51
|
Andrus BM, Blizinsky K, Vedell PT, Dennis K, Shukla PK, Schaffer DJ, Radulovic J, Churchill GA, Redei EE. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry 2012; 17:49-61. [PMID: 21079605 PMCID: PMC3117129 DOI: 10.1038/mp.2010.119] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar-Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- B M Andrus
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Blizinsky
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P T Vedell
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - K Dennis
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P K Shukla
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D J Schaffer
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J Radulovic
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - E E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
52
|
van Oostrom I, Franke B, Rijpkema M, Gerritsen L, Arias-Vásquez A, Fernández G, Tendolkar I. Interaction between BDNF Val66Met and childhood stressful life events is associated to affective memory bias in men but not women. Biol Psychol 2011; 89:214-9. [PMID: 22033217 DOI: 10.1016/j.biopsycho.2011.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/16/2022]
Abstract
Recent meta-analyses point towards a pathogenic role of the Val66Met variant of the brain-derived neurotrophic factor (BDNF) in major depressive disorder, specifically in males. We investigated whether BDNF Val66Met shows a male-specific interaction with childhood stressful life events on affective memory bias, a cognitive susceptibility factor for depression. Healthy volunteers (n=430; 272 females and 158 males) were genotyped for BDNF Val66Met (rs6265) and completed the self-referent encoding task and a childhood stressful life events scale. BDNF Met carriers reporting childhood events tended to recall a lower proportion of positive words compared to Val/Val homozygotes reporting childhood events. Sex-specific analyses revealed that the BDNF genotype×childhood events interaction was significant in male participants and not in female participants. The results suggest that in males, BDNF Val66Met interacts with childhood life events, increasing the cognitive susceptibility markers of depression. In females, this effect may be independent of BDNF Val66Met.
Collapse
Affiliation(s)
- Iris van Oostrom
- Department of Psychiatry, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
53
|
Mujakovic S, ter Linde JJ, de Wit NJ, van Marrewijk CJ, Fransen GA, Onland-Moret NC, Laheij RJ, Muris JW, Grobbee DE, Samsom M, Jansen JB, Knottnerus A, Numans ME. Serotonin receptor 3A polymorphism c.-42C > T is associated with severe dyspepsia. BMC MEDICAL GENETICS 2011; 12:140. [PMID: 22014438 PMCID: PMC3213216 DOI: 10.1186/1471-2350-12-140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 10/20/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The association between anxiety and depression related traits and dyspepsia may reflect a common genetic predisposition. Furthermore, genetic factors may contribute to the risk of having increased visceral sensitivity, which has been implicated in dyspeptic symptom generation. Serotonin (5-HT) modulates visceral sensitivity by its action on 5-HT3 receptors. Interestingly, a functional polymorphism in HTR3A, encoding the 5-HT3 receptor A subunit, has been reported to be associated with depression and anxiety related traits. A functional polymorphism in the serotonin transporter (5-HTT), which terminates serotonergic signalling, was also found associated with these psychiatric comorbidities and increased visceral sensitivity in irritable bowel syndrome, which coexistence is associated with higher dyspeptic symptom severity. We investigated the association between these functional polymorphisms and dyspeptic symptom severity. METHODS Data from 592 unrelated, Caucasian, primary care patients with dyspepsia participating in a randomised clinical trial comparing step-up and step-down antacid drug treatment (The DIAMOND trial) were analysed. Patients were genotyped for HTR3A c.-42C > T SNP and the 44 bp insertion/deletion polymorphism in the 5-HTT promoter (5-HTTLPR). Intensity of 8 dyspeptic symptoms at baseline was assessed using a validated questionnaire (0 = none; 6 = very severe). Sum score ≥20 was defined severe dyspepsia. RESULTS HTR3A c.-42T allele carriers were more prevalent in patients with severe dyspepsia (OR 1.50, 95% CI 1.06-2.20). This association appeared to be stronger in females (OR 2.05, 95% CI 1.25-3.39) and patients homozygous for the long (L) variant of the 5-HTTLPR genotype (OR 2.00, 95% CI 1.01-3.94). Females with 5-HTTLPR LL genotype showed the strongest association (OR = 3.50, 95% CI = 1.37-8.90). CONCLUSIONS The HTR3A c.-42T allele is associated with severe dyspeptic symptoms. The stronger association among patients carrying the 5-HTTLPR L allele suggests an additive effect of the two polymorphisms. These results support the hypothesis that diminished 5-HT3 mediated antinociception predisposes to increased visceral sensitivity of the gastrointestinal tract. Moreover, the HTR3A c.-42C > T and 5-HTTLPR polymorphisms likely represent predisposing genetic variants in common to psychiatric morbidity and dyspepsia.
Collapse
Affiliation(s)
- Suhreta Mujakovic
- University Medical Centre Utrecht, Department of Gastroenterology & Hepatology, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Implication of 5-HT2B receptors in the serotonin syndrome. Neuropharmacology 2011; 61:495-502. [DOI: 10.1016/j.neuropharm.2011.01.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/18/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022]
|
55
|
Teixeira CPL, de Melo CTV, de Araújo FLO, de Carvalho AMR, Silva MIG, Barbosa-Filho JM, Macêdo DS, de Barros Viana GS, de Sousa FCF. Antidepressant-like effect of riparin II fromAniba ripariain mice: evidence for the involvement of the monoaminergic system. Fundam Clin Pharmacol 2011; 27:129-37. [DOI: 10.1111/j.1472-8206.2011.00973.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
56
|
Park DI, Kim HG, Jung WR, Shin MK, Kim KL. Mecamylamine attenuates dexamethasone-induced anxiety-like behavior in association with brain derived neurotrophic factor upregulation in rat brains. Neuropharmacology 2011; 61:276-82. [DOI: 10.1016/j.neuropharm.2011.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/22/2011] [Accepted: 04/08/2011] [Indexed: 11/27/2022]
|
57
|
Miller BH, Schultz LE, Gulati A, Su AI, Pletcher MT. Phenotypic characterization of a genetically diverse panel of mice for behavioral despair and anxiety. PLoS One 2010; 5:e14458. [PMID: 21206921 PMCID: PMC3012073 DOI: 10.1371/journal.pone.0014458] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 12/07/2010] [Indexed: 02/04/2023] Open
Abstract
Background Animal models of human behavioral endophenotypes, such as the Tail Suspension Test (TST) and the Open Field assay (OF), have proven to be essential tools in revealing the genetics and mechanisms of psychiatric diseases. As in the human disorders they model, the measurements generated in these behavioral assays are significantly impacted by the genetic background of the animals tested. In order to better understand the strain-dependent phenotypic variability endemic to this type of work, and better inform future studies that rely on the data generated by these models, we phenotyped 33 inbred mouse strains for immobility in the TST, a mouse model of behavioral despair, and for activity in the OF, a model of general anxiety and locomotor activity. Results We identified significant strain-dependent differences in TST immobility, and in thigmotaxis and distance traveled in the OF. These results were replicable over multiple testing sessions and exhibited high heritability. We exploited the heritability of these behavioral traits by using in silico haplotype-based association mapping to identify candidate genes for regulating TST behavior. Two significant loci (-logp >7.0, gFWER adjusted p value <0.05) of approximately 300 kb each on MMU9 and MMU10 were identified. The MMU10 locus is syntenic to a major human depressive disorder QTL on human chromosome 12 and contains several genes that are expressed in brain regions associated with behavioral despair. Conclusions We report the results of phenotyping a large panel of inbred mouse strains for depression and anxiety-associated behaviors. These results show significant, heritable strain-specific differences in behavior, and should prove to be a valuable resource for the behavioral and genetics communities. Additionally, we used haplotype mapping to identify several loci that may contain genes that regulate behavioral despair.
Collapse
Affiliation(s)
- Brooke H. Miller
- Department of Neuroscience, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, United States of America
| | - Laura E. Schultz
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, United States of America
| | - Anisha Gulati
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, United States of America
| | - Andrew I. Su
- Genomic Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Mathew T. Pletcher
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
58
|
Yan HC, Cao X, Das M, Zhu XH, Gao TM. Behavioral animal models of depression. Neurosci Bull 2010; 26:327-37. [PMID: 20651815 DOI: 10.1007/s12264-010-0323-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Depression is a chronic, recurring and potentially life-threatening illness that affects up to 20% of the population across the world. Despite its prevalence and considerable impact on human, little is known about its pathogenesis. One of the major reasons is the restricted availability of validated animal models due to the absence of consensus on the pathology and etiology of depression. Besides, some core symptoms such as depressed mood, feeling of worthlessness, and recurring thoughts of death or suicide, are impossible to be modeled on laboratory animals. Currently, the criteria for identifying animal models of depression rely on either of the 2 principles: actions of known antidepressants and responses to stress. This review mainly focuses on the most widely used animal models of depression, including learned helplessness, chronic mild stress, and social defeat paradigms. Also, the behavioral tests for screening antidepressants, such as forced swimming test and tail suspension test, are also discussed. The advantages and major drawbacks of each model are evaluated. In prospective, new techniques that will be beneficial for developing novel animal models or detecting depression are discussed.
Collapse
Affiliation(s)
- Hua-Cheng Yan
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
59
|
Gatt JM, Nemeroff CB, Schofield PR, Paul RH, Clark CR, Gordon E, Williams LM. Early life stress combined with serotonin 3A receptor and brain-derived neurotrophic factor valine 66 to methionine genotypes impacts emotional brain and arousal correlates of risk for depression. Biol Psychiatry 2010; 68:818-24. [PMID: 20728877 DOI: 10.1016/j.biopsych.2010.06.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/28/2010] [Accepted: 06/24/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND Depression will be the second largest burden of disease by 2020. Developing new tools for identifying risk and ultimately prevention of depression relies on elucidating the integrative relationships between susceptibility markers from gene-stress interactions and how they impact emotional brain and arousal systems. They have largely been studied in isolation. METHODS We examined how genetic (brain-derived neurotrophic factor [BDNF] valine 66 to methionine [Val66Met] and serotonin receptor gene 3A [HTR3A]) and early life stress susceptibility factors interact in predicting electroencephalogram (EEG) asymmetry, emotion-elicited heart rate, and self-reported negativity bias, each correlates of risk for depression. Caucasian volunteers (n = 363) were derived from the Brain Resource International Database, via the Brain Research And Integrative Neuroscience Network. RESULTS Individuals with both BDNF methionine and HTR3A CC risk genotypes and early life stressors demonstrated a profile of elevated emotion-elicited heart rate and right frontal hyper-activation with right parietotemporal hypoactivation in EEG asymmetry. Elevations in heart rate were a moderator of negativity bias. CONCLUSIONS The findings provide new evidence that these gene-stress susceptibility factors contribute to a brain-arousal profile indicative of risk for depression. They are a step toward identifying biological markers for detecting risk before overt symptoms. It would be valuable for future studies to examine comorbidity and specificity issues; for instance, whether these gene-stress factors contribute in different ways to the partially distinct EEG asymmetry profiles found with anxiety.
Collapse
Affiliation(s)
- Justine M Gatt
- Brain Dynamics Center, University of Sydney Medical School and Westmead Millennium Institute, Australia
| | | | | | | | | | | | | |
Collapse
|
60
|
Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test. J Neurosci 2010; 30:10472-83. [PMID: 20685990 DOI: 10.1523/jneurosci.0257-10.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.
Collapse
|
61
|
Miller BH, Schultz LE, Long BC, Pletcher MT. Quantitative trait locus analysis identifies Gabra3 as a regulator of behavioral despair in mice. Mamm Genome 2010; 21:247-57. [PMID: 20512339 PMCID: PMC2890984 DOI: 10.1007/s00335-010-9266-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 05/06/2010] [Indexed: 11/30/2022]
Abstract
The Tail Suspension Test (TST), which measures behavioral despair, is widely used as an animal model of human depressive disorders and antidepressant efficacy. In order to identify novel genes involved in the regulation of TST performance, we crossed an inbred strain exhibiting low immobility in the TST (RIIIS/J) with two high-immobility strains (C57BL/6J and NZB/BlNJ) to create two distinct F2 hybrid populations. All F2 offspring (n = 655) were genotyped at high density with a panel of SNP markers. Whole-genome interval mapping of the F2 populations identified statistically significant quantitative trait loci (QTLs) on mouse chromosomes (MMU) 4, 6, and X. Microarray analysis of hippocampal gene expression in the three parental strains was used to identify potential candidate genes within the MMUX QTLs identified in the NZB/BlNJ × RIIIS/J cross. Expression of Gabra3, which encodes the GABAA receptor α3 subunit, was robust in the hippocampus of B6 and RIIIS mice but absent from NZB hippocampal tissue. To verify the role of Gabra3 in regulating TST behavior in vivo, mice were treated with SB-205384, a positive modulator of the α3 subunit. SB-205384 significantly reduced TST immobility in B6 mice without affecting general activity, but it had no effect on behavior in NZB mice. This work suggests that GABRA3 regulates a behavioral endophenotype of depression and establishes this gene as a viable new target for the study and treatment of human depression.
Collapse
Affiliation(s)
- Brooke H. Miller
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
| | - Laura E. Schultz
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
| | - Bradley C. Long
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
| | - Mathew T. Pletcher
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
- Compound Safety Prediction, Pfizer Global Research and Development, Groton, CT 06340 USA
| |
Collapse
|
62
|
Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR, Gordon E, Kemp AH, Williams LM. Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol Psychiatry 2009; 14:681-95. [PMID: 19153574 DOI: 10.1038/mp.2008.143] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Individual risk markers for depression and anxiety disorders have been identified but the explicit pathways that link genes and environment to these markers remain unknown. Here we examined the explicit interactions between the brain-derived neurotrophic factor (BDNF) Val66Met gene and early life stress (ELS) exposure in brain (amygdala-hippocampal-prefrontal gray matter volume), body (heart rate), temperament and cognition in 374 healthy European volunteers assessed for depression and anxiety symptoms. Brain imaging data were based on a subset of 89 participants. Multiple regression analysis revealed main effects of ELS for body arousal (resting heart rate, P=0.005) and symptoms (depression and anxiety, P<0.001) in the absence of main effects for BDNF. In addition, significant BDNF-ELS interactions indicated that BDNF Met carriers exposed to greater ELS have smaller hippocampal and amygdala volumes (P=0.013), heart rate elevations (P=0.0002) and a decline in working memory (P=0.022). Structural equation path modeling was used to determine if this interaction predicts anxiety and depression by mediating effects on the brain, body and cognitive measures. The combination of Met carrier status and exposure to ELS predicted reduced gray matter in hippocampus (P<0.001), and associated lateral prefrontal cortex (P<0.001) and, in turn, higher depression (P=0.005). Higher depression was associated with poorer working memory (P=0.005), and slowed response speed. The BDNF Met-ELS interaction also predicted elevated neuroticism and higher depression and anxiety by elevations in body arousal (P<0.001). In contrast, the combination of BDNF V/V genotype and ELS predicted increases in gray matter of the amygdala (P=0.003) and associated medial prefrontal cortex (P<0.001), which in turn predicted startle-elicited heart rate variability (P=0.026) and higher anxiety (P=0.026). Higher anxiety was linked to verbal memory, and to impulsivity. These effects were specific to the BDNF gene and were not evident for the related 5HTT-LPR polymorphism. Overall, these findings are consistent with the correlation of depression and anxiety, yet suggest that partially differentiated gene-brain cognition pathways to these syndromes can be identified, even in a nonclinical sample. Such findings may aid establishing an evidence base for more tailored intervention strategies.
Collapse
Affiliation(s)
- J M Gatt
- The Brain Dynamics Centre, Westmead Millennium Institute and University of Sydney at Westmead Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Dubrovina NI, Zinov'ev DR, Zinov'eva DV, Kulikov AV. Learning and extinction of a passive avoidance response in mice with high levels of predisposition to catalepsy. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2009; 39:475-480. [PMID: 19430979 DOI: 10.1007/s11055-009-9152-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 05/27/2023]
Abstract
This report presents results obtained from comparative analysis of learning and the dynamics of extinction of a conditioned passive avoidance response in ASC mice, which were bred for a high level of predisposition to catalepsy, and in CBA and AKR mice. The following findings were obtained: 1) impairments to the extinction of the memory of fear represent an important symptom of depression in ASC mice; 2) extinction is delayed in CBA mice; and 3) new inhibitory learning occurs quickly in AKR mice. Prolonged retention of the fear memory in ASC mice appears to be related to increased anxiety on prolonged testing without a punishment. The deficit of inhibition of the fear reaction in ASC mice allows this strain to be regarded as a genetic model of depression.
Collapse
Affiliation(s)
- N I Dubrovina
- State Research Institute of Physiology, Siberian Branch, Russian Academy of Medical Sciences, 4 Timakov Street, 630117, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
64
|
Baran SE, Armstrong CE, Niren DC, Hanna JJ, Conrad CD. Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiol Learn Mem 2009; 91:323-32. [PMID: 19073269 PMCID: PMC2673234 DOI: 10.1016/j.nlm.2008.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/04/2008] [Accepted: 11/21/2008] [Indexed: 11/23/2022]
Abstract
Chronic stress effects and sex differences were examined on conditioned fear extinction. Male and female Sprague-Dawley rats were chronically stressed by restraint (6 h/d/21 d), conditioned to tone and footshock, followed by extinction after 1 h and 24 h delays. Chronic stress impaired the recall of fear extinction in males, as evidenced by high freezing to tone after the 24 h delay despite exposure to the previous 1 h delay extinction trials, and this effect was not due to ceiling effects from overtraining during conditioning. In contrast, chronic stress attenuated the recall of fear conditioning acquisition in females, regardless of exposure to the 1 h extinction exposure. Since freezing to tone was reinstated following unsignalled footshocks, the deficit in the stressed rats reflected impaired recall rather than impaired consolidation. Sex differences in fear conditioning and extinction were observed in nonstressed controls as well, with control females resisting extinction to tone. Analysis of contextual freezing showed that all groups (control, stress, male, female) increased freezing immediately after the first tone extinction trial, demonstrating contextual discrimination. These findings show that chronic stress and sex interact to influence fear conditioning, with chronic stress impairing the recall of delayed fear extinction in males to implicate the medial prefrontal cortex, disrupting the recall of the fear conditioning acquisition in females to implicate the amygdala, and nonstressed controls exhibiting sex differences in fear conditioning and extinction, which may involve the amygdala and/or corticosterone levels.
Collapse
Affiliation(s)
- Sarah E. Baran
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104
- Currently at the Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | | | - Danielle C. Niren
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104
| | - Jeffery J. Hanna
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104
| | - Cheryl D. Conrad
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104
| |
Collapse
|
65
|
Bartolomucci A, Leopardi R. Stress and depression: preclinical research and clinical implications. PLoS One 2009; 4:e4265. [PMID: 19180237 PMCID: PMC2629543 DOI: 10.1371/journal.pone.0004265] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/07/2009] [Indexed: 01/12/2023] Open
Affiliation(s)
- Alessandro Bartolomucci
- Department of Evolutionary and Functional Biology, University of Parma, Parma, Italy
- * E-mail: (AB); (RL)
| | - Rosario Leopardi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (AB); (RL)
| |
Collapse
|
66
|
Posser T, Kaster MP, Baraúna SC, Rocha JB, Rodrigues ALS, Leal RB. Antidepressant-like effect of the organoselenium compound ebselen in mice: Evidence for the involvement of the monoaminergic system. Eur J Pharmacol 2009; 602:85-91. [DOI: 10.1016/j.ejphar.2008.10.055] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/13/2008] [Accepted: 10/31/2008] [Indexed: 01/13/2023]
|
67
|
Shi J, Badner JA, Hattori E, Potash JB, Willour VL, McMahon FJ, Gershon ES, Liu C. Neurotransmission and bipolar disorder: a systematic family-based association study. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1270-7. [PMID: 18444252 PMCID: PMC2574701 DOI: 10.1002/ajmg.b.30769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurotransmission pathways/systems have been proposed to be involved in the pathophysiology and treatment of bipolar disorder for over 40 years. In order to test the hypothesis that common variants of genes in one or more of five neurotransmission systems confer risk for bipolar disorder, we analyzed 1,005 tag single nucleotide polymorphisms in 90 genes from dopaminergic, serotonergic, noradrenergic, GABAergic, and glutamatergic neurotransmitter systems in 101 trios and 203 quads from Caucasian bipolar families. Our sample has 80% power to detect ORs >or= 1.82 and >or=1.57 for minor allele frequencies of 0.1 and 0.5, respectively. Nominally significant allelic and haplotypic associations were found for genes from each neurotransmission system, with several reaching gene-wide significance (allelic: GRIA1, GRIN2D, and QDPR; haplotypic: GRIN2C, QDPR, and SLC6A3). However, none of these associations survived correction for multiple testing in an individual system, or in all systems considered together. Significant single nucleotide polymorphism associations were not found with sub-phenotypes (alcoholism, psychosis, substance abuse, and suicide attempts) or significant gene-gene interactions. These results suggest that, within the detectable odds ratios of this study, common variants of the selected genes in the five neurotransmission systems do not play major roles in influencing the risk for bipolar disorder or comorbid sub-phenotypes.
Collapse
Affiliation(s)
- Jiajun Shi
- Department of Psychiatry, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Touma C, Bunck M, Glasl L, Nussbaumer M, Palme R, Stein H, Wolferstätter M, Zeh R, Zimbelmann M, Holsboer F, Landgraf R. Mice selected for high versus low stress reactivity: a new animal model for affective disorders. Psychoneuroendocrinology 2008; 33:839-62. [PMID: 18502051 DOI: 10.1016/j.psyneuen.2008.03.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 03/22/2008] [Accepted: 03/26/2008] [Indexed: 11/24/2022]
Abstract
Affective disorders such as major depression are among the most prevalent and costly diseases of the central nervous system, but the underlying mechanisms are still poorly understood. In recent years, it has become evident that alterations of the stress hormone system, in particular dysfunctions (hyper- or hypo-activity) of the hypothalamic-pituitary-adrenal (HPA) axis, play a prominent role in the development of major depressive disorders. Therefore, we aimed to generate a new animal model comprising these neuroendocrine core symptoms in order to unravel parameters underlying increased or decreased stress reactivity. Starting from a population of outbred mice (parental generation: 100 males and 100 females of the CD-1 strain), two breeding lines were established according to the outcome of a 'stress reactivity test' (SRT), consisting of a 15-min restraint period and tail blood samplings immediately before and after exposure to the stressor. Mice showing a very high or a very low secretion of corticosterone in the SRT, i.e. animals expressing a hyper- or a hypo-reactivity of the HPA axis, were selected for the 'high reactivity' (HR) and the 'low reactivity' (LR) breeding line, respectively. Additionally, a third breeding line was established consisting of animals with an 'intermediate reactivity' (IR) in the SRT. Already in the first generation, i.e. animals derived from breeding pairs selected from the parental generation, significant differences in the reactivity of the HPA axis between HR, IR, and LR mice were observed. Moreover, these differences were found across all subsequent generations and could be increased by selective breeding, which indicates a genetic basis of the respective phenotype. Repeated testing of individuals in the SRT furthermore proved that the observed differences in stress responsiveness are present already early in life and can be regarded as a robust genetic predisposition. Tests investigating the animal's emotionality including anxiety-related behavior, exploratory drive, locomotor activity, and depression-like behavior point to phenotypic similarities with behavioral changes observed in depressive patients. In general, HR males and females were 'hyperactive' in some behavioral paradigms, resembling symptoms of restlessness and agitation often seen in melancholic depression. LR mice, on the other hand, showed more passive-aggressive coping styles, corresponding to signs of retardation and retreat observed in atypical depression. Several morphometric and neuroendocrine findings further support this view. For example, monitoring the circadian rhythm of glucocorticoid secretion revealed clearly increased trough levels in HR mice, resulting in a flattened diurnal rhythm, again adding to the neuroendocrine similarities to patients suffering from melancholic depression. Taken together, our results suggest that distinct mechanisms influencing the function and regulation of the HPA axis are involved in the respective behavioral and neurobiological endophenotypes. Thus, the generated HR/IR/LR mouse lines can be a valuable model to elucidate molecular genetic, neuroendocrine, and behavioral parameters associated with altered stress reactivity, thereby improving our understanding of affective disorders, presumably including the symptomatology and pathophysiology of specific subtypes of major depression.
Collapse
Affiliation(s)
- Chadi Touma
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, D-80804 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Anisman H, Merali Z, Stead JDH. Experiential and genetic contributions to depressive- and anxiety-like disorders: clinical and experimental studies. Neurosci Biobehav Rev 2008; 32:1185-206. [PMID: 18423590 DOI: 10.1016/j.neubiorev.2008.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 12/31/2007] [Accepted: 02/23/2008] [Indexed: 10/22/2022]
Abstract
Stressful events have been implicated in the precipitation of depression and anxiety. These disorders may evolve owing to one or more of an array of neuronal changes that occur in several brain regions. It seems likely that these stressor-provoked neurochemical alterations are moderated by genetic determinants, as well as by a constellation of experiential and environmental factors. Indeed, animal studies have shown that vulnerability to depressive-like behaviors involve mechanisms similar to those associated with human depression (e.g., altered serotonin, corticotropin releasing hormone and their receptors, growth factors), and that the effects of stressors are influenced by previous stressor experiences, particularly those encountered early in life. These stressor effects might reflect sensitization of neuronal functioning, phenotypic changes of processes that lead to neurochemical release or receptor sensitivity, or epigenetic processes that modify expression of specific genes associated with stressor reactivity. It is suggested that depression is a life-long disorder, which even after effective treatment, has a high rate of re-occurrence owing to sensitized processes or epigenetic factors that promote persistent alterations of gene expression.
Collapse
Affiliation(s)
- Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | | | | |
Collapse
|
70
|
Abstract
This review assesses the parallel data on the role of gamma-aminobutyric acid (GABA) in depression and anxiety. We review historical and new data from both animal and human experimentation which have helped define the key role for this transmitter in both these mental pathologies. By exploring the overlap in these conditions in terms of GABAergic neurochemistry, neurogenetics, brain circuitry, and pharmacology, we develop a theory that the two conditions are intrinsically interrelated. The role of GABAergic agents in demonstrating this interrelationship and in pointing the way to future research is discussed.
Collapse
Affiliation(s)
- Allan V Kalueff
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Maryland, USA
| | | |
Collapse
|
71
|
Steiner MA, Wanisch K, Monory K, Marsicano G, Borroni E, Bächli H, Holsboer F, Lutz B, Wotjak CT. Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. THE PHARMACOGENOMICS JOURNAL 2007; 8:196-208. [PMID: 17684478 DOI: 10.1038/sj.tpj.6500466] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dysregulation of the endocannabinoid system is known to interfere with emotional processing of stressful events. Here, we studied the role of cannabinoid receptor type 1 (CB1) signaling in stress-coping behaviors using the forced swim test (FST) with repeated exposures. We compared effects of genetic inactivation with pharmacological blockade of CB1 receptors both in male and female mice. In addition, we investigated potential interactions of the endocannabinoid system with monoaminergic and neurotrophin systems of the brain. Naive CB1 receptor-deficient mice (CB1-/-) showed increased passive stress-coping behaviors as compared to wild-type littermates (CB1+/+) in the FST, independent of sex. These findings were partially reproduced in C57BL/6N animals and fully reproduced in female CB1+/+ mice by pharmacological blockade of CB1 receptors with the CB1 receptor antagonist SR141716. The specificity of SR141716 was confirmed in female CB1-/- mice, where it failed to affect behavioral performance. Sensitivity to the antidepressants desipramine and paroxetine was preserved, but slightly altered in female CB1-/- mice. There were no genotype differences between CB1+/+ and CB1-/- mice in monoamine oxidase A and B activities under basal conditions, nor in monoamine content of hippocampal tissue after FST exposure. mRNA expression of vesicular glutamate transporter type 1 was unaffected in CB1-/- mice, but mRNA expression of brain-derived neurotrophic factor (BDNF) was reduced in the hippocampus. Our results suggest that impaired CB1 receptor function promotes passive stress-coping behavior, which, at least in part, might relate to alterations in BDNF function.
Collapse
MESH Headings
- Adaptation, Psychological
- Animals
- Biogenic Monoamines/analysis
- Brain-Derived Neurotrophic Factor/genetics
- Desipramine/pharmacology
- Female
- Hippocampus/chemistry
- Male
- Mice
- Mice, Inbred C57BL
- Monoamine Oxidase/metabolism
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- RNA, Messenger/analysis
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Rimonabant
- Signal Transduction/physiology
- Stress, Psychological/psychology
- Swimming
- Vesicular Glutamate Transport Protein 1/genetics
Collapse
Affiliation(s)
- M A Steiner
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Liu GX, Cai GQ, Cai YQ, Sheng ZJ, Jiang J, Mei Z, Wang ZG, Guo L, Fei J. Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology 2007; 32:1531-9. [PMID: 17164814 DOI: 10.1038/sj.npp.1301281] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gamma-aminobutyric acid (GABA) transporter subtype 1 (GAT1), which transports extracellular GABA into presynaptic neurons, plays an important regulatory role in the function of GABAergic systems. However, the contributions of the GAT1 in regulating mental status are not fully understood. In this paper, we observed the behavioral alterations of GAT1 knockout (GAT1(-/-)) mice using several depression- and anxiety-related models (eg, the forced-swimming test and the tail-suspension test for testing depression-related behaviors; the open-field test, the dark-light exploration test, the emergence test, and the elevated plus maze (EPM) test for anxiety-related behaviors). Here we found that GAT1(-/-) mice showed a lower level of depression- and anxiety-like behaviors in comparison to wild-type mice. Furthermore, GAT1(-/-) mice exhibited measurable insensitivity to selected antidepressants and anxiolytics such as fluoxetine, amitriptyline, buspirone, diazepam, and tiagabine in the tail-suspension test and/or the EPM test. Moreover, the basal level of corticosterone was found to be significantly lower in GAT1(-/-) mice. These results showed that the absence of GAT1 affects mental status through enhancing the GABAergic system, as well as modifying the serotonergic system and the hypothalamic-pituitary-adrenal (HPA) activity in mice.
Collapse
Affiliation(s)
- Guo-Xiang Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Model Organism Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
The high rates of co-morbidity of drug addiction with depression may be attributable to shared neurobiology. Here, we discuss shared neurobiological substrates in drug withdrawal and depression, with an emphasis on changes in brain reward circuitry that may underlie anhedonia, a core symptom of depression and drug withdrawal. We explored experimentally whether clinical antidepressant medications or other treatments would reverse the anhedonia observed in rats undergoing spontaneous nicotine or amphetamine withdrawal, defined operationally as elevated brain reward thresholds. The co-administration of selective serotonin reuptake inhibitors with a serotonin-1A receptor antagonist, or the tricyclic antidepressant desipramine, or the atypical antidepressant bupropion ameliorated nicotine or amphetamine withdrawal in rats. Thus, increases in monoaminergic neurotransmission, or neuroadaptations induced by increased monoaminergic neurotransmission, ameliorated depression-like aspects of drug withdrawal. Further, chronic pretreatment with the atypical antipsychotic clozapine, that has some efficacy in the treatment of the depression-like symptoms of schizophrenia, attenuated nicotine and amphetamine withdrawal. Finally, a metabotropic glutamate 2/3 receptor antagonist reversed threshold elevations associated with nicotine withdrawal. The effects of these pharmacological manipulations are consistent with the altered neurobiology observed in drug withdrawal and depression. Thus, these data support the hypothesis of common substrates mediating the depressive symptoms of drug withdrawal and those seen in psychiatric patients. Accordingly, the anhedonic state associated with drug withdrawal can be used to study the neurobiology of anhedonia, and thus contribute to the identification of novel targets for the treatment of depression-like symptoms seen in various psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC0603, La Jolla, CA 92093, USA
| | | |
Collapse
|
74
|
Kalueff AV, Wheaton M, Murphy DL. What's wrong with my mouse model? Behav Brain Res 2007; 179:1-18. [PMID: 17306892 DOI: 10.1016/j.bbr.2007.01.023] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/15/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Stress plays a key role in pathogenesis of anxiety and depression. Animal models of these disorders are widely used in behavioral neuroscience to explore stress-evoked brain abnormalities, screen anxiolytic/antidepressant drugs and establish behavioral phenotypes of gene-targeted or transgenic animals. Here we discuss the current situation with these experimental models, and critically evaluate the state of the art in this field. Noting a deficit of fresh ideas and especially new paradigms for animal anxiety and depression models, we review existing challenges and outline important directions for further research in this field.
Collapse
Affiliation(s)
- A V Kalueff
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, MD 20892-1264, USA.
| | | | | |
Collapse
|
75
|
Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP, Bilbe G, Hoyer D, Bartfai T. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 2007; 12:167-89. [PMID: 17033635 DOI: 10.1038/sj.mp.4001897] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The significant proportion of depressed patients that are resistant to monoaminergic drug therapy and the slow onset of therapeutic effects of the selective serotonin reuptake inhibitors (SSRIs)/serotonin/noradrenaline reuptake inhibitors (SNRIs) are two major reasons for the sustained search for new antidepressants. In an attempt to identify common underlying mechanisms for fast- and slow-acting antidepressant modalities, we have examined the transcriptional changes in seven different brain regions of the rat brain induced by three clinically effective antidepressant treatments: electro convulsive therapy (ECT), sleep deprivation (SD), and fluoxetine (FLX), the most commonly used slow-onset antidepressant. Each of these antidepressant treatments was applied with the same regimen known to have clinical efficacy: 2 days of ECT (four sessions per day), 24 h of SD, and 14 days of daily treatment of FLX, respectively. Transcriptional changes were evaluated on RNA extracted from seven different brain regions using the Affymetrix rat genome microarray 230 2.0. The gene chip data were validated using in situ hybridization or autoradiography for selected genes. The major findings of the study are: 1. The transcriptional changes induced by SD, ECT and SSRI display a regionally specific distribution distinct to each treatment. 2. The fast-onset, short-lived antidepressant treatments ECT and SD evoked transcriptional changes primarily in the catecholaminergic system, whereas the slow-onset antidepressant FLX treatment evoked transcriptional changes in the serotonergic system. 3. ECT and SD affect in a similar manner the same brain regions, primarily the locus coeruleus, whereas the effects of FLX were primarily in the dorsal raphe and hypothalamus, suggesting that both different regions and pathways account for fast onset but short lasting effects as compared to slow-onset but long-lasting effects. However, the similarity between effects of ECT and SD is somewhat confounded by the fact that the two treatments appear to regulate a number of transcripts in an opposite manner. 4. Multiple transcripts (e.g. brain-derived neurotrophic factor (BDNF), serum/glucocorticoid-regulated kinase (Sgk1)), whose level was reported to be affected by antidepressants or behavioral manipulations, were also found to be regulated by the treatments used in the present study. Several novel findings of transcriptional regulation upon one, two or all three treatments were made, for the latter we highlight homer, erg2, HSP27, the proto oncogene ret, sulfotransferase family 1A (Sult1a1), glycerol 3-phosphate dehydrogenase (GPD3), the orphan receptor G protein-coupled receptor 88 (GPR88) and a large number of expressed sequence tags (ESTs). 5. Transcripts encoding proteins involved in synaptic plasticity in the hippocampus were strongly affected by ECT and SD, but not by FLX. The novel transcripts, concomitantly regulated by several antidepressant treatments, may represent novel targets for fast onset, long-duration antidepressants.
Collapse
Affiliation(s)
- B Conti
- Molecular and Integrative Neuroscience Department, Harold L Dorris Neurological Research Institute, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Chourbaji S, Vogt MA, Gass P. Mice that under- or overexpress glucocorticoid receptors as models for depression or posttraumatic stress disorder. PROGRESS IN BRAIN RESEARCH 2007; 167:65-77. [DOI: 10.1016/s0079-6123(07)67005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
77
|
|
78
|
Dziedzicka-Wasylewska M, Faron-Górecka A, Kuśmider M, Drozdowska E, Rogóz Z, Siwanowicz J, Caron MG, Bönisch H. Effect of antidepressant drugs in mice lacking the norepinephrine transporter. Neuropsychopharmacology 2006; 31:2424-32. [PMID: 16554743 DOI: 10.1038/sj.npp.1301064] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the main theories concerning the mechanism of action of antidepressant drugs (ADs) is based on the notion that the neurochemical background of depression involves an impairment of central noradrenergic transmission with a concomitant decrease of the norepinephrine (NE) in the synaptic gap. Many ADs increase synaptic NE availability by inhibition of the reuptake of NE. Using mice lacking NE transporter (NET-/-) we examined their baseline phenotype as well as the response in the forced swim test (FST) and in the tail suspension test (TST) upon treatment with ADs that display different pharmacological profiles. In both tests, the NET-/- mice behaved like wild-type (WT) mice acutely treated with ADs. Autoradiographic studies showed decreased binding of the beta-adrenergic ligand [3H]CGP12177 in the cerebral cortex of NET-/- mice, indicating the changes at the level of beta-adrenergic receptors similar to those obtained with ADs treatment. The binding of [3H]prazosin to alpha1-adrenergic receptors in the cerebral cortex of NET-/- mice was also decreased, most probably as an adaptive response to the sustained elevation of extracellular NE levels observed in these mice. A pronounced NET knockout-induced shortening of the immobility time in the TST (by ca 50%) compared to WT mice was not reduced any further by NET-inhibiting ADs such as reboxetine, desipramine, and imipramine. Citalopram, which is devoid of affinity for the NET, exerted a significant reduction of immobility time in the NET-/- mice. In the FST, reboxetine, desipramine, imipramine, and citalopram administered acutely did not reduce any further the immobility time shortened by NET knockout itself (ca 25%); however, antidepressant-like action of repeatedly (7 days) administered desipramine was observed in NET-/- mice, indicating that the chronic presence of this drug may also affect other neurochemical targets involved in the behavioral reactions monitored by this test. From the present study, it may be concluded that mice lacking the NET may represent a good model of some aspects of depression-resistant behavior, paralleled with alterations in the expression of adrenergic receptors, which result as an adaptation to elevated levels of extracellular NE.
Collapse
|
79
|
Jacobson LH, Cryan JF. Feeling strained? Influence of genetic background on depression-related behavior in mice: a review. Behav Genet 2006; 37:171-213. [PMID: 17029009 DOI: 10.1007/s10519-006-9106-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/11/2006] [Indexed: 02/03/2023]
Abstract
Depression is a growing pandemic in developed societies. The use of inbred mouse strains in pre-clinical psychiatric research has proven to be a valuable resource. Firstly, they provide the background for genetic manipulations that aid in the discovery of molecular pathways that may be involved in major depression. Further, inbred mouse strains are also being used in the determination of genetic and environmental influences that may pre-dispose or trigger depression-related behavior. This review aims to highlight the utility of inbred mouse strains in depression research, while providing an overview of the current state of research into behavioral differences between strains in paradigms commonly used in the field. Neurochemical differences that may underlie strain differences are examined, and some caveats and cautions associated with the use of inbred strains are highlighted.
Collapse
Affiliation(s)
- L H Jacobson
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | | |
Collapse
|
80
|
|
81
|
Bekku N, Yoshimura H, Araki H. Factors producing a menopausal depressive-like state in mice following ovariectomy. Psychopharmacology (Berl) 2006; 187:170-80. [PMID: 16788811 DOI: 10.1007/s00213-006-0395-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/23/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Bilateral ovariectomy in female mice produces a menopausal depressive-like state but the factors responsible for the phenomenon are unknown. OBJECTIVES We elucidated methodological issues related to establishing this mouse model and investigated a possible mechanism underlying the depressive-like state of ovariectomized mice. METHODS We removed both ovaries of female ICR mice at 9 weeks of age. Changes in the immobility time during the forced swimming test as a function of the time interval between ovariectomy and behavioral testing were determined on nine different days after surgery. To assess behavioral specificity, the elevated plus-maze (EPM) behavior and spontaneous activity were measured. With respect to the effect of ovariectomy on the immobility time, we compared ICR mice with three other strains of mice (C57BL/6J, DBA/2N, and CD-1). Finally, we investigated the effects of (-)-2,5-dimethoxy-4-iodoamphetamine (DOI) and (+/-)-8-hydroxy-2-(N,N-di-n-propylamino) tetralin (8-OH-DPAT) on the immobility time of ovariectomized mice. RESULTS A significant effect on the prolongation of immobility was observed between 12 and 18 days after ovariectomy. Ovariectomy did not alter either the EPM behavior or spontaneous activity. Of the four strains of mice, only DBA mice did not show any significant prolongation of immobility after ovariectomy. Acute or chronic treatment with DOI (0.5 or 1.0 mg kg(-1)) significantly prevented the prolongation of immobility time, whereas acute and chronic treatments with 8-OH-DPAT (0.05, 0.5, or 1.0 mg kg(-1)) were ineffective. CONCLUSION The present findings have potentially important implications for evaluating a candidate substance for the management of mood disorders in menopausal women.
Collapse
Affiliation(s)
- Naoko Bekku
- Department of Pharmacology and Pharmacy, Ehime University Graduate School of Medicine, Shitsukawa, Toon-City, Ehime 791-0295, Japan
| | | | | |
Collapse
|
82
|
Chourbaji S, Urani A, Inta I, Sanchis-Segura C, Brandwein C, Zink M, Schwaninger M, Gass P. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 2006; 23:587-94. [PMID: 16843000 DOI: 10.1016/j.nbd.2006.05.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/02/2006] [Accepted: 05/17/2006] [Indexed: 11/19/2022] Open
Abstract
Cytokine-dependent mechanisms in the CNS have been implicated in the pathogenesis of depression. Interleukin-6 is upregulated in depressed patients and dowregulated by antidepressants. It is, however, unknown whether IL-6 is involved in the pathogenesis of depression. We subjected IL-6-deficient mice (IL-6(-/-)) to depression-related tests (learned helplessness, forced swimming, tail suspension, sucrose preference). We also investigated IL-6 in the hippocampus of stressed wild-type mice. IL-6(-/-) mice showed reduced despair in the forced swim, and tail suspension test, and enhanced hedonic behavior. Moreover, IL-6(-/-) mice exhibited resistance to helplessness. This resistance may be caused by the lack of IL-6, because stress increased IL-6 expression in wild-type hippocampi. This suggests that IL-6 is a component in molecular mechanisms in the pathogenesis of depression. IL-6(-/-) mice represent tools to study IL-6-dependent signaling pathways in the pathophysiology of depression in vivo. Moreover, these mice may support the screening of compounds for depression by altering cytokine-mediated signaling.
Collapse
Affiliation(s)
- Sabine Chourbaji
- Central Institute of Mental Health (ZI), J5, Mannheim D-68159, Germany.
| | | | | | | | | | | | | | | |
Collapse
|