51
|
Wang X, Wang Y, Cao A, Luo Q, Chen D, Zhao W, Xu J, Li Q, Bu X, Quan J. Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation. Nat Commun 2023; 14:6132. [PMID: 37783727 PMCID: PMC10545747 DOI: 10.1038/s41467-023-41892-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is an essential sensor of aberrant cytosolic DNA for initiating innate immunity upon invading pathogens and cellular stress, which is considered as a potential drug target for autoimmune and autoinflammatory diseases. Here, we report the discovery of a class of cyclopeptide inhibitors of cGAS identified by an in vitro screening assay from a focused library of cyclic peptides. These cyclopeptides specifically bind to the DNA binding site of cGAS and block the binding of dsDNA with cGAS, subsequently inhibit dsDNA-induced liquid phase condensation and activation of cGAS. The specificity and potency of one optimal lead XQ2B were characterized in cellular assays. Concordantly, XQ2B inhibited herpes simplex virus-1 (HSV-1)-induced antiviral immune responses and enhanced HSV-1 infection in vitro and in vivo. Furthermore, XQ2B significantly suppressed the elevated levels of type I interferon and proinflammatory cytokines in primary macrophages from Trex1-/- mice and systemic inflammation in Trex1-/- mice. XQ2B represents the specific cGAS inhibitor targeting protein-DNA interaction and phase separation and serves as a scaffold for the development of therapies in the treatment of cGAS-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoquan Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Youqiao Wang
- School of Pharmaceutical Sciences, SunYat-sen University, Guangzhou, 510006, China
| | - Anqi Cao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Daoyuan Chen
- School of Bioengineering, ZhuHai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Weiqi Zhao
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jun Xu
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Qinkai Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xianzhang Bu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- School of Pharmaceutical Sciences, SunYat-sen University, Guangzhou, 510006, China.
| | - Junmin Quan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
52
|
Abstract
Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.
Collapse
Affiliation(s)
- Quanjin Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
53
|
Zheng W, Chen N, Meurens F, Zheng W, Zhu J. How Does cGAS Avoid Sensing Self-DNA under Normal Physiological Conditions? Int J Mol Sci 2023; 24:14738. [PMID: 37834184 PMCID: PMC10572901 DOI: 10.3390/ijms241914738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
cGAS is a cytosolic DNA sensor that activates innate immune responses by producing the second messenger 2'3'-cGAMP, which activates the adaptor STING. cGAS senses dsDNA in a length-dependent but sequence-independent manner, meaning it cannot discriminate self-DNA from foreign DNA. In normal physiological conditions, cellular DNA is sequestered in the nucleus by a nuclear envelope and in mitochondria by a mitochondrial membrane. When self-DNA leaks into the cytosol during cellular stress or mitosis, the cGAS can be exposed to self-DNA and activated. Recently, many studies have investigated how cGAS keeps inactive and avoids being aberrantly activated by self-DNA. Thus, this narrative review aims to summarize the mechanisms by which cGAS avoids sensing self-DNA under normal physiological conditions.
Collapse
Affiliation(s)
- Wangli Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC J2S 2M2, Canada;
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
54
|
Slavik KM, Kranzusch PJ. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. Annu Rev Virol 2023; 10:423-453. [PMID: 37380187 DOI: 10.1146/annurev-virology-111821-115636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.
Collapse
Affiliation(s)
- Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Zhang L, Liu Z, Lu Y, Nie J, Chen Y. Phase Separation in Kidney Diseases: Autosomal Dominant Polycystic Kidney Disease and Beyond. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:229-238. [PMID: 37899998 PMCID: PMC10601909 DOI: 10.1159/000530250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/15/2023] [Indexed: 10/31/2023]
Abstract
Background The formation of biomolecular condensates via phase separation has emerged as a fundamental principle underlying the spatiotemporal coordination of biological activities in cells. Aberrant biomolecular condensates often directly regulate key cellular process involved in the pathogenesis of human diseases, including kidney diseases. Summary In this review, we summarize the physiological roles of phase separation and methodologies for phase separation studies. Taking autosomal dominant polycystic kidney disease as an example, we discuss recent advances toward elucidating the multiple mechanisms involved in kidney pathology arising from aberrant phase separation. We suggest that dysregulation of phase separation contributes to the pathogenesis of other important kidney diseases, including kidney injury and fibrosis. Key Messages Phase separation provides a useful new concept to understand the mechanisms underlying kidney disease development. Targeting aberrant phase-separated condensates offers new therapeutic avenues for combating kidney diseases.
Collapse
Affiliation(s)
- Lirong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jing Nie
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
56
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
57
|
Song C, Hu Z, Xu D, Bian H, Lv J, Zhu X, Zhang Q, Su L, Yin H, Lu T, Li Y. STING signaling in inflammaging: a new target against musculoskeletal diseases. Front Immunol 2023; 14:1227364. [PMID: 37492580 PMCID: PMC10363987 DOI: 10.3389/fimmu.2023.1227364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Stimulator of Interferon Gene (STING) is a critical signaling linker protein that plays a crucial role in the intrinsic immune response, particularly in the cytoplasmic DNA-mediated immune response in both pathogens and hosts. It is also involved in various signaling processes in vivo. The musculoskeletal system provides humans with morphology, support, stability, and movement. However, its aging can result in various diseases and negatively impact people's lives. While many studies have reported that cellular aging is a leading cause of musculoskeletal disorders, it also offers insight into potential treatments. Under pathological conditions, senescent osteoblasts, chondrocytes, myeloid cells, and muscle fibers exhibit persistent senescence-associated secretory phenotype (SASP), metabolic disturbances, and cell cycle arrest, which are closely linked to abnormal STING activation. The accumulation of cytoplasmic DNA due to chromatin escape from the nucleus following DNA damage or telomere shortening activates the cGAS-STING signaling pathway. Moreover, STING activation is also linked to mitochondrial dysfunction, epigenetic modifications, and impaired cytoplasmic DNA degradation. STING activation upregulates SASP and autophagy directly and indirectly promotes cell cycle arrest. Thus, STING may be involved in the onset and development of various age-related musculoskeletal disorders and represents a potential therapeutic target. In recent years, many STING modulators have been developed and used in the study of musculoskeletal disorders. Therefore, this paper summarizes the effects of STING signaling on the musculoskeletal system at the molecular level and current understanding of the mechanisms of endogenous active ligand production and accumulation. We also discuss the relationship between some age-related musculoskeletal disorders and STING, as well as the current status of STING modulator development.
Collapse
Affiliation(s)
- Chenyu Song
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhuoyi Hu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Dingjun Xu
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tong Lu
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
58
|
Liu Y, Fei Y, Wang X, Yang B, Li M, Luo Z. Biomaterial-enabled therapeutic modulation of cGAS-STING signaling for enhancing antitumor immunity. Mol Ther 2023; 31:1938-1959. [PMID: 37002605 PMCID: PMC10362396 DOI: 10.1016/j.ymthe.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
cGAS-STING signaling is a central component in the therapeutic action of most existing cancer therapies. The accumulated knowledge of tumor immunoregulatory network in recent years has spurred the development of cGAS-STING agonists for tumor treatment as an effective immunotherapeutic strategy. However, the clinical translation of these agonists is thus far unsatisfactory because of the low immunostimulatory efficacy and unrestricted side effects under clinically relevant conditions. Interestingly, the rational integration of biomaterial technology offers a promising approach to overcome these limitations for more effective and safer cGAS-STING-mediated tumor therapy. Herein, we first outline the cGAS-STING signaling axis and generally discuss its association with tumors. We then symmetrically summarize the recent progress in those biomaterial-based cGAS-STING agonism strategies to generate robust antitumor immunity, categorized by the chemical nature of those cGAS-STING stimulants and carrier substrates. Finally, a perspective is provided to discuss the existing challenges and potential opportunities in cGAS-STING modulation for tumor therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Bingbing Yang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
59
|
Ma B, Ju A, Zhang S, An Q, Xu S, Liu J, Yu L, Fu Y, Luo Y. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease. Signal Transduct Target Ther 2023; 8:229. [PMID: 37321990 PMCID: PMC10272166 DOI: 10.1038/s41392-023-01437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Hepatic mitochondrial dysfunction contributes to the progression of nonalcoholic fatty liver disease (NAFLD). However, the factors that maintain mitochondrial homeostasis, especially in hepatocytes, are largely unknown. Hepatocytes synthesize various high-level plasma proteins, among which albumin is most abundant. In this study, we found that pre-folding albumin in the cytoplasm is completely different from folded albumin in the serum. Mechanistically, endogenous pre-folding albumin undergoes phase transition in the cytoplasm to form a shell-like spherical structure, which we call the "albumosome". Albumosomes interact with and trap pre-folding carnitine palmitoyltransferase 2 (CPT2) in the cytoplasm. Albumosomes control the excessive sorting of CPT2 to the mitochondria under high-fat-diet-induced stress conditions; in this way, albumosomes maintain mitochondrial homeostasis from exhaustion. Physiologically, albumosomes accumulate in hepatocytes during murine aging and protect the livers of aged mice from mitochondrial damage and fat deposition. Morphologically, mature albumosomes have a mean diameter of 4μm and are surrounded by heat shock protein Hsp90 and Hsp70 family proteins, forming a larger shell. The Hsp90 inhibitor 17-AAG promotes hepatic albumosomal accumulation in vitro and in vivo, through which suppressing the progression of NAFLD in mice.
Collapse
Affiliation(s)
- Boyuan Ma
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Anji Ju
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Shaosen Zhang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qi An
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Siran Xu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Jie Liu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Immunogenetics Laboratory, Shenzhen Blood Center, 518025, Shenzhen, Guangdong, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
60
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
61
|
Lyu H, Sun L, Guan Z, Li J, Yin C, Zhang Y, Jiang H. Proximity labeling reveals OTUD3 as a DNA-binding deubiquitinase of cGAS. Cell Rep 2023; 42:112309. [PMID: 36966392 DOI: 10.1016/j.celrep.2023.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/02/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), as the major DNA sensor, initiates DNA-stimulated innate immune responses and is essential for a healthy immune system. Although some regulators of cGAS have been reported, it still remains largely unclear how cGAS is precisely and dynamically regulated and how many potential regulators govern cGAS. Here we carry out proximity labeling of cGAS with TurboID in cells and identify a number of potential cGAS-interacting or -adjacent proteins. Deubiquitinase OTUD3, one candidate identified in cytosolic cGAS-DNA complex, is further validated to not only stabilize cGAS but also enhance cGAS enzymatic activity, which eventually promotes anti-DNA virus immune response. We show that OTUD3 can directly bind DNA and is recruited to the cytosolic DNA complex, increasing its association with cGAS. Our findings reveal OTUD3 as a versatile cGAS regulator and find one more layer of regulatory mechanism in DNA-stimulated innate immune responses.
Collapse
Affiliation(s)
- Heng Lyu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxin Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Changsong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
62
|
Vasiyani H, Wadhwa B, Singh R. Regulation of cGAS-STING signalling in cancer: Approach for combination therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188896. [PMID: 37088059 DOI: 10.1016/j.bbcan.2023.188896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Innate immunity plays an important role not only during infection but also homeostatic role during stress conditions. Activation of the immune system including innate immune response plays a critical role in the initiation and progression of tumorigenesis. The innate immune sensor recognizes pathogen-associated molecular patterns (PAMPs) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) and induces type-1 immune response during viral and bacterial infection. cGAS-STING is regulated differently in conditions like cellular senescence and DNA damage in normal and tumor cells and is implicated in the progression of tumors from different origins. cGAS binds to cytoplasmic dsDNA and synthesize cyclic GMP-AMP (2'3'-cGAMP), which selectively activates STING and downstream IFN and NF-κB activation. We here reviewed the cGAS-STING signalling pathway and its cross-talk with other pathways to modulate tumorigenesis. Further, the review also focused on emerging studies that targeted the cGAS-STING pathway for developing targeted therapeutics and combinatorial regimens for cancer of different origins.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Bhumika Wadhwa
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rajesh Singh
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
63
|
Hu B, Ma JX, Duerfeldt AS. The cGAS-STING pathway in diabetic retinopathy and age-related macular degeneration. Future Med Chem 2023; 15:717-729. [PMID: 37166075 PMCID: PMC10194038 DOI: 10.4155/fmc-2022-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/12/2023] Open
Abstract
Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS-STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS-STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
64
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
65
|
Fang L, Ying S, Xu X, Wu D. TREX1 cytosolic DNA degradation correlates with autoimmune disease and cancer immunity. Clin Exp Immunol 2023; 211:193-207. [PMID: 36745566 PMCID: PMC10038326 DOI: 10.1093/cei/uxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The N-terminal domain of Three Prime Repair Exonuclease 1 (TREX1) is catalytically active and can degrade dsDNA or ssDNA in the cytosol, whereas the C-terminal domain is primarily involved in protein localization. TREX1 deficiency induces cytosolic DNA accumulation as well as activation of the cGAS-STING-IFN signaling pathway, which results in tissue inflammation and autoimmune diseases. Furthermore, TREX1 expression in cancer immunity can be adaptively regulated to promote tumor proliferation, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xi Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
66
|
Zhang J, Zhou EC, He Y, Chai ZL, Ji BZ, Tu Y, Wang HL, Wu WQ, Liu Y, Zhang XH, Liu Y. ZYG11B potentiates the antiviral innate immune response by enhancing cGAS-DNA binding and condensation. Cell Rep 2023; 42:112278. [PMID: 36933219 DOI: 10.1016/j.celrep.2023.112278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
As a key dsDNA recognition receptor, cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) plays a vital role in innate immune responses. Activated cGAS, by sensing DNA, catalyzes the synthesis of the secondary messenger cyclic GMP-AMP (cGAMP), which subsequently activates downstream signaling to induce production of interferons and inflammatory cytokines. Here, we report Zyg-11 family member B (ZYG11B) as a potent amplifier in cGAS-mediated immune responses. Knockdown of ZYG11B impairs production of cGAMP and subsequent transcription of interferon and inflammatory cytokines. Mechanistically, ZYG11B enhances cGAS-DNA binding affinity, potentiates cGAS-DNA condensation, and stabilizes the cGAS-DNA condensed complex. Moreover, herpes simplex virus 1 (HSV-1) infection induces ZYG11B degradation in a cGAS-unrelated manner. Our findings not only reveal an important role of ZYG11B in the early stage of DNA-induced cGAS activation but also indicate a viral strategy to dampen the innate immune response.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan He
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ze-Lin Chai
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ben-Zhe Ji
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Tu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Han-Ling Wang
- Xi'an Jiaotong-Livepool University, Suzhou 215123, China
| | - Wen-Qiang Wu
- College of Life Science, Henan University, Kaifeng 475001, China
| | - Yong Liu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Liu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
67
|
Patel DJ, Yu Y, Xie W. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Nat Struct Mol Biol 2023; 30:245-260. [PMID: 36894694 PMCID: PMC11749898 DOI: 10.1038/s41594-023-00933-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
The metazoan cGAMP-activated cGAS-STING innate immunity pathway is triggered in response to genomic instability and DNA damage, thereby providing host defense against microbial pathogens. This pathway also impacts on autophagy, cellular senescence and antitumor immunity, while its overactivation triggers autoimmune and inflammatory diseases. Metazoan cGAS generates cGAMP containing distinct combinations of 3'-5' and 2'-5' linkages, which target the adaptor protein STING and activate the innate immune response through a signaling cascade leading to upregulation of cytokine and interferon production. This Review highlights a structure-based mechanistic perspective of recent advances in cGAMP-activated cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway. In addition, the Review addresses progress towards identification of inhibitors and activators targeting cGAS and STING, as well as strategies developed by pathogens to evade cGAS-STING immunity. Most importantly, it highlights cyclic nucleotide second messengers as ancient signaling molecules that elicit a potent innate immune response that originated in bacteria and evolved through evolutionary adaptation to metazoans.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - You Yu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
68
|
Cheng M, Kanyema MM, Sun Y, Zhao W, Lu Y, Wang J, Li X, Shi C, Wang J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Zeng Y, Wang C, Cao X. African Swine Fever Virus L83L Negatively Regulates the cGAS-STING-Mediated IFN-I Pathway by Recruiting Tollip To Promote STING Autophagic Degradation. J Virol 2023; 97:e0192322. [PMID: 36779759 PMCID: PMC9973008 DOI: 10.1128/jvi.01923-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
African swine fever (ASF) is a devastating infectious disease of pigs caused by the African swine fever virus (ASFV), which poses a great danger to the global pig industry. Many viral proteins can suppress with interferon signaling to evade the host's innate immune responses. Therefore, the development of an effective vaccine against ASFV has been dampened. Recent studies have suggested that the L83L gene may be integrated into the host genome, weakening the host immune system, but the underlying mechanism is unknown. Our study found that L83L negatively regulates the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. Overexpression of L83L inhibited IFN-β promoter and ISRE activity, and knockdown of L83L induced higher transcriptional levels of interferon-stimulated genes (ISGs) and phosphorylation levels of IRF3 in primary porcine alveolar macrophages. Mechanistically, L83L interacted with cGAS and STING to promote autophagy-lysosomal degradation of STING by recruiting Tollip, thereby blocking the phosphorylation of the downstream signaling molecules TBK1, IRF3, and IκBα and reducing IFN-I production. Altogether, our study reveals a negative regulatory mechanism involving the L83L-cGAS-STING-IFN-I axis and provides insights into an evasion strategy involving autophagy and innate signaling pathways employed by ASFV. IMPORTANCE African swine fever virus (ASFV) is a large double-stranded DNA virus that primarily infects porcine macrophages. The ASFV genome encodes a large number of immunosuppressive proteins. Current options for the prevention and control of this pathogen remain pretty limited. Our study showed that overexpression of L83L inhibited the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. In contrast, the knockdown of L83L during ASFV infection enhanced IFN-I production in porcine alveolar macrophages. Additional analysis revealed that L83L protein downregulated IFN-I signaling by recruiting Tollip to promote STING autophagic degradation. Although L83L deletion has been reported to have little effect on viral replication, its immune evade mechanism has not been elucidated. The present study extends our understanding of the functions of ASFV-encoded pL83L and its immune evasion strategy, which may provide a new basis for developing a live attenuated vaccine for ASF.
Collapse
Affiliation(s)
- Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Makoye Mhozya Kanyema
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Wenhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| |
Collapse
|
69
|
Zheng Y, Gao C. Phase Separation: The Robust Modulator of Innate Antiviral Signaling and SARS-CoV-2 Infection. Pathogens 2023; 12:pathogens12020243. [PMID: 36839515 PMCID: PMC9962166 DOI: 10.3390/pathogens12020243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 has been a pandemic threat to human health and the worldwide economy, but efficient treatments are still lacking. Type I and III interferons are essential for controlling viral infection, indicating that antiviral innate immune signaling is critical for defense against viral infection. Phase separation, one of the basic molecular processes, governs multiple cellular activities, such as cancer progression, microbial infection, and signaling transduction. Notably, recent studies suggest that phase separation regulates antiviral signaling such as the RLR and cGAS-STING pathways. Moreover, proper phase separation of viral proteins is essential for viral replication and pathogenesis. These observations indicate that phase separation is a critical checkpoint for virus and host interaction. In this study, we summarize the recent advances concerning the regulation of antiviral innate immune signaling and SARS-CoV-2 infection by phase separation. Our review highlights the emerging notion that phase separation is the robust modulator of innate antiviral signaling and viral infection.
Collapse
|
70
|
Li Y, Chen T, You K, Peng T, Li T. Sequence determinants and solution conditions underlying liquid to solid phase transition. Am J Physiol Cell Physiol 2023; 324:C236-C246. [PMID: 36503242 DOI: 10.1152/ajpcell.00280.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Life consists of numberless functional biomolecules that exist in various states. Besides well-dissolved phases, biomolecules especially proteins and nucleic acids can form liquid droplets through liquid-liquid phase separation (LLPS). Stronger interactions promote a solid-like state of biomolecular condensates, which are also formerly referred to as detergent-insoluble aggregates. Solid-like condensates exist in vivo physiologically and pathologically, and their formation has not been fully understood. Recently, more and more research has proven that liquid to solid phase transition (LST) is an essential way to form solid condensates. In this review, we summarized the regions in the sequence that have different impacts on phase transition and emphasized that the LST is affected by its sequence characteristics. Moreover, increasing evidence unveiled that LST is affected by various solution conditions. We discussed solution conditions like protein concentration, pH, ATP, ions, and small molecules in a solution. Methods have been established to study these solid phase components. Here, we summarized low-throughput experimental techniques and high-throughput omics methods in the study of the LST.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Taoyu Chen
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Kaiqing You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Happy Life Technology, Beijing, China
| | - Tao Peng
- Happy Life Technology, Beijing, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
71
|
Chen P, Yang X, Wang P, He H, Chen Y, Yu L, Fang H, Wang F, Huang Z. Systematic pan-cancer analysis identifies cGAS as an immunological and prognostic biomarker. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:121. [PMID: 36819495 PMCID: PMC9929843 DOI: 10.21037/atm-22-6318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/30/2023]
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causes novel coronavirus disease 2019 (COVID-19), which is characterized by pneumonia, cytokine storms, and lymphopenia. Due to immunosuppression, cancer patients may be more susceptible to SARS-CoV-2 and have more serious complications. According to recent research, cyclic GMP-AMP synthase (cGAS) could be a potential SARS-CoV-2 sensor. However, at present, no studies have been conducted on cGAS gene alterations in pan-cancer. This study aimed to discover therapeutic implications for COVID-19-infected tumor patients by performing a comprehensive analysis of cGAS in malignant tumors. Methods cGAS expression matrices were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases, which were used to evaluate cGAS expression in various tumors, its prognostic value, and its relationship to the immune microenvironment, microsatellite instability (MSI), immune neoantigens, gene mutations, immune checkpoints, MSI, tumor mutational burden (TMB), mismatch repair (MMR) genes, and DNA methyltransferases (DNMT). We also used the cBioPortal, Human Protein Atlas (HPA), and GeneMANIA databases to explore the types of changes, gene networks and immunofluorescence localization, and protein expression of these genes. Results Compared to normal tissues, cGAS was highly expressed in 13 types of cancer (e.g., lung cancer) and lowly expressed in other cancers (e.g., pancreatic cancer). cGAS expression was associated with prognosis in nine cancers, such as renal clear cell carcinoma (P<0.05). Furthermore, deep deletion was the most common type of cGAS genomic mutation. DNMT, immune infiltration levels, TMB, MSI, MMR genes, neoantigens, and immune checkpoints were all correlated with cGAS expression. Moreover, we used the GSE30589 dataset to investigate the post-SARS-CoV infection changes in cGAS expression in vitro. Finally, mithramycin, MI219, AFP464, aminoflavone, kahalide F, AT13387, doxorubicin, and other drugs increased the sensitivity of cGAS expression. According to the evidence presented above, cGAS may become an important target for cancer therapy. Conclusions This study discovered that SARS-CoV-2-infected cancer patients might experience changes in their tumor environment as a result of cGAS, making patients with tumors expressing high cGAS more susceptible to COVID-19 and possibly a worsening prognosis. Furthermore, cGAS may be a novel biomarker for diagnosing and treating COVID-19-infected tumor patients.
Collapse
Affiliation(s)
- Peng Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xian Yang
- Department of Nephrology, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Peiyuan Wang
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hao He
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yujie Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lingfeng Yu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Huipeng Fang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Feng Wang
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
72
|
CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Cell Death Differ 2023; 30:992-1004. [PMID: 36681781 PMCID: PMC9864494 DOI: 10.1038/s41418-023-01116-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
cGAS/DncV-like nucleotidyltransferase (CD-NTase) family members are immune sensors that synthesize diverse nucleotide signals to initiate antiviral response in bacteria and animals. As a founding member of CD-NTase enzyme, cGAS has been identified as a key sensor for cytoplasmic DNA and type I interferons (IFNs) signaling in metazoan. However, the functions of other metazoan CD-NTases remain enigmatic. Here, we showed that Mab-21 domain-containing protein 2 (MB21D2), another member of the CD-NTase family, plays a positive role in modulating the cGAS-STING signaling in myeloid cells. Deficiency of MB21D2 in THP-1 cells or mice macrophages led to impaired production of type I interferon upon DNA stimulation. Consistently, Mb21d2-/- mice showed more susceptible to infection with DNA virus and faster growth of melanoma, compared to its counterparts. Mechanistically, MB21D2 specially bound with the N-terminal of cGAS, facilitated its liquid phase condensation and DNA-binding activity, leading to the enhanced production of cGAMP and subsequent IFN-β production. Thus, our findings unveiled that the CD-NTase family member MB21D2 contributes to host antiviral and antitumor responses by enhancing cGAS activation.
Collapse
|
73
|
Zeng PH, Yin WJ. The cGAS/STING signaling pathway: a cross-talk of infection, senescence and tumors. Cell Cycle 2023; 22:38-56. [PMID: 35946607 PMCID: PMC9769453 DOI: 10.1080/15384101.2022.2109899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The cGAS/STING signaling pathway is an important part of the cytoplasmic DNA sensor, which can trigger a type I interferon response to microbial infection when pathogenic DNA is detected. However, continuous inhibition of cGAS/STING signaling by viral infection may be an important cause of tumorigenesis. At the same time, recent studies have shown that although the cGAS/STING signaling pathway also plays a core role in anti-tumor immunity and cell senescence, the inflammatory response induced by cGAS/STING signaling will also promote tumorigenesis in different backgrounds. Here, we discuss the role of cGAS/STING in the context of infection, senescence, and tumors, especially with respect to progression, to facilitate a better understanding of the mechanism of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
74
|
Ma H, Liu M, Fu R, Feng J, Ren H, Cao J, Shi M. Phase separation in innate immune response and inflammation-related diseases. Front Immunol 2023; 14:1086192. [PMID: 36860877 PMCID: PMC9970293 DOI: 10.3389/fimmu.2023.1086192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Inflammation induced by nonspecific pathogenic or endogenous danger signals is an essential mechanism of innate immune response. The innate immune responses are rapidly triggered by conserved germline-encoded receptors that recognize broad patterns indicative of danger, with subsequent signal amplification by modular effectors, which have been the subject of intense investigation for many years. Until recently, however, the critical role of intrinsic disorder-driven phase separation in facilitating innate immune responses went largely unappreciated. In this review, we discuss emerging evidences that many innate immune receptors, effectors, and/or interactors function as "all-or-nothing" switch-like hubs to stimulate acute and chronic inflammation. By concentrating or relegating modular signaling components to phase-separated compartments, cells construct flexible and spatiotemporal distributions of key signaling events to ensure rapid and effective immune responses to a myriad of potentially harmful stimuli.
Collapse
Affiliation(s)
- Huihui Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mingxi Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rao Fu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jia Feng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haoran Ren
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
75
|
Wen Y, Ma J. Phase separation drives the formation of biomolecular condensates in the immune system. Front Immunol 2022; 13:986589. [PMID: 36439121 PMCID: PMC9685520 DOI: 10.3389/fimmu.2022.986589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/19/2022] [Indexed: 08/12/2023] Open
Abstract
When the external conditions change, such as the temperature or the pressure, the multi-component system sometimes separates into several phases with different components and structures, which is called phase separation. Increasing studies have shown that cells condense related biomolecules into independent compartments in order to carry out orderly and efficient biological reactions with the help of phase separation. Biomolecular condensates formed by phase separation play a significant role in a variety of cellular processes, including the control of signal transduction, the regulation of gene expression, and the stress response. In recent years, many phase separation events have been discovered in the immune response process. In this review, we provided a comprehensive and detailed overview of the role and mechanism of phase separation in the innate and adaptive immune responses, which will help the readers to appreciate the advance and importance of this field.
Collapse
Affiliation(s)
- Yuqing Wen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
76
|
Wang L, Choi K, Su T, Li B, Wu X, Zhang R, Driskill JH, Li H, Lei H, Guo P, Chen EH, Zheng Y, Pan D. Multiphase coalescence mediates Hippo pathway activation. Cell 2022; 185:4376-4393.e18. [PMID: 36318920 PMCID: PMC9669202 DOI: 10.1016/j.cell.2022.09.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/29/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kyungsuk Choi
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Su
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongde Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
77
|
Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2022:S0962-8924(22)00252-5. [DOI: 10.1016/j.tcb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
|
78
|
Fang R, Jiang Q, Yu X, Zhao Z, Jiang Z. Recent advances in the activation and regulation of the cGAS-STING pathway. Adv Immunol 2022; 156:55-102. [PMID: 36410875 DOI: 10.1016/bs.ai.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cGAS-STING pathway is responsible for cytoplasmic double-stranded DNA (dsDNA) -triggered innate immunity and involved in the pathology of various diseases including infection, autoimmune diseases, neurodegeneration and cancer. Understanding the activation and regulatory mechanisms of this pathway is critical to develop therapeutic strategies toward these diseases. Here, we review the signal transduction, cellular functions and regulations of cGAS and STING, particularly highlighting the latest understandings on the activation of cGAS by dsDNA and/or Manganese (Mn2+), STING trafficking, sulfated glycosaminoglycans (sGAGs)-induced STING polymerization and activation, and also regulation of the cGAS-STING pathway by different biocondensates formed via phase separation of proteins from host cells and viruses.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Yu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhen Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
79
|
Maharana S, Kretschmer S, Hunger S, Yan X, Kuster D, Traikov S, Zillinger T, Gentzel M, Elangovan S, Dasgupta P, Chappidi N, Lucas N, Maser KI, Maatz H, Rapp A, Marchand V, Chang YT, Motorin Y, Hubner N, Hartmann G, Hyman AA, Alberti S, Lee-Kirsch MA. SAMHD1 controls innate immunity by regulating condensation of immunogenic self RNA. Mol Cell 2022; 82:3712-3728.e10. [PMID: 36150385 DOI: 10.1016/j.molcel.2022.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/07/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.
Collapse
Affiliation(s)
- Shovamayee Maharana
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany; Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bengaluru, India.
| | - Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Susan Hunger
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Kuster
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marc Gentzel
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Shobha Elangovan
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bengaluru, India
| | - Padmanava Dasgupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bengaluru, India
| | - Nagaraja Chappidi
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Katharina Isabell Maser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Henrike Maatz
- Max Delbrück Center for Molecular Medicine, 13235 Berlin, Germany
| | - Alexander Rapp
- Department of Biology, Universität Darmstadt, 64287 Darmstadt, Germany
| | - Virginie Marchand
- Université de Lorraine, IMoPA UMR7365 CNRS-UL and UMS2008 IBSLor CNRS-Inserm-UL, 54505 Nancy, France
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yuri Motorin
- Université de Lorraine, IMoPA UMR7365 CNRS-UL and UMS2008 IBSLor CNRS-Inserm-UL, 54505 Nancy, France
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine, 13235 Berlin, Germany; Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13235 Berlin, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; University Centre for Rare Diseases, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
80
|
A novel lncRNA MTAR1 promotes cancer development through IGF2BPs mediated post-transcriptional regulation of c-MYC. Oncogene 2022; 41:4736-4753. [DOI: 10.1038/s41388-022-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
|
81
|
Huang N, Dong H, Shao B. Phase separation in immune regulation and immune-related diseases. J Mol Med (Berl) 2022; 100:1427-1440. [PMID: 36085373 PMCID: PMC9462646 DOI: 10.1007/s00109-022-02253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Phase separation is an emerging paradigm for understanding the biochemical interactions between proteins, DNA, and RNA. Research over the past decade has provided mounting evidence that phase separation modulates a great variety of cellular activities. Particularly, phase separation is directly relevant to immune signaling, immune cells, and immune-related diseases like cancer, neurodegenerative diseases, and even SARS-CoV-2. In this review, we summarized current knowledge of phase separation in immunology and emerging findings related to immune responses as they enable possible treatment approaches.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and State Key Laboratory of Biotherapy, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and State Key Laboratory of Biotherapy, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and State Key Laboratory of Biotherapy, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
82
|
Peng Q, Tan S, Xia L, Wu N, Oyang L, Tang Y, Su M, Luo X, Wang Y, Sheng X, Zhou Y, Liao Q. Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. Int J Biol Sci 2022; 18:5103-5122. [PMID: 35982902 PMCID: PMC9379413 DOI: 10.7150/ijbs.75410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a public health problem of great concern, and it is also one of the main causes of death in the world. Cancer is a disease characterized by dysregulation of diverse cellular processes, including avoiding growth inhibitory factors, avoiding immune damage and promoting metastasis, etc. However, the precise mechanism of tumorigenesis and tumor progression still needs to be further elucidated. Formations of liquid-liquid phase separation (LLPS) condensates are a common strategy for cells to achieve diverse functions, such as chromatin organization, signal transduction, DNA repair and transcriptional regulation, etc. The biomolecular aggregates formed by LLPS are mainly driven by multivalent weak interactions mediated by intrinsic disordered regions (IDRs) in proteins. In recent years, aberrant phase separations and transition have been reported to be related to the process of various diseases, such as neurodegenerative diseases and cancer. Herein, we discussed recent findings that phase separation regulates tumor-related signaling pathways and thus contributes to tumor progression. We also reviewed some tumor virus-associated proteins to regulate the development of virus-associated tumors via phase separation. Finally, we discussed some possible strategies for treating tumors by targeting phase separation.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
83
|
Conti BA, Oppikofer M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol Sci 2022; 43:820-837. [PMID: 36028355 DOI: 10.1016/j.tips.2022.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Biomolecular condensates organize cellular functions in the absence of membranes. These membraneless organelles can form through liquid-liquid phase separation coalescing RNA and proteins into well-defined, yet dynamic, structures distinct from the surrounding cellular milieu. Numerous physiological and disease-causing processes link to biomolecular condensates, which could impact drug discovery in several ways. First, disruption of pathological condensates seeded by mutated proteins or RNAs may provide new opportunities to treat disease. Second, condensates may be leveraged to tackle difficult-to-drug targets lacking binding pockets whose function depends on phase separation. Third, condensate-resident small molecules and RNA therapeutics may display unexpected pharmacology. We discuss the potential impact of phase separation on drug discovery and RNA therapeutics, leveraging concrete examples, towards novel clinical opportunities.
Collapse
Affiliation(s)
- Brooke A Conti
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY, USA
| | - Mariano Oppikofer
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY, USA.
| |
Collapse
|
84
|
He P, Zhang C, Ji Y, Ge MK, Yu Y, Zhang N, Yang S, Yu JX, Shen SM, Chen GQ. Epithelial cells-enriched lncRNA SNHG8 regulates chromatin condensation by binding to Histone H1s. Cell Death Differ 2022; 29:1569-1581. [PMID: 35140358 PMCID: PMC9345976 DOI: 10.1038/s41418-022-00944-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Linker histone H1 proteins contain many variants in mammalian and can stabilize the condensed state of chromatin by binding to nucleosomes and promoting a more inaccessible structure of DNA. However, it is poorly understood how the binding of histone H1s to chromatin DNA is regulated. Screened as one of a collection of epithelial cells-enriched long non-coding RNAs (lncRNAs), here we found that small nucleolar RNA host gene 8 (SNHG8) is a chromatin-localized lncRNA and presents strong interaction and phase separation with histone H1 variants. Moreover, SNHG8 presents stronger ability to bind H1s than linker DNA, and outcompetes linker DNA for H1 binding. Consequently, loss of SNHG8 increases the amount of H1s that bind to chromatin, promotes chromatin condensation, and induces an epithelial differentiation-associated gene expression pattern. Collectively, our results propose that the highly abundant SNHG8 in epithelial cells keeps histone H1 variants out of nucleosome and its loss contributes to epithelial cell differentiation.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yan Ji
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yun Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Jian-Xiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| |
Collapse
|
85
|
Anindya R. Cytoplasmic DNA in cancer cells: Several pathways that potentially limit DNase2 and TREX1 activities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119278. [PMID: 35489653 DOI: 10.1016/j.bbamcr.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The presence of DNA in the cytoplasm of tumor cells induces the dendritic cell to produce type-I IFNs. Classically, the presence of foreign DNA in host cells' cytoplasm during viral infection elicits cGAS-STING mediated type-I IFN signaling and cytokine production. It is likely that cytosolic DNA leads to senescence and immune surveillance in transformed cells during the early stages of carcinogenesis. However, multiple factors, such as loss of cell-cycle checkpoint, mitochondrial damage and chromosomal instability, can lead to persistent accumulation of DNA in the cytoplasm of metastatic tumor cells. That is why aberrant activation of the type I IFN pathway is frequently associated with highly aggressive tumors. Intriguingly, two powerful intracellular deoxyribonucleases, DNase2 and TREX1, can target the cytoplasmic DNA for degradation. Yet the tumor cells consistently accumulate cytoplasmic DNA. This review highlights recent work connecting the lack of DNase2 and TREX1 function to innate immune signaling. It also summarizes the possible mechanisms that limit the activity of DNase2 and TREX1 in tumor cells and contributes to chronic inflammation.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| |
Collapse
|
86
|
Zhou W, Richmond-Buccola D, Wang Q, Kranzusch PJ. Structural basis of human TREX1 DNA degradation and autoimmune disease. Nat Commun 2022; 13:4277. [PMID: 35879334 PMCID: PMC9314330 DOI: 10.1038/s41467-022-32055-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/11/2022] [Indexed: 01/13/2023] Open
Abstract
TREX1 is a cytosolic DNA nuclease essential for regulation of cGAS-STING immune signaling. Existing structures of mouse TREX1 establish a mechanism of DNA degradation and provide a key model to explain autoimmune disease, but these structures incompletely explain human disease-associated mutations and have limited ability to guide development of small-molecule therapeutics. Here we determine crystal structures of human TREX1 in apo and DNA-bound conformations that provide high-resolution detail of all human-specific features. A 1.25 Å structure of human TREX1 establishes a complete model of solvation of the exonuclease active site and a 2.2 Å structure of the human TREX1-DNA complex enables identification of specific substitutions involved in DNA recognition. We map each TREX1 mutation associated with autoimmune disease and establish distinct categories of substitutions predicted to impact enzymatic function, protein stability, and interaction with cGAS-DNA liquid droplets. Our results explain how human-specific substitutions regulate TREX1 function and provide a foundation for structure-guided design of TREX1 therapeutics.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Desmond Richmond-Buccola
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Qiannan Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| |
Collapse
|
87
|
Hertzog J, Zhou W, Fowler G, Rigby RE, Bridgeman A, Blest HTW, Cursi C, Chauveau L, Davenne T, Warner BE, Kinchington PR, Kranzusch PJ, Rehwinkel J. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO J 2022; 41:e109217. [PMID: 35670106 PMCID: PMC9289529 DOI: 10.15252/embj.2021109217] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.
Collapse
Affiliation(s)
- Jonny Hertzog
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Clinical Cooperation Unit VirotherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Wen Zhou
- Department of MicrobiologyHarvard Medical SchoolBostonMAUSA
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
- Present address:
School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Gerissa Fowler
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Rachel E Rigby
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Anne Bridgeman
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Henry TW Blest
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Chiara Cursi
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Lise Chauveau
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Tamara Davenne
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | - Paul R Kinchington
- Department of OphthalmologyUniversity of PittsburghPittsburghPAUSA
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghPAUSA
| | - Philip J Kranzusch
- Department of MicrobiologyHarvard Medical SchoolBostonMAUSA
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
- Parker Institute for Cancer ImmunotherapyDana‐Farber Cancer InstituteBostonMAUSA
| | - Jan Rehwinkel
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
88
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
89
|
Guo X, Hintzsche H, Xu W, Ni J, Xue J, Wang X. Interplay of cGAS with micronuclei: Regulation and diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108440. [PMID: 35970331 DOI: 10.1016/j.mrrev.2022.108440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
In higher eukaryotes, sophisticate regulation of genome function requires all chromosomes to be packed into a single nucleus. Micronucleus (MN), the dissociative nucleus-like structure frequently observed in aging and multiple disease settings, has critical, yet under-recognized, pathophysiological functions. Micronuclei (MNi) have recently emerged as major sources of cytosolic DNA that can activate the cGAS-STING axis in a cell-intrinsic manner. However, MNi induced from different genotoxic stressors display great heterogeneity in binding or activating cGAS and the signaling responses downstream of the MN-induced cGAS-STING axis have divergent outcomes including autoimmunity, autoinflammation, metastasis, or cell death. Thus, full characterization of molecular network underpinning the interplay of cGAS and MN is important to elucidate the pathophysiological roles of immunogenic MN and design improved drugs that selectively target cancer via boosting the MN-derived cGAS-STING axis. Here, we summarize our current understanding of the mechanisms for self-DNA discrimination by cGAS. We focus on discussing how MN immunogencity is dictated by multiple mechanisms including integrity of micronuclear envelope, state of nucleosome and DNA, competitive factors, damaged mitochondrial DNA and micronucleophagy. We also describe emerging links between immunogenic MN and human diseases including cancer, neurodegenerative diseases and COVID-19. Particularly, we explore the exciting concept of inducing immunogenic MN as a therapeutic approach in treating cancer. We propose a new theoretical framework to describe immunogenic MN as a biological sensor to modulate cellular processes in response to genotoxic stress and provide perspectives on developing novel experimental approaches to unravel the complexity of MN immunogenicity regulation and immunogenic MN pathophysiology.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China.
| | - Henning Hintzsche
- Department of Food Safety, Institute of Nutrition and Food Sciences, University of Bonn, Germany.
| | - Weijiang Xu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
90
|
Wei C, Li M, Li X, Lyu J, Zhu X. Phase Separation: "The Master Key" to Deciphering the Physiological and Pathological Functions of Cells. Adv Biol (Weinh) 2022; 6:e2200006. [PMID: 35514065 DOI: 10.1002/adbi.202200006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Indexed: 01/28/2023]
Abstract
Phase separation is a hot research field at present. It involves almost all aspects of cells and plays a significant role in cells, promising to be "a master key" in unlocking the mysteries of nature. In this review, the factors that affect phase separation are introduced, such as own component, electrostatic interaction, and chemical modification. Furthermore, the physiological roles of phase separation in cells, including molecules transport channel, gene expression and regulation, cellular division and differentiation, stress response, proteins refolding and degradation, cell connections, construction of skin barrier, and cell signals transmission, are highlighted. However, the disorder of phase separation leads to pathological condensates, which are associated with neurodegenerative diseases, tumors, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This relationship is considered the potential target for developing corresponded drugs and therapy. Some drugs targeting phase separation have improved meaningful, such as tankyrase, lipoamide, oligonucleotides, elvitagravir, nilotinib, CVL218, PJ34. All in all, mystery phase separation provides a new viewpoint for researchers to explore cells, and is expected to solve many unknown phenomena in nature.
Collapse
Affiliation(s)
- Chuzhong Wei
- School of Laboratory Medicine and Biological Engineering, Hangzhou Medical College, Hangzhou, 310053, China.,Zhu's Innovation Team, Guangdong Medical University, Zhanjiang, 523808, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255000, China
| | - Xinming Li
- Zhu's Innovation Team, Guangdong Medical University, Zhanjiang, 523808, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Biological Engineering, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xiao Zhu
- School of Laboratory Medicine and Biological Engineering, Hangzhou Medical College, Hangzhou, 310053, China.,Zhu's Innovation Team, Guangdong Medical University, Zhanjiang, 523808, China
| |
Collapse
|
91
|
Mosallanejad K, Kagan JC. Control of innate immunity by the cGAS-STING pathway. Immunol Cell Biol 2022; 100:409-423. [PMID: 35485309 PMCID: PMC9250635 DOI: 10.1111/imcb.12555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Within the cytoplasm of mammalian cells is a protein called cyclic GMP-AMP synthase (cGAS), which acts to defend against infection and other threats to the host. cGAS operates in this manner through its ability to detect a molecular occurrence that should not exist in healthy cells - the existence of DNA in the cytosol. Upon DNA binding, cGAS synthesizes cyclic GMP-AMP (cGAMP), a cyclic dinucleotide that activates the endoplasmic reticulum-localized protein stimulator of interferon genes (STING). STING-mediated signaling culminates in host defensive responses typified by inflammatory cytokine and interferon expression, and the induction of autophagy. Studies over the past several years have established a consensus in the field of the enzymatic activities of cGAS in vitro, as it relates to DNA-induced production of cGAMP. However, much additional work is needed to understand the regulation of cGAS functions within cells, where multiple sources of DNA can create a problem of self and non-self discrimination. In this review, we provide an overview of how the cGAS-STING pathway mediates innate immune responses during infection and other cellular stresses. We then highlight recent progress in the understanding of the increasingly diverse ways in which this DNA-sensing machinery is regulated inside cells, including how cGAS remains inactive to host-derived DNA under conditions of homeostasis.
Collapse
Affiliation(s)
- Kenta Mosallanejad
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital Boston, MA 02115, USA
| |
Collapse
|
92
|
Yao Y, Wang W, Chen C. Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. PNAS NEXUS 2022; 1:pgac109. [PMID: 36741445 PMCID: PMC9896928 DOI: 10.1093/pnasnexus/pgac109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS), as a DNA sensor, plays an important role in cGAS-STING pathway, which further induces expression of type I interferon as the innate immune response. Previous studies reported that liquid-liquid phase separation (LLPS) driven by cGAS and long DNA is essential to promote catalytic activity of cGAS to produce a second messenger, cyclic GMP-AMP (cGAMP). However, the molecular mechanism of LLPS promoting cGAS activity is still unclear. Here, we applied dual-color fluorescence cross-correlation spectroscopy (dcFCCS), a highly sensitive and quantitative method, to characterize phase separation driven by cGAS and DNA from miscible individual molecule to micronscale. Thus, we captured nanoscale condensates formed by cGAS at close-to-physiological concentration and quantified their sizes, molecular compositions and binding affinities within condensates. Our results pinpointed that interactions between DNA and cGAS at DNA binding sites A, B, and C and the dimerization of cGAS are the fundamental molecular basis to fully activate cGAS in vitro. Due to weak binding constants of these sites, endogenous cGAS cannot form stable interactions at these sites, leading to no activity in the absence of LLPS. Phase separation of cGAS and DNA enriches cGAS and DNA by 2 to 3 orders of magnitude to facilitate these interactions among cGAS and DNA and to promote cGAS activity as an on/off switch. Our discoveries not only shed lights on the molecular mechanisms of phase-separation-mediated cGAS activation, but also guided us to engineer a cGAS fusion, which can be activated by 15 bp short DNA without LLPS.
Collapse
Affiliation(s)
- Yirong Yao
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Wenjuan Wang
- School of Life Sciences, Technology Center for Protein Sciences, Tsinghua University, Beijing, 100084, China
| | - Chunlai Chen
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
93
|
Yang X, Shi C, Li H, Shen S, Su C, Yin H. MARCH8 attenuates cGAS-mediated innate immune responses through ubiquitylation. Sci Signal 2022; 15:eabk3067. [PMID: 35503863 DOI: 10.1126/scisignal.abk3067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) binds to microbial and self-DNA in the cytosol and synthesizes cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING) and downstream mediators to elicit an innate immune response. Regulation of cGAS activity is essential for immune homeostasis. Here, we identified the E3 ubiquitin ligase MARCH8 (also known as MARCHF8, c-MIR, and RNF178) as a negative regulator of cGAS-mediated signaling. The immune response to double-stranded DNA was attenuated by overexpression of MARCH8 and enhanced by knockdown or knockout of MARCH8. MARCH8 interacted with the enzymatically active core of cGAS through its conserved RING-CH domain and catalyzed the lysine-63 (K63)-linked polyubiquitylation of cGAS at Lys411. This polyubiquitylation event inhibited the DNA binding ability of cGAS, impaired cGAMP production, and attenuated the downstream innate immune response. Furthermore, March8-deficient mice were less susceptible than their wild-type counterparts to herpes simplex virus 1 (HSV-1) infection. Together, our findings reveal a mechanism underlying the functional regulation of cGAS and the fine-tuning of the innate immune response.
Collapse
Affiliation(s)
- Xikang Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengrui Shi
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongpeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Siqi Shen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chaofei Su
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
94
|
Liu J, Zhorabek F, Chau Y. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles. ACS Macro Lett 2022; 11:562-567. [PMID: 35575335 DOI: 10.1021/acsmacrolett.2c00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) emerges as a fundamental underlying mechanism for the biological organization, especially the formation of membraneless organelles (MLOs) hosting intrinsically disordered proteins (IDPs) as scaffolds. Nucleic acids are compositional biomacromolecules of MLOs with wide implications in normal cell functions as well as in pathophysiology caused by aberrant phase behavior. Exploiting a minimalist artificial membraneless organelles (AMLO) from LLPS of IDP-mimicking polymer-oligopeptide hybrid (IPH), we investigated the effect of nucleic acids with different lengths and sequence variations on AMLO. The behavior of this AMLO in the presence of DNAs and RNAs resembled natural MLOs in multiple aspects, namely, modulated propensity of formation, morphology, liquidity, and dynamics. Both DNA and RNA could enhance the LLPS of AMLO, while compared with RNA, DNA had a higher tendency to solidify and diminish dynamics thereof. These findings suggest its potential as a concise model system for the understanding of the interaction between nucleic acids and natural MLOs and for studying the molecular mechanism of diseases involving MLOs.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Fariza Zhorabek
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
95
|
Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer 2022; 22:239-252. [PMID: 35149762 PMCID: PMC10036213 DOI: 10.1038/s41568-022-00444-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer is a disease of uncontrollably reproducing cells. It is governed by biochemical pathways that have escaped the regulatory bounds of normal homeostatic balance. This balance is maintained through precise spatiotemporal regulation of these pathways. The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) has recently emerged as a widespread mechanism underlying the spatiotemporal coordination of biological activities in cells. Biomolecular condensates are widely observed to directly regulate key cellular processes involved in cancer cell pathology, and the dysregulation of LLPS is increasingly implicated as a previously hidden driver of oncogenic activity. In this Perspective, we discuss how LLPS shapes the biochemical landscape of cancer cells.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
96
|
Wang Q, Du J, Hua S, Zhao K. TREX1 Plays Multiple Roles in Human Diseases. Cell Immunol 2022; 375:104527. [DOI: 10.1016/j.cellimm.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/12/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
97
|
Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022; 122:5977-6039. [PMID: 35107989 PMCID: PMC8994686 DOI: 10.1021/acs.chemrev.1c00750] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stimulator of interferon genes (STING) cellular signaling pathway is a promising target for cancer immunotherapy. Activation of the intracellular STING protein triggers the production of a multifaceted array of immunostimulatory molecules, which, in the proper context, can drive dendritic cell maturation, antitumor macrophage polarization, T cell priming and activation, natural killer cell activation, vascular reprogramming, and/or cancer cell death, resulting in immune-mediated tumor elimination and generation of antitumor immune memory. Accordingly, there is a significant amount of ongoing preclinical and clinical research toward further understanding the role of the STING pathway in cancer immune surveillance as well as the development of modulators of the pathway as a strategy to stimulate antitumor immunity. Yet, the efficacy of STING pathway agonists is limited by many drug delivery and pharmacological challenges. Depending on the class of STING agonist and the desired administration route, these may include poor drug stability, immunocellular toxicity, immune-related adverse events, limited tumor or lymph node targeting and/or retention, low cellular uptake and intracellular delivery, and a complex dependence on the magnitude and kinetics of STING signaling. This review provides a concise summary of the STING pathway, highlighting recent biological developments, immunological consequences, and implications for drug delivery. This review also offers a critical analysis of an expanding arsenal of chemical strategies that are being employed to enhance the efficacy, safety, and/or clinical utility of STING pathway agonists and lastly draws attention to several opportunities for therapeutic advancements.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - Taylor L Sheehy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
| |
Collapse
|
98
|
Long ZJ, Wang JD, Xu JQ, Lei XX, Liu Q. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Mol Ther 2022; 30:1006-1017. [PMID: 35121107 PMCID: PMC8899703 DOI: 10.1016/j.ymthe.2022.01.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The correct duplication and transfer of genetic material to daughter cells is the major event of cell division. Dysfunction of DNA replication or chromosome segregation presents challenges in cancer initiation and development as well as opportunities for cancer treatment. Cyclic GMP-AMP synthase (cGAS) of the innate immune system detects cytoplasmic DNA and mediates downstream immune responses through the molecule stimulator of interferon genes (STING). However, how cytosolic DNA sensor cGAS participates in guaranteeing accurate cell division and preventing tumorigenesis is still unclear. Recent evidence indicates malfunction of cGAS/STING pathway in cancer progression. Cell cycle-targeted therapy synergizes with immunotherapy via cGAS/STING activation, leading to promising therapeutic benefit. Here, we review the interactions between cell cycle regulation and cGAS/STING signaling, thus enabling us to understand the role of cGAS/STING in cancer initiation, development, and treatment.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jue-Qiong Xu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.
| |
Collapse
|
99
|
Abstract
Immune signalling pathways convert pathogenic stimuli into cytosolic events that lead to the resolution of infection. Upon ligand engagement, immune receptors together with their downstream adaptors and effectors undergo substantial conformational changes and spatial reorganization. During this process, nanometre-to-micrometre-sized signalling clusters have been commonly observed that are believed to be hotspots for signal transduction. Because of their large size and heterogeneous composition, it remains a challenge to fully understand the mechanisms by which these signalling clusters form and their functional consequences. Recently, phase separation has emerged as a new biophysical principle for organizing biomolecules into large clusters with fluidic properties. Although the field is still in its infancy, studies of phase separation in immunology are expected to provide new perspectives for understanding immune responses. Here, we present an up-to-date view of how liquid-liquid phase separation drives the formation of signalling condensates and regulates immune signalling pathways, including those downstream of T cell receptor, B cell receptor and the innate immune receptors cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene I protein (RIG-I). We conclude with a summary of the current challenges the field is facing and outstanding questions for future studies.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ceara K McAtee
- Yale Combined Program in the Biological and Biomedical Sciences, New Haven, CT, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
100
|
Gu X, Zhuang A, Yu J, Chai P, Jia R, Ruan J. Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene 2022; 41:1527-1535. [PMID: 35132182 DOI: 10.1038/s41388-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Cells coordinate numerous biochemical reactions in space and time, depending on the subdivision of the intracellular space into functional compartments. Compelling evidence has demonstrated that phase separation induces the formation of membrane-less compartments to partition intracellular substances in a strictly regulated manner and participates in various biological processes. Based on the strong association of cancer with the dysregulation of intracellular physiological processes and the occurrence of phase separation in cancer-associated condensates, phase separation undoubtedly plays a significant role in tumorigenesis. In this review, we summarize the drivers and functions of phase separation, elaborate on the roles of phase separation in tumor pathogenesis and evolution, and propose substantial research and therapeutic prospects for phase separation in cancer.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| |
Collapse
|