51
|
Deng H, Zhang Y, Yu H. Nanoparticles considered as mixtures for toxicological research. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:1-20. [PMID: 29313413 DOI: 10.1080/10590501.2018.1418792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoparticles are used widely in our lives, but the understanding of their impacts on human and environmental health is still limited, at least due in part to the fact that nanoparticles are mixtures. This review describes that "nanotoxicity" is actually a test of the overall effect of a nanoparticle mixture: starting materials for nanoparticle preparation, surface coating agents, surface reaction-generated species, and transformed byproducts of the nanoparticle in biological and environmental media, as well as variations of the intrinsic nanoparticle structures.
Collapse
Affiliation(s)
- Hua Deng
- a Department of Chemistry, School of Computer, Mathematical and Natural Sciences , Morgan State University , Baltimore , Maryland , USA
| | - Ying Zhang
- b Department of Chemistry and Biochemistry, College of Science, Engineering and Technology , Jackson State University , Jackson , Mississippi , USA
| | - Hongtao Yu
- a Department of Chemistry, School of Computer, Mathematical and Natural Sciences , Morgan State University , Baltimore , Maryland , USA
| |
Collapse
|
52
|
Hao F, Jin X, Liu QS, Zhou Q, Jiang G. Epidermal Penetration of Gold Nanoparticles and Its Underlying Mechanism Based on Human Reconstructed 3D Episkin Model. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42577-42588. [PMID: 29148696 DOI: 10.1021/acsami.7b13700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanomaterials are widely used in diverse aspects, and their translocation behavior through the skin would be helpful in understanding the corresponding exposure risks. To reveal how surface functionalization of nanoparticles influences the skin penetration, three kinds of gold nanoparticles (GNPs) with negatively, neutrally, and positively charged surfaces, that is, cetyltrimethylammonium bromide-coated GNPs (CTAB@GNP), polyvinylpyrrolidone-coated GNPs (PVP@GNP), and citrate-coated GNPs (Citrate@GNP), were studied using human reconstructed 3D Episkin model. The measurement of Au distribution in diverse layers of the Episkin model indicated that all three GNPs could penetrate through the epidermis, wherein CTAB@GNP with positive surface charges exhibited the highest efficiency in skin penetration. The upward osmosis of the medium proteins confirmed the occurrence of skin permeation induced by GNP treatment, and the lipid network in the stratum corneum was also altered as the consequence of GNP exposure. When compared to Citrate@GNP and PVP@GNP, CTAB@GNP significantly compromised the tight junction of keratinocytes, causing paracellular penetration of nanoparticles. The existence of cytoplasmic gold showed the transcytosis pathway through endocytosis and exocytosis processes was the main epidermic penetration behavior of the tested GNPs. The study on GNP penetration process through the 3D Episkin model has, on one hand, offered a promising approach to evaluate the translocation process of nanoparticles across the skin, and, on the other hand, provided mechanism explanation for diverse penetration behaviors of GNPs with different surface charges. The findings herein would be of great help in nanotechnology improvement and nanosafety evaluation.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiaoting Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Institute of Biomedical Sciences, Shanxi University , Taiyuan 030006, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
53
|
Zou Y, Celli A, Zhu H, Elmahdy A, Cao Y, Hui X, Maibach H. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro. Int J Nanomedicine 2017; 12:8035-8041. [PMID: 29184403 PMCID: PMC5673047 DOI: 10.2147/ijn.s139139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.
Collapse
Affiliation(s)
- Ying Zou
- Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China.,Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA.,San Francisco Veterans Medical Center, San Francisco, CA, USA
| | - Hanjiang Zhu
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Akram Elmahdy
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yachao Cao
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Xiaoying Hui
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Howard Maibach
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
54
|
Jeništová A, Dendisová M, Matějka P. Study of plasmonic nanoparticles interactions with skin layers by vibrational spectroscopy. Eur J Pharm Biopharm 2017; 116:85-93. [DOI: 10.1016/j.ejpb.2016.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/06/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
|
55
|
Radtke M, Patzelt A, Knorr F, Lademann J, Netz RR. Ratchet effect for nanoparticle transport in hair follicles. Eur J Pharm Biopharm 2017; 116:125-130. [DOI: 10.1016/j.ejpb.2016.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 02/04/2023]
|
56
|
Le Blond JS, Baxter PJ, Bello D, Raftis J, Molla YB, Cuadros J, Davey G. Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia. PLoS One 2017; 12:e0177219. [PMID: 28493920 PMCID: PMC5426718 DOI: 10.1371/journal.pone.0177219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Background Podoconiosis, non-filarial elephantiasis, is a non-infectious disease found in tropical regions such as Ethiopia, localized in highland areas with volcanic soils cultivated by barefoot subsistence farmers. It is thought that soil particles can pass through the soles of the feet and taken up by the lymphatic system, leading to the characteristic chronic oedema of the lower legs that becomes disfiguring and disabling over time. Methods The close association of the disease with volcanic soils led us to investigate the characteristics of soil samples in an endemic area in Ethiopia to identify the potential causal constituents. We used the in vitro haemolysis assay and compared haemolytic activity (HA) with soil samples collected in a non-endemic region of the same area in Ethiopia. We included soil samples that had been previously characterized, in addition we present other data describing the characteristics of the soil and include pure phase mineral standards as comparisons. Results The bulk chemical composition of the soils were statistically significantly different between the podoconiosis-endemic and non-endemic areas, with the exception of CaO and Cr. Likewise, the soil mineralogy was statistically significant for iron oxide, feldspars, mica and chlorite. Smectite and kaolinite clays were widely present and elicited a strong HA, as did quartz, in comparison to other mineral phases tested, although no strong difference was found in HA between soils from the two areas. The relationship was further investigated with principle component analysis (PCA), which showed that a combination of an increase in Y, Zr and Al2O3, and a concurrent increase Fe2O3, TiO2, MnO and Ba in the soils increased HA. Conclusion The mineralogy and chemistry of the soils influenced the HA, although the interplay between the components is complex. Further research should consider the variable biopersistance, hygroscopicity and hardness of the minerals and further characterize the nano-scale particles.
Collapse
Affiliation(s)
- Jennifer S. Le Blond
- Department of Earth Sciences, Imperial College London, London, United Kingdom
- Core Research Labs, Natural History Museum, London, United Kingdom
- * E-mail:
| | - Peter J. Baxter
- Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | - Dhimiter Bello
- Department of Work Environment, University of Massachusetts Lowell, MA, United States of America
| | - Jennifer Raftis
- The Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh, United Kingdom
| | - Yordanos B. Molla
- Department of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex United Kingdom
| | - Javier Cuadros
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Gail Davey
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex United Kingdom
| |
Collapse
|
57
|
Impact of semi-solid formulations on skin penetration of iron oxide nanoparticles. J Nanobiotechnology 2017; 15:14. [PMID: 28212635 PMCID: PMC5316225 DOI: 10.1186/s12951-017-0249-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/10/2017] [Indexed: 11/11/2022] Open
Abstract
Background This work aimed to provide useful information on the incidence of the choice of formulation in semi-solid preparations of iron-oxide nanoparticles (IONs). The appropriate analytical methods to assess the IONs physical stability and the effect of the semi-solid preparations on IONs human skin penetration were discussed. The physical stability of IONs (Dh = 31 ± 4 nm; ζ = −65 ± 5 mV) loaded in five semi-solid preparations (0.3% w/v), namely Carbopol gel (CP), hydroxyethyl cellulose gel (HEC), carboxymethylcellulose gel (CMC), cetomacrogol cream (Cet) and cold cream was assessed by combining DLS and low-field pulsed NMR data. The in vitro penetration of IONs was studied using human epidermis or isolated stratum corneum (SC). Results Reversible and irreversible IONs aggregates were evidenced only in HEC and CMC, respectively. IONs diffused massively through SC preferentially by an intercellular pathway, as assessed by transmission electron microscopy. The semi-solid preparations differently influenced the IONs penetration as compared to the aqueous suspension. Cet cream allowed the highest permeation and the lowest retained amount, while cold cream and CP favored the accumulation into the skin membrane. Conclusion Basic cutaneous semi-solid preparations could be used to administer IONs without affecting their permeation profile if they maintained their physical stability over time. This property is better discriminated by low-field pulsed NMR measurements than the commonly used DLS measurements. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0249-6) contains supplementary material, which is available to authorized users.
Collapse
|
58
|
Patzelt A, Mak WC, Jung S, Knorr F, Meinke MC, Richter H, Rühl E, Cheung KY, Tran NBNN, Lademann J. Do nanoparticles have a future in dermal drug delivery? J Control Release 2017; 246:174-182. [DOI: 10.1016/j.jconrel.2016.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023]
|
59
|
Amamoto T, Hirakawa S, Santa T, Funatsu T, Kato M. Surface modification of silica nanoparticles using 4-aryloxy boron dipyrromethene (BODIPY) enhances skin permeation. J Mater Chem B 2016; 4:7676-7680. [PMID: 32263824 DOI: 10.1039/c6tb02188c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Aryloxy boron dipyrromethene (BODIPY) modification of the surface of silica nanoparticles (NPs) improved permeability through the membrane of HaCaT skin cells and swine skin tissue. The 35 nm BODIPY-modified NPs penetrated tape-stripped skin and reached the dermis within 1 h. Since these NPs can encapsulate a variety of molecules including macromolecules, they are expected to serve as effective carriers for the delivery of drugs, genes, and other compounds through skin and into cells.
Collapse
Affiliation(s)
- Takaki Amamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
60
|
Miyani VA, Hughes MF. Assessment of the in vitro dermal irritation potential of cerium, silver, and titanium nanoparticles in a human skin equivalent model. Cutan Ocul Toxicol 2016; 36:145-151. [PMID: 27439971 DOI: 10.1080/15569527.2016.1211671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Metal nanoparticles can potentially contact human skin during their manufacture and use in commercial products. This study examined the potential of metal nanoparticles to elicit irritant contact dermatitis in a human skin equivalent model (HSEM) derived from keratinocytes. Ag (10-100 nm), TiO2 (22-214 nm), and CeO2 (15-40 nm) nanoparticles were studied. The Ag particles were either coated/shelled with silica or capped with citrate or polyvinylpyrrolidone and were in water. The TiO2 and CeO2 particles were suspended in media containing 10% fetal bovine serum. The particles (1 mg/ml) were applied to the epidermal surface of the HSEM. Positive (5% sodium dodecyl sulfate (SDS)) and negative controls (saline or media) were included. After 1-h exposure at 37 °C, the HSEM was washed with saline to remove the nanoparticles. Following a 42-h incubation (37 °C), HSEM viability was assessed using the MTT assay. A test substance is considered a dermal irritant if the HSEM viability is < 50%. The mean viability for the SDS-treated HSEM was 7.8%. The viabilities of the nanoparticle-treated HSEM were 91% or greater. The Ag, TiO2, and CeO2 nanoparticles examined were not dermal irritants under the conditions used in this study. The stratum corneum of the HSEM may limit penetration of metal nanoparticles to induce toxicity.
Collapse
Affiliation(s)
- Vivek A Miyani
- a Student Services Contractor , Morrisville , NC , USA and
| | - Michael F Hughes
- b U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory , Research Triangle Park , NC , USA
| |
Collapse
|
61
|
Alkilany AM, Mahmoud NN, Hashemi F, Hajipour MJ, Farvadi F, Mahmoudi M. Misinterpretation in Nanotoxicology: A Personal Perspective. Chem Res Toxicol 2016; 29:943-8. [PMID: 27249426 DOI: 10.1021/acs.chemrestox.6b00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As an emerging field, nanotoxicology is gaining significant interest from scientists as well as from international regulatory firms in an attempt to build accumulated knowledge on this topic, which will be the basis for regulatory codes and safer nanotechnology. However, conflicting results and findings are abundant in the literature calling for more careful experimental design, result interpretation, and detailed reporting. In this perspective, we focus on misinterpretation in nanotoxicology and highlight the importance of proper experimental practice to avoid artifacts by discussing various examples from the literature.
Collapse
Affiliation(s)
- Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan , Amman 11942, Jordan
| | - Nouf N Mahmoud
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan , Amman 11942, Jordan
| | - Fatemeh Hashemi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad J Hajipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr, Iran
| | - Fakhrosadat Farvadi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Morteza Mahmoudi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran.,Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
62
|
Handral HK, Tong HJ, Islam I, Sriram G, Rosa V, Cao T. Pluripotent stem cells: An in vitro model for nanotoxicity assessments. J Appl Toxicol 2016; 36:1250-8. [PMID: 27241574 DOI: 10.1002/jat.3347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/18/2022]
Abstract
The advent of technology has led to an established range of engineered nanoparticles that are used in diverse applications, such as cell-cell interactions, cell-material interactions, medical therapies and the target modulation of cellular processes. The exponential increase in the utilization of nanomaterials and the growing number of associated criticisms has highlighted the potential risks of nanomaterials to human health and the ecosystem. The existing in vivo and in vitro platforms show limitations, with fluctuations being observed in the results of toxicity assessments. Pluripotent stem cells (PSCs) are viable source of cells that are capable of developing into specialized cells of the human body. PSCs can be efficiently used to screen new biomaterials/drugs and are potential candidates for studying impairments of biophysical morphology at both the cellular and tissue levels during interactions with nanomaterials and for diagnosing toxicity. Three-dimensional in vitro models obtained using PSC-derived cells would provide a realistic, patient-specific platform for toxicity assessments and in drug screening applications. The current review focuses on PSCs as an alternative in vitro platform for assessing the hazardous effects of nanomaterials on health systems and highlights the importance of PSC-derived in vitro platforms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Harish K Handral
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Huei Jinn Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Intekhab Islam
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Experimental Dermatology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vinicus Rosa
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Tong Cao
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore.,National University of Singapore, Graduate School for Integrative Sciences and Engineering, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
63
|
Kubanova AA, Utz SR, Kubanov AA, Persati MA, Svenskaya YUI. Prospects of the practical use of nanoparticles in dermatology. VESTNIK DERMATOLOGII I VENEROLOGII 2016. [DOI: 10.25208/0042-4609-2016-92-2-15-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The review presents data from foreign literature sources on the problem of using nanoparticles for theranostics of skin diseases. The article examines properties and operating principles of nanomaterials used most frequently for drug encapsulation and emphasizes advantages of such systems for the treatment of different dermatoses. The need in further exploration of this subject due to underinvestigated adverse events caused by nanoparticles is discussed.
Collapse
|
64
|
Rancan F, Asadian-Birjand M, Dogan S, Graf C, Cuellar L, Lommatzsch S, Blume-Peytavi U, Calderón M, Vogt A. Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels. J Control Release 2016; 228:159-169. [DOI: 10.1016/j.jconrel.2016.02.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/08/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
|
65
|
Proteomic approach to nanotoxicity. J Proteomics 2016; 137:35-44. [DOI: 10.1016/j.jprot.2015.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/12/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022]
|
66
|
Mahmoud NN, Al-Qaoud KM, Al-Bakri AG, Alkilany AM, Khalil EA. Colloidal stability of gold nanorod solution upon exposure to excised human skin: Effect of surface chemistry and protein adsorption. Int J Biochem Cell Biol 2016; 75:223-31. [PMID: 26923289 DOI: 10.1016/j.biocel.2016.02.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/29/2022]
Abstract
In this study, we evaluated the colloidal stability of gold nanorods (with positive, negative and neutral surface charge) in solution upon contact with excised human skin. UV-vis absorption, plasmon peak broadening index (PPBI%) and transmission electron microscope analysis were used to follow nanoparticles aggregation in solution. Our results show that positively charged gold nanorods aggregate extensively upon exposure to excised human skin compared to negatively and neutrally charged gold nanorods. Skin-induced aggregation of cationic gold nanorods was linked to the adsorption of proteins released from the dermis layer to the surface of gold nanorods. Protein adsorption significantly screen nanorod's effective surface charge and induce their aggregation. Moreover, we demonstrate that the presence of polyethylene glycol polymer on the surface of cationic gold nanorods minimize this aggregation significantly by providing steric repulsion (non-electrostatic stabilization mechanism). This work highlights the importance of evaluating the colloidal stability of nanoparticles in solution upon contact with skin, which is a "usually overlooked" parameter when studying the nanoparticle-skin interaction.
Collapse
Affiliation(s)
- Nouf N Mahmoud
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Khaled M Al-Qaoud
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Amal G Al-Bakri
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan.
| | - Enam A Khalil
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
67
|
Transcutaneous Immunization Using Nano-sized Drug Carriers. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
68
|
Riebeling C, Luch A, Götz ME. Comparative modeling of exposure to airborne nanoparticles released by consumer spray products. Nanotoxicology 2015; 10:343-51. [DOI: 10.3109/17435390.2015.1071446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christian Riebeling
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Mario Enrico Götz
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
69
|
Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJB, Rietjens IMCM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 2015; 89:1469-95. [PMID: 25975987 PMCID: PMC4551544 DOI: 10.1007/s00204-015-1518-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 10/28/2022]
Abstract
The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.
Collapse
Affiliation(s)
- Hedwig M. Braakhuis
- />Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Samantha K. Kloet
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Sanja Kezic
- />AMC, Coronel Institute of Occupational Health, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frieke Kuper
- />TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Margriet V. D. Z. Park
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | - Séverine Le Gac
- />UT BIOS, Lab on a Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Petra Krystek
- />Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ruud J. B. Peters
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Hans Bouwmeester
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
70
|
Duncan B, Li X, Landis RF, Kim ST, Gupta A, Wang LS, Ramanathan R, Tang R, Boerth JA, Rotello VM. Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS NANO 2015; 9:7775-82. [PMID: 26083534 PMCID: PMC5047390 DOI: 10.1021/acsnano.5b01696] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacterial biofilms are widely associated with persistent infections. High resistance to conventional antibiotics and prevalent virulence makes eliminating these bacterial communities challenging therapeutic targets. We describe here the fabrication of a nanoparticle-stabilized capsule with a multicomponent core for the treatment of biofilms. The peppermint oil and cinnamaldehyde combination that comprises the core of the capsules act as potent antimicrobial agents. An in situ reaction at the oil/water interface between the nanoparticles and cinnamaldehyde structurally augments the capsules to efficiently deliver the essential oil payloads, effectively eradicating biofilms of clinically isolated pathogenic bacteria strains. In contrast to their antimicrobial action, the capsules selectively promoted fibroblast proliferation in a mixed bacteria/mammalian cell system making them promising for wound healing applications.
Collapse
Affiliation(s)
- Bradley Duncan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Ryan F. Landis
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sung Tae Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Akash Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Li-Sheng Wang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rajesh Ramanathan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory, School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia
| | - Rui Tang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jeffrey A. Boerth
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
71
|
|
72
|
A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 2015; 89:1909-30. [DOI: 10.1007/s00204-015-1564-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022]
|
73
|
Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 2015; 45:837-72. [DOI: 10.3109/10408444.2015.1058747] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
74
|
Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul Toxicol Pharmacol 2015; 72:310-22. [DOI: 10.1016/j.yrtph.2015.05.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/17/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022]
|
75
|
Brenner SA, Neu-Baker NM. Occupational exposure to nanomaterials: Assessing the potential for cutaneous exposure to metal oxide nanoparticles in a semiconductor facility. ACS CHEMICAL HEALTH & SAFETY 2015. [DOI: 10.1016/j.jchas.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
76
|
Santini B, Zanoni I, Marzi R, Cigni C, Bedoni M, Gramatica F, Palugan L, Corsi F, Granucci F, Colombo M. Cream formulation impact on topical administration of engineered colloidal nanoparticles. PLoS One 2015; 10:e0126366. [PMID: 25962161 PMCID: PMC4427132 DOI: 10.1371/journal.pone.0126366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 01/17/2023] Open
Abstract
In order to minimize the impact of systemic toxicity of drugs in the treatment of local acute and chronic inflammatory reactions, the achievement of reliable and efficient delivery of therapeutics in/through the skin is highly recommended. While the use of nanoparticles is now an established practice for drug intravenous targeted delivery, their transdermal penetration is still poorly understood and this important administration route remains almost unexplored. In the present study, we have synthesized magnetic (iron oxide) nanoparticles (MNP) coated with an amphiphilic polymer, developed a water-in-oil emulsion formulation for their topical administration and compared the skin penetration routes with the same nanoparticles deposited as a colloidal suspension. Transmission and scanning electron microscopies provided ultrastructural evidence that the amphiphilic nanoparticles (PMNP) cream formulation allowed the efficient penetration through all the skin layers with a controllable kinetics compared to suspension formulation. In addition to the preferential follicular pathway, also the intracellular and intercellular routes were involved. PMNP that crossed all skin layers were quantified by inductively coupled plasma mass spectrometry. The obtained data suggests that combining PMNP amphiphilic character with cream formulation improves the intradermal penetration of nanoparticles. While PMNP administration in living mice via aqueous suspension resulted in preferential nanoparticle capture by phagocytes and migration to draining lymph nodes, cream formulation favored uptake by all the analyzed dermis cell types, including hematopoietic and non-hematopoietic. Unlike aqueous suspension, cream formulation also favored the maintenance of nanoparticles in the dermal architecture avoiding their dispersion and migration to draining lymph nodes via afferent lymphatics.
Collapse
Affiliation(s)
- Benedetta Santini
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Ivan Zanoni
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Unit of Cell Signalling and Innate Immunity, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Roberta Marzi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Clara Cigni
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marzia Bedoni
- Laboratorio di Nanomedicina e Biofotonica Clinica, Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Furio Gramatica
- Laboratorio di Nanomedicina e Biofotonica Clinica, Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy
| | - Francesca Granucci
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
- Unit of Cell Signalling and Innate Immunity, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
77
|
Abstract
The study of a drug's dermal penetration profile provides important pharmaceutical data for the rational development of topical and transdermal delivery systems because the skin is a broadly used delivery route for local and systemic drugs and a potential route for gene therapy and vaccines. Monitoring drug penetration across the skin and quantifying its levels in different skin layers have been constant challenges due to the detection limitations of the available techniques, as well as the inherent interference in this tissue. This review explores and discusses several bionalytical methods that are indispensable tools to study drugs across the skin. In addressing the main topic, we structure the review highlighting the skin as an important route of drug administration and its structure, skin membrane models most used and its properties, in vitro and in vivo assays most used in the study of drug delivery to the skin, the techniques for processing the skin for subsequent analysis by bioanalytical methods that have a theoretical and practical approach showing its applicability, limitations and also including examples of its use. This review has a comprehensive approach in order to help researchers design their experiments and update the applicability and advances in this area of expertise.
Collapse
|
78
|
Gao S, Xu Y, Asghar S, Chen M, Zou L, Eltayeb S, Huo M, Ping Q, Xiao Y. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems. J Drug Target 2015; 23:481-96. [DOI: 10.3109/1061186x.2015.1020426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
79
|
Fernandes R, Smyth NR, Muskens OL, Nitti S, Heuer-Jungemann A, Ardern-Jones MR, Kanaras AG. Interactions of skin with gold nanoparticles of different surface charge, shape, and functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:713-21. [PMID: 25288531 DOI: 10.1002/smll.201401913] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/27/2014] [Indexed: 05/07/2023]
Abstract
The interactions between skin and colloidal gold nanoparticles of different physicochemical characteristics are investigated. By systematically varying the charge, shape, and functionality of gold nanoparticles, the nanoparticle penetration through the different skin layers is assessed. The penetration is evaluated both qualitatively and quantitatively using a variety of complementary techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) is used to quantify the total number of particles which penetrate the skin structure. Transmission electron microscopy (TEM) and two photon photoluminescence microscopy (TPPL) on skin cross sections provide a direct visualization of nanoparticle migration within the different skin substructures. These studies reveal that gold nanoparticles functionalized with cell penetrating peptides (CPPs) TAT and R7 are found in the skin in larger quantities than polyethylene glycol-functionalized nanoparticles, and are able to enter deep into the skin structure. The systematic studies presented in this work may be of strong interest for developments in transdermal administration of drugs and therapy.
Collapse
Affiliation(s)
- Rute Fernandes
- Institute of Life Sciences, Physics and Astronomy, Faculty of Applied and Physical Sciences, University of Southampton, Southampton, SO171BJ, UK
| | | | | | | | | | | | | |
Collapse
|
80
|
Labala S, Mandapalli PK, Kurumaddali A, Venuganti VVK. Layer-by-Layer Polymer Coated Gold Nanoparticles for Topical Delivery of Imatinib Mesylate To Treat Melanoma. Mol Pharm 2015; 12:878-88. [DOI: 10.1021/mp5007163] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Suman Labala
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Praveen Kumar Mandapalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Abhinav Kurumaddali
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| |
Collapse
|
81
|
Smulders S, Golanski L, Smolders E, Vanoirbeek J, Hoet P. Nano-TiO2modulates the dermal sensitization potency of dinitrochlorobenzene after topical exposure. Br J Dermatol 2015; 172:392-9. [DOI: 10.1111/bjd.13295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 12/12/2022]
Affiliation(s)
- S. Smulders
- Center for Environment and Health; KU Leuven; B-3000 Leuven Belgium
| | - L. Golanski
- CEA-Grenoble; Liten; Laboratory of Tracer Technologies; Grenoble France
| | - E. Smolders
- Division of Soil and Water Management; KU Leuven; B-3000 Leuven Belgium
| | - J. Vanoirbeek
- Center for Environment and Health; KU Leuven; B-3000 Leuven Belgium
| | - P.H.M. Hoet
- Center for Environment and Health; KU Leuven; B-3000 Leuven Belgium
| |
Collapse
|
82
|
Makwana BA, Vyas DJ, Bhatt KD, Jain VK, Agrawal YK. Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe³⁺ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 134:73-80. [PMID: 25004898 DOI: 10.1016/j.saa.2014.05.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/05/2014] [Accepted: 05/14/2014] [Indexed: 05/20/2023]
Abstract
Calix[4]resorcinarene polyhydrazide (CPH) protected water dispersible fluorescent silver nanaoparticles (AgNps) were prepared by one-pot method using water soluble CPH and AgNO₃. (CPH) bearing hydrazide group on its periphery acts as a reducing agent and its web type of structure as a stabilizing agent for the formation of calix protected silver nanoparticles (CPH-AgNps). CPH-AgNps were found to be highly stable over 120 days at room temperature and at varied pH. CPH-AgNps were characterized by UV/Vis-spectroscopy, particle size analyzer (PSA), transmission electron microscopy (TEM) and Energy dispersive X-ray analysis (EDX). Duly characterized nanoparticles were explored for their application as sensitive and selective fluorescent chemosensors for various metal ions. It was found that nanoparticles were selective and sensitive only for Fe(3+) ions with the linear range of detection from 0.1 μM to 10 μM. CPH-AgNps were also found to exhibit good antimicrobial activity when compared with standard Chloramphenicol. The selectivity and antimicrobial activity of CPH-AgNps suggests its potential use as a sensor for Fe(III) ions in ecosystems prone to industrial pollution and as an antimicrobial agent in biological applications.
Collapse
Affiliation(s)
- Bharat A Makwana
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Disha J Vyas
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Keyur D Bhatt
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Vinod K Jain
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, India.
| | - Yadvendra K Agrawal
- Institute of Research & Development, Gujarat Forensic Sciences University, Gandhinagar 382007, Gujarat, India
| |
Collapse
|
83
|
Santos HA, Bimbo LM, Peltonen L, Hirvonen J. Inorganic Nanoparticles in Targeted Drug Delivery and Imaging. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
84
|
Ney M, Abdulhalim I. Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:125007. [PMID: 26720872 DOI: 10.1117/1.jbo.20.12.125007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/24/2015] [Indexed: 05/13/2023]
Abstract
Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs’ parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization--an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.
Collapse
|
85
|
Nanomaterials Release from Nano-Enabled Products. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
86
|
Breunig HG, Weinigel M, König K. In Vivo Imaging of ZnO Nanoparticles from Sunscreen on Human Skin with a Mobile Multiphoton Tomograph. BIONANOSCIENCE 2014. [DOI: 10.1007/s12668-014-0155-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
87
|
Silver percutaneous absorption after exposure to silver nanoparticles: A comparison study of three human skin graft samples used for clinical applications. Burns 2014; 40:1390-6. [DOI: 10.1016/j.burns.2014.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/23/2013] [Accepted: 02/09/2014] [Indexed: 12/22/2022]
|
88
|
Genina EA, Terentyuk GS, Bashkatov AN, Mikheeva NA, Kolesnikova EA, Basko MV, Khlebtsov BN, Khlebtsov NG, Tuchin VV. Comparative study of the physical, chemical, and multimodal approaches to enhancing nanoparticle transport in the skin with model dermatitis. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1995078014050048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Nafisi S, Schäfer-Korting M, Maibach HI. Perspectives on percutaneous penetration: Silica nanoparticles. Nanotoxicology 2014; 9:643-57. [DOI: 10.3109/17435390.2014.958115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
90
|
Ostrowski A, Nordmeyer D, Boreham A, Brodwolf R, Mundhenk L, Fluhr JW, Lademann J, Graf C, Rühl E, Alexiev U, Gruber AD. Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1571-81. [DOI: 10.1016/j.nano.2014.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
91
|
Moreno E, Schwartz J, Fernández C, Sanmartín C, Nguewa P, Irache JM, Espuelas S. Nanoparticles as multifunctional devices for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv 2014; 11:579-97. [PMID: 24620861 DOI: 10.1517/17425247.2014.885500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cutaneous and mucocutaneous leishmaniasis are major tropical skin diseases. Topical treatment is currently limited to the least severe forms of cutaneous leishmaniasis (CL) without risk of dissemination. It is also recommended in combination with systemic therapy for more severe forms. Progresses in this modality of treatment are hindered by the heterogeneity of the disease and shortcomings in the clinical trials. AREAS COVERED This review overlooks three major modalities of topical therapies in use or under investigation against CL: chemotherapy, photodynamic therapy and immunotherapy; either with older compounds such as paramomycin or more recent nitric oxide donors, antimicrobial peptides or silver derivatives. The advantages and limitations of their administration with newer formulation strategies such as nanoparticles (NPs) are discussed. EXPERT OPINION The efficacy of a topical treatment against CL depends not only on the intrinsic antileishmanial activity of the drug but also on the amount of drug available in the dermis. NPs as sustained release systems and permeation enhancers could favour the creation of a drug reservoir in the dermis. Additionally, certain NPs have immunomodulatory properties or wound healing capabilities of benefit in CL treatment. Pending task is the selective delivery of active compounds to intracellular amastigotes, because even small NPs are unable to penetrate deeply into the skin to encounter infected macrophages (except in ulcerative lesions).
Collapse
Affiliation(s)
- Esther Moreno
- University of Navarra, Tropical Health Institute , Irunlarrea, 1 E-31008 Pamplona , Spain +34948425600 ; +34948425619 ;
| | | | | | | | | | | | | |
Collapse
|
92
|
Quignard S, Hélary C, Boissière M, Fullana JM, Lagrée PY, Coradin T. Behaviour of silica nanoparticles in dermis-like cellularized collagen hydrogels. Biomater Sci 2014; 2:484-492. [DOI: 10.1039/c3bm60214a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Miclăuş T, Bochenkov VE, Ogaki R, Howard KA, Sutherland DS. Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. NANO LETTERS 2014; 14:2086-93. [PMID: 24617413 DOI: 10.1021/nl500277c] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein coronas around silver nanocubes were quantified in serum-containing media using localized surface plasmon resonances. Both soft and hard coronas showed exposure-time and concentration-dependent changes in protein surface density with time-dependent hardening. We observed spatially dependent kinetics of the corona-formation at cube edges/corners versus facets at short incubation times, where the polymer stabilization agent delayed corona hardening. The soft corona contained more protein than the hard corona at all time-points (8-fold difference with 10% serum conditions).
Collapse
Affiliation(s)
- Teodora Miclăuş
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark
| | | | | | | | | |
Collapse
|
94
|
Influences of Nanomaterials on the Barrier Function of Epithelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 811:45-54. [DOI: 10.1007/978-94-017-8739-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
95
|
Raphael AP, Sundh D, Grice JE, Roberts MS, Soyer HP, Prow TW. Zinc oxide nanoparticle removal from wounded human skin. Nanomedicine (Lond) 2013; 8:1751-61. [DOI: 10.2217/nnm.12.196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: Nanoparticle removal from skin is relevant given the concern over topical nanoparticle toxicity. Zinc oxide nanoparticles (ZnO-NPs) are commonly used in sunscreens and their use is currently debated. This study explores the penetration and removal of ZnO-NPs from injured skin. Materials & methods:Ex vivo/in vivo human skin was tape-stripped and/or microneedled followed by ZnO-NP application. After 2 h, treated skin was washed three-times using soapy water. Multiphoton tomography assessed the ZnO-NP signal before and after washing. Results: Washing once removed over 85 and 83% of ZnO-NP signal from ex vivo intact and tape-stripped skin, respectively (p < 0.05) but only 28% (p = 0.5) was removed from puncture sites. A similar trend was found in vivo with removal of 85 and 93% of ZnO-NP signal from intact and tape-stripped skin, respectively (p < 0.05). Conclusion: Washing is effective for the removal of ZnO-NPs from superficial layers of intact and tape-stripped skin, but not from puncture wounds. Original submitted 5 July 2012; Revised submitted 3 October 2012; Published online 7 March 2013
Collapse
Affiliation(s)
- Anthony P Raphael
- Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| | - Daniel Sundh
- Dermatology Research Centre, The University of Queensland, Brisbane, Australia
- Institute of Neuroscience & Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
- Therapeutics Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeffrey E Grice
- Therapeutics Research Centre, The University of Queensland, Brisbane, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, The University of Queensland, Brisbane, Australia
| | - H Peter Soyer
- Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| | - Tarl W Prow
- Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
96
|
|
97
|
|
98
|
Active silver nanoparticles for wound healing. Int J Mol Sci 2013; 14:4817-40. [PMID: 23455461 PMCID: PMC3634485 DOI: 10.3390/ijms14034817] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 01/04/2023] Open
Abstract
In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment.
Collapse
|
99
|
Hubbs AF, Sargent LM, Porter DW, Sager TM, Chen BT, Frazer DG, Castranova V, Sriram K, Nurkiewicz TR, Reynolds SH, Battelli LA, Schwegler-Berry D, McKinney W, Fluharty KL, Mercer RR. Nanotechnology: toxicologic pathology. Toxicol Pathol 2013; 41:395-409. [PMID: 23389777 DOI: 10.1177/0192623312467403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|