoda M, Asano M, Motoyoshi M. Acid-electrolyzed functional water-induces Interleukin-1α release from Intracellular Storage Sites in Oral Squamous Cell Carcinoma. Int J Med Sci 2021; 18:1746-1752. [PMID: 33746591 PMCID: PMC7976592 DOI: 10.7150/ijms.53999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine the acid-electrolyzed functional water (FW)-mediated cytokine release in an oral squamous cell carcinoma-derived cell line (OSCC) following treatment with FW. FW is generated by the electrolysis of a sodium chloride solution and accelerate the burn wound healing. To elucidate the underlying mechanisms, the cytokine/chemokine secretion profile of HSC3 cells was examined using a cytokine array. FW treatment significantly induced interleukin (IL)-1α secretion, which was confirmed by enzyme-linked immunosorbent assay. Subsequently, the HSC3 cells were pre-treated with cycloheximide (CHX) for 1 h prior to FW stimulation to determine whether the augmented IL-1α secretion was due to enhanced protein synthesis. CHX pre-treatment did not affect IL-1α secretion suggesting that the secreted IL-1α might have been derived from intracellular storage sites. The amount of IL-1α in the cell lysate of the FW-treated HSC3 cells was significantly lower than that of the non-treated cells. Immunofluorescence staining using a polyclonal antibody against full-length IL-1α revealed a drastic reduction in IL-1α inside the FW- treated cells. IL-1α is synthesized in its precursor form (pIL-1α) and cleaved to produce pro-piece and mature IL-1α (ppIL-1α and mIL-1α) inside the cells. In the present study, only pIL-1α was detected within the HSC3 cells in its resting state. However, FW stimulation resulted in the release of the 33 kDa and two other smaller forms (about 19 kDa) of the protein. These results indicates that FW treatment induces IL-1α secretion, a typical alarmin, from the intracellular storage in OSCC cells.
Collapse
Affiliation(s)
- Tomoko Takemoto
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Ryo Kaetsu
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Machiko Hanayama
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Yuuichi Ishiyama
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Masayuki Sadamura
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan, 101-8310
| | - Mariko Tsunoda
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
81
|
Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front Immunol 2020; 11:613170. [PMID: 33391283 PMCID: PMC7775495 DOI: 10.3389/fimmu.2020.613170] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Collapse
Affiliation(s)
| | | | - Murray C. H. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
82
|
Campos TM, Novais FO, Saldanha M, Costa R, Lordelo M, Celestino D, Sampaio C, Tavares N, Arruda S, Machado P, Brodskyn C, Scott P, Carvalho EM, Carvalho LP. Granzyme B Produced by Natural Killer Cells Enhances Inflammatory Response and Contributes to the Immunopathology of Cutaneous Leishmaniasis. J Infect Dis 2020; 221:973-982. [PMID: 31748808 DOI: 10.1093/infdis/jiz538] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Skin lesions from patients infected with Leishmania braziliensis has been associated with inflammation induced by cytotoxic CD8+ T cells. In addition, CD8+ T cell-mediated cytotoxicity has not been linked to parasite killing. Meanwhile, the cytotoxic role played by natural killer (NK) cells in cutaneous leishmaniasis (CL) remains poorly understood. METHODS In this study, we observed higher frequencies of NK cells in the peripheral blood of CL patients compared with healthy subjects, and that NK cells expressed more interferon-γ, tumor necrosis factor (TNF), granzyme B, and perforin than CD8+ T cells. RESULTS We also found that most of the cytotoxic activity in CL lesions was triggered by NK cells, and that the high levels of granzyme B produced in CL lesions was associated with larger lesion size. Furthermore, an in vitro blockade of granzyme B was observed to decrease TNF production. CONCCLUSIONS Our data, taken together, suggest an important role by NK cells in inducing inflammation in CL, thereby contributing to disease immunopathology.
Collapse
Affiliation(s)
- Taís M Campos
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maíra Saldanha
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Rúbia Costa
- Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Morgana Lordelo
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Daniela Celestino
- Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Camilla Sampaio
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Natália Tavares
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Sérgio Arruda
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Paulo Machado
- Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Cláudia Brodskyn
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgar M Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Lucas P Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| |
Collapse
|
83
|
Qiao J, Zhou M, Li Z, Ren J, Gao G, Zhen J, Cao G, Ding L. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis. J Int Med Res 2020; 48:300060520962954. [PMID: 33143503 PMCID: PMC7780569 DOI: 10.1177/0300060520962954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Little is known about the roles of granzyme B in rheumatoid arthritis (RA). We aimed to evaluate the serum level of granzyme B in patients with RA and determine relationships with clinical features and joint destruction of RA. METHODS We enrolled 100 patients with RA, 50 patients with osteoarthritis (OA), and 50 healthy controls (HC). Granzyme B serum concentrations were measured by ELISA; we then analyzed associations between granzyme B levels, clinical features, and joint destruction by calculating Sharp scores and disease activity as measured by Disease Activity Score-28 based on erythrocyte sedimentation rate (DAS28-ESR) in patients with RA. RESULTS Compared with HC and patients with OA, serum granzyme B levels in patients with RA were remarkably elevated. Serum granzyme B levels did not differ between patients with OA and HC. Granzyme B levels correlated with ESR, rheumatoid factor, swollen joint counts, joint erosion scores, total Sharp scores, and DAS28-ESR. Moreover, patients with RA with high disease activity had higher granzyme B levels. CONCLUSIONS Serum granzyme B levels were elevated significantly in patients with RA and correlated positively with disease activity and joint destruction. Serum granzyme B may have potential applications in laboratory evaluation of patients with RA.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Orthopedics, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Ren
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guanghan Gao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jumei Zhen
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lixiang Ding
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
84
|
Chan JNE, Humphry M, Kitt L, Krzyzanska D, Filbey KJ, Bennett MR, Clarke MCH. Cell surface IL-1α trafficking is specifically inhibited by interferon-γ, and associates with the membrane via IL-1R2 and GPI anchors. Eur J Immunol 2020; 50:1663-1675. [PMID: 32447774 DOI: 10.1002/eji.201948521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
IL-1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL-1α and IL-1β are translated as proforms that require cleavage for full cytokine activity and release, while IL-1α is reported to occur as an alternative plasma membrane-associated form on many cell types. However, the existence of cell surface IL-1α (csIL-1α) is contested, how IL-1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL-1α after ligation of TLRs. Pro-IL-1α tethers to the plasma membrane in part through IL-1R2 or via association with a glycosylphosphatidylinositol-anchored protein, and can be cleaved, activated, and released by proteases. csIL-1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN-γ, independent of expression level. We also reveal how prior csIL-1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent-associated secretory phenotype via csIL-1α, but rather via soluble IL-1α. We believe these data are important for determining the local or systemic context in which IL-1α can contribute to disease and/or physiological processes.
Collapse
Affiliation(s)
- Julie N E Chan
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Melanie Humphry
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Lauren Kitt
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Dominika Krzyzanska
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kara J Filbey
- Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Core Technology Facility, Manchester, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
85
|
Gyorke CE, Kollipara A, Allen J, Zhang Y, Ezzell JA, Darville T, Montgomery SA, Nagarajan UM. IL-1α Is Essential for Oviduct Pathology during Genital Chlamydial Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:3037-3049. [PMID: 33087404 DOI: 10.4049/jimmunol.2000600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Chlamydia trachomatis infection of the female genital tract can lead to irreversible fallopian tube scarring. In the mouse model of genital infection using Chlamydia muridarum, IL-1R signaling plays a critical role in oviduct tissue damage. In this study, we investigated the pathologic role of IL-1α, one of the two proinflammatory cytokines that bind to IL-1R. Il1a-/- mice infected with C. muridarum cleared infection at their cervix at the same rate as wild-type (WT) mice, but were significantly protected from end point oviduct damage and fibrosis. The contribution of IL-1α to oviduct pathology was more dramatic than observed in mice deficient for IL-1β. Although chlamydial burden was similar in WT and Il1a-/- oviduct during peak days of infection, levels of IL-1β, IL-6, CSF3, and CXCL2 were reduced in Il1a-/- oviduct lysates. During infection, Il1a-/- oviducts and uterine horns exhibited reduced neutrophil infiltration, and this reduction persisted after the infection resolved. The absence of IL-1α did not compromise CD4 T cell recruitment or function during primary or secondary chlamydial infection. IL-1α is expressed predominantly by luminal cells of the genital tract in response to infection, and low levels of expression persisted after the infection cleared. Ab-mediated depletion of IL-1α in WT mice prevented infection-induced oviduct damage, further supporting a key role for IL-1α in oviduct pathology.
Collapse
Affiliation(s)
- Clare E Gyorke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Avinash Kollipara
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John Allen
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yugen Zhang
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J Ashley Ezzell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Uma M Nagarajan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
86
|
Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Babu S. Diminished Frequencies of Cytotoxic Marker Expressing T- and NK Cells at the Site of Mycobacterium tuberculosis Infection. Front Immunol 2020; 11:585293. [PMID: 33101317 PMCID: PMC7546427 DOI: 10.3389/fimmu.2020.585293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
Tuberculous lymphadenitis (TBL) individuals exhibit reduced frequencies of CD8+ T cells expressing cytotoxic markers in peripheral blood. However, the frequencies of cytotoxic marker expressing CD4+, CD8+ T cells, and NK cells at the site of infection is not known. Therefore, we measured the baseline and mycobacterial antigen specific frequencies of cytotoxic markers expressing CD4+, CD8+ T cells, and NK cells in the LN (n = 18) and whole blood (n = 10) of TBL individuals. TBL LN is associated with lower frequencies of CD4+ T cells expressing cytotoxic markers (Granzyme B, CD107a) compared to peripheral blood at baseline and in response to PPD, ESAT-6, and CFP-10 antigen stimulation. Similarly, lower frequencies of CD8+ T cells expressing cytotoxic markers (Perforin, Granzyme B, and CD107a) were also present in the TBL LN at baseline and following (except perforin) antigen stimulation. Finally, at baseline and after antigen (PPD, ESAT-6, and CFP-10) stimulation, frequencies of NK cells expressing cytotoxic markers were also significantly lower in TBL LN compared to whole blood. Hence, TBL is characterized by diminished frequencies of cytotoxic marker expressing CD4+, CD8+ T cells, and NK cells at the site of infection, which might reflect the lack of protective immune responses at the site of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India.,National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Kadar Moideen
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
87
|
Raffaele S, Lombardi M, Verderio C, Fumagalli M. TNF Production and Release from Microglia via Extracellular Vesicles: Impact on Brain Functions. Cells 2020; 9:cells9102145. [PMID: 32977412 PMCID: PMC7598215 DOI: 10.3390/cells9102145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine powerfully influencing diverse processes of the central nervous system (CNS) under both physiological and pathological conditions. Here, we analyze current literature describing the molecular processes involved in TNF synthesis and release from microglia, the resident immune cells of the CNS and the main source of this cytokine both in brain development and neurodegenerative diseases. A special attention has been given to the unconventional vesicular pathway of TNF, based on the emerging role of microglia-derived extracellular vesicles (EVs) in the propagation of inflammatory signals and in mediating cell-to-cell communication. Moreover, we describe the contribution of microglial TNF in regulating important CNS functions, including the neuroinflammatory response following brain injury, the neuronal circuit formation and synaptic plasticity, and the processes of myelin damage and repair. Specifically, the available data on the functions mediated by microglial EVs carrying TNF have been scrutinized to gain insights on possible novel therapeutic strategies targeting TNF to foster CNS repair.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Marta Lombardi
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Claudia Verderio
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-0250318307
| |
Collapse
|
88
|
Emaciation, Congestive Heart Failure, and Systemic Amyloidosis in Severe Recessive Dystrophic Epidermolysis Bullosa: Possible Internal Complications Due to Skin-Derived Inflammatory Cytokines Derived from the Injured Skin. Dermatopathology (Basel) 2020; 7:41-47. [PMID: 32937752 PMCID: PMC7583596 DOI: 10.3390/dermatopathology7020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
Inherited epidermolysis bullosa (EB) is a rare genetic skin disorder characterized by epithelial tissue fragility. Recessive dystrophic epidermolysis bullosa (RDEB) is the most severe form, characterized by the presence of blisters, erosion, and ulcer formation, leading to scarring and contraction of the limbs. RDEB is also associated with extra-cutaneous complications, including emaciation, congestive heart failure, and systemic amyloidosis. The main cause of these clinical complications is unknown; however, we hypothesized that they are caused by elevated circulating inflammatory cytokines overproduced by injured keratinocytes. We addressed this phenomenon using keratin-14 driven, caspase-1 overexpressing, transgenic (KCASP1Tg) mice in which injured keratinocytes release high levels of IL-1α and β. KCASP1Tg showed severe spontaneous dermatitis, as well as systemic complications, including aberrant weight loss, cardiovascular disease, and extensive amyloid deposition with organ dysfunction, resembling the complications observed in severe EB. These morbid conditions were partially ameliorated by simultaneous administration of anti-IL-1α and β antibodies. The skin not only constitutes a physical barrier, but also functions as the largest immune organ. We suggest a novel role for IL-1 in the pathogenesis of EB and the use of anti-IL-1 antibodies as a potential therapy for EB complications.
Collapse
|
89
|
IL-36 receptor antagonist deficiency resulted in delayed wound healing due to excessive recruitment of immune cells. Sci Rep 2020; 10:14772. [PMID: 32901055 PMCID: PMC7479622 DOI: 10.1038/s41598-020-71256-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
Loss-of-function homozygous or compound heterozygous mutations in IL36RN, which encodes interleukin-36 receptor antagonist (IL-36Ra), have been implicated in the pathogenesis of various skin disorders. Previous findings showed that IL-36γ promoted wound healing in mice; however, the pathogenic role of IL-36Ra in wound healing remains unclear. We elucidated the role of IL-36Ra, a regulator of IL-36 in tissue repair by investigating the recruitment of inflammatory cells and cytokine production in the absence of IL-36Ra. Full-thickness excisional wounds were made on the back of Il36rn-/- mice and healing was assessed by monitoring macroscopic wound sizes, numbers of infiltrated cells, and gene expression of inflammatory cytokines. Macroscopic wound healing, re-epithelialization, and granulation tissue formation were delayed by 3 days post-injury in Il36rn-/- mice. This delay was associated with increased infiltrations of neutrophils and macrophages, and increased expression of cytokines, such as IL-36γ, C-X-C motif chemokine ligand 1 (CXCL1), and transforming growth factor (TGF)-β. Importantly, administration of TAK-242, a toll-like receptor 4 (TLR4) inhibitor, caused normalization of wound healing in Il36rn-/- mice, abrogating the initial delay in tissue repair. These results showed that targeting TLR4- mediated infiltrations of immune cells and cytokine production could be beneficial in regulating wound healing in IL-36Ra-deficient skin disorders.
Collapse
|
90
|
Speir M, Lawlor KE. RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol 2020; 109:114-124. [PMID: 32771377 DOI: 10.1016/j.semcdb.2020.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023]
Abstract
Autoinflammatory syndromes comprise a spectrum of clinical disorders characterised by recurrent, inflammatory episodes, many of which result from the release of the pro-inflammatory cytokine, interleukin-1β (IL-1β). Inflammation and programmed cell death are tightly linked, and lytic forms of cell death, such as necroptosis and pyroptosis, are considered to be inflammatory due to the release of damage-associated molecular patterns (DAMPs). In contrast, apoptosis is traditionally regarded as immunologically silent. Recent studies, however, have uncovered a high degree of crosstalk between cell death and inflammatory signalling pathways, and effectively consolidated them into one interconnected network that converges on NLRP3 inflammasome-mediated activation of IL-1β. The receptor-interacting protein kinases (RIPK) 1 and 3 are central to this network, as highlighted by the fact that mutations in genes encoding repressors of RIPK1 and/or RIPK3 activity can lead to heightened inflammation, particularly via NLRP3 inflammasome activation. In this review, we give an overview of extrinsic cell death and inflammatory signalling pathways, and then highlight the growing number of autoinflammatory diseases that are associated with aberrant cell death and inflammasome activation.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia.
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
91
|
Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat Rev Urol 2020; 17:513-525. [PMID: 32678343 DOI: 10.1038/s41585-020-0346-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Intravesical BCG instillation is the gold-standard adjuvant immunotherapy for patients with high-risk non-muscle-invasive bladder cancer. However, the precise mechanism of action by which BCG asserts its beneficial effects is still unclear. BCG has been shown to induce a non-specific enhancement of the biological function in cells of the innate immune system, creating a de facto heterologous immunological memory that has been termed trained immunity. Trained immunity or innate immune memory enables innate immune cells to mount a more robust response to secondary non-related stimuli after being initially primed (or trained) by a challenge such as BCG. BCG-induced trained immunity is characterized by the metabolic rewiring of monocyte intracellular metabolism and epigenetic modifications, which subsequently lead to functional reprogramming effects, such as an increased production of cytokines, on restimulation. Results from BCG vaccination studies in humans show that trained immunity might at least partly account for the heterologous beneficial effects of BCG vaccination. Additionally, immunity might have a role in the effect of BCG immunotherapy for bladder cancer. Based on these indications, we propose that trained immunity could be one of the important mechanisms mediating BCG immunotherapy and could provide a basis for further improvements towards a personalized approach to BCG therapy in non-muscle-invasive bladder cancer.
Collapse
|
92
|
Novák J, Vopálenský V, Pospíšek M, Vedeler A. Co-localization of Interleukin-1α and Annexin A2 at the plasma membrane in response to oxidative stress. Cytokine 2020; 133:155141. [PMID: 32615410 DOI: 10.1016/j.cyto.2020.155141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Interleukin-1α (IL-1α) and Annexin A2 (AnxA2) are pleiotropic molecules with both intracellular and extracellular roles. They share several characteristics including unconventional secretion aided by S100 proteins, anchoring of the externalized proteins at the outer surface of the plasma membrane and response to oxidative stress. Although IL-1α and AnxA2 have been implicated in a variety of biological processes, including cancer, little is known about the mechanisms of their cellular release. In the present study, employing the non-cancerous breast epithelial MCF10A cells, we demonstrate that IL-1α and AnxA2 establish a close association in response to oxidative stress. Stress conditions lead to translocation of both proteins towards lamellipodia rich in vimentin and association of full-length IL-1α and Tyr23 phosphorylated AnxA2 with the plasma membrane at peripheral sites depleted of F-actin. Notably, membrane-associated IL-1α and AnxA2 preferentially localize to the outer edges of the MCF10A cell islands, suggesting that the two proteins participate in the communication of these epithelial cells with their neighboring cells. Similarly, in U2OS osteosarcoma cell line both endogenous IL-1α and transiently produced IL-1α/EGFP associate with the plasma membrane. While benign MFC10A cells present membrane-associated IL-1α and AnxA2 at the edges of their cell islands, the aggressive cancerous U2OS cells communicate in such manner also with distant cells.
Collapse
Affiliation(s)
- Josef Novák
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anni Vedeler
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
93
|
Lin X, Zhang H, Boyce BF, Xing L. Ubiquitination of interleukin-1α is associated with increased pro-inflammatory polarization of murine macrophages deficient in the E3 ligase ITCH. J Biol Chem 2020; 295:11764-11775. [PMID: 32587089 DOI: 10.1074/jbc.ra120.014298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/21/2020] [Indexed: 01/02/2023] Open
Abstract
Macrophages play critical roles in homeostasis and inflammation. Macrophage polarization to either a pro-inflammatory or anti-inflammatory status is controlled by activating inflammatory signaling pathways. Ubiquitination is a posttranslational modification that regulates these inflammatory signaling pathways. However, the influence of protein ubiquitination on macrophage polarization has not been well studied. We hypothesized that the ubiquitination status of key proteins in inflammatory pathways contributes to macrophage polarization, which is regulated by itchy E3 ubiquitin ligase (ITCH), a negative regulator of inflammation. Using ubiquitin proteomics, we found that ubiquitination profiles are different among polarized murine macrophage subsets. Interestingly, interleukin-1α (IL-1α), an important pro-inflammatory mediator, was specifically ubiquitinated in lipopolysaccharide-induced pro-inflammatory macrophages, which was enhanced in ITCH-deficient macrophages. The ITCH-deficient macrophages had increased levels of the mature form of IL-1α and exhibited pro-inflammatory polarization, and reduced deubiquitination of IL-1α protein. Finally, IL-1α neutralization attenuated pro-inflammatory polarization of the ITCH-deficient macrophages. In conclusion, ubiquitination of IL-1α is associated with increased pro-inflammatory polarization of macrophages deficient in the E3 ligase ITCH.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA .,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
94
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
95
|
Zhang Y, Fung ITH, Sankar P, Chen X, Robison LS, Ye L, D'Souza SS, Salinero AE, Kuentzel ML, Chittur SV, Zhang W, Zuloaga KL, Yang Q. Depletion of NK Cells Improves Cognitive Function in the Alzheimer Disease Mouse Model. THE JOURNAL OF IMMUNOLOGY 2020; 205:502-510. [PMID: 32503894 DOI: 10.4049/jimmunol.2000037] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Despite mounting evidence suggesting the involvement of the immune system in regulating brain function, the specific role of immune and inflammatory cells in neurodegenerative diseases remain poorly understood. In this study, we report that depletion of NK cells, a type of innate lymphocytes, alleviates neuroinflammation, stimulates neurogenesis, and improves cognitive function in a triple-transgenic Alzheimer disease (AD) mouse model. NK cells in the brains of triple-transgenic AD mouse model (3xTg-AD) mice exhibited an enhanced proinflammatory profile. Depletion of NK cells by anti-NK1.1 Abs drastically improved cognitive function of 3xTg-AD mice. NK cell depletion did not affect amyloid β concentrations but enhanced neurogenesis and reduced neuroinflammation. Notably, in 3xTg-AD mice depleted of NK cells, microglia demonstrated a homeostatic-like morphology, decreased proliferative response and reduced expression of neurodestructive proinflammatory cytokines. Together, our results suggest a proinflammatory role for NK cells in 3xTg-AD mice and indicate that targeting NK cells might unlock novel strategies to combat AD.
Collapse
Affiliation(s)
- Yuanyue Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ivan Ting Hin Fung
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Xiangyu Chen
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208
| | - Longyun Ye
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208
| | - Marcy L Kuentzel
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY 12144; and
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY 12144; and
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208;
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
96
|
Abstract
Autoinflammation leads to inflammation that mostly occurs without any clinically obvious reason. It can be so severe that organ damage with relevant tissue damage occurs. Inflammasomes are the drivers of autoinflammation. Although IL‑1 beta and the inflammasomes as its critical regulators are very important in autoinflammation, not all patients respond to inhibition of this signalling pathway. Several autoinflammatory diseases were associated with mutations in proteasome-immunoproteasome components. Autoinflammatory diseases caused by highly relevant genetic variants are mostly hereditary. Usually in childhood but not always. The coming years will show whether inflammatory dermatoses will be increasingly treated with suppression of the innate immune system in addition to inhibition of adaptive immunity.
Collapse
Affiliation(s)
- L Feldmeyer
- Department of Dermatology, Inselspital Bern University Hospital, University of Bern, Bern, Schweiz
| | - A A Navarini
- Dermatologie & Allergologie, Departmente Biomedizin, Biomedical Engineering & Klinische Forschung, Universitätsspital Basel, Petersgraben 4, 4031, Basel, Schweiz.
| |
Collapse
|
97
|
Motwani K, Peters LD, Vliegen WH, El-sayed AG, Seay HR, Lopez MC, Baker HV, Posgai AL, Brusko MA, Perry DJ, Bacher R, Larkin J, Haller MJ, Brusko TM. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front Immunol 2020; 11:611. [PMID: 32351504 PMCID: PMC7174770 DOI: 10.3389/fimmu.2020.00611] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
The human T lymphocyte compartment is highly dynamic over the course of a lifetime. Of the many changes, perhaps most notable is the transition from a predominantly naïve T cell state at birth to the acquisition of antigen-experienced memory and effector subsets following environmental exposures. These phenotypic changes, including the induction of T cell exhaustion and senescence, have the potential to negatively impact efficacy of adoptive T cell therapies (ACT). When considering ACT with CD4+CD25+CD127-/lo regulatory T cells (Tregs) for the induction of immune tolerance, we previously reported ex vivo expanded umbilical cord blood (CB) Tregs remained more naïve, suppressed responder T cells equivalently, and exhibited a more diverse T cell receptor (TCR) repertoire compared to expanded adult peripheral blood (APB) Tregs. Herein, we hypothesized that upon further characterization, we would observe increased lineage heterogeneity and phenotypic diversity in APB Tregs that might negatively impact lineage stability, engraftment capacity, and the potential for Tregs to home to sites of tissue inflammation following ACT. We compared the phenotypic profiles of human Tregs isolated from CB versus the more traditional source, APB. We conducted analysis of fresh and ex vivo expanded Treg subsets at both the single cell (scRNA-seq and flow cytometry) and bulk (microarray and cytokine profiling) levels. Single cell transcriptional profiles of pre-expansion APB Tregs highlighted a cluster of cells that showed increased expression of genes associated with effector and pro-inflammatory phenotypes (CCL5, GZMK, CXCR3, LYAR, and NKG7) with low expression of Treg markers (FOXP3 and IKZF2). CB Tregs were more diverse in TCR repertoire and homogenous in phenotype, and contained fewer effector-like cells in contrast with APB Tregs. Interestingly, expression of canonical Treg markers, such as FOXP3, TIGIT, and IKZF2, were increased in CB CD4+CD127+ conventional T cells (Tconv) compared to APB Tconv, post-expansion, implying perinatal T cells may adopt a default regulatory program. Collectively, these data identify surface markers (namely CXCR3) that could be depleted to improve purity and stability of APB Tregs, and support the use of expanded CB Tregs as a potentially optimal ACT modality for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Willem H. Vliegen
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ahmed Gomaa El-sayed
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - M. Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
98
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
99
|
Dong N, Li X, Xue C, Zhang L, Wang C, Xu X, Shan A. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway. J Cell Physiol 2020; 235:5525-5540. [PMID: 32037545 DOI: 10.1002/jcp.29452] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Early weaning usually causes intestinal disorders, enteritis, and diarrhea in young animals and human infants. Astragalus polysaccharides (APS) possesses anti-inflammatory activity. To study the anti-inflammatory mechanisms of APS and its potential effects on intestinal health, we performed an RNA sequencing (RNA-seq) study in lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cells (IPEC-J2) in vitro. In addition, LPS-stimulated BALB/c mice were used to study the effects of APS on intestinal inflammation in vivo. The results from the RNA-seq analysis show that there were 107, 756, and 5 differentially expressed genes in the control versus LPS, LPS versus LPS+APS, and control versus LPS+APS comparison groups, respectively. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways play significant roles in the regulation of inflammatory factors and chemokine expression by APS. Further verification of the above two pathways by using western blot and immunofluorescence analysis revealed that the gene expression levels of the phosphorylated p38 MAPK, ERK1/2, and NF-κB p65 were inhibited by APS, while the expression of IκB-α protein was significantly increased (p < .05), indicating that APS inhibits the production of inflammatory factors and chemokines by the inhibition of activation of the MAPK and NF-κB inflammatory pathways induced by LPS stimulation. Animal experiments further demonstrated that prefeeding APS in BALB/c mice can alleviate the expression of the jejunal inflammatory factors interleukin 6 (IL-6), IL-Iβ, and tumor necrosis factor-α induced by LPS stimulation and improve jejunal villus morphology.
Collapse
Affiliation(s)
- Na Dong
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Xinran Li
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Chensi Wang
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyao Xu
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
100
|
Baxter VK, Griffin DE. Interferon-Gamma Modulation of the Local T Cell Response to Alphavirus Encephalomyelitis. Viruses 2020; 12:E113. [PMID: 31963302 PMCID: PMC7019780 DOI: 10.3390/v12010113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) provides a model for examining the role of the immune response to alphavirus infection of the central nervous system (CNS). Interferon-gamma (IFN-γ) is an important component of this response, and we show that SINV-infected differentiated neurons respond to IFN-γ in vitro by induction of antiviral genes and suppression of virus replication. To determine the in vivo effects of IFN-γ on SINV clearance and T cell responses, C57BL/6 mice lacking IFN-γ or IFN-γ receptor-1 were compared to wild-type (WT) mice after intracranial SINV infection. In WT mice, IFN-γ was first produced in the CNS by natural killer cells and then by CD4+ and CD8+ T cells. Mice with impaired IFN-γ signaling initiated clearance of viral RNA earlier than WT mice associated with CNS entry of more granzyme B-producing CD8+ T cells. However, these mice established fewer CD8+ tissue-resident memory T (TRM) cells and were more likely to experience reactivation of viral RNA synthesis late after infection. Therefore, IFN-γ suppresses the local development of granzyme B-expressing CD8+ T cells and slows viral RNA clearance but promotes CD8+ TRM cell establishment.
Collapse
Affiliation(s)
- Victoria K. Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|