51
|
Liu J, Zhang C, Wu H, Sun XX, Li Y, Huang S, Yue X, Lu SE, Shen Z, Su X, White E, Haffty BG, Hu W, Feng Z. Parkin ubiquitinates phosphoglycerate dehydrogenase to suppress serine synthesis and tumor progression. J Clin Invest 2021; 130:3253-3269. [PMID: 32478681 DOI: 10.1172/jci132876] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme of serine synthesis, is frequently overexpressed in human cancer. PHGDH overexpression activates serine synthesis to promote cancer progression. Currently, PHGDH regulation in normal cells and cancer is not well understood. Parkin, an E3 ubiquitin ligase involved in Parkinson's disease, is a tumor suppressor. Parkin expression is frequently downregulated in many types of cancer, and its tumor-suppressive mechanism is poorly defined. Here, we show that PHGDH is a substrate for Parkin-mediated ubiquitination and degradation. Parkin interacted with PHGDH and ubiquitinated PHGDH at lysine 330, leading to PHGDH degradation to suppress serine synthesis. Parkin deficiency in cancer cells stabilized PHGDH and activated serine synthesis to promote cell proliferation and tumorigenesis, which was largely abolished by targeting PHGDH with RNA interference, CRISPR/Cas9 KO, or small-molecule PHGDH inhibitors. Furthermore, Parkin expression was inversely correlated with PHGDH expression in human breast cancer and lung cancer. Our results revealed PHGDH ubiquitination by Parkin as a crucial mechanism for PHGDH regulation that contributes to the tumor-suppressive function of Parkin and identified Parkin downregulation as a critical mechanism underlying PHGDH overexpression in cancer.
Collapse
Affiliation(s)
- Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Cen Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hao Wu
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Yanchen Li
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shan Huang
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shou-En Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers State University of New Jersey, Piscataway, New Jersey.,Biometrics Division, Rutgers Cancer Institute of New Jersey
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers Robert Wood Johnson Medical School.,Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, and
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA.,Department of Molecular Biology and Biochemistry, Robert Wood Johnson Medical School, Rutgers State University of New Jersey, New Brunswick, New Jersey
| | - Bruce G Haffty
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
52
|
TFEB Supports Pancreatic Cancer Growth through the Transcriptional Regulation of Glutaminase. Cancers (Basel) 2021; 13:cancers13030483. [PMID: 33513833 PMCID: PMC7865852 DOI: 10.3390/cancers13030483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factor EB (TFEB) is a master regulator of lysosomal function and autophagy. In addition, TFEB has various physiological roles such as nutrient sensing, cellular stress responses, and immune responses. However, the precise roles of TFEB in pancreatic cancer growth remain unclear. Here, we show that pancreatic cancer cells exhibit a significantly elevated TFEB expression compared with normal tissue samples and that the genetic inhibition of TFEB results in a significant inhibition in both glutamine and mitochondrial metabolism, which in turn suppresses the PDAC growth both in vitro and in vivo. High basal levels of autophagy are critical for pancreatic cancer growth. The TFEB knockdown had no significant effect on the autophagic flux under normal conditions but interestingly caused a profound reduction in glutaminase (GLS) transcription, leading to an inhibition of glutamine metabolism. We observed that the direct binding of TFEB to the GLS and TFEB gene promotors regulates the transcription of GLS. We also found that the glutamate supplementation leads to a significant recovery of the PDAC growth that had been reduced by a TFEB knockdown. Taken together, our current data demonstrate that TFEB supports the PDAC cell growth by regulating glutaminase-mediated glutamine metabolism.
Collapse
|
53
|
Srivastava SP, Kanasaki K, Goodwin JE. Loss of Mitochondrial Control Impacts Renal Health. Front Pharmacol 2020; 11:543973. [PMID: 33362536 PMCID: PMC7756079 DOI: 10.3389/fphar.2020.543973] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Disruption of mitochondrial biosynthesis or dynamics, or loss of control over mitochondrial regulation leads to a significant alteration in fuel preference and metabolic shifts that potentially affect the health of kidney cells. Mitochondria regulate metabolic networks which affect multiple cellular processes. Indeed, mitochondria have established themselves as therapeutic targets in several diseases. The importance of mitochondria in regulating the pathogenesis of several diseases has been recognized, however, there is limited understanding of mitochondrial biology in the kidney. This review provides an overview of mitochondrial dysfunction in kidney diseases. We describe the importance of mitochondria and mitochondrial sirtuins in the regulation of renal metabolic shifts in diverse cells types, and review this loss of control leads to increased cell-to-cell transdifferentiation processes and myofibroblast-metabolic shifts, which affect the pathophysiology of several kidney diseases. In addition, we examine mitochondrial-targeted therapeutic agents that offer potential leads in combating kidney diseases.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
54
|
Venkateswaran G, Dedhar S. Interplay of Carbonic Anhydrase IX With Amino Acid and Acid/Base Transporters in the Hypoxic Tumor Microenvironment. Front Cell Dev Biol 2020; 8:602668. [PMID: 33240897 PMCID: PMC7680889 DOI: 10.3389/fcell.2020.602668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023] Open
Abstract
Solid tumors are challenged with a hypoxic and nutrient-deprived microenvironment. Hence, hypoxic tumor cells coordinatively increase the expression of nutrient transporters and pH regulators to adapt and meet their bioenergetic and biosynthetic demands. Carbonic Anhydrase IX (CAIX) is a membrane-bound enzyme that plays a vital role in pH regulation in the tumor microenvironment (TME). Numerous studies have established the importance of CAIX in mediating tumor progression and metastasis. To understand the mechanism of CAIX in mediating tumor progression, we performed an unbiased proteomic screen to identify the potential interactors of CAIX in the TME using the proximity-dependent biotin identification (BioID) technique. In this review, we focus on the interactors from this BioID screen that are crucial for nutrient and metabolite transport in the TME. We discuss the role of transport metabolon comprising CAIX and bicarbonate transporters in regulating intra- and extracellular pH of the tumor. We also discuss the role of amino acid transporters that are high confidence interactors of CAIX, in optimizing favorable metabolic state for tumor progression, and give our perspective on the coordinative interplay of CAIX with the amino acid transporters in the hypoxic TME.
Collapse
Affiliation(s)
- Geetha Venkateswaran
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, The University of British Columbia, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, The University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
55
|
McCauley C, Anang V, Cole B, Simmons GE. Potential Links between YB-1 and Fatty Acid Synthesis in Clear Cell Renal Carcinoma. ACTA ACUST UNITED AC 2020; 8. [PMID: 33778158 DOI: 10.18103/mra.v8i10.2273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
According to the National Institutes of Health, clear cell renal cell carcinoma (ccRCC) is the most common type of Renal Cell Carcinoma (RCC), making up approximately 75% of total renal carcinoma cases. Clear cell Renal Cell Carcinoma is characterized by a significant accumulation of lipids in the cytoplasm, which allows light from microscopes to pass through giving them a "clear" phenotype. Many of these lipids are in the form of fatty acids, both free and incorporated into lipid droplets. RCC is typically associated with a poor prognosis due to the lack of specific symptoms. Some symptoms include blood in urine, fever, lump on the side, weight loss, fatigue, to name a few; all of which can be associated with non-specific, non-cancerous, health conditions that contribute to difficult diagnosis. Treatment of RCC has typically been centered around radical nephrectomy as the standard of care, but due to the potentially small size of lesions and the possibility of causing surgically induced chronic kidney disease, treatments have shifted to more cautious, less invasive approaches. These approaches include active surveillance, nephron-sparing surgery, and other minimally invasive techniques like cryotherapy and renal ablation. Although these techniques have had the desired effect of reducing the number of surgeries, there is still considerable potential for renal impairment and the chance that tumors can grow out of control without surgery. With the difficulty that surrounds the treatment of ccRCC and its considerably high mortality rate amongst urological cancers, it is important to look for novel approaches to improve patient outcomes. This review looks at available literature and our data that suggests the lipogenic enzyme stearoyl-CoA desaturase may be more beneficial to patient survival than once thought. As our understanding of the importance of lipids in cell metabolism and longevity matures, it is important to present new perspectives that present a new understanding of ccRCC and the role of lipids in survival mechanisms engaged by transformed cells during cancer progression. In this review, we provide evidence that pharmacological inhibition of lipid desaturation in renal cancer patients is not without risk, and that the presence of unsaturated fatty acids may be a beneficial factor in patient outcomes. Although more direct experimental evidence is needed to make definitive conclusions, it is clear that the work reviewed herein should challenge our current understanding of cancer biology and may inform novel approaches to the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Carter McCauley
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA
| | - Vasthy Anang
- Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA
| | - Breanna Cole
- Department of Biology, The College of St. Scholastica, Duluth, MN, 55811, USA
| | - Glenn E Simmons
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Carcinogenesis and Chemoprevention program, Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
56
|
Kariagina A, Lunt SY, McCormick JJ. Genomic and metabolomic analysis of step-wise malignant transformation in human skin fibroblasts. Carcinogenesis 2020; 41:656-665. [PMID: 31276576 DOI: 10.1093/carcin/bgz126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022] Open
Abstract
Metabolic changes accompanying a step-wise malignant transformation was investigated using a syngeneic lineage of human fibroblasts. Cell immortalization was associated with minor alterations in metabolism. Consecutive loss of cell cycle inhibition in immortalized cells resulted in increased levels of oxidative phosphorylation (OXPHOS). Overexpression of the H-Ras oncoprotein produced cells forming sarcomas in athymic mice. These transformed cells exhibited increased glucose consumption, glycolysis and a further increase in OXPHOS. Because of the markedly increased OXPHOS in transformed cells, the impact of a transaminase inhibitor, aminooxyacetic acid (AOA), which decreases glutamine influx to the tricarboxylic acid (TCA) cycle, was tested. Indeed, AOA significantly decreased proliferation of malignantly transformed fibroblasts and fibrosarcoma-derived cells in vitro and in vivo. AOA also decreased proliferation of cells susceptible to malignant transformation. Metabolomic studies in normal and transformed cells indicated that, in addition to the anticipated effect on the TCA cycle, AOA decreased production of nucleotides adenosine triphosphate (ATP) and uridine monophosphate. Exogenous nucleotides partially rescued decreased proliferation of the malignant cells treated with AOA. Our data indicate that AOA blocks several metabolic pathways essential for growth of malignant cells. Therefore, OXPHOS may provide important therapeutic targets for treatment of sarcoma.
Collapse
Affiliation(s)
- Anastasia Kariagina
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - J Justin McCormick
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
57
|
Tan KN, Avery VM, Carrasco-Pozo C. Metabolic Roles of Androgen Receptor and Tip60 in Androgen-Dependent Prostate Cancer. Int J Mol Sci 2020; 21:ijms21186622. [PMID: 32927797 PMCID: PMC7555377 DOI: 10.3390/ijms21186622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023] Open
Abstract
Androgen receptor (AR)-mediated signaling is essential for the growth and differentiation of the normal prostate and is the primary target for androgen deprivation therapy in prostate cancer. Tat interactive protein 60 kDa (Tip60) is a histone acetyltransferase that is critical for AR activation. It is well known that cancer cells rewire their metabolic pathways in order to sustain aberrant proliferation. Growing evidence demonstrates that the AR and Tip60 modulate key metabolic processes to promote the survival of prostate cancer cells, in addition to their classical roles. AR activation enhances glucose metabolism, including glycolysis, tricarboxylic acid cycle and oxidative phosphorylation, as well as lipid metabolism in prostate cancer. The AR also interacts with other metabolic regulators, including calcium/calmodulin-dependent kinase kinase 2 and mammalian target of rapamycin. Several studies have revealed the roles of Tip60 in determining cell fate indirectly by modulating metabolic regulators, such as c-Myc, hypoxia inducible factor 1α (HIF-1α) and p53 in various cancer types. Furthermore, Tip60 has been shown to regulate the activity of key enzymes in gluconeogenesis and glycolysis directly through acetylation. Overall, both the AR and Tip60 are master metabolic regulators that mediate cellular energy metabolism in prostate cancer, providing a framework for the development of novel therapeutic targets in androgen-dependent prostate cancer.
Collapse
Affiliation(s)
- Kah Ni Tan
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; (K.N.T.); (V.M.A.)
- CRC for Cancer Therapeutics, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Vicky M. Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; (K.N.T.); (V.M.A.)
- CRC for Cancer Therapeutics, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; (K.N.T.); (V.M.A.)
- CRC for Cancer Therapeutics, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- Correspondence: ; Tel.: +617-3735-6034
| |
Collapse
|
58
|
Morita M, Kanasaki K. Sodium-glucose cotransporter-2 inhibitors for diabetic kidney disease: Targeting Warburg effects in proximal tubular cells. DIABETES & METABOLISM 2020; 46:353-361. [PMID: 32891754 DOI: 10.1016/j.diabet.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022]
Abstract
Inhibitors of sodium-glucose cotransporter 2 (SGLT2) have undoubtedly shifted the paradigm for diabetes medicine and research and, especially, diabetic kidney disease (DKD). The pharmacological action of SGLT2 inhibitors is simply the release of glucose into urine; however, precisely how SGLT2 inhibitors contribute to the health of those with diabetes has still not been completely elucidated. Towards this end, the present review provides a novel insight into the action of SGLT2 inhibitors by highlighting a neglected fuel-burning system found in proximal tubular cells-'glycolysis'. In addition, exploring the details of the molecular mechanisms and clinical biomarkers of the organ protection conferred by SGLT2 inhibitors is now required to prepare for the next stage of clinical diabetes medicine-the 'post-SGLT2 inhibitor era'.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
59
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
60
|
Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020; 8:biomedicines8080270. [PMID: 32756381 PMCID: PMC7460249 DOI: 10.3390/biomedicines8080270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Correspondence: ; Tel.: +33-491828829; Fax: +33-491826083
| |
Collapse
|
61
|
Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP, Martínez-Costa ÓH, González-Páramos C, Ciordia S, Hardisson D, Aragón JJ, Fernández-Moreno MÁ, Martín-Pérez J. c-Src functionality controls self-renewal and glucose metabolism in MCF7 breast cancer stem cells. PLoS One 2020; 15:e0235850. [PMID: 32673341 PMCID: PMC7365443 DOI: 10.1371/journal.pone.0235850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023] Open
Abstract
Deregulation of Src kinases is associated with cancer. We previously showed that SrcDN conditional expression in MCF7 cells reduces tumorigenesis and causes tumor regression in mice. However, it remained unclear whether SrcDN affected breast cancer stem cell functionality or it reduced tumor mass. Here, we address this question by isolating an enriched population of Breast Cancer Stem Cells (BCSCs) from MCF7 cells with inducible expression of SrcDN. Induction of SrcDN inhibited self-renewal, and stem-cell marker expression (Nanog, Oct3-4, ALDH1, CD44). Quantitative proteomic analyses of mammospheres from MCF7-Tet-On-SrcDN cells (data are available via ProteomeXchange with identifier PXD017789, project DOI: 10.6019/PXD017789) and subsequent GSEA showed that SrcDN expression inhibited glycolysis. Indeed, induction of SrcDN inhibited expression and activity of hexokinase, pyruvate kinase and lactate dehydrogenase, resulting in diminished glucose consumption and lactate production, which restricted Warburg effect. Thus, c-Src functionality is important for breast cancer stem cell maintenance and renewal, and stem cell transcription factor expression, effects linked to glucose metabolism reduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Ciordia
- Servicio de Espectrometría de Masas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - David Hardisson
- Servicio de Anatomía Patológica, Hospital Universitario La Paz, Madrid
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de investigaciones sanitarias del hospital La Paz (IdiPAZ), Madrid, Spain
| | - Juan J. Aragón
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jorge Martín-Pérez
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
- Instituto de investigaciones sanitarias del hospital La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
62
|
Wang T, Gnanaprakasam JNR, Chen X, Kang S, Xu X, Sun H, Liu L, Rodgers H, Miller E, Cassel TA, Sun Q, Vicente-Muñoz S, Warmoes MO, Lin P, Piedra-Quintero ZL, Guerau-de-Arellano M, Cassady KA, Zheng SG, Yang J, Lane AN, Song X, Fan TWM, Wang R. Inosine is an alternative carbon source for CD8 +-T-cell function under glucose restriction. Nat Metab 2020; 2:635-647. [PMID: 32694789 PMCID: PMC7371628 DOI: 10.1038/s42255-020-0219-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
T cells undergo metabolic rewiring to meet their bioenergetic, biosynthetic and redox demands following antigen stimulation. To fulfil these needs, effector T cells must adapt to fluctuations in environmental nutrient levels at sites of infection and inflammation. Here, we show that effector T cells can utilize inosine, as an alternative substrate, to support cell growth and function in the absence of glucose in vitro. T cells metabolize inosine into hypoxanthine and phosphorylated ribose by purine nucleoside phosphorylase. We demonstrate that the ribose subunit of inosine can enter into central metabolic pathways to provide ATP and biosynthetic precursors, and that cancer cells display diverse capacities to utilize inosine as a carbon source. Moreover, the supplementation with inosine enhances the anti-tumour efficacy of immune checkpoint blockade and adoptive T-cell transfer in solid tumours that are defective in metabolizing inosine, reflecting the capability of inosine to relieve tumour-imposed metabolic restrictions on T cells.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - J N Rashida Gnanaprakasam
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Xuyong Chen
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Siwen Kang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Xuequn Xu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Hua Sun
- The Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Lingling Liu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Hayley Rodgers
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Ethan Miller
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sara Vicente-Muñoz
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zayda Lizbeth Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Kevin A Cassady
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine at Ohio State University of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Xiaotong Song
- The Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Icell Kealex Therapeutics, Houston, TX, USA.
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Ruoning Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
63
|
Acquisition of Cisplatin Resistance Shifts Head and Neck Squamous Cell Carcinoma Metabolism toward Neutralization of Oxidative Stress. Cancers (Basel) 2020; 12:cancers12061670. [PMID: 32599707 PMCID: PMC7352569 DOI: 10.3390/cancers12061670] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Cisplatin (CDDP) is commonly utilized in the treatment of advanced solid tumors including head and neck squamous cell carcinoma (HNSCC). Cisplatin response remains highly variable among individual tumors and development of cisplatin resistance is common. We hypothesized that development of cisplatin resistance is partially driven by metabolic reprogramming. Methods: Using a pre-clinical HNSCC model and an integrated approach to steady state metabolomics, metabolic flux and gene expression data we characterized the interaction between cisplatin resistance and metabolic reprogramming. Results: Cisplatin toxicity in HNSCC was driven by generation of intra-cellular oxidative stress. This was validated by demonstrating that acquisition of cisplatin resistance generates cross-resistance to ferroptosis agonists despite the fact that cisplatin itself does not trigger ferroptosis. Acquisition of cisplatin resistance dysregulated the expression of genes involved in amino acid, fatty acid metabolism and central carbon catabolic pathways, enhanced glucose catabolism and serine synthesis. Acute cisplatin exposure increased intra-tumoral levels of S-methyl-5-thiadenosine (MTA) precursors and metabotoxins indicative of generalized oxidative stress. Conclusions: Acquisition of cisplatin resistance is linked to metabolic recovery from oxidative stress. Although this portends poor effectiveness for directed metabolic targeting, it supports the potential for biomarker development of cisplatin effectiveness using an integrated approach.
Collapse
|
64
|
Abstract
The concept that dietary changes could improve the response to cancer therapy is extremely attractive to many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the specific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding of the mechanisms that determine the metabolic vulnerabilities of each cancer.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
65
|
Patel AB, Pomicter AD, Yan D, Eiring AM, Antelope O, Schumacher JA, Kelley TW, Tantravahi SK, Kovacsovics TJ, Shami PJ, O'Hare T, Deininger MW. Dasatinib overcomes stroma-based resistance to the FLT3 inhibitor quizartinib using multiple mechanisms. Leukemia 2020; 34:2981-2991. [PMID: 32409689 PMCID: PMC7606260 DOI: 10.1038/s41375-020-0858-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
Abstract
FLT3-ITD mutations occur in 20–30% of AML patients and are associated with aggressive disease. Patients with relapsed FLT3-mutated disease respond well to 2nd generation FLT3 TKIs but inevitably relapse within a short timeframe. In this setting, until overt relapse occurs, the bone marrow microenvironment facilitates leukemia cell survival despite continued on-target inhibition. We demonstrate that human bone marrow derived conditioned medium (CM) protects FLT3-ITD+ AML cells from the 2nd generation FLT3 TKI quizartinib and activates STAT3 and STAT5 in leukemia cells. Extrinsic activation of STAT5 by CM is the primary mediator of leukemia cell resistance to FLT3 inhibition. Combination treatment with quizartinib and dasatinib abolishes STAT5 activation and significantly reduces the IC50 of quizartinib in FLT3-ITD+ AML cells cultured in CM. We demonstrate that CM protects FLT3-ITD+ AML cells from the inhibitory effects of quizartinib on glycolysis and that this is partially reversed by treating cells with the combination of quizartinib and dasatinib. Using a doxycycline-inducible STAT5 knockdown in the FLT3-ITD+ MOLM-13 cell line, we show that dasatinib-mediated suppression of leukemia cell glycolytic activity is STAT5-independent and provide a preclinical rationale for combination treatment with quizartinib and dasatinib in FLT3-ITD+ AML.
Collapse
Affiliation(s)
- Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Dongqing Yan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna M Eiring
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Orlando Antelope
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Todd W Kelley
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Srinivas K Tantravahi
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tibor J Kovacsovics
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
66
|
Ghoneum A, Abdulfattah AY, Warren BO, Shu J, Said N. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics. Int J Mol Sci 2020; 21:E3100. [PMID: 32354000 PMCID: PMC7247161 DOI: 10.3390/ijms21093100] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Bailey Olivia Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- The Third Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
67
|
LeBoeuf SE, Wu WL, Karakousi TR, Karadal B, Jackson SR, Davidson SM, Wong KK, Koralov SB, Sayin VI, Papagiannakopoulos T. Activation of Oxidative Stress Response in Cancer Generates a Druggable Dependency on Exogenous Non-essential Amino Acids. Cell Metab 2020; 31:339-350.e4. [PMID: 31813821 PMCID: PMC7004873 DOI: 10.1016/j.cmet.2019.11.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/26/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Rewiring of metabolic pathways is a hallmark of tumorigenesis as cancer cells acquire novel nutrient dependencies to support oncogenic growth. A major genetic subtype of lung adenocarcinoma with KEAP1/NRF2 mutations, which activates the endogenous oxidative stress response, undergoes significant metabolic rewiring to support enhanced antioxidant production. We demonstrate that cancers with high antioxidant capacity exhibit a general dependency on exogenous non-essential amino acids (NEAAs) that is driven by the Nrf2-dependent secretion of glutamate through system xc- (XCT), which limits intracellular glutamate pools that are required for NEAA synthesis. This dependency can be therapeutically targeted by dietary restriction or enzymatic depletion of individual NEAAs. Importantly, limiting endogenous glutamate levels by glutaminase inhibition can sensitize tumors without alterations in the Keap1/Nrf2 pathway to dietary restriction of NEAAs. Our findings identify a metabolic strategy to therapeutically target cancers with genetic or pharmacologic activation of the Nrf2 antioxidant response pathway by restricting exogenous sources of NEAAs.
Collapse
Affiliation(s)
- Sarah E LeBoeuf
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Warren L Wu
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Triantafyllia R Karakousi
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Burcu Karadal
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - S RaElle Jackson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Volkan I Sayin
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
68
|
Kuo TT, Ladurner AG. Exploiting the Circadian Clock for Improved Cancer Therapy: Perspective From a Cell Biologist. Front Genet 2019; 10:1210. [PMID: 31921283 PMCID: PMC6927292 DOI: 10.3389/fgene.2019.01210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/04/2019] [Indexed: 01/03/2023] Open
Affiliation(s)
- Tia Tyrsett Kuo
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Max Planck Institute of Biochemistry, International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| | - Andreas G Ladurner
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Max Planck Institute of Biochemistry, International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany.,Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
69
|
Choi BW, Jeong YJ, Park SH, Oh HK, Kang S. Reverse Warburg Effect-Related Mitochondrial Activity and 18F-FDG Uptake in Invasive Ductal Carcinoma. Nucl Med Mol Imaging 2019; 53:396-405. [PMID: 31867075 DOI: 10.1007/s13139-019-00613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose We evaluated the relationship between fluorine-18 fluoro-2-deoxy-glucose (18F-FDG) uptake and mitochondrial activity in cancer cells and investigated the prognostic implications of this relationship in patients with invasive ductal carcinoma of the breast (IDCB). Methods One hundred forty-six patients with primary IDCB who underwent preoperative 18F-FDG PET/CT followed by curative surgical resection were enrolled in the current study. Mitochondrial activity of cancer cells was assessed based on translocase of outer mitochondrial membrane 20 (TOMM20) expression and cytochrome C oxidase (COX) activity. A Pearson's correlation analysis was used to assess the relationship between the maximum standardized uptake value of the primary tumour (pSUVmax) and mitochondrial activity. Clinicopathological factors, including pSUVmax, histological grade, oestrogen receptor (ER), progesterone receptor (PR), and TOMM20 expression; and COX activity, were assessed for the prediction of disease-free survival (DFS) using the Kaplan-Meier method and Cox proportional hazards model. Results Fourteen of the 146 subjects (9.6%) showed tumour recurrence. There was a significant positive correlation between 18F-FDG uptake and the mitochondrial activity of cancer cells in patients with IDCB, and increased 18F-FDG uptake and mitochondrial activity were significantly associated with a shorter DFS. Additionally, results from the receiver-operating curve analysis demonstrated that the cut-off values of pSUVmax, TOMM20 expression, and COX activity for the prediction of DFS were 7.76, 4, and 5, respectively. Further, results from the univariate analysis revealed that pSUVmax, TOMM20 expression, PR status, and histologic grade were significantly associated with DFS; however, the multivariate analysis revealed that only pSUVmax was associated with DFS (HR, 6.51; 95% CI, 1.91, 22.20; P = 0.003). Conclusions The assessment of preoperative 18F-FDG uptake and post-surgical mitochondrial activity may be used for the prediction of DFS in patients with IDCB.
Collapse
Affiliation(s)
- Byung Wook Choi
- 1Department of Nuclear Medicine, Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472 Republic of Korea
| | - Young Ju Jeong
- 2Department of Surgery, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Sung Hwan Park
- 2Department of Surgery, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hoon Kyu Oh
- 3Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Sungmin Kang
- 1Department of Nuclear Medicine, Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472 Republic of Korea
| |
Collapse
|
70
|
Morten KJ, Potter M, Badder L, Sivathondan P, Dragovic R, Neumann A, Gavin J, Shrestha R, Reilly S, Phadwal K, Lodge TA, Borzychowski A, Cookson S, Mitchell C, Morovat A, Simon AK, Uusimaa J, Hynes J, Poulton J. Insights into pancreatic β cell energy metabolism using rodent β cell models. Wellcome Open Res 2019; 2:14. [PMID: 31754635 PMCID: PMC6854877 DOI: 10.12688/wellcomeopenres.10535.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Mitochondrial diabetes is primarily caused by β-cell failure, a cell type whose unique properties are important in pathogenesis. Methods: By reducing glucose, we induced energetic stress in two rodent β-cell models to assess effects on cellular function. Results: Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy. Conclusions: Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting β-cell mitochondrial function.
Collapse
Affiliation(s)
- Karl J Morten
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michelle Potter
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Luned Badder
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pamela Sivathondan
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca Dragovic
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abigale Neumann
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James Gavin
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Roshan Shrestha
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Svetlana Reilly
- Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Kanchan Phadwal
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tiffany A Lodge
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Angela Borzychowski
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sharon Cookson
- Institute of Cellular Medicine, Haematological Sciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Corey Mitchell
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | - Johanna Uusimaa
- Department of Paediatrics, University of Oulu, Oulu, Finland
| | - James Hynes
- Luxcel BioSciences Ltd, BioInnovation Centre, University College Cork, Cork, Ireland
| | - Joanna Poulton
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
71
|
Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nat Commun 2019; 10:4190. [PMID: 31519898 PMCID: PMC6744438 DOI: 10.1038/s41467-019-12164-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022] Open
Abstract
The KRAS oncoprotein, a critical driver in 33% of lung adenocarcinoma (LUAD), has remained an elusive clinical target due to its perceived undruggable nature. The identification of dependencies borne through common co-occurring mutations are sought to more effectively target KRAS-mutant lung cancer. Approximately 20% of KRAS-mutant LUAD carry loss-of-function mutations in KEAP1, a negative regulator of the antioxidant response transcription factor NFE2L2/NRF2. We demonstrate that Keap1-deficient KrasG12D lung tumors arise from a bronchiolar cell-of-origin, lacking pro-tumorigenic macrophages observed in tumors originating from alveolar cells. Keap1 loss activates the pentose phosphate pathway, inhibition of which, using 6-AN, abrogated tumor growth. These studies highlight alternative therapeutic approaches to specifically target this unique subset of KRAS-mutant LUAD cancers. Lung adenocarcinomas frequently harbour KRAS mutations, of which a subset are characterized by co-mutation of KEAP1. Here the authors show, in mice, that KrasG12D mutant tumours are metabolically distinct, with a bronchiolar cell-of-origin.
Collapse
|
72
|
Hutzen B, Ghonime M, Lee J, Mardis ER, Wang R, Lee DA, Cairo MS, Roberts RD, Cripe TP, Cassady KA. Immunotherapeutic Challenges for Pediatric Cancers. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:38-48. [PMID: 31650024 PMCID: PMC6804520 DOI: 10.1016/j.omto.2019.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors contain a mixture of malignant cells and non-malignant infiltrating cells that often create a chronic inflammatory and immunosuppressive microenvironment that restricts immunotherapeutic approaches. Although childhood and adult cancers share some similarities related to microenvironmental changes, pediatric cancers are unique, and adult cancer practices may not be wholly applicable to our pediatric patients. This review highlights the differences in tumorigenesis, viral infection, and immunologic response between children and adults that need to be considered when trying to apply experiences from experimental therapies in adult cancer patients to pediatric cancers.
Collapse
Affiliation(s)
- Brian Hutzen
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mohammed Ghonime
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joel Lee
- The Ohio State University, Columbus, OH, USA
| | - Elaine R Mardis
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Institute for Genomic Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ruoning Wang
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dean A Lee
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mitchell S Cairo
- Department of Pediatrics, Cancer and Blood Diseases Center, New York Medical College, Valhalla, NY, USA
| | - Ryan D Roberts
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Timothy P Cripe
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kevin A Cassady
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Division of Pediatric Infection Diseases, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
73
|
Righi V, Tarentini E, Mucci A, Reggiani C, Rossi MC, Ferrari F, Casari A, Magnoni C. Field cancerization therapy with ingenol mebutate contributes to restoring skin-metabolism to normal-state in patients with actinic keratosis: a metabolomic analysis. Sci Rep 2019; 9:11515. [PMID: 31395965 PMCID: PMC6687779 DOI: 10.1038/s41598-019-47984-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/23/2019] [Indexed: 11/17/2022] Open
Abstract
Actinic keratosis (AK) is a skin premalignant lesion, which progresses into squamous cell carcinoma (SCC) if left untreated. Ingenol mebutate gel is approved for local treatment of non-hyperkeratotic, non-hypertrophic AK; it also has the potential to act as a field cancerization therapy to prevent the progression of AK to SCC. To gain better insights into the mechanisms of ingenol mebutate beyond the mere clinical assessment, we investigated, for the first time, the metabolome of skin tissues from patients with AK, before and after ingenol mebutate treatment, with high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. The metabolomic profiles were compared with those of tissues from healthy volunteers. Overall, we identified a number of metabolites, the homeostasis of which became altered during the process of tumorigenesis from healthy skin to AK, and was restored, at least partially, by ingenol mebutate therapy. These metabolites may help to attain a better understanding of keratinocyte metabolism and to unmask the metabolic pathways related to cell proliferation. These results provide helpful information to identify biomarkers with prognostic and therapeutic significance in AK, and suggest that field cancerization therapy with ingenol mebutate may contribute to restore skin metabolism to a normal state in patients with AK.
Collapse
Affiliation(s)
- Valeria Righi
- Dipartimento di Scienze per la Qualità della Vita, Università di Bologna, Campus Rimini, Corso D'Augusto 237, 47921, Rimini, Italy.
| | - Elisabetta Tarentini
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Adele Mucci
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Camilla Reggiani
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Maria Cecilia Rossi
- Centro Interdipartimentale Grandi Strumenti, Università di Modena e Reggio Emilia, via G. Campi 213/A, 41125, Modena, Italy
| | - Federica Ferrari
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Alice Casari
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Cristina Magnoni
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| |
Collapse
|
74
|
Reyes-Farias M, Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int J Mol Sci 2019; 20:E3177. [PMID: 31261749 PMCID: PMC6651418 DOI: 10.3390/ijms20133177] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer is a problem with worldwide importance and is the second leading cause of death globally. Cancer cells reprogram their metabolism to support their uncontrolled expansion by increasing biomass (anabolic metabolism-glycolysis) at the expense of their energy (bioenergetics- mitochondrial function) requirements. In this aspect, metabolic reprogramming stands out as a key biological process in understanding the conversion of a normal cell into a neoplastic precursor. Quercetin is the major representative of the flavonoid subclass of flavonols. Quercetin is ubiquitously present in fruits and vegetables, being one of the most common dietary flavonols in the western diet. The anti-cancer effects of quercetin include its ability to promote the loss of cell viability, apoptosis and autophagy through the modulation of PI3K/Akt/mTOR, Wnt/-catenin, and MAPK/ERK1/2 pathways. In this review, we discuss the role of quercetin in cancer metabolism, addressing specifically its ability to target molecular pathways involved in glucose metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, 08916 Barcelona, Spain
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
75
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9:52. [PMID: 31391918 PMCID: PMC6595688 DOI: 10.1186/s13578-019-0317-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase (PK), as one of the key enzymes for glycolysis, can encode four different subtypes from two groups of genes, although the M2 subtype PKM2 is expressed mainly during embryonic development in normal humans, and is closely related to tissue repair and regeneration, with the deepening of research, the role of PKM2 in tumor tissue has received increasing attention. PKM2 can be aggregated into tetrameric and dimeric forms, PKM2 in the dimer state can enter the nuclear to regulate gene expression, the transformation between them can play an important role in tumor cell energy supply, epithelial-mesenchymal transition (EMT), invasion and metastasis and cell proliferation. We will use the switching effect of PKM2 in glucose metabolism as the entry point to expand and enrich the Warburg effect. In addition, PKM2 can also regulate each other with various proteins by phosphorylation, acetylation and other modifications, mediate the different intracellular localization of PKM2 and then exert specific biological functions. In this paper, we will illustrate each of these points.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
76
|
Xu X, Gnanaprakasam JNR, Sherman J, Wang R. A Metabolism Toolbox for CAR T Therapy. Front Oncol 2019; 9:322. [PMID: 31114756 PMCID: PMC6503740 DOI: 10.3389/fonc.2019.00322] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) through genetic engineering is one of the most promising new therapies for treating cancer patients. A robust CAR T cell-mediated anti-tumor response requires the coordination of nutrient and energy supplies with CAR T cell expansion and function. However, the high metabolic demands of tumor cells compromise the function of CAR T cells by competing for nutrients within the tumor microenvironment (TME). To substantially improve clinical outcomes of CAR T immunotherapy while treating solid tumors, it is essential to metabolically prepare CAR T cells to overcome the metabolic barriers imposed by the TME. In this review, we discuss a potential metabolism toolbox to improve the metabolic fitness of CAR T cells and maximize the efficacy of CAR T therapy.
Collapse
Affiliation(s)
- Xuequn Xu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - J N Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - John Sherman
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| |
Collapse
|
77
|
Kang YP, Yoon JH, Long NP, Koo GB, Noh HJ, Oh SJ, Lee SB, Kim HM, Hong JY, Lee WJ, Lee SJ, Hong SS, Kwon SW, Kim YS. Spheroid-Induced Epithelial-Mesenchymal Transition Provokes Global Alterations of Breast Cancer Lipidome: A Multi-Layered Omics Analysis. Front Oncol 2019; 9:145. [PMID: 30949448 PMCID: PMC6437068 DOI: 10.3389/fonc.2019.00145] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023] Open
Abstract
Metabolic rewiring has been recognized as an important feature to the progression of cancer. However, the essential components and functions of lipid metabolic networks in breast cancer progression are not fully understood. In this study, we investigated the roles of altered lipid metabolism in the malignant phenotype of breast cancer. Using a spheroid-induced epithelial-mesenchymal transition (EMT) model, we conducted multi-layered lipidomic and transcriptomic analysis to comprehensively describe the rewiring of the breast cancer lipidome during the malignant transformation. A tremendous homeostatic disturbance of various complex lipid species including ceramide, sphingomyelin, ether-linked phosphatidylcholines, and ether-linked phosphatidylethanolamine was found in the mesenchymal state of cancer cells. Noticeably, polyunsaturated fatty acids composition in spheroid cells was significantly decreased, accordingly with the gene expression patterns observed in the transcriptomic analysis of associated regulators. For instance, the up-regulation of SCD, ACOX3, and FADS1 and the down-regulation of PTPLB, PECR, and ELOVL2 were found among other lipid metabolic regulators. Significantly, the ratio of C22:6n3 (docosahexaenoic acid, DHA) to C22:5n3 was dramatically reduced in spheroid cells analogously to the down-regulation of ELOVL2. Following mechanistic study confirmed the up-regulation of SCD and down-regulation of PTPLB, PECR, ELOVL2, and ELOVL3 in the spheroid cells. Furthermore, the depletion of ELOVL2 induced metastatic characteristics in breast cancer cells via the SREBPs axis. A subsequent large-scale analysis using 51 breast cancer cell lines demonstrated the reduced expression of ELOVL2 in basal-like phenotypes. Breast cancer patients with low ELOVL2 expression exhibited poor prognoses (HR = 0.76, CI = 0.67–0.86). Collectively, ELOVL2 expression is associated with the malignant phenotypes and appear to be a novel prognostic biomarker in breast cancer. In conclusion, the present study demonstrates that there is a global alteration of the lipid composition during EMT and suggests the down-regulation of ELOVL2 induces lipid metabolism reprogramming in breast cancer and contributes to their malignant phenotypes.
Collapse
Affiliation(s)
- Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jung-Ho Yoon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | | | - Gi-Bang Koo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Hyun-Jin Noh
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Seung-Jae Oh
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Sae Bom Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ji Yeon Hong
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Won Jun Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seul Ji Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
78
|
Perera RM, Di Malta C, Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:203-222. [PMID: 31650096 PMCID: PMC6812561 DOI: 10.1146/annurev-cancerbio-030518-055835] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
79
|
Ni F, Yu WM, Li Z, Graham DK, Jin L, Kang S, Rossi MR, Li S, Broxmeyer HE, Qu CK. Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nat Metab 2019; 1:390-403. [PMID: 31535081 PMCID: PMC6750232 DOI: 10.1038/s42255-019-0039-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acid (AA) metabolism is involved in diverse cellular functions, including cell survival and growth, however it remains unclear how it regulates normal hematopoiesis versus leukemogenesis. Here, we report that knockout of Slc1a5 (ASCT2), a transporter of neutral AAs, especially glutamine, results in mild to moderate defects in bone marrow and mature blood cell development under steady state conditions. In contrast, constitutive or induced deletion of Slc1a5 decreases leukemia initiation and maintenance driven by the oncogene MLL-AF9 or Pten deficiency. Survival of leukemic mice is prolonged following Slc1a5 deletion, and pharmacological inhibition of ASCT2 also decreases leukemia development and progression in xenograft models of human acute myeloid leukemia. Mechanistically, loss of ASCT2 generates a global effect on cellular metabolism, disrupts leucine influx and mTOR signaling, and induces apoptosis in leukemic cells. Given the substantial difference in reliance on ASCT2-mediated AA metabolism between normal and malignant blood cells, this in vivo study suggests ASCT2 as a promising therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Fang Ni
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhiguo Li
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingtao Jin
- Department of Hematology/Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Sumin Kang
- Department of Hematology/Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Rossi
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Shiyong Li
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
80
|
Development of Anthraquinone Analogues as Phosphoglycerate Mutase 1 Inhibitors. Molecules 2019; 24:molecules24050845. [PMID: 30818883 PMCID: PMC6429356 DOI: 10.3390/molecules24050845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) coordinates glycolysis and biosynthesis to promote cancer cell proliferation, and is believed to be a promising target for cancer therapy. Herein, based on the anthraquinone scaffold, we synthesized 31 anthraquinone derivatives and investigated the structure−activity relationship (SAR). The 3-substitient of sulfonamide on the anthraquinone scaffold was essential for maintaining potency and the modifications of the hydroxyl of alizarin would cause a sharp decrease in potency. In the meantime, we determined the co-crystal structure of PGAM1 and one of the anthraquinone inhibitors 9i with IC50 value of 0.27 μM. The co-crystal structure revealed that F22, K100 and R116 of PGAM1 were critical residues for the binding of inhibitors which further validated the SAR. Consistent with the crystal structure, a competitive assay illustrated that compound 9i was a noncompetitive inhibitor. In addition, compound 9i effectively restrained different lung cancer cells proliferation in vitro. Taken together, this work provides reliable guide for future development of PGAM1 inhibitors and compound 9i may act as a new leading compound for further optimization.
Collapse
|
81
|
Huang K, Jiang L, Liang R, Li H, Ruan X, Shan C, Ye D, Zhou L. Synthesis and biological evaluation of anthraquinone derivatives as allosteric phosphoglycerate mutase 1 inhibitors for cancer treatment. Eur J Med Chem 2019; 168:45-57. [PMID: 30798052 DOI: 10.1016/j.ejmech.2019.01.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Phosphoglycerate mutase 1 (PGAM1) coordinates glycolysis, pentose phosphate pathway, and serine synthesis to promote tumor growth through the regulation of its substrate 3-phosphoglycerate (3 PG) and product 2-phosphoglycerate (2 PG). Herein, based on our previously reported PGAM1 inhibitor PGMI-004A, we have developed anthraquinone derivatives as novel allosteric PGAM1 inhibitors and the structure-activity relationship (SAR) was investigated. In addition, we determined the co-crystal structure of PGAM1 and the inhibitor 8g, demonstrating that the inhibitor was located at a novel allosteric site. Among the derivatives, compound 8t was selected for further study, with IC50 values of 0.25 and approximately 5 μM in enzymatic and cell-based assays, respectively. Mechanistically, compound 8t reduced the glycolysis and oxygen consumption rate in cancer cells, which led to decreased adenosine 5'-triphosphate (ATP) production and subsequent 5' adenosine monophosphate-activated protein kinase (AMPK) activation. The inhibitor 8t also exhibited good efficacy in delaying tumor growth in H1299 xenograft model without obvious toxicity. Taken together, this proof-of-principle work further validates PGAM1 as a potential target for cancer therapy and provides useful information on anti-tumor drug discovery targeting PGAM1.
Collapse
Affiliation(s)
- Ke Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826, Zhangheng Rd., Shanghai, 201203, China
| | - Lulu Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826, Zhangheng Rd., Shanghai, 201203, China
| | - Ronghui Liang
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huiti Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826, Zhangheng Rd., Shanghai, 201203, China
| | - Xiaoxue Ruan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826, Zhangheng Rd., Shanghai, 201203, China
| | - Changliang Shan
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China.
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826, Zhangheng Rd., Shanghai, 201203, China.
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826, Zhangheng Rd., Shanghai, 201203, China.
| |
Collapse
|
82
|
Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol 2019; 53:667-682. [PMID: 30668176 DOI: 10.1080/10409238.2018.1556578] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aerobic glycolysis is the process of oxidation of glucose into pyruvate followed by lactate production under normoxic condition. Distinctive from its anaerobic counterpart (i.e. glycolysis that occurs under hypoxia), aerobic glycolysis is frequently witnessed in cancers, popularly known as the "Warburg effect", and it is one of the earliest known evidences of metabolic alteration in neoplasms. Intracellularly, aerobic glycolysis circumvents mitochondrial oxidative phosphorylation (OxPhos), facilitating an increased rate of glucose hydrolysis. This in turn enables cancer cells to successfully compete with normal cells for glucose uptake in order to maintain uninterrupted growth. In addition, evading OxPhos mitigates excessive generation/accumulation of reactive oxygen species that otherwise may be deleterious to cells. Emerging data indicate that aerobic glycolysis in cancer also promotes glutaminolysis to satisfy the precursor requirements of certain biosynthetic processes (e.g. nucleic acids). Next, the metabolic intermediates of aerobic glycolysis also feed the pentose phosphate pathway (PPP) to facilitate macromolecular biosynthesis necessary for cancer cell growth and proliferation. Extracellularly, the extrusion of the end-product of aerobic glycolysis, i.e. lactate, alters the tumor microenvironment, and impacts cancer-associated cells. Collectively, accumulating data unequivocally demonstrate that aerobic glycolysis implicates myriad of molecular and functional processes to support cancer progression. This review, in the light of recent research, dissects the molecular intricacies of its regulation, and also deliberates the emerging paradigms to target aerobic glycolysis in cancer therapy.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- a The Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
83
|
Hodakoski C, Hopkins BD, Zhang G, Su T, Cheng Z, Morris R, Rhee KY, Goncalves MD, Cantley LC. Rac-Mediated Macropinocytosis of Extracellular Protein Promotes Glucose Independence in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11010037. [PMID: 30609754 PMCID: PMC6356657 DOI: 10.3390/cancers11010037] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer cells can adapt to nutrient poor conditions by rewiring their metabolism and using alternate fuel sources. Identifying these adaptive metabolic pathways may provide novel targets for cancer therapy. Here, we identify a subset of non-small cell lung cancer (NSCLC) cell lines that survive in the absence of glucose by internalizing and metabolizing extracellular protein via macropinocytosis. Macropinocytosis is increased in these glucose independent cells, and is regulated by phosphoinositide 3-kinase (PI3K) activation of Rac-Pak signaling. Furthermore, inhibition of Rac-dependent macropinocytosis blocks glucose-independent proliferation. We find that degradation of internalized protein produces amino acids, including alanine, which generates TCA cycle and glycolytic intermediates in the absence of glucose. In this process, the conversion of alanine to pyruvate by alanine transaminase 2 (ALT2) is critical for survival during glucose starvation. Collectively, Rac driven macropinocytosis of extracellular protein is an adaptive metabolic pathway used by a subset of lung cancers to survive states of glucose deprivation, and may serve as a potential drug target for cancer therapy.
Collapse
Affiliation(s)
- Cindy Hodakoski
- Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Benjamin D Hopkins
- Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Taojunfeng Su
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Zhe Cheng
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Roxanne Morris
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, 1300 York Ave A-421, New York, NY 10065, USA.
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, 1300 York Ave A-421, New York, NY 10065, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10021, USA.
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
84
|
Ferrari A, Longo R, Silva R, Mitro N, Caruso D, De Fabiani E, Crestani M. Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. Pharmacol Ther 2019; 193:178-193. [DOI: 10.1016/j.pharmthera.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
85
|
Bioenergetic and proteomic profiling to screen small molecule inhibitors that target cancer metabolisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:28-37. [DOI: 10.1016/j.bbapap.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
|
86
|
Shan M, Dai D, Vudem A, Varner JD, Stroock AD. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors. PLoS Comput Biol 2018; 14:e1006584. [PMID: 30532226 PMCID: PMC6285468 DOI: 10.1371/journal.pcbi.1006584] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer metabolism has received renewed interest as a potential target for cancer therapy. In this study, we use a multi-scale modeling approach to interrogate the implications of three metabolic scenarios of potential clinical relevance: the Warburg effect, the reverse Warburg effect and glutamine addiction. At the intracellular level, we construct a network of central metabolism and perform flux balance analysis (FBA) to estimate metabolic fluxes; at the cellular level, we exploit this metabolic network to calculate parameters for a coarse-grained description of cellular growth kinetics; and at the multicellular level, we incorporate these kinetic schemes into the cellular automata of an agent-based model (ABM), iDynoMiCS. This ABM evaluates the reaction-diffusion of the metabolites, cellular division and motion over a simulation domain. Our multi-scale simulations suggest that the Warburg effect provides a growth advantage to the tumor cells under resource limitation. However, we identify a non-monotonic dependence of growth rate on the strength of glycolytic pathway. On the other hand, the reverse Warburg scenario provides an initial growth advantage in tumors that originate deeper in the tissue. The metabolic profile of stromal cells considered in this scenario allows more oxygen to reach the tumor cells in the deeper tissue and thus promotes tumor growth at earlier stages. Lastly, we suggest that glutamine addiction does not confer a selective advantage to tumor growth with glutamine acting as a carbon source in the tricarboxylic acid (TCA) cycle, any advantage of glutamine uptake must come through other pathways not included in our model (e.g., as a nitrogen donor). Our analysis illustrates the importance of accounting explicitly for spatial and temporal evolution of tumor microenvironment in the interpretation of metabolic scenarios and hence provides a basis for further studies, including evaluation of specific therapeutic strategies that target metabolism. Cancer metabolism is an emerging hallmark of cancer. In the past decade, a renewed focus on cancer metabolism has led to several distinct hypotheses describing the role of metabolism in cancer. To complement experimental efforts in this field, a scale-bridging computational framework is needed to allow rapid evaluation of emerging hypotheses in cancer metabolism. In this study, we present a multi-scale modeling platform and demonstrate the distinct outcomes in population-scale growth dynamics under different metabolic scenarios: the Warburg effect, the reverse Warburg effect and glutamine addiction. Within this modeling framework, we confirmed population-scale growth advantage enabled by the Warburg effect, provided insights into the symbiosis between stromal cells and tumor cells in the reverse Warburg effect and argued that the anaplerotic role of glutamine is not exploited by tumor cells to gain growth advantage under resource limitations. We point to the opportunity for this framework to help understand tissue-scale response to therapeutic strategies that target cancer metabolism while accounting for the tumor complexity at multiple scales.
Collapse
Affiliation(s)
- Mengrou Shan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MS); (ADS)
| | - David Dai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Arunodai Vudem
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Abraham D. Stroock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MS); (ADS)
| |
Collapse
|
87
|
Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 2018; 195:162-171. [PMID: 30439456 DOI: 10.1016/j.pharmthera.2018.11.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many metabolic alterations, including the Warburg effect, occur in cancer cells that influence the tumor microenvironment, including switching to glycolysis from oxidative phosphorylation, using opportunistic modes of nutrient acquisition, and increasing lipid biosynthesis. The altered metabolic landscape of the tumor microenvironment can suppress the infiltration of immune cells and other functions of antitumor immunity through the production of immune-suppressive metabolites. Metabolic dysregulation in cancer cells further affects the expression of cell surface markers, which interferes with immune surveillance. Immune checkpoint therapies have revolutionized the standard of care for some patients with cancer, but disease in many others is resistant to immunotherapy. Specific metabolic pathways involved in immunotherapy resistance include PI3K-Akt-mTOR, hypoxia-inducible factor (HIF), adenosine, JAK/STAT, and Wnt/Beta-catenin. Depletion of essential amino acids such as glutamine and tryptophan and production of metabolites like kynurenine in the tumor microenvironment also blunt immune cell function. Targeted therapies against metabolic checkpoints could work in synergy with immune checkpoint therapy. This combined strategy could be refined by profiling patients' mutation status before treatment and identifying the optimal sequencing of therapies. This personalized combinatorial approach, which has yet to be explored, may well pave the way for overcoming resistance to immunotherapy.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mauricio S Caetano
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ana Carolina P Mafra
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Erika Pereira Zambalde
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
88
|
Investigation into Cellular Glycolysis for the Mechanism Study of Energy Metabolism Disorder Triggered by Lipopolysaccharide. Toxins (Basel) 2018; 10:toxins10110441. [PMID: 30380670 PMCID: PMC6266602 DOI: 10.3390/toxins10110441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Lipopolysaccharide (LPS) is the main virulence factor of Gram-negative bacteria, which can incite inflammation in tissues by inducing cells to secrete a variety of proinflammatory mediators, including cytokines, chemokines, interleukins, and prostaglandins. Herein, we chose LPS as an inducer to establish an inflammatory model of HeLa cells, and explored the effects of LPS on energy metabolism. We treated HeLa cells with different concentrations (0, 0.4, 1.0, 2.0, 4.0, and 6.0 μg/mL) of LPS for 24 h, and explored its effects on intercellular adenosine triphosphate (ATP) levels, intercellular nitrous oxide (NO) content, mitochondrial functions, and enzyme activities related to energy metabolism. Furthermore, we used metabonomics to study the metabolites that participated in energy metabolism. We found a positive correlation between LPS concentrations and intracellular ATP levels. In addition, LPS increased intracellular NO production, altered mitochondrial functions, strengthened glycolytic enzyme activities, and changed metabolites related to energy metabolism. Hence, in this study, we showed that LPS can strengthen energy metabolism by enhancing glycolysis, which could be used as an early diagnostic biomarker or a novel therapeutic target for inflammation-associated cancers.
Collapse
|
89
|
Srivastava SP, Li J, Kitada M, Fujita H, Yamada Y, Goodwin JE, Kanasaki K, Koya D. SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death Dis 2018; 9:997. [PMID: 30250024 PMCID: PMC6155322 DOI: 10.1038/s41419-018-1057-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022]
Abstract
The regulation of aberrant glucose metabolism in diabetes associated-kidney fibrosis is not well known. In this study we found the suppression of SIRT3 protein level in diabetic kidney, displays responsibility in fibrogenic programming associated with aberrant glycolysis and such abnormal glycolysis is the therapeutic target in diabetes associated-kidney fibrosis. When analyzing different strains of streptozotocin-induced diabetic mice model (fibrotic model: CD-1, less fibrotic model: C57Bl6), we found SIRT3 suppression was associated with kidney fibrosis in fibrotic CD-1; further SIRT3 suppression by systemic administration of SIRT3 siRNA in the diabetic mice, showed profound fibrogenic phenotype in the kidney. Such suppression in SIRT3 was associated with the induction of transforming growth factor-β (TGF-β)/smad signaling, higher level of HIF1α accumulation and PKM2 dimer formation; these alterations subsequently led to abnormal glycolysis and linked abnormal mesenchymal transformations in vivo and in vitro. Inhibition of such aberrant glycolysis suppressed fibrogenic programming and restored SIRT3 level as well. Such aberrant glycolysis was confirmed in the KK/Ta-Ins2Akita mouse, the mouse model of progressive diabetic kidney disease. These data demonstrate that SIRT3 deficiency promotes abnormal glycolysis which is responsible for the fibrogenic pathway in diabetic kidney. Restoration of SIRT3 could be an alternative strategy in combating diabetes associated-kidney fibrosis via inhibition of aberrant glycolysis.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Department of Pediatrics (Nephrology) Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jinpeng Li
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Munehiro Kitada
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroki Fujita
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Julie E Goodwin
- Department of Pediatrics (Nephrology) Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Keizo Kanasaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan. .,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan. .,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| |
Collapse
|
90
|
Banerjee M, Cui X, Li Z, Yu H, Cai L, Jia X, He D, Wang C, Gao T, Xie Z. Na/K-ATPase Y260 Phosphorylation-mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci Rep 2018; 8:12322. [PMID: 30120256 PMCID: PMC6098021 DOI: 10.1038/s41598-018-29995-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We report here the identification of α1 Na/K-ATPase as a major regulator of the proto-oncogene Src kinase and the role of this regulation in control of Warburg effect and tumor growth. Specifically, we discovered Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site and that Y260 phosphorylation is required for Src-mediated signal transduction in response to a number of stimuli including EGF. As such, it enables a dynamic control of aerobic glycolysis. However, such regulation appears to be lost or attenuated in human cancers as the expression of Na/K-ATPase α1 was significantly decreased in prostate, breast and kidney cancers, and further reduced in corresponding metastatic lesions in patient samples. Consistently, knockdown of α1 Na/K-ATPase led to a further increase in lactate production and the growth of tumor xenograft. These findings suggest that α1 Na/K-ATPase works as a tumor suppressor and that a loss of Na/K-ATPase-mediated Src regulation may lead to Warburg phenotype in cancer.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Zhichuan Li
- Department of Physiology and Pharmacology and Medicine, University of Toledo College of Medicine, Toledo, Ohio, 43614, USA
| | - Hui Yu
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xuelian Jia
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Daheng He
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA.
| |
Collapse
|
91
|
Liu J, Zhang C, Hu W, Feng Z. Parkinson's disease-associated protein Parkin: an unusual player in cancer. Cancer Commun (Lond) 2018; 38:40. [PMID: 29941042 PMCID: PMC6020249 DOI: 10.1186/s40880-018-0314-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
The mutation of the Parkin gene is a cause of familial Parkinson’s disease. A growing body of evidence suggests that Parkin also functions as a tumor suppressor. Parkin is an ubiquitin E3 ligase, and plays important roles in a variety of cellular processes implicated in tumorigenesis, including cell cycle, cell proliferation, apoptosis, metastasis, mitophagy and metabolic reprogramming. Here we review the role and mechanism of Parkin in cancer.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
92
|
Kim JH, Nam B, Choi YJ, Kim SY, Lee JE, Sung KJ, Kim WS, Choi CM, Chang EJ, Koh JS, Song JS, Yoon S, Lee JC, Rho JK, Son J. Enhanced Glycolysis Supports Cell Survival in EGFR-Mutant Lung Adenocarcinoma by Inhibiting Autophagy-Mediated EGFR Degradation. Cancer Res 2018; 78:4482-4496. [DOI: 10.1158/0008-5472.can-18-0117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/12/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
|
93
|
Kang YP, Ward NP, DeNicola GM. Recent advances in cancer metabolism: a technological perspective. Exp Mol Med 2018; 50:1-16. [PMID: 29657324 PMCID: PMC5938018 DOI: 10.1038/s12276-018-0027-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/12/2017] [Indexed: 01/28/2023] Open
Abstract
Cancer cells are highly dependent on metabolic pathways to sustain both their proliferation and adaption to harsh microenvironments. Thus, understanding the metabolic reprogramming that occurs in tumors can provide critical insights for the development of therapies targeting metabolism. In this review, we will discuss recent advancements in metabolomics and other multidisciplinary techniques that have led to the discovery of novel metabolic pathways and mechanisms in diverse cancer types. Researchers now have access to a rapidly growing number of tools for probing the metabolic abnormalities associated with tumor growth. Unrestrained growth puts special demands on cancer cells, and scientists have known for nearly a century that tumor metabolism differs considerably from healthy tissue metabolism. Gina DeNicola and colleagues at the Moffitt Cancer Center and Research Institute, Tampa, USA, have reviewed the technological tools available for monitoring the molecules that power cell growth and survival. These include mass spectrometry, which can generate an extremely detailed census of cellular metabolites in a single experiment. The authors also highlight techniques that can help ‘trap’ short-lived or unstable chemical intermediates for analysis. Other chemical labeling and tracing techniques can illuminate activity of selected metabolic processes in living tumor cells or even in patients, findings that could reveal therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Yun Pyo Kang
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Nathan P Ward
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Gina M DeNicola
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
94
|
Gao X, Lee K, Reid MA, Sanderson SM, Qiu C, Li S, Liu J, Locasale JW. Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Rep 2018; 22:3507-3520. [PMID: 29590619 PMCID: PMC6054483 DOI: 10.1016/j.celrep.2018.03.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 11/16/2022] Open
Abstract
Cell proliferation can be dependent on the non-essential amino acid serine, and dietary restriction of serine inhibits tumor growth, but the underlying mechanisms remain incompletely understood. Using a metabolomics approach, we found that serine deprivation most predominantly impacts cellular acylcarnitine levels, a signature of altered mitochondrial function. Fuel utilization from fatty acid, glucose, and glutamine is affected by serine deprivation, as are mitochondrial morphological dynamics leading to increased fragmentation. Interestingly, these changes can occur independently of nucleotide and redox metabolism, two known major functions of serine. A lipidomics analysis revealed an overall decrease in ceramide levels. Importantly, supplementation of the lipid component of bovine serum or C16:0-ceramide could partially restore defects in cell proliferation and mitochondrial fragmentation induced by serine deprivation. Together, these data define a role for serine in supporting mitochondrial function and cell proliferation through ceramide metabolism.
Collapse
Affiliation(s)
- Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katie Lee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuping Qiu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
95
|
Liu GM, Zhang YM. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int 2018; 18:36. [PMID: 29556139 PMCID: PMC5845355 DOI: 10.1186/s12935-018-0533-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries. Metabolic reprogramming is an emerging hallmark of cancer. Glucose homeostasis is reciprocally controlled by the catabolic glycolysis and anabolic gluconeogenesis pathways. Previous studies have mainly focused on catabolic glycolysis, but recently, FBPase, a rate-limiting enzyme in gluconeogenesis, was found to play critical roles in tumour initiation and progression in several cancer types. Here, we review recent ideas and discoveries that illustrate the clinical significance of FBPase expression in various cancers, the mechanism through which FBPase influences cancer, and the mechanism of FBPase silencing. Furthermore, we summarize some of the drugs targeting FBPase and discuss their potential use in clinical applications and the problems that remain unsolved.
Collapse
Affiliation(s)
- Gao-Min Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| | - Yao-Ming Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| |
Collapse
|
96
|
Neugent ML, Goodwin J, Sankaranarayanan I, Yetkin CE, Hsieh MH, Kim JW. A New Perspective on the Heterogeneity of Cancer Glycolysis. Biomol Ther (Seoul) 2018; 26:10-18. [PMID: 29212302 PMCID: PMC5746033 DOI: 10.4062/biomolther.2017.210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.
Collapse
Affiliation(s)
- Michael L. Neugent
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080,
USA
| | - Justin Goodwin
- Yale School of Medicine, New Haven, Connecticut 06510,
USA
- Yale Graduate School of Art and Science, New Haven, Connecticut 06511,
USA
| | | | - Celal Emre Yetkin
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080,
USA
| | - Meng-Hsiung Hsieh
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080,
USA
| | - Jung-whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080,
USA
| |
Collapse
|
97
|
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, low-grade, metastasizing neoplasm that arises from an unknown source, spreads via the lymphatics, and targets the lungs. All pulmonary structures become infiltrated with benign-appearing spindle and epithelioid cells (LAM cells) that express smooth-muscle and melanocyte-lineage markers, harbor mTOR-activating mutations in tuberous sclerosis complex (TSC) genes, and recruit abundant stromal cells. Elaboration of lymphangiogenic growth factors and matrix remodeling enzymes by LAM cells enables their access to lymphatic channels and likely drives the cystic lung remodeling that often culminates in respiratory failure. Dysregulated cellular signaling results in a shift from oxidative phosphorylation to glycolysis as the preferred mode of energy generation, to allow for the accumulation of biomass required for cell growth and tolerance of nutrient-poor, anaerobic environments. Symptomatic LAM occurs almost exclusively in females after menarche, highlighting the central but as yet poorly understood role for sex-restricted anatomical structures and/or hormones in disease pathogenesis. LAM is an elegant model of malignancy because biallelic mutations at a single genetic locus confer all features that define cancer upon the LAM cell-metabolic reprogramming and proliferative signals that drive uncontrolled growth and inappropriate migration and invasion, the capacity to exploit the lymphatic circulation as a vehicle for metastasis and access to the lungs, and destruction of remote tissues. The direct benefit of the study of this rare disease has been the rapid identification of an effective FDA-approved therapy, and the collateral benefits have included elucidation of the pivotal roles of mTOR signaling in the regulation of cellular metabolism and the pathogenesis of cancer.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Francis X McCormack
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267;
| |
Collapse
|
98
|
Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion. Biochem Biophys Res Commun 2017; 495:761-767. [PMID: 29146184 DOI: 10.1016/j.bbrc.2017.11.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022]
Abstract
Cancer cells rapidly consume glutamine as a carbon and nitrogen source to support proliferation, but the cell number continues to increase exponentially after glutamine is nearly depleted from the medium. In contrast, cell proliferation rates are strongly depressed when cells are cultured in glutamine-free medium. How cancer cells survive in response to nutrient limitation and cellular stress remains poorly understood. In addition, rapid glutamine catabolism yields ammonia, which is a potentially toxic metabolite that is secreted into the extracellular space. Here, we show that ammonia can be utilized for glutamate production, leading to cell proliferation under glutamine-depleted conditions. This proliferation requires glutamate dehydrogenase 2, which synthesizes glutamate from ammonia and α-ketoglutarate and is expressed in MCF7 and T47D cells. Our findings provide insight into how cancer cells survive under glutamine deprivation conditions and thus contribute to elucidating the mechanisms of tumor growth.
Collapse
|
99
|
Morten KJ, Potter M, Badder L, Sivathondan P, Dragovic R, Neumann A, Gavin J, Shrestha R, Reilly S, Phadwal K, Lodge TA, Borzychowski A, Cookson S, Mitchell C, Morovat A, Simon AK, Uusimaa J, Hynes J, Poulton J. Insights into pancreatic β cell energy metabolism using rodent β cell models. Wellcome Open Res 2017; 2:14. [DOI: 10.12688/wellcomeopenres.10535.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Mitochondrial diabetes is primarily caused by β-cell failure, a cell type whose unique properties are important in pathogenesis. Methods: By reducing glucose, we induced energetic stress in two rodent β-cell models to assess effects on cellular function. Results: Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy. Conclusions: Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting β-cell mitochondrial function.
Collapse
|
100
|
Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol 2017; 44:198-203. [PMID: 29248131 DOI: 10.1053/j.seminoncol.2017.10.004] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/17/2023]
Abstract
Glucose is a key metabolite used by cancer cells to generate ATP, maintain redox state and create biomass. Glucose can be catabolized to lactate in the cytoplasm, which is termed glycolysis, or alternatively can be catabolized to carbon dioxide and water in the mitochondria via oxidative phosphorylation. Metabolic heterogeneity exists in a subset of human tumors, with some cells maintaining a glycolytic phenotype while others predominantly utilize oxidative phosphorylation. Cells within tumors interact metabolically with transfer of catabolites from supporting stromal cells to adjacent cancer cells. The Reverse Warburg Effect describes when glycolysis in the cancer-associated stroma metabolically supports adjacent cancer cells. This catabolite transfer, which induces stromal-cancer metabolic coupling, allows cancer cells to generate ATP, increase proliferation, and reduce cell death. Catabolites implicated in metabolic coupling include the monocarboxylates lactate, pyruvate, and ketone bodies. Monocarboxylate transporters (MCT) are critically necessary for release and uptake of these catabolites. MCT4 is involved in the release of monocarboxylates from cells, is regulated by catabolic transcription factors such as hypoxia inducible factor 1 alpha (HIF1A) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and is highly expressed in cancer-associated fibroblasts. Conversely, MCT1 is predominantly involved in the uptake of these catabolites and is highly expressed in a subgroup of cancer cells. MYC and TIGAR, which are genes involved in cellular proliferation and anabolism, are inducers of MCT1. Profiling human tumors on the basis of an altered redox balance and intra-tumoral metabolic interactions may have important biomarker and therapeutic implications. Alterations in the redox state and mitochondrial function of cells can induce metabolic coupling. Hence, there is interest in redox and metabolic modulators as anticancer agents. Also, markers of metabolic coupling have been associated with poor outcomes in numerous human malignancies and may be useful prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Lindsay Wilde
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | - Megan Roche
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | | | | | - Nancy Philp
- Department of Cell Biology, Anatomy and Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|