51
|
Murphy C, Johnson AP, Koenekoop RK, Seiple W, Overbury O. The Relationship Between Cognitive Status and Known Single Nucleotide Polymorphisms in Age-Related Macular Degeneration. Front Aging Neurosci 2020; 12:586691. [PMID: 33178008 PMCID: PMC7596199 DOI: 10.3389/fnagi.2020.586691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Recent literature has reported a higher occurrence of cognitive impairment among individuals with Age-related Macular Degeneration (AMD) compared to older adults with normal vision. This pilot study explored potential links between single nucleotide polymorphisms (SNPs) in AMD and cognitive status. Individuals with AMD (N = 21) and controls (N = 18) were genotyped for the SNPs CFHY402H, ARMS2A69S and FADS1 rs174547. Cognitive status was evaluated using the Montreal Cognitive Assessment. The two groups differed significantly on which subscales were most difficult. The control group had difficulty with delayed recall while those with AMD had difficulty on delayed recall in addition to abstraction and orientation. Homozygous carriers of the FADS1 rs174547 SNP had significantly lower scores than heterozygotes or non-carriers on the MoCA. The results suggest that the FADS1 SNP may play a role in visual impairment/cognitive impairment comorbidity as reflected in the poorer cognitive scores among homozygotes with AMD compared to those carrying only one, or no copies of the SNP.
Collapse
Affiliation(s)
- Caitlin Murphy
- Low Vision Lab, School of Optometry, University of Montreal, Montreal, QC, Canada
- Concordia Vision Labs, Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR)/Centre de Réadaptation Lethbridge-Layton-Mackay du Centre Intégré Universitaire de Santé et de Services Sociaux du Centre-Ouest-de-l’Ile-de-Montréal (CIUSSS) du Centre-Ouest-de-l’Île-de-Montréal, Montreal, QC, Canada
| | - Aaron P. Johnson
- Concordia Vision Labs, Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR)/Centre de Réadaptation Lethbridge-Layton-Mackay du Centre Intégré Universitaire de Santé et de Services Sociaux du Centre-Ouest-de-l’Ile-de-Montréal (CIUSSS) du Centre-Ouest-de-l’Île-de-Montréal, Montreal, QC, Canada
| | - Robert K. Koenekoop
- Paediatric Surgery and Human Genetics and Ophthalmology, Faculty of Medicine, McGill University Health Centre, Montreal QC, Canada
| | - William Seiple
- Arlene R. Gordon Research Institute, Lighthouse Guild, New York, NY, United States
- School of Medicine, New York University, New York, NY, United States
| | - Olga Overbury
- Low Vision Lab, School of Optometry, University of Montreal, Montreal, QC, Canada
- Lady Davis Institute of Medical Research, Montreal, QC, Canada
| |
Collapse
|
52
|
Dong Y, Brewer GJ. Global Metabolic Shifts in Age and Alzheimer's Disease Mouse Brains Pivot at NAD+/NADH Redox Sites. J Alzheimers Dis 2020; 71:119-140. [PMID: 31356210 PMCID: PMC6839468 DOI: 10.3233/jad-190408] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Age and Alzheimer’s disease (AD) share some common features such as cognitive impairments, memory loss, metabolic disturbances, bioenergetic deficits, and inflammation. Yet little is known on how systematic shifts in metabolic networks depend on age and AD. In this work, we investigated the global metabolomic alterations in non-transgenic (NTg) and triple-transgenic (3xTg-AD) mouse brain hippocampus as a function of age by using untargeted Ultrahigh Performance Liquid Chromatography-tandem Mass Spectroscopy (UPLC-MS/MS). We observed common metabolic patterns with aging in both NTg and 3xTg-AD brains involved in energy-generating pathways, fatty acids oxidation, glutamate, and sphingolipid metabolism. We found age-related downregulation of metabolites from reactions in glycolysis that consumed ATP and in the TCA cycle, especially at NAD+/NADH-dependent redox sites, where age- and AD-associated limitations in the free NADH may alter reactions. Conversely, metabolites increased in glycolytic reactions in which ATP is produced. With age, inputs to the TCA cycle were increased including fatty acid β-oxidation and glutamine. Overall age- and AD-related changes were > 2-fold when comparing the declines of upstream metabolites of NAD+/NADH-dependent reactions to the increases of downstream metabolites (p = 10-5, n = 8 redox reactions). Inflammatory metabolites such as ceramides and sphingosine-1-phosphate also increased with age. Age-related decreases in glutamate, GABA, and sphingolipid were seen which worsened with AD genetic load in 3xTg-AD brains, possibly contributing to synaptic, learning- and memory-related deficits. The data support the novel hypothesis that age- and AD-associated metabolic shifts respond to NAD(P)+/NAD(P)H redox-dependent reactions, which may contribute to decreased energetic capacity.
Collapse
Affiliation(s)
- Yue Dong
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,MIND Institute, Center for Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| |
Collapse
|
53
|
Alternative Splicing Regulation of an Alzheimer's Risk Variant in CLU. Int J Mol Sci 2020; 21:ijms21197079. [PMID: 32992916 PMCID: PMC7582367 DOI: 10.3390/ijms21197079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 02/01/2023] Open
Abstract
Clusterin (CLU) is one of the risk genes most associated with late onset Alzheimer’s disease (AD), and several genetic variants in CLU are associated with AD risk. However, the functional role of known AD risk genetic variants in CLU has been little explored. We investigated the effect of an AD risk variant (rs7982) in the 5th exon of CLU on alternative splicing by using an integrative approach of brain-tissue-based RNA-Seq and whole genome sequencing data from Accelerating Medicines Partnership—Alzheimer’s Disease (AMP-AD). RNA-Seq data were generated from three regions in the temporal lobe of the brain—the temporal cortex, superior temporal gyrus, and parahippocampal gyrus. The rs7982 was significantly associated with intron retention (IR) of the 5th exon of CLU; as the number of alternative alleles (G) increased, the IR rates decreased more significantly in females than in males. Our results suggest a sex-dependent role of rs7982 in AD pathogenesis via splicing regulation.
Collapse
|
54
|
Age, Sex Hormones, and Circadian Rhythm Regulate the Expression of Amyloid-Beta Scavengers at the Choroid Plexus. Int J Mol Sci 2020; 21:ijms21186813. [PMID: 32957439 PMCID: PMC7554684 DOI: 10.3390/ijms21186813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/29/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) in the brain is thought to derive from the impairment of Aβ clearance mechanisms rather than from its overproduction, which consequently contributes to the development of Alzheimer’s disease. The choroid plexus epithelial cells constitute an important clearance route for Aβ, either by facilitating its transport from the cerebrospinal fluid to the blood, or by synthesizing and secreting various proteins involved in Aβ degradation. Impaired choroid plexus synthesis, secretion, and transport of these Aβ-metabolizing enzymes have been therefore associated with the disruption of Aβ homeostasis and amyloid load. Factors such as aging, female gender, and circadian rhythm disturbances are related to the decline of choroid plexus functions that may be involved in the modulation of Aβ-clearance mechanisms. In this study, we investigated the impact of age, sex hormones, and circadian rhythm on the expression of Aβ scavengers such as apolipoprotein J, gelsolin, and transthyretin at the rat choroid plexus. Our results demonstrated that mRNA expression and both intracellular and secreted protein levels of the studied Aβ scavengers are age-, sex-, and circadian-dependent. These data suggest that the Aβ-degradation and clearance pathways at the choroid plexus, mediated by the presence of Aβ scavengers, might be compromised as a consequence of aging and circadian disturbances. These are important findings that enhance the understanding of Aβ-clearance-regulating mechanisms at the blood–cerebrospinal fluid barrier.
Collapse
|
55
|
Aerobic exercise increases sprouting angiogenesis in the male rat motor cortex. Brain Struct Funct 2020; 225:2301-2314. [PMID: 32918614 DOI: 10.1007/s00429-020-02100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Exercise is beneficial to brain health, and historically, the advantageous effects of exercise on the brain have been attributed to neuronal plasticity. However, it has also become clear that the brain vascular system also exhibits plasticity in response to exercise. This plasticity occurs in areas involved in movement, such as the motor cortex. This experiment aimed to further characterize the effects of exercise on structural vascular plasticity in the male rat motor cortex, by specifically identifying whether features of angiogenesis, the growth of new capillaries, or changes in vessel diameter were present. Male rats in the exercise group engaged in a 5-week bout of voluntary wheel running, while a second group of rats remained sedentary. After the exercise regimen, vascular corrosion casts, resin replicas of the brain vasculature, were made for all animals and imaged using a scanning electron microscope. Results indicate sprouting angiogenesis was the primary form of structural vascular plasticity detected in the motor cortex under these aerobic exercise parameters. Additionally, exercised rats displayed a slight increase in capillary diameter and expanded endothelial cell nuclei diameters in this region.
Collapse
|
56
|
Barha CK, Liu-Ambrose T. Sex differences in exercise efficacy: Is midlife a critical window for promoting healthy cognitive aging? FASEB J 2020; 34:11329-11336. [PMID: 32761860 DOI: 10.1096/fj.202000857r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 01/17/2023]
Abstract
Dementia is one of the most pressing health care issues of this century. As no curative treatment for dementia exists, research efforts are growing to identify effective lifestyle interventions to prevent or delay onset. One such promising strategy that promotes cognitive and brain health is engaging in physical exercise. However, current exercise recommendations are imprecise. To advance the potential of exercise as a preventative and treatment strategy, important questions regarding moderators (ie, biological sex and age) are being addressed in the literature. Biological sex is recognized as an important variable to consider in exercise efficacy on brain health, with females showing greater cognitive gains. This may be related to sex differences in underlying mechanisms. Here, we argue to better understand the sex differences in exercise efficacy, the timing of exercise intervention should also be considered. Specifically, we present the hypothesis that midlife in females is a critical window for the implementation of exercise as an early intervention to promote brain health and prevent dementia. Further, we speculate that exercise interventions targeting midlife will be of critical importance for the female brain, as females exit this period of the lifespan at greater risk for cognitive impairment. Given the potential sex differences in dementia risk and prevalence, it is imperative to assess potential sex differences in exercise efficacy as an early intervention during midlife.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.,Aging, Mobility, and Cognitive Neuroscience Lab, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Physical Activity for Precision Health Research Cluster, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.,Aging, Mobility, and Cognitive Neuroscience Lab, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Physical Activity for Precision Health Research Cluster, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
57
|
McFall GP, Bäckman L, Dixon RA. Nuances in Alzheimer's Genetic Risk Reveal Differential Predictions of Non-demented Memory Aging Trajectories: Selective Patterns by APOE Genotype and Sex. Curr Alzheimer Res 2020; 16:302-315. [PMID: 30873923 DOI: 10.2174/1567205016666190315094452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/01/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Apolipoprotein E (APOE) is a prominent genetic risk factor for Alzheimer's disease (AD) and a frequent target for associations with non-demented and cognitively impaired aging. APOE offers a unique opportunity to evaluate two dichotomous comparisons and selected gradations of APOE risk. Some evidence suggests that APOE effects may differ by sex and emerge especially in interaction with other AD-related biomarkers (e.g., vascular health). METHODS Longitudinal trajectories of non-demented adults (n = 632, 67% female, Mage = 68.9) populated a 40-year band of aging. Focusing on memory performance and individualized memory trajectories, a sequence of latent growth models was tested for predictions of (moderation between) APOE and pulse pressure (PP) as stratified by sex. The analyses (1) established robust benchmark PP effects on memory trajectories, (2) compared predictions of alternative dichotomous groupings (ε4- vs ε4+, ε2- vs ε2+), and (3) examined precision-based predictions by disaggregated APOE genotypes. RESULTS Healthier (lower) PP was associated with better memory performance and less decline. Therefore, all subsequent analyses were conducted in the interactive context of PP effects and sex stratification. The ε4-based dichotomization produced no differential genetic predictions. The ε2-based analyses showed sex differences, including selective protection for ε2-positive females. Exploratory follow-up disaggregated APOE genotype analyses suggested selective ε2 protection effects for both homozygotic and heterozygotic females. CONCLUSION Precision analyses of AD genetic risk will advance the understanding of underlying mechanisms and improve personalized implementation of interventions.
Collapse
Affiliation(s)
- G Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | | | - Roger A Dixon
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
58
|
Rahman A, Schelbaum E, Hoffman K, Diaz I, Hristov H, Andrews R, Jett S, Jackson H, Lee A, Sarva H, Pahlajani S, Matthews D, Dyke J, de Leon MJ, Isaacson RS, Brinton RD, Mosconi L. Sex-driven modifiers of Alzheimer risk: A multimodality brain imaging study. Neurology 2020; 95:e166-e178. [PMID: 32580974 DOI: 10.1212/wnl.0000000000009781] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate sex differences in late-onset Alzheimer disease (AD) risks by means of multimodality brain biomarkers (β-amyloid load via 11C-Pittsburgh compound B [PiB] PET, neurodegeneration via 18F-fluorodeoxyglucose [FDG] PET and structural MRI). METHODS We examined 121 cognitively normal participants (85 women and 36 men) 40 to 65 years of age with clinical, laboratory, neuropsychological, lifestyle, MRI, FDG- and PiB-PET examinations. Several clinical (e.g., age, education, APOE status, family history), medical (e.g., depression, diabetes mellitus, hyperlipidemia), hormonal (e.g., thyroid disease, menopause), and lifestyle AD risk factors (e.g., smoking, diet, exercise, intellectual activity) were assessed. Statistical parametric mapping and least absolute shrinkage and selection operator regressions were used to compare AD biomarkers between men and women and to identify the risk factors associated with sex-related differences. RESULTS Groups were comparable on clinical and cognitive measures. After adjustment for each modality-specific confounders, the female group showed higher PiB β-amyloid deposition, lower FDG glucose metabolism, and lower MRI gray and white matter volumes compared to the male group (p < 0.05, family-wise error corrected for multiple comparisons). The male group did not show biomarker abnormalities compared to the female group. Results were independent of age and remained significant with the use of age-matched groups. Second to female sex, menopausal status was the predictor most consistently and strongly associated with the observed brain biomarker differences, followed by hormone therapy, hysterectomy status, and thyroid disease. CONCLUSION Hormonal risk factors, in particular menopause, predict AD endophenotype in middle-aged women. These findings suggest that the window of opportunity for AD preventive interventions in women is early in the endocrine aging process.
Collapse
Affiliation(s)
- Aneela Rahman
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Eva Schelbaum
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Katherine Hoffman
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Ivan Diaz
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Hollie Hristov
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Randolph Andrews
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Steven Jett
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Hande Jackson
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Andrea Lee
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Harini Sarva
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Silky Pahlajani
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Dawn Matthews
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Jonathan Dyke
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Mony J de Leon
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Richard S Isaacson
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Roberta D Brinton
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson
| | - Lisa Mosconi
- From the Departments of Neurology (A.R., E.S., I.D., H.H., S.J., H.J., A.L., H.S., S.P., R.S.I., L.M.) and Radiology (J.D., M.J.d.L., L.M.), Weill Cornell Medical College; Division of Biostatistics and Epidemiology (K.H., I.D.), Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY; ADM Diagnostics (R.A., D.M.), Chicago, IL; and Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson.
| |
Collapse
|
59
|
Hernandez A, Truckenbrod L, Federico Q, Campos K, Moon B, Ferekides N, Hoppe M, D’Agostino D, Burke S. Metabolic switching is impaired by aging and facilitated by ketosis independent of glycogen. Aging (Albany NY) 2020; 12:7963-7984. [PMID: 32369441 PMCID: PMC7244089 DOI: 10.18632/aging.103116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
The ability to switch between glycolysis and ketosis promotes survival by enabling metabolism through fat oxidation during periods of fasting. Carbohydrate restriction or stress can also elicit metabolic switching. Keto-adapting from glycolysis is delayed in aged rats, but factors mediating this age-related impairment have not been identified. We measured metabolic switching between glycolysis and ketosis, as well as glycogen dynamics, in young and aged rats undergoing time-restricted feeding (TRF) with a standard diet or a low carbohydrate ketogenic diet (KD). TRF alone reversed markers of insulin-related metabolic deficits and accelerated metabolic switching in aged animals. A KD+TRF, however, provided additive benefits on these variables. Remarkably, the ability to keto-adapt was not related to glycogen levels and KD-fed rats showed an enhanced elevation in glucose following epinephrine administration. This study provides new insights into the mechanisms of keto-adaptation demonstrating the utility of dietary interventions to treat metabolic impairments across the lifespan.
Collapse
Affiliation(s)
- Abbi Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Leah Truckenbrod
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Quinten Federico
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Keila Campos
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Brianna Moon
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Nedi Ferekides
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Meagan Hoppe
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Dominic D’Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Sara Burke
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Institute on Aging, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
60
|
Apolipoprotein E4 genotype in combination with poor metabolic profile is associated with reduced cognitive performance in healthy postmenopausal women: implications for late onset Alzheimer's disease. Menopause 2020; 26:7-15. [PMID: 29975287 DOI: 10.1097/gme.0000000000001160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE We hypothesized the association of metabolic profile on cognition in postmenopausal women will be greater among ApoE4 carriers compared with noncarriers. METHODS Metabolic biomarkers and measures of global cognition, executive functions, and verbal memory, collected among postmenopausal females, were used in this analysis. Clustering analyses of metabolic biomarkers revealed three phenotypes: healthy, predominantly hypertensive, and poor metabolic with (borderline normal laboratory values). General linear models tested whether an association of metabolic cluster with cognition differed by ApoE4 genotype. RESULTS In the total sample of 497 women, verbal memory was lower in the poor metabolic cluster (P = 0.04). Among ApoE4+ women, performance in all cognitive domains was lowest in the poor metabolic cluster. Differences in executive functions among metabolic clusters were detected only in ApoE4+ women (P value for interaction = 0.003). CONCLUSIONS In a general population of postmenopausal women, association between poor metabolic profile with reduction in cognitive performance is more apparent in women who carry an ApoE4 allele. These data indicate a window of opportunity for interventions to reverse the trajectory of the preclinical phase of Alzheimer's disease.
Collapse
|
61
|
Tower J, Pomatto LCD, Davies KJA. Sex differences in the response to oxidative and proteolytic stress. Redox Biol 2020; 31:101488. [PMID: 32201219 PMCID: PMC7212483 DOI: 10.1016/j.redox.2020.101488] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Sex differences in diseases involving oxidative and proteolytic stress are common, including greater ischemic heart disease, Parkinson disease and stroke in men, and greater Alzheimer disease in women. Sex differences are also observed in stress response of cells and tissues, where female cells are generally more resistant to heat and oxidative stress-induced cell death. Studies implicate beneficial effects of estrogen, as well as cell-autonomous effects including superior mitochondrial function and increased expression of stress response genes in female cells relative to male cells. The p53 and forkhead box (FOX)-family genes, heat shock proteins (HSPs), and the apoptosis and autophagy pathways appear particularly important in mediating sex differences in stress response.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA.
| | - Laura C D Pomatto
- National Institute on General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin J A Davies
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, USA
| |
Collapse
|
62
|
PCK1 Deficiency Shortens the Replicative Lifespan of Saccharomyces cerevisiae through Upregulation of PFK1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3858465. [PMID: 32104690 PMCID: PMC7037958 DOI: 10.1155/2020/3858465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/29/2019] [Accepted: 01/11/2020] [Indexed: 12/25/2022]
Abstract
The cytosolic isozyme of phosphoenolpyruvate carboxykinase (PCK1) was the first rate-limiting enzyme in the gluconeogenesis pathway, which exerted a critical role in maintaining the blood glucose levels. PCK1 has been established to be involved in various physiological and pathological processes, including glucose metabolism, lipid metabolism, diabetes, and tumorigenesis. Nonetheless, the association of PCK1 with aging process and the detailed underlying mechanisms of PCK1 on aging are still far to be elucidated. Hence, we herein constructed the PCK1-deficient (pck1Δ) and PCK1 overexpression (PCK1 OE) Saccharomyces cerevisiae. The results unveiled that PCK1 deficiency significantly shortened the replicative lifespan (RLS) in the S. cerevisiae, while overexpression of PCK1 prolonged the RLS. Additionally, we noted that the ROS level was significantly enhanced in PCK1-deficient strain and decreased in PCK1 OE strain. Then, a high throughput analysis by deep sequencing was performed in the pck1Δ and wild-type strains, in an attempt to shed light on the effect of PCK1 on the lifespan of aging process. The data showed that the most downregulated mRNAs were enriched in the regulatory pathways of glucose metabolism. Fascinatingly, among the differentially expressed mRNAs, PFK1 was one of the most upregulated genes, which was involved in the glycolysis process and ROS generation. Thus, we further constructed the pfk1Δpck1Δ strain by deletion of PFK1 in the PCK1-deficient strain. The results unraveled that pfk1Δpck1Δ strain significantly suppressed the ROS level and restored the RLS of pck1Δ strain. Taken together, our data suggested that PCK1 deficiency enhanced the ROS level and shortened the RLS of S. cerevisiae via PFK1.
Collapse
|
63
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
64
|
Shang Y, Mishra A, Wang T, Wang Y, Desai M, Chen S, Mao Z, Do L, Bernstein AS, Trouard TP, Brinton RD. Evidence in support of chromosomal sex influencing plasma based metabolome vs APOE genotype influencing brain metabolome profile in humanized APOE male and female mice. PLoS One 2020; 15:e0225392. [PMID: 31917799 PMCID: PMC6952084 DOI: 10.1371/journal.pone.0225392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
Late onset Alzheimer’s disease (LOAD) is a progressive neurodegenerative disease with four well-established risk factors: age, APOE4 genotype, female chromosomal sex, and maternal history of AD. Each risk factor impacts multiple systems, making LOAD a complex systems biology challenge. To investigate interactions between LOAD risk factors, we performed multiple scale analyses, including metabolomics, transcriptomics, brain magnetic resonance imaging (MRI), and beta-amyloid assessment, in 16 months old male and female mice with humanized human APOE3 (hAPOE3) or APOE4 (hAPOE4) genes. Metabolomic analyses indicated a sex difference in plasma profile whereas APOE genotype determined brain metabolic profile. Consistent with the brain metabolome, gene and pathway-based RNA-Seq analyses of the hippocampus indicated increased expression of fatty acid/lipid metabolism related genes and pathways in both hAPOE4 males and females. Further, female transcription of fatty acid and amino acids pathways were significantly different from males. MRI based imaging analyses indicated that in multiple white matter tracts, hAPOE4 males and females exhibited lower fractional anisotropy than their hAPOE3 counterparts, suggesting a lower level of white matter integrity in hAPOE4 mice. Consistent with the brain metabolomic and transcriptomic profile of hAPOE4 carriers, beta-amyloid generation was detectable in 16-month-old male and female brains. These data provide therapeutic targets based on chromosomal sex and APOE genotype. Collectively, these data provide a framework for developing precision medicine interventions during the prodromal phase of LOAD, when the potential to reverse, prevent and delay LOAD progression is greatest.
Collapse
Affiliation(s)
- Yuan Shang
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Maunil Desai
- School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Loi Do
- Biomedical Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Adam S. Bernstein
- College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Theodore P. Trouard
- Biomedical Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
65
|
Yare K, Woodward M. Hormone Therapy and Effects on Sporadic Alzheimer’s Disease in Postmenopausal Women: Importance of Nomenclature. J Alzheimers Dis 2020; 73:23-37. [DOI: 10.3233/jad-190896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Katrine Yare
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| | - Michael Woodward
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| |
Collapse
|
66
|
Agostini A, Yuchun D, Li B, Kendall DA, Pardon MC. Sex-specific hippocampal metabolic signatures at the onset of systemic inflammation with lipopolysaccharide in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Brain Behav Immun 2020; 83:87-111. [PMID: 31560941 PMCID: PMC6928588 DOI: 10.1016/j.bbi.2019.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022] Open
Abstract
Systemic inflammation enhances the risk and progression of Alzheimer's disease (AD). Lipopolysaccharide (LPS), a potent pro-inflammatory endotoxin produced by the gut, is found in excess levels in AD where it associates with neurological hallmarks of pathology. Sex differences in susceptibility to inflammation and AD progression have been reported, but how this impacts on LPS responses remains under investigated. We previously reported in an APP/PS1 model of AD that systemic LPS administration rapidly altered hippocampal metabolism in males. Here, we used untargeted metabolomics to comprehensively identify hippocampal metabolic processes occurring at onset of systemic inflammation with LPS (100 µg/kg, i.v.) in APP/PS1 mice, at an early pathological stage, and investigated the sexual dimorphism in this response. Four hours after LPS administration, pathways regulating energy metabolism, immune and oxidative stress responses were simultaneously recruited in the hippocampi of 4.5-month-old mice with a more protective response in females despite their pro-inflammatory and pro-oxidant metabolic signature in the absence of immune stimulation. LPS induced comparable behavioural sickness responses in male and female wild-type and APP/PS1 mice and comparable activation of both the serotonin and nicotinamide pathways of tryptophan metabolism in their hippocampi. Elevations in N-methyl-2-pyridone-5-carboxamide, a major toxic metabolite of nicotinamide, correlated with behavioural sickness regardless of sex, as well as with the LPS-induced hypothermia seen in males. Males also exhibited a pro-inflammatory-like downregulation of pyruvate metabolism, exacerbated in APP/PS1 males, and methionine metabolism whereas females showed a greater cytokine response and anti-inflammatory-like downregulation of hippocampal methylglyoxal and methionine metabolism. Metabolic changes were not associated with morphological markers of immune cell activation suggesting that they constitute an early event in the development of LPS-induced neuroinflammation and AD exacerbation. These data suggest that the female hippocampus is more tolerant to acute systemic inflammation.
Collapse
Affiliation(s)
- Alessandra Agostini
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Ding Yuchun
- School of Computer Sciences, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK; School of Computing Science, Urban Sciences Building, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK(1)
| | - Bai Li
- School of Computing Science, Urban Sciences Building, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK(1)
| | - David A Kendall
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
67
|
Zolezzi JM, Villaseca P, Inestrosa NC. Toward an integrative understanding of the neuroinflammatory molecular milieu in Alzheimer disease neurodegeneration. GENETICS, NEUROLOGY, BEHAVIOR, AND DIET IN DEMENTIA 2020:163-176. [DOI: 10.1016/b978-0-12-815868-5.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
68
|
Caldwell JZK, Cummings JL, Banks SJ, Palmqvist S, Hansson O. Cognitively normal women with Alzheimer's disease proteinopathy show relative preservation of memory but not of hippocampal volume. ALZHEIMERS RESEARCH & THERAPY 2019; 11:109. [PMID: 31878968 PMCID: PMC6933621 DOI: 10.1186/s13195-019-0565-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022]
Abstract
Background We examined interactive effects of sex, diagnosis, and cerebrospinal fluid (CSF) amyloid beta/phosphorylated tau ratio (Aβ/P-tau) on verbal memory and hippocampal volumes. Methods We assessed 682 participants (350 women) from BioFINDER (250 cognitively normal [CN]; and 432 symptomatic: 186 subjective cognitive decline [SCD], 246 mild cognitive impairment [MCI]). General linear models evaluated effects of Alzheimer’s disease (AD) proteinopathy (CSF Aß/p-tau ratio), diagnosis, and sex on verbal memory (ADAS-cog 10-word recall), semantic fluency (animal naming fluency), visuospatial skills (cube copy), processing speed/attention functions (Symbol Digit Modalities Test and Trail Making Part A), and hippocampal volumes. Results Amyloid-positive (Aβ/P-tau+) CN women (women with preclinical AD) showed memory equivalent to amyloid-negative (Aβ/P-tau−) CN women. In contrast, Aβ/P-tau+ CN men (men with preclinical AD) showed poorer memory than Aβ/P-tau− CN men. Symptomatic groups showed no sex differences in effect of AD proteinopathy on memory. There was no interactive effect of sex, diagnosis, and Aβ/P-tau on other measures of cognition or on hippocampal volume. Conclusions CN women show relatively preserved verbal memory, but not general cognitive reserve or preserved hippocampal volume in the presence of Aβ/P-tau+. Results have implications for diagnosing AD in women, and for clinical trials.
Collapse
Affiliation(s)
- Jessica Z K Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.
| | - Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.,UNLV Department of Brain Health, School of Integrated Health Sciences, Box 453019, 4505 S. Maryland Pkwy, Las Vegas, Nevada, 89154, USA
| | - Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.,University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, PO Box 188, 221, Lund, Sweden.,Department of Neurology, Skåne University Hospital, 221 85, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, PO Box 188, 221, Lund, Sweden.,Memory Clinic, Skåne University Hospital, 205 05, Malmö, Sweden
| |
Collapse
|
69
|
van der Velpen V, Teav T, Gallart-Ayala H, Mehl F, Konz I, Clark C, Oikonomidi A, Peyratout G, Henry H, Delorenzi M, Ivanisevic J, Popp J. Systemic and central nervous system metabolic alterations in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:93. [PMID: 31779690 PMCID: PMC6883620 DOI: 10.1186/s13195-019-0551-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Background Metabolic alterations, related to cerebral glucose metabolism, brain insulin resistance, and age-induced mitochondrial dysfunction, play an important role in Alzheimer’s disease (AD) on both the systemic and central nervous system level. To study the extent and significance of these alterations in AD, quantitative metabolomics was applied to plasma and cerebrospinal fluid (CSF) from clinically well-characterized AD patients and cognitively healthy control subjects. The observed metabolic alterations were associated with core pathological processes of AD to investigate their relation with amyloid pathology and tau-related neurodegeneration. Methods In a case-control study of clinical and biomarker-confirmed AD patients (n = 40) and cognitively healthy controls without cerebral AD pathology (n = 34) with paired plasma and CSF samples, we performed metabolic profiling, i.e., untargeted metabolomics and targeted quantification. Targeted quantification focused on identified deregulated pathways highlighted in the untargeted assay, i.e. the TCA cycle, and its anaplerotic pathways, as well as the neuroactive tryptophan and kynurenine pathway. Results Concentrations of several TCA cycle and beta-oxidation intermediates were higher in plasma of AD patients, whilst amino acid concentrations were significantly lower. Similar alterations in these energy metabolism intermediates were observed in CSF, together with higher concentrations of creatinine, which were strongly correlated with blood-brain barrier permeability. Alterations of several amino acids were associated with CSF Amyloidβ1–42. The tryptophan catabolites, kynurenic acid and quinolinic acid, showed significantly higher concentrations in CSF of AD patients, which, together with other tryptophan pathway intermediates, were correlated with either CSF Amyloidβ1–42, or tau and phosphorylated Tau-181. Conclusions This study revealed AD-associated systemic dysregulation of nutrient sensing and oxidation and CNS-specific alterations in the neuroactive tryptophan pathway and (phospho)creatine degradation. The specific association of amino acids and tryptophan catabolites with AD CSF biomarkers suggests a close relationship with core AD pathology. Our findings warrant validation in independent, larger cohort studies as well as further investigation of factors such as gender and APOE genotype, as well as of other groups, such as preclinical AD, to identify metabolic alterations as potential intervention targets.
Collapse
Affiliation(s)
- Vera van der Velpen
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Tony Teav
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Héctor Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Florence Mehl
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ioana Konz
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Aikaterini Oikonomidi
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausane, Switzerland
| | - Gwendoline Peyratout
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausane, Switzerland
| | - Hugues Henry
- Clinical Chemistry Laboratory, Department of Biomedicine, Lausanne University Hospital, Lausane, Switzerland
| | - Mauro Delorenzi
- Translational Bioinformatics and Statistics, Department of Oncology, Swiss Cancer Center Leman (SCCL), University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausane, Switzerland. .,Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
70
|
Rahman A, Jackson H, Hristov H, Isaacson RS, Saif N, Shetty T, Etingin O, Henchcliffe C, Brinton RD, Mosconi L. Sex and Gender Driven Modifiers of Alzheimer's: The Role for Estrogenic Control Across Age, Race, Medical, and Lifestyle Risks. Front Aging Neurosci 2019; 11:315. [PMID: 31803046 PMCID: PMC6872493 DOI: 10.3389/fnagi.2019.00315] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Research indicates that after advanced age, the major risk factor for late-onset Alzheimer’s disease (AD) is female sex. Out of every three AD patients, two are females with postmenopausal women contributing to over 60% of all those affected. Sex- and gender-related differences in AD have been widely researched and several emerging lines of evidence point to different vulnerabilities that contribute to dementia risk. Among those being considered, it is becoming widely accepted that gonadal steroids contribute to the gender disparity in AD, as evidenced by the “estrogen hypothesis.” This posits that sex hormones, 17β-estradiol in particular, exert a neuroprotective effect by shielding females’ brains from disease development. This theory is further supported by recent findings that the onset of menopause is associated with the emergence of AD-related brain changes in women in contrast to men of the same age. In this review, we discuss genetic, medical, societal, and lifestyle risk factors known to increase AD risk differently between the genders, with a focus on the role of hormonal changes, particularly declines in 17β-estradiol during the menopause transition (MT) as key underlying mechanisms.
Collapse
Affiliation(s)
- Aneela Rahman
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Hande Jackson
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Richard S Isaacson
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Nabeel Saif
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Teena Shetty
- Concussion Clinic, Hospital for Special Surgery, New York, NY, United States
| | - Orli Etingin
- Department of Internal Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Claire Henchcliffe
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
71
|
Invariable stoichiometry of ribosomal proteins in mouse brain tissues with aging. Proc Natl Acad Sci U S A 2019; 116:22567-22572. [PMID: 31636180 DOI: 10.1073/pnas.1912060116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across phyla, the ribosomes-the central molecular machines for translation of genetic information-exhibit an overall preserved architecture and a conserved functional core. The natural heterogeneity of the ribosome periodically phases a debate on their functional specialization and the tissue-specific variations of the ribosomal protein (RP) pool. Using sensitive differential proteomics, we performed a thorough quantitative inventory of the protein composition of ribosomes from 3 different mouse brain tissues, i.e., hippocampus, cortex, and cerebellum, across various ages, i.e., juvenile, adult, and middle-aged mouse groups. In all 3 brain tissues, in both monosomal and polysomal ribosome fractions, we detected an invariant set of 72 of 79 core RPs, RACK1 and 2 of the 8 RP paralogs, the stoichiometry of which remained constant across different ages. The amount of a few RPs punctually varied in either one tissue or one age group, but these fluctuations were within the tight bounds of the measurement noise. Further comparison with the ribosomes from a high-metabolic-rate organ, e.g., the liver, revealed protein composition identical to that of the ribosomes from the 3 brain tissues. Together, our data show an invariant protein composition of ribosomes from 4 tissues across different ages of mice and support the idea that functional heterogeneity may arise from factors other than simply ribosomal protein stoichiometry.
Collapse
|
72
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
73
|
Cotto B, Natarajanseenivasan K, Langford D. HIV-1 infection alters energy metabolism in the brain: Contributions to HIV-associated neurocognitive disorders. Prog Neurobiol 2019; 181:101616. [PMID: 31108127 PMCID: PMC6742565 DOI: 10.1016/j.pneurobio.2019.101616] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
The brain is particularly sensitive to changes in energy supply. Defects in glucose utilization and mitochondrial dysfunction are hallmarks of nearly all neurodegenerative diseases and are also associated with the cognitive decline that occurs as the brain ages. Chronic neuroinflammation driven by glial activation is commonly implicated as a contributing factor to neurodegeneration and cognitive impairment. Human immunodeficiency virus-1 (HIV-1) disrupts normal brain homeostasis and leads to a spectrum of HIV-associated neurocognitive disorders (HAND). HIV-1 activates stress responses in the brain and triggers a state of chronic neuroinflammation. Growing evidence suggests that inflammatory processes and bioenergetics are interconnected in the propagation of neuronal dysfunction. Clinical studies of people living with HIV and basic research support the notion that HIV-1 creates an environment in the CNS that interrupts normal metabolic processes at the cellular level to collectively alter whole brain metabolism. In this review, we highlight reports of abnormal brain metabolism from clinical studies and animal models of HIV-1. We also describe diverse CNS cell-specific changes in bioenergetics associated with HIV-1. Moreover, we propose that attention should be given to adjunctive therapies that combat sources of metabolic dysfunction as a mean to improve and/or prevent neurocognitive impairments.
Collapse
Affiliation(s)
- Bianca Cotto
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Kalimuthusamy Natarajanseenivasan
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Dianne Langford
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| |
Collapse
|
74
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
75
|
Nair RR, Corrochano S, Gasco S, Tibbit C, Thompson D, Maduro C, Ali Z, Fratta P, Arozena AA, Cunningham TJ, Fisher EMC. Uses for humanised mouse models in precision medicine for neurodegenerative disease. Mamm Genome 2019; 30:173-191. [PMID: 31203387 PMCID: PMC6759662 DOI: 10.1007/s00335-019-09807-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are very limited treatments, and no cures, for most of these diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington Disease, and Motor Neuron Diseases. Mouse and other animal models provide hope by analysing them to understand pathogenic mechanisms, to identify drug targets, and to develop gene therapies and stem cell therapies. However, despite many decades of research, virtually no new treatments have reached the clinic. Increasingly, it is apparent that human heterogeneity within clinically defined neurodegenerative disorders, and between patients with the same genetic mutations, significantly impacts disease presentation and, potentially, therapeutic efficacy. Therefore, stratifying patients according to genetics, lifestyle, disease presentation, ethnicity, and other parameters may hold the key to bringing effective therapies from the bench to the clinic. Here, we discuss genetic and cellular humanised mouse models, and how they help in defining the genetic and environmental parameters associated with neurodegenerative disease, and so help in developing effective precision medicine strategies for future healthcare.
Collapse
Affiliation(s)
- Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Silvia Corrochano
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Samanta Gasco
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Charlotte Tibbit
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Zeinab Ali
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Abraham Acevedo Arozena
- Unidad de Investigación Hospital Universitario de Canarias, FUNCANIS, Instituto de Tecnologías Biomédicas ULL, and CIBERNED, La Laguna, 38320, Tenerife, Spain
| | | | - Elizabeth M C Fisher
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK.
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
76
|
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Med Res Rev 2019; 40:339-384. [PMID: 31347728 DOI: 10.1002/med.21622] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no current cure. One of the important therapeutic approaches of AD is the inhibition of β-site APP cleaving enzyme-1 (BACE1), which is involved in the rate-limiting step of the cleavage process of the amyloid precursor protein (APP) leading to the generation of the neurotoxic amyloid β (Aβ) protein after the γ-secretase completes its function. The produced insoluble Aβ aggregates lead to plaques deposition and neurodegeneration. BACE1 is, therefore, one of the attractive targets for the treatment of AD. This approach led to the development of potent BACE1 inhibitors, many of which were advanced to late stages in clinical trials. Nonetheless, the high failure rate of lead drug candidates targeting BACE1 brought to the forefront the need for finding new targets to uncover the mystery behind AD. In this review, we aim to discuss the most promising classes of BACE1 inhibitors with a description and analysis of their pharmacodynamic and pharmacokinetic parameters, with more focus on the lead drug candidates that reached late stages of clinical trials, such as MK8931, AZD-3293, JNJ-54861911, E2609, and CNP520. In addition, the manuscript discusses the safety concerns and insignificant physiological effects, which were highlighted for the most successful BACE1 inhibitors. Furthermore, the review demonstrates with increasing evidence that despite tremendous efforts and promising results conceived with BACE1 inhibitors, the latest studies suggest that their clinical use for treating Alzheimer's disease should be reconsidered. Finally, the review sheds light on alternative therapeutic options for targeting AD.
Collapse
Affiliation(s)
- Nour M Moussa-Pacha
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hasan Alniss
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
77
|
Mayeda ER. Invited Commentary: Examining Sex/Gender Differences in Risk of Alzheimer Disease and Related Dementias-Challenges and Future Directions. Am J Epidemiol 2019; 188:1224-1227. [PMID: 30824902 DOI: 10.1093/aje/kwz047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
The majority of people living with Alzheimer disease (AD) and related dementias are women. Longer life expectancy is one factor thought to contribute to this observation, but possible sex-specific biological mechanisms have received considerable attention from the research community. In the current issue of the Journal, Buckley et al. (Am J Epidemiol. 2019;188(7):1213-1223) use death certificate information on all deaths occurring among adults aged ≥60 years in Australia between 2006 and 2014 to evaluate sex/gender differences in rates of death with dementia (all types), AD dementia, and vascular dementia listed on the death certificate. The paper by Buckley et al. highlights several important methodological challenges for research examining sex/gender differences in risk of AD and related dementias, including challenges in measurement, survival bias and competing risks, and selection bias arising from sample selection. The current evidence on possible sex-specific biological risk factors for AD is intriguing, but there are numerous alternative explanations for differences in AD dementia and AD biomarkers between women and men. Triangulation of evidence from study designs with different strengths and weaknesses and transdisciplinary collaboration will be vital to generating conclusive evidence about sex/gender differences in risk of AD and related dementias.
Collapse
Affiliation(s)
- Elizabeth Rose Mayeda
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
78
|
Galts CP, Bettio LE, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102:56-84. [DOI: 10.1016/j.neubiorev.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
79
|
Caldwell JZK, Berg JL, Shan G, Cummings JL, Banks SJ. Sex Moderates the Impact of Diagnosis and Amyloid PET Positivity on Hippocampal Subfield Volume. J Alzheimers Dis 2019; 64:79-89. [PMID: 29865063 PMCID: PMC6004904 DOI: 10.3233/jad-180028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We examined moderation effects of sex and diagnosis on the effect of positive florbetapir positron emission tomography (PET) amyloid-β (Aβ) scan (A+) on hippocampus subfield volumes in 526 normal control (NC) and early mild cognitive impairment (eMCI) participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI2; ADNI-GO). Regression moderation models showed that women— but not men— with NC designation did not show reduced subiculum volumes despite A+. At the eMCI stage, A+ was detrimental across sexes. Findings were significant while accounting for the effects of age, cognition at screening, education, and APOE4 carrier status. These findings suggest that women with A+ have early neural resistance to Alzheimer’s disease-related amyloid burden.
Collapse
Affiliation(s)
| | - Jody-Lynn Berg
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Guogen Shan
- University of Nevada Las Vegas, School of Community Health Sciences, Las Vegas, NV, USA
| | | | - Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | |
Collapse
|
80
|
Chen W, Ji H, Li L, Xu C, Zou T, Cui W, Xu S, Zhou X, Duan S, Wang Q. Significant association between GPR50 hypomethylation and AD in males. Mol Med Rep 2019; 20:1085-1092. [PMID: 31173244 PMCID: PMC6625449 DOI: 10.3892/mmr.2019.10366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/01/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease. G protein coupled receptor 50 (GPR50) is a candidate gene for AD. The present study was designed to determine the association between GPR50 methylation and AD. The methylation levels of the GPR50 promoter in 51 patients with AD and 61 healthy controls were determined by bisulfite pyrophosphate sequencing. All participants were Han Chinese, living in Ningbo. It was identified that the GPR50 promoter methylation level was significantly decreased in the male AD group compared with the male control group (9.15 vs. 16.67%, P=0.002). In addition, it was observed that the GPR50 methylation levels of the females was significantly increased compared with that of males in both the patients with AD and the healthy control group (AD patient group: 33.00 vs. 9.15%, P<0.0001; healthy control group: 29.41 vs. 16.67%, P<0.0001). This may be explained by the fact that GPR50 is located on the X chromosome. In addition, GPR50 methylation was positively correlated with plasma cholinesterase levels in female patients with AD (r=0.489, P=0.039). The present study demonstrated that hypomethylation of the GPR50 promoter in peripheral blood may be a potential biomarker for the diagnosis of AD in Chinese Han males.
Collapse
Affiliation(s)
- Weihua Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Chunshuang Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ting Zou
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830000, P.R. China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shujun Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaohui Zhou
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830000, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
81
|
Keine D, Zelek M, Walker JQ, Sabbagh MN. Polypharmacy in an Elderly Population: Enhancing Medication Management Through the Use of Clinical Decision Support Software Platforms. Neurol Ther 2019; 8:79-94. [PMID: 30900186 PMCID: PMC6534631 DOI: 10.1007/s40120-019-0131-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Polypharmacy is a growing problem in the United States. The use of multiple medications increases the likelihood that a patient will experience potential drug interactions and adverse drug reactions (ADRs). Those individuals with dementia or Alzheimer's disease (AD) are at greater risk, due to age, comorbidities, and an increased likelihood of being on a greater number of neuroactive medications. METHODS uMETHOD Health (uMH) has developed a precision medicine platform to address dementia and mild AD through the creation of personalized, multidomain treatment plans. Many interactions and ADRs may be observed, such as drug-drug interactions (DDIs), drug-gene interactions (DGIs), anticholinergic cognitive burden (ACB), and depression-inducing drugs (DIDs). uMH's algorithms can parse these interactions, rate them based on input from open-source databases, and then record all these interactions in a generated treatment plan. A total of 295 individuals aged 65 and older were included in this analysis. RESULTS Of 295 individuals, 97.59% were on at least one medication, with an overall mean of 11.5 medications per person; 83.66% were on five or more medications. A total of 102 DGIs, 3642 DDIs, and one high-priority DDI were found in this population. There was a significant increase in the number of DDIs as medications per person increased (P value < 0.0001). Of the population, 65.86% were on one or more anticholinergic drugs. There was a significant difference in the ACB score between individuals with cognitive decline and those without. In total, 60.98% of the overall population were on DIDs, with a mean of 1.19 medications per person. CONCLUSIONS The results of this work show that older populations have a high medication burden. With the growing elderly and AD populations, medication management for polypharmacy is a need that grows direr every year. uMH's platform was able to identify a multitude of polypharmacy problems that individuals are currently facing. FUNDING uMETHOD Health.
Collapse
Affiliation(s)
| | | | | | - Marwan N Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
82
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
83
|
Munive V, Zegarra-Valdivia JA, Herrero-Labrador R, Fernandez AM, Aleman IT. Loss of the interaction between estradiol and insulin-like growth factor I in brain endothelial cells associates to changes in mood homeostasis during peri-menopause in mice. Aging (Albany NY) 2019; 11:174-184. [PMID: 30636168 PMCID: PMC6339786 DOI: 10.18632/aging.101739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023]
Abstract
We recently reported that exercise increases resilience to stress in young female mice. Underlying mechanisms include an interaction of the ovarian hormone estradiol (E2) with insulin-like growth factor I (IGF-I), and an increase in the hippocampal levels of the latter. Since changes in mood regulation during aging may contribute to increasing incidence of affective disorders at older age, we determined whether the protective actions of exercise are maintained at later ages. We found that during peri-menopause, exercise no longer improves resilience to stress and even becomes anxiogenic. Furthermore, the interaction seen in young females between the E2 α receptor (ERα) and the IGF-I receptor (IGF-IR) is lost at middle-age. In addition, E2 no longer induces IGF-I uptake by brain endothelial cells, and consequently, hippocampal IGF-I levels do not increase. Treatment of middle-aged females with an ERα agonist did not recover the positive actions of exercise. Collectively, these data indicate that the loss of action of exercise during peri-menopause may be related to a loss of the interaction of IGF-IR with ERα in brain endothelial cells that cannot be ameliorated by estrogen therapy. Changes in regulation of mood by physical activity may contribute to increased appearance of affective disorders along age.
Collapse
Affiliation(s)
- Victor Munive
- Cajal Institute, Madrid, Spain.,Ciberned, Madrid, Spain
| | | | | | | | | |
Collapse
|
84
|
Medeiros ADM, Silva RH. Sex Differences in Alzheimer’s Disease: Where Do We Stand? J Alzheimers Dis 2019; 67:35-60. [DOI: 10.3233/jad-180213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- André de Macêdo Medeiros
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Center of Health and Biological Sciences, Universidade Federal Rural do Semiárido, Mossoró, Brazil
| | - Regina Helena Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
85
|
McFall GP, McDermott KL, Dixon RA. Modifiable Risk Factors Discriminate Memory Trajectories in Non-Demented Aging: Precision Factors and Targets for Promoting Healthier Brain Aging and Preventing Dementia. J Alzheimers Dis 2019; 70:S101-S118. [PMID: 30775975 PMCID: PMC6700610 DOI: 10.3233/jad-180571] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Non-demented cognitive aging trajectories are characterized by vast level and slope differences and a spectrum of outcomes, including dementia. OBJECTIVE The goal of AD risk management (and its corollary, promoting healthy brain aging) is aided by two converging objectives: 1) classifying dynamic distributions of non-demented cognitive trajectories, and 2) identifying modifiable risk-elevating and risk-reducing factors that discriminate stable or normal trajectory patterns from declining or pre-impairment patterns. METHOD Using latent class growth analysis we classified three episodic memory aging trajectories for n = 882 older adults (baseline Mage=71.6, SD=8.9, range = 53-95, female=66%): Stable (SMA; above average level, sustained slope), Normal (NMA; average level, moderately declining slope), and Declining (DMA; below average level, substantially declining slope). Using random forest analyses, we simultaneously assessed 17 risk/protective factors from non-modifiable demographic, functional, psychological, and lifestyle domains. Within two age strata (Young-Old, Old-Old), three pairwise prediction analyses identified important discriminating factors. RESULTS Prediction analyses revealed that different modifiable risk predictors, both shared and unique across age strata, discriminated SMA (i.e., education, depressive symptoms, living status, body mass index, heart rate, social activity) and DMA (i.e., lifestyle activities [cognitive, self-maintenance, social], grip strength, heart rate, gait) groups. CONCLUSION Memory trajectory analyses produced empirical classes varying in level and slope. Prediction analyses revealed different predictors of SMA and DMA that also varied by age strata. Precision approaches for promoting healthier memory aging-and delaying memory impairment-may identify modifiable factors that constitute specific targets for intervention in the differential context of age and non-demented trajectory patterns.
Collapse
Affiliation(s)
- G. Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Kirstie L. McDermott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Roger A. Dixon
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
86
|
Ferreira LSS, Fernandes CS, Vieira MNN, De Felice FG. Insulin Resistance in Alzheimer's Disease. Front Neurosci 2018; 12:830. [PMID: 30542257 PMCID: PMC6277874 DOI: 10.3389/fnins.2018.00830] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
The epidemiological connection between diabetes, obesity, and dementia represents an important public health challenge but also an opportunity to further understand these conditions. The key intersection among the three diseases is insulin resistance, which has been classically described to occur in peripheral tissues in diabetes and obesity and has recently been shown to develop in Alzheimer's disease (AD) brains. Here we review encouraging preclinical and clinical data indicating the potential of targeting impaired insulin signaling with antidiabetic drugs to treat dementia. We further discuss biological mechanisms through which peripheral metabolic dysregulation may lead to brain malfunction, providing possible explanations for the connection between diabetes, obesity, and AD. Finally, we briefly discuss how lifelong allostatic load may interact with aging to increase the risk of dementia in late life.
Collapse
Affiliation(s)
- Laís S. S. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline S. Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo N. N. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
87
|
Wu X, Lv YG, Du YF, Chen F, Reed MN, Hu M, Suppiramaniam V, Tang SS, Hong H. Neuroprotective effects of INT-777 against Aβ 1-42-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Brain Behav Immun 2018; 73:533-545. [PMID: 29935310 DOI: 10.1016/j.bbi.2018.06.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence demonstrates that the neurotoxicity of amyloid-beta (Aβ) deposition plays a causative role in Alzheimer's disease (AD). Herein, we evaluated the neuroprotective effects of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777), a specific G-protein coupled bile acid receptor 1 (TGR5) agonist, in the Aβ1-42-treated mouse model of acute neurotoxicity. Single intracerebroventricular (i.c.v.) injection of aggregated Aβ1-42 (410 pmol/mouse; 5 μl) into the mouse brain induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction. In contrast, INT-777 (1.5 or 3.0 μg/mouse, i.c.v.) significantly improved Aβ1-42-induced cognitive impairment, as reflected by better performance in memory tests. Importantly, INT-777 treatment reversed Aβ1-42-induced TGR5 down-regulation, suppressed the increase of nuclear NF-κB p65, and mitigated neuroinflammation, as evidenced by lower proinflammatory cytokines and less Iba1-positive cells in the hippocampus and frontal cortex. INT-777 treatment also pronouncedly suppressed apoptosis through the reduction of TUNEL-positive cells, decreased caspase-3 activation, increased the ratio of Bcl-2/Bax, and ameliorated synaptic dysfunction by promoting dendritic spine generation with the upregulation of postsynaptic and presynaptic proteins (PSD95 and synaptophysin) in Aβ1-42-treated mice. Our results indicate that INT-777 has potent neuroprotective effects against Aβ1-42-induced neurotoxicity. Taken together, these findings suggest that the activation of TGR5 could be a novel and promising strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yang-Ge Lv
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Feng Du
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Fang Chen
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Miranda N Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mei Hu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Su-Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
88
|
Espeland MA, Carmichael O, Yasar S, Hugenschmidt C, Hazzard W, Hayden KM, Rapp SR, Neiberg R, Johnson KC, Hoscheidt S, Mielke MM. Sex-related differences in the prevalence of cognitive impairment among overweight and obese adults with type 2 diabetes. Alzheimers Dement 2018; 14:1184-1192. [PMID: 30201101 PMCID: PMC6338071 DOI: 10.1016/j.jalz.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/01/2018] [Accepted: 05/10/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus and obesity may increase risks for cognitive decline as individuals age. It is unknown whether this results in different prevalences of cognitive impairment for women and men. METHODS The Action for Health in Diabetes, a randomized controlled clinical trial of a 10-year intensive lifestyle intervention, adjudicated cases of cross-sectional cognitive impairment (mild cognitive impairment or dementia) 10-13 years after enrollment in 3802 individuals (61% women). RESULTS The cross-sectional prevalences of cognitive impairment were 8.3% (women) and 14.8% (men): adjusted odds ratio 0.55, 95% confidence interval [0.43, 0.71], P < .001. Demographic, clinical, and lifestyle risk factors varied between women and men but did not account for this difference, which was limited to individuals without apolipoprotein E (APOE)-ε4 alleles (interaction P = .034). CONCLUSIONS Among overweight and obese adults with type 2 diabetes mellitus, traditional risk factors did not account for the lower prevalence of cognitive impairment observed in women compared with men.
Collapse
Affiliation(s)
- Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | - Sevil Yasar
- Departrment of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - William Hazzard
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kathleen M Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen R Rapp
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rebecca Neiberg
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Karen C Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Siobhan Hoscheidt
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
89
|
The effect of APOE genotype on Alzheimer's disease risk is influenced by sex and docosahexaenoic acid status. Neurobiol Aging 2018; 69:209-220. [DOI: 10.1016/j.neurobiolaging.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/21/2023]
|
90
|
Gurvich C, Hoy K, Thomas N, Kulkarni J. Sex Differences and the Influence of Sex Hormones on Cognition through Adulthood and the Aging Process. Brain Sci 2018; 8:brainsci8090163. [PMID: 30154388 PMCID: PMC6162653 DOI: 10.3390/brainsci8090163] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022] Open
Abstract
Hormones of the hypothalamic-pituitary-gonadal (HPG) axis that regulate reproductive function have multiple effects on the development, maintenance and function of the brain. Sex differences in cognitive functioning have been reported in both health and disease, which may be partly attributed to sex hormones. The aim of the current paper was to provide a theoretical review of how sex hormones influence cognitive functioning across the lifespan as well as provide an overview of the literature on sex differences and the role of sex hormones in cognitive decline, specifically in relation to Alzheimer’s disease (AD). A summary of current hormone and sex-based interventions for enhancing cognitive functioning and/or reducing the risk of Alzheimer’s disease is also provided.
Collapse
Affiliation(s)
- Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC 3004, Australia.
| | - Kate Hoy
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC 3004, Australia.
| | - Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC 3004, Australia.
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC 3004, Australia.
| |
Collapse
|
91
|
Osipova ED, Komleva YK, Morgun AV, Lopatina OL, Panina YA, Olovyannikova RY, Vais EF, Salmin VV, Salmina AB. Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Front Aging Neurosci 2018; 10:234. [PMID: 30127733 PMCID: PMC6088457 DOI: 10.3389/fnagi.2018.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB in vitro models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB in vitro model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering. Vascular dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within the neurovascular unit, impairments in neurogenic niches where microvascular scaffold plays a key regulatory role. The review article is focused on aging-related alterations in BBB and current approaches to development of “aging” BBB models in vitro.
Collapse
Affiliation(s)
- Elena D Osipova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Raissa Ya Olovyannikova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Elizaveta F Vais
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
92
|
Noreen Z, DeJesus J, Bhatti A, Loffredo CA, John P, Khan JS, Nunlee-Bland G, Ghosh S. Epidemiological Investigation of Type 2 Diabetes and Alzheimer's Disease in a Pakistani Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1582. [PMID: 30049934 PMCID: PMC6122092 DOI: 10.3390/ijerph15081582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) and the possibility of it contributing to the risk of Alzheimer's disease (AD) have become important health concerns worldwide and in Pakistan, where the co-occurrence of T2DM and AD is becoming more frequent. To gain insights on this phenomenon, a cross-sectional study was initiated. We recruited and interviewed 820 research participants from four cities in Pakistan: 250 controls, 450 T2DM, 100 AD, and 20 with both diseases. Significant differences between groups were observed for age (p < 0.0001), urban vs. rural locality (p = 0.0472) and residing near industrial areas. The average HbA1c (%) level was 10.68 ± 2.34 in the T2DM group, and females had a lower level than males (p = 0.003). In the AD group, significant relationships existed between education and family history. Overall, the results suggest that T2DM and AD were associated with both socio-demographic and environmental factors in Pakistani participants. Detailed molecular investigations are underway in our laboratory to decipher the differential genetic pathways of the two diseases to address their increasing prevalence in this developing nation.
Collapse
Affiliation(s)
- Zarish Noreen
- Department of Biology, Howard University, Washington, DC 20059, USA.
- Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Jessica DeJesus
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC 20057, USA.
| | - Attya Bhatti
- Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC 20057, USA.
| | - Peter John
- Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Jahangir S Khan
- Department of Surgery, Rawalpindi Medical College, Rawalpindi, Punjab 46000, Pakistan.
| | - Gail Nunlee-Bland
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC 20059, USA.
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, DC 20059, USA.
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
93
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
94
|
Keyvani K, Münster Y, Kurapati NK, Rubach S, Schönborn A, Kocakavuk E, Karout M, Hammesfahr P, Wang YC, Hermann DM, Teuber-Hanselmann S, Herring A. Higher levels of kallikrein-8 in female brain may increase the risk for Alzheimer's disease. Brain Pathol 2018; 28:947-964. [PMID: 29505099 DOI: 10.1111/bpa.12599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/28/2018] [Indexed: 01/21/2023] Open
Abstract
Women seem to have a higher vulnerability to Alzheimer's disease (AD), but the underlying mechanisms of this sex dichotomy are not well understood. Here, we first determined the influence of sex on various aspects of Alzheimer's pathology in transgenic CRND8 mice. We demonstrate that beta-amyloid (Aβ) plaque burden starts to be more severe around P180 (moderate disease stage) in female transgenics when compared to males and that aging aggravates this sex-specific difference. Furthermore, we show that female transgenics suffer from higher levels of neurovascular dysfunction around P180, resulting in impaired Aβ peptide clearance across the blood-brain-barrier at P360. Female transgenics show also higher levels of diffuse microgliosis and inflammation, but the density of microglial cells surrounding Aβ plaques is less in females. In line with this finding, testosterone compared to estradiol was able to improve microglial viability and Aβ clearance in vitro. The spatial memory of transgenics was in general poorer than in wildtypes and at P360 worse in females irrespective of their genotype. This difference was accompanied by a slightly diminished dendritic complexity in females. While all the above-named sex-differences emerged after the onset of Aβ pathology, kallikrein-8 (KLK8) protease levels were, as an exception, higher in female than in male brains very early when virtually no plaques were detectable. In a second step, we quantified cerebral KLK8 levels in AD patients and healthy controls, and could ascertain, similar to mice, higher KLK8 levels not only in AD-affected but also in healthy brains of women. Accordingly, we could demonstrate that estradiol but not testosterone induces KLK8 synthesis in neuronal and microglial cells. In conclusion, multiple features of AD are more pronounced in females. Here, we show for the first time that this sex-specific difference may be meditated by estrogen-induced KLK8 overproduction long before AD pathology emerges.
Collapse
Affiliation(s)
- Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Yvonne Münster
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Nirup K Kurapati
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sebastian Rubach
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Andreas Schönborn
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Emre Kocakavuk
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Mohamed Karout
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Pia Hammesfahr
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Ya-Chao Wang
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sarah Teuber-Hanselmann
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Arne Herring
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
95
|
Brooks SW, Dykes AC, Schreurs BG. A High-Cholesterol Diet Increases 27-Hydroxycholesterol and Modifies Estrogen Receptor Expression and Neurodegeneration in Rabbit Hippocampus. J Alzheimers Dis 2018; 56:185-196. [PMID: 27911307 DOI: 10.3233/jad-160725] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hypercholesterolemia has been implicated in numerous health problems from cardiovascular disease to neurodegeneration. High serum cholesterol levels in midlife have been associated with an increased risk of developing Alzheimer's disease (AD) later in life which suggests that the pathways leading to AD pathology might be activated decades before the symptoms of the disease are detected. Cholesterol-fed animals, particularly cholesterol-fed rabbits, exhibit brain pathology similar to the changes found in brains of AD patients. Dietary cholesterol, which cannot pass the blood-brain barrier, is thought to influence central nervous system homeostasis by increased transport of its circulatory breakdown product, 27-hydroxycholesterol (27-OHC), into the brain. 27-OHC is an endogenous selective estrogen receptor modulator. Estrogen-mediated non-reproductive functions require estrogen receptors (ERs) and include modulation of mitochondrial function and structure, as well as regulation of synaptogenesis in the brain. ERs are located in brain areas affected early in AD pathogenesis, including the hippocampus. Here we report that increase in serum cholesterol, induced by feeding rabbits a high-cholesterol diet, is associated with higher levels of 27-OHC in the brain as well as increased levels of neurodegeneration in the hippocampus. Furthermore, these results are accompanied by changes in expression of ERs in the hippocampus as well as a decrease in hippocampal mitochondria. These findings provide an important insight into one of the possible mechanisms involved in the development of AD, and shed light on the processes that may antedate amyloid-β and tau phosphorylation changes currently hypothesized to cause AD symptomology and pathology.
Collapse
Affiliation(s)
- Sylwia W Brooks
- School of Medicine, West Virginia University, Morgantown, WV, USA.,Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | - Ava C Dykes
- Molecular Biology Core Facility, Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Bernard G Schreurs
- School of Medicine, West Virginia University, Morgantown, WV, USA.,Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| |
Collapse
|
96
|
Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer's Disease Therapy: Insights from Novel Mechanisms Beyond Memory Defects. Front Neurosci 2018; 12:37. [PMID: 29467605 PMCID: PMC5808215 DOI: 10.3389/fnins.2018.00037] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia in late life, will become even more prevalent by midcentury, constituting a major global health concern with huge implications for individuals and society. Despite scientific breakthroughs during the past decades that have expanded our knowledge on the cellular and molecular bases of AD, therapies that effectively halt disease progression are still lacking, and focused efforts are needed to address this public health challenge. Because AD is classically recognized as a disease of memory, studies have mainly focused on investigating memory-associated brain defects. However, compelling evidence has indicated that additional brain regions, not classically linked to memory, are also affected in the course of disease. In this review, we outline the current understanding of key pathophysiological mechanisms in AD and their clinical manifestation. We also highlight how considering the complex nature of AD pathogenesis, and exploring repurposed drug approaches can pave the road toward the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Rudimar L. Frozza
- Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
97
|
Meyer CE, Kurth F, Lepore S, Gao JL, Johnsonbaugh H, Oberoi MR, Sawiak SJ, MacKenzie-Graham A. In vivo magnetic resonance images reveal neuroanatomical sex differences through the application of voxel-based morphometry in C57BL/6 mice. Neuroimage 2017; 163:197-205. [PMID: 28923275 PMCID: PMC5716897 DOI: 10.1016/j.neuroimage.2017.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Behaviorally relevant sex differences are often associated with structural differences in the brain and many diseases are sexually dimorphic in prevalence and progression. Characterizing sex differences is imperative to gaining a complete understanding of behavior and disease which will, in turn, allow for a balanced approach to scientific research and the development of therapies. In this study, we generated novel tissue probability maps (TPMs) based on 30 male and 30 female in vivo C57BL/6 mouse brain magnetic resonance images and used voxel-based morphometry (VBM) to analyze sex differences. Females displayed larger anterior hippocampus, basolateral amygdala, and lateral cerebellar cortex volumes, while males exhibited larger cerebral cortex, medial amygdala, and medial cerebellar cortex volumes. Atlas-based morphometry (ABM) revealed a statistically significant sex difference in cortical volume and no difference in whole cerebellar volume. This validated our VBM findings that showed a larger cerebral cortex in male mice and a pattern of dimorphism in the cerebellum where the lateral portion was larger in females and the medial portion was larger in males. These results are consonant with previous ex vivo studies examining sex differences, but also suggest further regions of interest.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Florian Kurth
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stefano Lepore
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Josephine L Gao
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Hadley Johnsonbaugh
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Mandavi R Oberoi
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stephen J Sawiak
- Wolfson Brain Imaging Centre, University of Cambridge, Box 65 Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA.
| |
Collapse
|
98
|
Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 2017; 143:418-431. [PMID: 28397282 PMCID: PMC5724505 DOI: 10.1111/jnc.14037] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Abstract
Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid".
Collapse
Affiliation(s)
- Amandine Grimm
- University of BaselTransfaculty Research PlatformMolecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthBaselSwitzerland
- University of BaselPsychiatric University ClinicsBaselSwitzerland
| | - Anne Eckert
- University of BaselTransfaculty Research PlatformMolecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthBaselSwitzerland
- University of BaselPsychiatric University ClinicsBaselSwitzerland
| |
Collapse
|
99
|
McDermott KL, McFall GP, Andrews SJ, Anstey KJ, Dixon RA. Memory Resilience to Alzheimer's Genetic Risk: Sex Effects in Predictor Profiles. J Gerontol B Psychol Sci Soc Sci 2017; 72:937-946. [PMID: 28025282 DOI: 10.1093/geronb/gbw161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/12/2016] [Indexed: 02/05/2023] Open
Abstract
Objectives Apolipoprotein E (APOE) ɛ4 and Clusterin (CLU) C alleles are risk factors for Alzheimer's disease (AD) and episodic memory (EM) decline. Memory resilience occurs when genetically at-risk adults perform at high and sustained levels. We investigated whether (a) memory resilience to AD genetic risk is predicted by biological and other risk markers and (b) the prediction profiles vary by sex and AD risk variant. Method Using a longitudinal sample of nondemented adults (n = 642, aged 53-95) we focused on memory resilience (over 9 years) to 2 AD risk variants (APOE, CLU). Growth mixture models classified resilience. Random forest analysis, stratified by sex, tested the predictive importance of 22 nongenetic risk factors from 5 domains (n = 24-112). Results For both sexes, younger age, higher education, stronger grip, and everyday novel cognitive activity predicted memory resilience. For women, 9 factors from functional, health, mobility, and lifestyle domains were also predictive. For men, only fewer depressive symptoms was an additional important predictor. The prediction profiles were similar for APOE and CLU. Discussion Although several factors predicted resilience in both sexes, a greater number applied only to women. Sex-specific mechanisms and intervention targets are implied.
Collapse
Affiliation(s)
| | - G Peggy McFall
- Neuroscience and Mental Health Institute.,Department of Psychology, University of Alberta, Edmonton, Canada
| | - Shea J Andrews
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Roger A Dixon
- Neuroscience and Mental Health Institute.,Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
100
|
Toufexis D, King SB, Michopoulos V. Socially Housed Female Macaques: a Translational Model for the Interaction of Chronic Stress and Estrogen in Aging. Curr Psychiatry Rep 2017; 19:78. [PMID: 28905316 DOI: 10.1007/s11920-017-0833-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Estrogen's role in cognitive aging remains unclear. Despite evidence implicating stress in pathological aging, the interaction of stress with estrogen on cognition in older women has received little attention, and few animal models exist with which to examine this interaction. RECENT FINDINGS We present evidence that aging socially subordinate female macaques that experience chronic psychosocial stress constitute a suitable model to investigate this. First, we review studies showing that estrogen modulates cognition in animal models, as well as studies demonstrating that estrogen's action on certain types of cognition is impaired by stress. Next, we discuss data showing that middle-aged socially subordinate female macaques exhibit distinct stress-induced phenotypes, and review our investigations indicating that estrogen modulates behavior and physiology differently in subordinate female monkeys. We conclude that socially housed female macaques represent a translational animal model for investigating the interplay of chronic stress and estrogen on cognitive aging in women.
Collapse
Affiliation(s)
- Donna Toufexis
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA.,Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - S Bradley King
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA
| | - Vasiliki Michopoulos
- Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|