51
|
Puchert M, Obst J, Koch C, Zieger K, Engele J. CXCL11 promotes tumor progression by the biased use of the chemokine receptors CXCR3 and CXCR7. Cytokine 2019; 125:154809. [PMID: 31437604 DOI: 10.1016/j.cyto.2019.154809] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The chemokine, CXCL11, is highly expressed in different solid tumors and controls tumor growth, metastasis, and lymphocyte infiltration. Although of potential clinical interest, it is presently unknown whether these tumor-promoting activities involve the CXCL11 receptors, CXCR3 and/or CXCR7. This issue is further intrigued by the fact that CXCR3 exists in the two functionally divergent splice variants, CXCR3A and CXCR3B, which exert pro- and anti-tumorigenic influences, respectively. To unravel the role of the various CXCL11 receptors in tumor progression, we have now defined their role in CXCL11-induced chemotaxis of the tumor cell lines, A549, C33-A, DLD-1, MDA-MB-231, and PC-3. CXCL11-induced cell migration was either sensitive to the CXCR3 antagonist, ÀMG487 (DLD-1), the CXCR7 antagonist, CCX771 (C33-A, PC-3), or both (A549, MDA-231). Moreover, in C33-A and PC-3 cells, but not in the other tumor cells, pharmacological activation and inhibition of CXCR3B prevented and potentiated CXCL11-induced cell migration, respectively. Both immunocytochemistry and Western blot analysis finally revealed that the observed cell type specific organization of the CXCL11 system is not the result of differences in expression levels or subcellular location of CXCL11 receptors. Our findings imply that the therapeutic use of CXCR3 antagonists in cancer patients requires exact knowledge of the organization of the CXCR3 system in the respective tumor.
Collapse
Affiliation(s)
- Malte Puchert
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Jessica Obst
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Christian Koch
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Konstanze Zieger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany.
| |
Collapse
|
52
|
Knockdown of the CXCL12/CXCR7 chemokine pathway results in learning deficits and neural progenitor maturation impairment in mice. Brain Behav Immun 2019; 80:697-710. [PMID: 31100368 DOI: 10.1016/j.bbi.2019.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
In adult brain, the chemokine CXCL12 and its receptors CXCR4 and CXCR7 are expressed in neural progenitor and glial cells. Conditional Cxcl12 or Cxcr4 gene knockout in mice leads to severe alterations in neural progenitor proliferation, migration and differentiation. As adult hippocampal neurogenesis is involved in learning and memory processes, we investigated the long-term effects of reduced expression of CXCL12 or CXCR7 in heterozygous Cxcl12+/- and Cxcr7+/- animals (KD mice) on hippocampal neurogenesis, neuronal differentiation and memory processing. In Cxcl12 KD mice, Cxcr4 mRNA expression was reduced, whereas Cxcr7 was slightly increased. Conversely, in Cxcr7 KD mice, both Cxcr4 and Cxcl12 mRNA levels were decreased. Moreover, Cxcl12 KD animals showed marked behavioral and learning deficits that were associated with impaired neurogenesis in the hippocampus. Conversely, Cxcr7 KD animals showed mild learning deficits with normal neurogenesis, but reduced cell differentiation, measured with doublecortin immunolabeling. These findings suggested that a single Cxcl12 or Cxcr7 allele might not be sufficient to maintain the hippocampal niche functionality throughout life, and that heterozygosity might represent a susceptibility factor for memory dysfunction progression.
Collapse
|
53
|
Nash B, Tarn K, Irollo E, Luchetta J, Festa L, Halcrow P, Datta G, Geiger JD, Meucci O. Morphine-Induced Modulation of Endolysosomal Iron Mediates Upregulation of Ferritin Heavy Chain in Cortical Neurons. eNeuro 2019; 6:ENEURO.0237-19.2019. [PMID: 31300544 PMCID: PMC6675873 DOI: 10.1523/eneuro.0237-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent and are aggravated by µ-opioid use. We have previously shown that morphine and other µ-opioids may contribute to HAND by inhibiting the homeostatic and neuroprotective chemokine receptor CXCR4 in cortical neurons, and this novel mechanism depends on upregulation of the protein ferritin heavy chain (FHC). Here, we examined the cellular events and potential mechanisms involved in morphine-mediated FHC upregulation using rat cortical neurons of either sex in vitro and in vivo. Morphine dose dependently increased FHC protein levels in primary neurons through µ-opioid receptor (µOR) and Gαi-protein signaling. Cytoplasmic FHC levels were significantly elevated, but nuclear FHC levels and FHC gene expression were unchanged. Morphine-treated rats also displayed increased FHC levels in layer 2/3 neurons of the prefrontal cortex. Importantly, both in vitro and in vivo FHC upregulation was accompanied by loss of mature dendritic spines, which was also dependent on µOR and Gαi-protein signaling. Moreover, morphine upregulated ferritin light chain (FLC), a component of the ferritin iron storage complex, suggesting that morphine altered neuronal iron metabolism. Indeed, prior to FHC upregulation, morphine increased cytoplasmic labile iron levels as a function of decreased endolysosomal iron. In line with this, chelation of endolysosomal iron (but not extracellular iron) blocked morphine-induced FHC upregulation and dendritic spine reduction, whereas iron overloading mimicked the effect of morphine on FHC and dendritic spines. Overall, these data demonstrate that iron mediates morphine-induced FHC upregulation and consequent dendritic spine deficits and implicate endolysosomal iron efflux to the cytoplasm in these effects.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Kevin Tarn
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Peter Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
54
|
Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry 2019; 9:151. [PMID: 31123247 PMCID: PMC6533277 DOI: 10.1038/s41398-019-0492-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022] Open
Abstract
Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) arise from complex interactions between genetic and environmental factors. Common genetic variants associated with multiple psychiatric disorders suggest that shared genetic architecture could contribute to divergent clinical syndromes. To evaluate shared transcriptional alterations across connected brain regions, Affymetrix microarrays were used to profile postmortem dorsolateral prefrontal cortex (DLPFC), hippocampus, and associative striatum from 19 well-matched tetrads of subjects with SCZ, BD, MDD, or unaffected controls. SCZ subjects showed a substantial burden of differentially expressed genes across all examined brain regions with the greatest effects in hippocampus, whereas BD and MDD showed less robust alterations. Pathway analysis of transcriptional profiles compared across diagnoses demonstrated commonly enriched pathways between all three disorders in hippocampus, significant overlap between SCZ and BD in DLPFC, but no significant overlap of enriched pathways between disorders in striatum. SCZ samples showed increased expression of transcripts associated with inflammation across all brain regions examined, which was not evident in BD or MDD, or in rat brain following chronic dosing with antipsychotic drugs. Several markers of inflammation were confirmed by RT-PCR in hippocampus, including S100A8/9, IL-6, MAFF, APOLD1, IFITM3, and BAG3. A cytokine ELISA panel showed significant increases in IL-2 and IL-12p70 protein content in hippocampal tissue collected from same SCZ subjects when compared to matched control subjects. These data suggest an overlapping subset of dysregulated pathways across psychiatric disorders; however, a widespread increase in inflammation appears to be a specific feature of the SCZ brain and is not likely to be attributable to chronic antipsychotic drug treatment.
Collapse
|
55
|
Cai F, Dai C, Chen S, Wu Q, Liu X, Hong Y, Wang Z, Li L, Yan W, Wang R, Zhang J. CXCL12-regulated miR-370-3p functions as a tumor suppressor gene by targeting HMGA2 in nonfunctional pituitary adenomas. Mol Cell Endocrinol 2019; 488:25-35. [PMID: 30853598 DOI: 10.1016/j.mce.2019.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
Silencing of noncoding genes within the imprinted DLK1-MEG3 locus is exclusive to human nonfunctional pituitary adenomas (NFPAs), but the exact mechanism is still unclear. This study was designed to demonstrate the impact of CXCL12 on the expression of miRNAs within this locus and phenotypic alterations of NFPAs. Human NFPA samples were collected for screening differentially expressed miRNAs by CXCL12. Target mRNAs of the miRNAs were predicted and verified in vitro. Tumor phenotypic alterations were also tested. Another 51 NFPA samples were enrolled to examine the correlation and clinical features. The expression of miR-370 was decreased by CXCL12 treatment in NFPAs. miR-370-3p was predicted and verified to target HMGA2 as a tumor suppressor gene. Overexpression of HMGA2 inhibited its antitumor function. miR-370-3p was downregulated and HMGA2 was upregulated significantly in High grade NFPAs. In conclusion, the CXCL12/miR-370-3p/HMGA2 signaling pathway is involved in tumor growth and invasiveness of NFPAs.
Collapse
Affiliation(s)
- Feng Cai
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Congxin Dai
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shasha Chen
- Zhejiang Provincial Key Lab of Geriatrics, Dept. of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang Province, PR China
| | - Qun Wu
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Xiaohai Liu
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Hong
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Zhen Wang
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Li Li
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Wei Yan
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Renzhi Wang
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Jianmin Zhang
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
56
|
Openshaw RL, Kwon J, McColl A, Penninger JM, Cavanagh J, Pratt JA, Morris BJ. JNK signalling mediates aspects of maternal immune activation: importance of maternal genotype in relation to schizophrenia risk. J Neuroinflammation 2019; 16:18. [PMID: 30691477 PMCID: PMC6350402 DOI: 10.1186/s12974-019-1408-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Important insight into the mechanisms through which gene-environmental interactions cause schizophrenia can be achieved through preclinical studies combining prenatal immune stimuli with disease-related genetic risk modifications. Accumulating evidence associates JNK signalling molecules, including MKK7/MAP2K7, with genetic risk. We tested the hypothesis that Map2k7 gene haploinsufficiency in mice would alter the prenatal immune response to the viral mimetic polyriboinosinic-polyribocytidylic acid (polyI:C), specifically investigating the impact of maternal versus foetal genetic variants. Methods PolyI:C was administered to dams (E12.5), and cytokine/chemokine levels were measured 6 h later, in maternal plasma, placenta and embryonic brain. Results PolyI:C dramatically elevated maternal plasma levels of most cytokines/chemokines. Induction of IL-1β, IL-2, IL-10, IL-12, TNF-α and CXCL3 was enhanced, while CCL5 was suppressed, in Map2k7 hemizygous (Hz) dams relative to controls. Maternal polyI:C administration also increased embryonic brain chemokines, influenced by both maternal and embryonic genotype: CCL5 and CXCL10 levels were higher in embryonic brains from Map2k7 dams versus control dams; for CCL5, this was more pronounced in Map2k7 Hz embryos. Placental CXCL10 and CXCL12 levels were also elevated by polyI:C, the former enhanced and the latter suppressed, in placentae from maternal Map2k7 Hzs relative to control dams receiving polyI:C. Conclusions The results demonstrate JNK signalling as a mediator of MIA effects on the foetus. Since both elevated CXCL10 and supressed CXCL12 compromise developing GABAergic interneurons, the results support maternal immune challenge contributing to schizophrenia-associated neurodevelopmental abnormalities. The influence of Map2k7 on cytokine/chemokine induction converges the genetic and environmental aspects of schizophrenia, and the overt influence of maternal genotype offers an intriguing new insight into modulation of embryonic neurodevelopment by genetic risk. Electronic supplementary material The online version of this article (10.1186/s12974-019-1408-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jaedeok Kwon
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alison McColl
- Institute of Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Josef M Penninger
- IMBA, Institute for Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonathan Cavanagh
- Institute of Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
57
|
Hevner RF. Intermediate progenitors and Tbr2 in cortical development. J Anat 2019; 235:616-625. [PMID: 30677129 DOI: 10.1111/joa.12939] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
In developing cerebral cortex, intermediate progenitors (IPs) are transit amplifying cells that specifically express Tbr2 (gene: Eomes), a T-box transcription factor. IPs are derived from radial glia (RG) progenitors, the neural stem cells of developing cortex. In turn, IPs generate glutamatergic projection neurons (PNs) exclusively. IPs are found in ventricular and subventricular zones, where they differentiate as distinct ventricular IP (vIP) and outer IP (oIP) subtypes. Morphologically, IPs have short processes, resembling filopodia or neurites, that transiently contact other cells, most importantly dividing RG cells to mediate Delta-Notch signaling. Also, IPs secrete a chemokine, Cxcl12, which guides interneuron and microglia migrations and promotes thalamocortical axon growth. In mice, IPs produce clones of 1-12 PNs, sometimes spanning multiple layers. After mitosis, IP daughter cells undergo asymmetric cell death in the majority of instances. In mice, Tbr2 is necessary for PN differentiation and subtype specification, and to repress IP-genic transcription factors. Tbr2 directly represses Insm1, an IP-genic transcription factor gene, as well as Pax6, a key activator of Tbr2 transcription. Without Tbr2, abnormal IPs transiently accumulate in elevated numbers. More broadly, Tbr2 regulates the transcriptome by activating or repressing hundreds of direct target genes. Notably, Tbr2 'unlocks' and activates PN-specific genes, such as Tbr1, by recruiting Jmjd3, a histone H3K27me3 demethylase that removes repressive epigenetic marks placed by polycomb repressive complex 2. IPs have played an important role in the evolution and gyrification of mammalian cerebral cortex, and TBR2 is essential for human brain development.
Collapse
Affiliation(s)
- Robert F Hevner
- Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|
58
|
Monaco S, Baur K, Hellwig A, Hölzl-Wenig G, Mandl C, Ciccolini F. A Flow Cytometry-Based Approach for the Isolation and Characterization of Neural Stem Cell Primary Cilia. Front Cell Neurosci 2019; 12:519. [PMID: 30692915 PMCID: PMC6339872 DOI: 10.3389/fncel.2018.00519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 01/15/2023] Open
Abstract
In the adult mammalian brain, the apical surface of the subependymal zone (SEZ) is covered by many motile ependymal cilia and a few primary cilia originating from rare intermingled neural stem cells (NSCs). In NSCs the primary cilia are key for the transduction of essential extracellular signals such as Sonic hedgehog (SHH) and platelet-derived growth factor (PDGF). Despite their importance, the analysis of NSC primary cilia is greatly hampered by the fact that they are overwhelmingly outnumbered by the motile cilia. We here take advantage of flow cytometry to purify the two cilia types and allow their molecular characterization. Primary cilia were identified based on immunoreactivity to the marker adenylate cyclase type III (AC3) and differential levels of prominin-1 whereas motile cilia displayed immunoreactivity only to the latter. Consistent with the morphological differences between the two classes of cilia, enrichment of motile cilia positively correlated with size. Moreover, we observed age-dependent variations in the abundance of the two groups of ciliary organelles reflecting the changes associated with their development. The two cilia groups also differed with respect to the expression of signaling molecules, since PDGF receptor (PDGFR)α, smoothened (Smo) and CXC chemokine receptor (CXCR)4 were only detected in isolated primary but not motile cilia. Thus, our novel method of cilia isolation and characterization by flow cytometry has the potential to be extended to the study of cilia from different tissues and organs, providing a powerful tool for the investigation of primary cilia in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sara Monaco
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Katja Baur
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Hellwig
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Mandl
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Francesca Ciccolini
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
59
|
Fan H, Wang W, Yan J, Xiao L, Yang L. Prognostic significance of CXCR7 in cancer patients: a meta-analysis. Cancer Cell Int 2018; 18:212. [PMID: 30574021 PMCID: PMC6300004 DOI: 10.1186/s12935-018-0702-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Background CXC chemokine receptor 7 (CXCR7) is frequently overexpressed in a variety of tumors. Nevertheless, whether CXCR7 can be used as a tumor prognosis marker has not been systematically assessed. The current meta-analysis was performed to obtain an accurate evaluation of the relationship between CXCR7 level and the prognosis of cancer patients. Methods Embase, Web of Science, and PubMed were systematically searched according to a defined search strategy up to June 11, 2018. Then, the required data were extracted from all qualified studies which were screened out based on the defined inclusion and exclusion criteria. Finally, the hazard ratios (HR) with 95% confidence intervals (CI) were used to evaluate the prognostic significance of CXCR7 in tumor patients. Results A total of 28 original research studies comprising 33 cohorts and 5685 patients were included in this meta-analysis. The results showed that CXCR7 overexpression was significantly related to worse overall survival (OS) (HR 1.72; 95% CI 1.49–1.99), disease-free survival (DFS) (HR 5.58; 95% CI 3.16–9.85), progression-free survival (PFS) (HR 2.83; 95% CI 1.66–4.85) and recurrence-free survival (RFS) (HR 1.58; 95% CI 1.34–1.88) in cancer patients. Furthermore, for certain types of cancer, significant associations between higher CXCR7 expression and worse OS of glioma (HR 1.77; 95% CI 1.43–2.19), breast cancer (HR 1.45; 95% CI 1.28–1.63), esophageal cancer (HR 2.72; 95% CI 1.11–6.66) and pancreatic cancer (HR 1.46; 95% CI 1.12–1.90) were found. However, for lung cancer and hepatocellular cancer, there was no significant relationship between CXCR7 expression level and OS, (HR 2.40; 95% CI 0.34–17.07) and (HR 1.37; 95% CI 0.84–2.24) respectively. Conclusions Increased CXCR7 level could predict poor prognosis of tumor patients and might be regarded as a novel prognostic biomarker for tumor patients.
Collapse
Affiliation(s)
- Huiqian Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
60
|
Diverse facets of cortical interneuron migration regulation – Implications of neuronal activity and epigenetics. Brain Res 2018; 1700:160-169. [DOI: 10.1016/j.brainres.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
|
61
|
Shao Y, Zhou F, He D, Zhang L, Shen J. Overexpression of CXCR7 promotes mesenchymal stem cells to repair phosgene-induced acute lung injury in rats. Biomed Pharmacother 2018; 109:1233-1239. [PMID: 30551373 DOI: 10.1016/j.biopha.2018.10.108] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Phosgene exposure may result in acute lung injury (ALI) with high mortality. Emerging evidence suggests that mesenchymal stem cells (MSCs) have a therapeutic potential against ALI. CXC chemokine receptor 7 (CXCR7) has been identified as a receptor of stromal-cell-derived factor 1 (SDF1) involved in MSC migration and may be an important mediator of the therapeutic effects of MSCs on ALI. In our study, we initially constructed a lentiviral vector overexpressing CXCR7 and then successfully transduced it into rat bone marrow-derived MSCs (resulting in MSCs-CXCR7). We found that ALI and the wet-to-dry ratio significantly decreased in the phosgene-exposed rats after administration of MSCs-CXCR7 or MSCs-GFP. Indeed, treatment with MSCs-CXCR7 caused further improvement. Moreover, injection of MSCs-CXCR7 significantly facilitated MSC homing to injured lung tissue. Meanwhile, overexpression of CXCR7 promoted differentiation of MSCs into type II alveolar epithelial (AT II) cells and enhanced the ability of MSCs to modulate the inflammatory response in phosgene-induced ALI. Taken together, our findings suggest that CXCR7-overexpressing MSCs may markedly facilitate treatment of phosgene-induced ALI (P-ALI) in rats.
Collapse
Affiliation(s)
- Yiru Shao
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Fangqing Zhou
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Daikun He
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jie Shen
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China; Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| |
Collapse
|
62
|
Lim L, Mi D, Llorca A, Marín O. Development and Functional Diversification of Cortical Interneurons. Neuron 2018; 100:294-313. [PMID: 30359598 PMCID: PMC6290988 DOI: 10.1016/j.neuron.2018.10.009] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
In the cerebral cortex, GABAergic interneurons have evolved as a highly heterogeneous collection of cell types that are characterized by their unique spatial and temporal capabilities to influence neuronal circuits. Current estimates suggest that up to 50 different types of GABAergic neurons may populate the cerebral cortex, all derived from progenitor cells in the subpallium, the ventral aspect of the embryonic telencephalon. In this review, we provide an overview of the mechanisms underlying the generation of the distinct types of interneurons and their integration in cortical circuits. Interneuron diversity seems to emerge through the implementation of cell-intrinsic genetic programs in progenitor cells, which unfold over a protracted period of time until interneurons acquire mature characteristics. The developmental trajectory of interneurons is also modulated by activity-dependent, non-cell-autonomous mechanisms that influence their ability to integrate in nascent circuits and sculpt their final distribution in the adult cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Da Mi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
63
|
Ka M, Moffat JJ, Kim WY. MACF1 Controls Migration and Positioning of Cortical GABAergic Interneurons in Mice. Cereb Cortex 2018; 27:5525-5538. [PMID: 27756764 DOI: 10.1093/cercor/bhw319] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023] Open
Abstract
GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain.
Collapse
Affiliation(s)
- Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
64
|
Han B, Feng D, Yu X, Liu Y, Yang M, Luo F, Zhou L, Liu F. MicroRNA-144 mediates chronic inflammation and tumorigenesis in colorectal cancer progression via regulating C-X-C motif chemokine ligand 11. Exp Ther Med 2018; 16:1935-1943. [PMID: 30186421 PMCID: PMC6122338 DOI: 10.3892/etm.2018.6389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The aim of the present study was to investigate the expression of microRNA-144 (miR-144) and C-X-C motif chemokine ligand 11 (CXCL11) in CRC and their association. Data from Gene Expression Omnibus (GEO) DataSets were analyzed to obtain the expression profile of CXCL11 in CRC. Subsequently, serum samples were collected from 65 subjects, including 39 patients with CRC and 26 controls; CRC and adjacent normal tissues were collected from all 39 CRC patients and the expression of CXCL11 was measured in these specimens. After searching for the potential regulator of CXCL11 through bioinformatics analysis, the levels of miR-144 in the clinical specimens were also detected. Finally, the regulatory association between miR-144 and CXCL11 was certified via the dual-luciferase reporter assay. Microarray data and bioinformatics analysis demonstrated that CXCL11 was significantly upregulated in CRC tissues and miR-144 was a potential regulator of CXCL11. In line with this finding, the expression of CXCL11 was significantly increased in the serum and tumor samples of patients with CRC, while that of miR-144 was downregulated. Dual-luciferase reporter assay revealed that miR-144 directly targets the 3′-untranslated region of CXCL11 mRNA to regulate its expression. These results demonstrated that enhanced CXCL11 expression in patients with CRC was associated with reduced miR-144 expression. The results of the present study may indicate a novel regulatory role of miR-144 in CRC through CXCL11 downregulation.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Feng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xin Yu
- Health Service Center of Southeast Community, Nanchong, Sichuan 637000, P.R. China
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
65
|
Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochem Pharmacol 2018. [DOI: 10.1016/j.bcp.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
66
|
Gao D, Sun H, Zhu J, Tang Y, Li S. CXCL12 induces migration of Schwann cells via p38 MAPK and autocrine of CXCL12 by the CXCR4 receptor. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3119-3125. [PMID: 31938440 PMCID: PMC6958085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/28/2018] [Indexed: 06/10/2023]
Abstract
Schwann cells (SCs) play a crucially supportive role in repair of injured peripheral nerve system (PNS). CXCL12 plays a significant role in migration of stem cells and embryonic developmental cells and CXCL12 is strongly chemotactic for a variety of cells. Our study was designed to determine the role of CXCL12 in Schwann cell proliferation and migration. Our study demonstrated that CXCL12 had no effect on Schwann cell proliferation while significantly promoting Schwann cell migration. CXCL12-induced Schwann cell migration was significantly attenuated by inhibition of its receptor CXCR4 and p38 MAPK through co-treatment with AMD3100 and SB203580, separately. Besides, Western blot, QRT-PCR, and ELISA indicated that treatment with CXCL12 enhanced expression of CXCL12 by Schwann cells. In conclusion, CXCL12-enhanced SCs migration is mediated by secreting CXCL12 and p38 MAPK via receptor CXCR4, suggesting that CXCL12 has potential application value for PNS regeneration and could serve as a new therapeutic strategy in peripheral nerve diseases.
Collapse
Affiliation(s)
- Dekun Gao
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Hui Sun
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
67
|
Raju CS, Spatazza J, Stanco A, Larimer P, Sorrells SF, Kelley KW, Nicholas CR, Paredes MF, Lui JH, Hasenstaub AR, Kriegstein AR, Alvarez-Buylla A, Rubenstein JL, Oldham MC. Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity. Cereb Cortex 2018; 28:1946-1958. [PMID: 28449024 PMCID: PMC6019052 DOI: 10.1093/cercor/bhx101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Indexed: 11/14/2022] Open
Abstract
The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species. We show here that the calcium-binding protein secretagogin (SCGN) is robustly expressed by neocortical GABAergic neurons derived from caudal ganglionic eminences (CGE) and lateral ganglionic eminences during human but not mouse brain development. Through electrophysiological and morphometric analyses, we examined the effects of SCGN expression on GABAergic neuron function and form. Forced expression of SCGN in CGE-derived mouse GABAergic neurons significantly increased total neurite length and arbor complexity following transplantation into mouse neocortex, revealing a molecular pathway that contributes to morphological differences in these cells between rodents and primates.
Collapse
Affiliation(s)
- Chandrasekhar S Raju
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Neurona Therapeutics, South San Francisco, CA, USA
| | - Amelia Stanco
- Department of Psychiatry, University of California, San Francisco, USA
- EntroGen, Woodland Hills, CA, USA
| | - Phillip Larimer
- Center for Integrative Neuroscience, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Kevin W Kelley
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Cory R Nicholas
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
- Neurona Therapeutics, South San Francisco, CA, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Jan H Lui
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA, USA
| | - Andrea R Hasenstaub
- Center for Integrative Neuroscience, University of California, San Francisco, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| |
Collapse
|
68
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 874] [Impact Index Per Article: 124.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
69
|
Sekiguchi H, Kuroyanagi T, Rhainds D, Kobayashi K, Kobayashi Y, Ohno H, Heveker N, Akaji K, Fujii N, Oishi S. Structure-Activity Relationship Study of Cyclic Pentapeptide Ligands for Atypical Chemokine Receptor 3 (ACKR3). J Med Chem 2018; 61:3745-3751. [PMID: 29608300 DOI: 10.1021/acs.jmedchem.8b00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The atypical chemokine receptor 3 (ACKR3)/CXC chemokine receptor 7 (CXCR7) recognizes stromal cell-derived factor 1 (SDF-1)/CXCL12 and is involved in a number of physiological and pathological processes. Here, we investigated the SAR of the component amino acids in an ACKR3-selective ligand, FC313 [ cyclo(-d-Tyr-l-Arg-l-MeArg-l-Nal(2)-l-Pro-)], for the development of highly active ACKR3 ligands. Notably, modification at the l-Pro position with a bulky hydrophobic side chain led to improved bioactivity toward ACKR3.
Collapse
Affiliation(s)
- Haruka Sekiguchi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Tomoko Kuroyanagi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - David Rhainds
- Département de Biochimie , Université de Montréal , Montréal H3T 1J4 , Canada.,Research Centre , Sainte-Justine Hospital, University of Montreal , Montréal H3T 1C5 , Canada
| | - Kazuya Kobayashi
- Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8412 , Japan
| | - Yuka Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Nikolaus Heveker
- Département de Biochimie , Université de Montréal , Montréal H3T 1J4 , Canada.,Research Centre , Sainte-Justine Hospital, University of Montreal , Montréal H3T 1C5 , Canada
| | - Kenichi Akaji
- Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8412 , Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
70
|
Melo RDCC, Ferro KPV, Duarte ADSS, Olalla Saad ST. CXCR7 participates in CXCL12-mediated migration and homing of leukemic and normal hematopoietic cells. Stem Cell Res Ther 2018; 9:34. [PMID: 29433559 PMCID: PMC5810108 DOI: 10.1186/s13287-017-0765-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/26/2017] [Indexed: 12/30/2022] Open
Abstract
CXCR4 was the first receptor identified for CXCL12, but a second receptor, CXCR7, has also been described and its function in hematopoietic cells remains unknown. By inhibition of CXCR4 and/or CXCR7, we showed that CXCR7 participates in normal CD34+ and U937 cell migration and prevents downregulation of CXCR4 by CXCL12 stimulation. In addition, CXCR7 contributes to homing of acute myeloid leukemia and normal progenitor cells to the bone marrow and spleen of NOD/SCID mice. In summary, this study shows an essential role of CXCR7, together with CXCR4, in the control of normal and malignant hematopoietic cell migration and homing induced by CXCL12.
Collapse
Affiliation(s)
- Rita de Cassia Carvalho Melo
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | - Karla Priscila Viera Ferro
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | | | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
71
|
Luo Y, Azad AK, Karanika S, Basourakos SP, Zuo X, Wang J, Yang L, Yang G, Korentzelos D, Yin J, Park S, Zhang P, Campbell JJ, Schall TJ, Cao G, Li L, Thompson TC. Enzalutamide and CXCR7 inhibitor combination treatment suppresses cell growth and angiogenic signaling in castration-resistant prostate cancer models. Int J Cancer 2018; 142:2163-2174. [PMID: 29277895 PMCID: PMC5867246 DOI: 10.1002/ijc.31237] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that increased levels of chemokine receptor CXCR7 are associated with the increased invasiveness of prostate cancer cells. We now show that CXCR7 expression is upregulated in VCaP and C4‐2B cells after enzalutamide (ENZ) treatment. ENZ treatment induced apoptosis (sub‐G1) in VCaP and C4‐2B cells, and this effect was further increased after combination treatment with ENZ and CCX771, a specific CXCR7 inhibitor. The levels of p‐EGFR (Y1068), p‐AKT (T308) and VEGFR2 were reduced after ENZ and CCX771 combination treatment compared to single agent treatment. In addition, significantly greater reductions in migration were shown after combination treatment compared to those of single agents or vehicle controls, and importantly, similar reductions in the levels of secreted VEGF were also demonstrated. Orthotopic VCaP xenograft growth and subcutaneous MDA133‐4 patient‐derived xenograft (PDX) tumor growth was reduced by single agent treatment, but significantly greater suppression was observed in the combination treatment group. Although overall microvessel densities in the tumor tissues were not different among the different treatment groups, a significant reduction in large blood vessels (>100 μm2) was observed in tumors following combination treatment. Apoptotic indices in tumor tissues were significantly increased following combination treatment compared with vehicle control‐treated tumor tissues. Our results demonstrate that significant tumor suppression mediated by ENZ and CXCR7 combination treatment may be due, in part, to reductions in proangiogenic signaling and in the formation of large blood vessels in prostate cancer tumors. What's new? Despite promising initial responses to androgen deprivation therapy, advanced prostate cancer eventually progresses to metastatic castration‐resistant disease in the majority of men. This increased aggressiveness in tumor behavior is associated with elevated expression of chemokine receptor CXCR7. Here, in VCaP and C4‐2B prostate cancer cell lines, combined treatment with the androgen receptor signaling inhibitor enzalutamide (ENZ) and the CXCR7 inhibitor CCX771 was found to enhance apoptosis and suppress cell motility, invasion and proangiogenic signaling. Experiments in orthotopic VCaP xenograft and subcutaneous MDA133‐4 patient‐derived xenograft models corroborated observations in cells and demonstrated significant reductions in blood vessel formation.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Benzamides
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Humans
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Nitriles
- Phenylthiohydantoin/administration & dosage
- Phenylthiohydantoin/analogs & derivatives
- Prostatic Neoplasms, Castration-Resistant/blood supply
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, CXCR/antagonists & inhibitors
- Receptors, CXCR/biosynthesis
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yong Luo
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Abul Kalam Azad
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Styliani Karanika
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Spyridon P. Basourakos
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Xuemei Zuo
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Jianxiang Wang
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Luan Yang
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Guang Yang
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Dimitrios Korentzelos
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Jianhua Yin
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Sanghee Park
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Penglie Zhang
- ChemoCentryx Headquarters, 850 Maude Ave.Mountain ViewCA
| | | | | | - Guangwen Cao
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Likun Li
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| | - Timothy C. Thompson
- Division of Cancer Medicine, Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer Center, 1515 Holcombe BoulevardHoustonTX
| |
Collapse
|
72
|
Yang Y, Shen W, Ni Y, Su Y, Yang Z, Zhao C. Impaired Interneuron Development after Foxg1 Disruption. Cereb Cortex 2018; 27:793-808. [PMID: 26620267 DOI: 10.1093/cercor/bhv297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interneurons play pivotal roles in the modulation of cortical function; however, the mechanisms that control interneuron development remain unclear. This study aimed to explore a new role for Foxg1 in interneuron development. By crossing Foxg1fl/fl mice with a Dlx5/6-Cre line, we determined that conditional disruption of Foxg1 in the subpallium results in defects in interneuron development. In developing interneurons, the expression levels of several receptors, including roundabout-1, Eph receptor A4, and C-X-C motif receptor 4/7, were strongly downregulated, which led to migration defects after Foxg1 ablation. The transcription factors Dlx1/2 and Mash1, which have been reported to be involved in interneuron development, were significantly upregulated at the mRNA levels. Foxg1 mutant cells developed shorter neurites and fewer branches and displayed severe migration defects in vitro. Notably, Prox1, which is a transcription factor that functions as a key regulator in the development of excitatory neurons, was also dramatically upregulated at both the mRNA and protein levels, suggesting that Prox1 is also important for interneuron development. Our work demonstrates that Foxg1 may act as a critical upstream regulator of Dlx1/2, Mash1, and Prox1 to control interneuron development. These findings will further our understanding of the molecular mechanisms of interneuron development.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Shen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengang Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China.,Center of Depression, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
73
|
Chang HC, Huang PH, Syu FS, Hsieh CH, Chang SLY, Lu J, Chen HC. Critical involvement of atypical chemokine receptor CXCR7 in allergic airway inflammation. Immunology 2018; 154:274-284. [PMID: 29250768 DOI: 10.1111/imm.12881] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/21/2022] Open
Abstract
Trafficking and recruitment of immune cells to the site of inflammation with spatial and temporal synchronization is crucial for the development of allergic airway inflammation. Particularly, chemokines are known to be key players in these processes. Previous studies revealed that the CXCL12/CXCR4 axis plays an important role in regulating allergic airway inflammation. However, the role of CXCR7, a recently discovered second receptor for CXCL12, in regulating airway inflammation has not been explored. Initially, CXCR7 was considered as a decoy receptor; however, numerous subsequent studies revealed that engagement of CXCR7 triggered its own signalling or modulated CXCR4-mediated signalling. In the present study, we detected the expression of CXCR7 in airway epithelial cells. Use of a lentiviral delivery system to knock down the expression of CXCR7 in the lung of sensitized mice abrogated the cardinal features of asthma, indicating that CXCR7 plays a role in regulating allergic airway inflammation. The activation of mitogen-activated protein kinase and Akt signalling in response to CXCL12 in the mouse epithelial cell line MLE-12 was reduced when CXCR7 expression was knocked down. However, either knockdown or overexpression of CXCR7 in MLE-12 did not affect CXCL12-mediated calcium influx, indicating that CXCR7 does not modulate CXCR4-mediated signalling, and that it functions as a signalling receptor rather than a decoy receptor. Finally, we found that the expression of chemokine CCL2 is regulated by CXCR7/CXCL12-mediated signalling through β-arrestin in airway epithelial cells. Hence, regulating the expression of CCL2 in airway epithelial cells may be one mechanism by which CXCR7 participates in regulating allergic airway inflammation.
Collapse
Affiliation(s)
- Hung-Chih Chang
- Graduate Institute of Life Science, National Defence Medical Centre, Taipei, Taiwan
| | - Po-Han Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Fu-Sheng Syu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sunny Li-Yun Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - Jean Lu
- Graduate Institute of Life Science, National Defence Medical Centre, Taipei, Taiwan.,The Genomics Research Centre, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Programme, College of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Life Science, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chen Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan.,Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
74
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
75
|
Fukumoto K, Tamada K, Toya T, Nishino T, Yanagawa Y, Takumi T. Identification of genes regulating GABAergic interneuron maturation. Neurosci Res 2017; 134:18-29. [PMID: 29203264 DOI: 10.1016/j.neures.2017.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
During embryonic development, GABAergic interneurons, a main inhibitory component in the cerebral cortex, migrate tangentially from the ganglionic eminence (GE) to cerebral cortex. After reaching the cerebral cortex, they start to extend their neurites for constructing local neuronal circuits around the neonatal stage. Aberrations in migration or neurite outgrowth are implicated in neurological and psychiatric disorders such as epilepsy, schizophrenia and autism. Previous studies revealed that in the early phase of cortical development the neural population migrates tangentially from the GE in the telencephalon and several genes have been characterized as regulators of migration and specification of GABAergic interneurons. However, much less is known about the molecular mechanisms of GABAergic interneurons-specific maturation at later stages of development. Here, we performed genome-wide screening to identify genes related to the later stage by flow cytometry based-microarray (FACS-array) and identified 247 genes expressed in cortical GABAergic interneurons. Among them, Dgkg, a member of diacylglycerol kinase family, was further analyzed. Correlational analysis revealed that Dgkg is dominantly expressed in somatostatin (SST)-expressing GABAergic interneurons. The functional study of Dgkg using GE neurons indicated alteration in neurite outgrowth of GABAergic neurons. This study shows a new functional role for Dgkg in GABAergic interneurons as well as the identification of other candidate genes for their maturation.
Collapse
Affiliation(s)
- Keita Fukumoto
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan; Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | - Tsuyoshi Toya
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Pharmacology, Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512, Japan
| | - Tasuku Nishino
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Yuchio Yanagawa
- Department of Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan; Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan.
| |
Collapse
|
76
|
Astrocytic expression of the CXCL12 receptor, CXCR7/ACKR3 is a hallmark of the diseased, but not developing CNS. Mol Cell Neurosci 2017; 85:105-118. [DOI: 10.1016/j.mcn.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
|
77
|
Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons. Cell Rep 2017; 18:1157-1170. [PMID: 28147272 PMCID: PMC5300889 DOI: 10.1016/j.celrep.2016.12.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3) as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits. Nrg3 acts a short-range chemoattractive molecule for cortical interneurons Nrg3 functions through ErbB4 to attract interneurons into the cortical plate Interneurons prefer Cxcl12 over Nrg3 during tangential migration Disruption of Nrg3 signaling causes abnormal interneuron lamination in the cortex
Collapse
|
78
|
Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem Pharmacol 2017; 147:128-140. [PMID: 29175422 DOI: 10.1016/j.bcp.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7) has been established to be involved in breast cancer (BCa) progression. However, the role of CXCR7 in different subtype of BCa still remains unclear. Here we note that CXCR7 expression is significantly amplified in Luminal type BCa tissues as compared with Her2 and TNBC types through data-mining in TCGA datasets, and its protein level positively correlates with ERα expression by staining of human BCa tissue. Interestingly, alteration of CXCR7 expression in Luminal type BCa cells is able to modulate the expression of ERα through ubiquitination at post-translational level. Additionally, overexpression of CXCR7 in these cells greatly induces 4-OHT insensitivity in vitro and is associated with earlier recurrence in patients with tamoxifen therapy. Notably, silencing ERα expression potentially rescues the sensitivity of the above cells to 4-OHT, suggesting that elevated level of ERα is responsible for CXCR7-induced 4-OHT insensitivity in Luminal type BCa. Finally, mechanistic analyses show that the reduced BRCA1 (ubiquitin E3 ligase) and elevated OTUB1 (deubiquitinase) expression, which are regulated by CXCR7/ERK1/2 signaling pathway, are responsible for stabilizing ERα protein. In conclusion, our results suggest that targeting CXCR7 may serve as a potential therapeutic strategy for improving the efficacy of BCa patients with tamoxifen therapy.
Collapse
|
79
|
Ren X, Levin D, Lin F. Cell Migration Research Based on Organ-on-Chip-Related Approaches. MICROMACHINES 2017; 8:mi8110324. [PMID: 30400514 PMCID: PMC6190356 DOI: 10.3390/mi8110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/28/2017] [Accepted: 10/28/2017] [Indexed: 11/16/2022]
Abstract
Microfluidic devices have been widely used for cell migration research over the last two decades, owing to their attractive features in cellular microenvironment control and quantitative single-cell migration analysis. However, the majority of the microfluidic cell migration studies have focused on single cell types and have configured microenvironments that are greatly simplified compared with the in-vivo conditions they aspire to model. In addition, although cell migration is considered an important target for disease diagnosis and therapeutics, very few microfluidic cell migration studies involved clinical samples from patients. Therefore, more sophisticated microfluidic systems are required to model the complex in-vivo microenvironment at the tissue or organ level for cell migration studies and to explore cell migration-related clinical applications. Research in this direction that employs organ-on-chip-related approaches for cell migration analysis has been increasingly reported in recent years. In this paper, we briefly introduce the general background of cell migration and organ-on-chip research, followed by a detailed review of specific cell migration studies using organ-on-chip-related approaches, and conclude by discussing our perspectives of the challenges, opportunities and future directions.
Collapse
Affiliation(s)
- Xiaoou Ren
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
80
|
The unique structural and functional features of CXCL12. Cell Mol Immunol 2017; 15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.
Collapse
|
81
|
Cheng X, Wang H, Zhang X, Zhao S, Zhou Z, Mu X, Zhao C, Teng W. The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia. Front Neurosci 2017; 11:590. [PMID: 29123467 PMCID: PMC5662889 DOI: 10.3389/fnins.2017.00590] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023] Open
Abstract
Stromal cell-derived factor-1 is a chemoattractant produced by bone marrow stromal cell lines. It is recognized as a critical factor in the immune and central nervous systems (CNSs) as well as exerting a role in cancer. SDF-1 activates two G protein-coupled receptors, CXCR4 and CXCR7; these are expressed in both developing and mature CNSs and participate in multiple physiological and pathological events, e.g., inflammatory response, neurogenesis, angiogenesis, hematopoiesis, cancer metastasis, and HIV infection. After an ischemic stroke, SDF-1 levels robustly increase in the penumbra regions and participate in adult neural functional repair. Here we will review recent findings about SDF-1 and its receptor, analyse their functions in neurogeneration after brain ischemic injury: i.e., how the system promotes the proliferation, differentiation and migration of neural precursor cells and mediates axonal elongation and branching.
Collapse
Affiliation(s)
- Xi Cheng
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Huibin Wang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Weiyu Teng
- Neurology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
82
|
Nazari A, Khorramdelazad H, Hassanshahi G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol 2017; 22:991-1000. [PMID: 29022185 DOI: 10.1007/s10147-017-1187-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
CXC chemokine ligand 12 (CXCL12) is an important member of the CXC subfamily of chemokines, and has been extensively studied in various human body organs and systems, both in physiological and clinical states. Ligation of CXCL12 to CXCR4 and CXCR7 as its receptors on peripheral immune cells gives rise to pleiotropic activities. CXCL12 itself is a highly effective chemoattractant which conservatively attracts lymphocytes and monocytes, whereas there exists no evidence to show attraction for neutrophils. CXCL12 regulates inflammation, neo-vascularization, metastasis, and tumor growth, phenomena which are all pivotally involved in cancer development and further metastasis. Generation and secretion of CXCL12 by stromal cells facilitate attraction of cancer cells, acting through its cognate receptor, CXCR4, which is expressed by both hematopoietic and non-hematopoietic tumor cells. CXCR4 stimulates tumor progression by different mechanisms and is required for metastatic spread to organs where CXCL12 is expressed, thereby allowing tumor cells to access cellular niches, such as the marrow, which favor tumor cell survival and proliferation. It has also been demonstrated that CXCL12 binds to another seven-transmembrane G-protein receptor or G-protein-coupled receptor, namely CXCR7. These studies indicated critical roles for CXCR4 and CXCR7 mediation of tumor metastasis in several types of cancers, suggesting their contributions as biomarkers of tumor behavior as well as potential therapeutic targets. Furthermore, CXCL12 itself has the capability to stimulate survival and growth of neoplastic cells in a paracrine fashion. CXCL12 is a supportive chemokine for tumor neovascularization via attracting endothelial cells to the tumor microenvironment. It has been suggested that elevated protein and mRNA levels of CXCL12/CXCR4/CXCR7 are associated with human bladder cancer (BC). Taken together, mounting evidence suggests a role for CXCR4, CXCR7, and their ligand CXCL12 during the genesis of BC and its further development. However, a better understanding is still required before exploring CXCL12/CXCR4/CXCR7 targeting in the clinic.
Collapse
Affiliation(s)
- Alireza Nazari
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. .,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
83
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
84
|
Suzuki T, Sato M. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity. Dev Biol 2017; 431:101-110. [PMID: 28958816 DOI: 10.1016/j.ydbio.2017.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/23/2017] [Indexed: 11/28/2022]
Abstract
Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems.
Collapse
Affiliation(s)
- Takumi Suzuki
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Makoto Sato
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
85
|
The common variants implicated in microstructural abnormality of first episode and drug-naïve patients with schizophrenia. Sci Rep 2017; 7:11750. [PMID: 28924203 PMCID: PMC5603592 DOI: 10.1038/s41598-017-10507-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/09/2017] [Indexed: 02/05/2023] Open
Abstract
Both post-mortem and neuroimaging studies have identified abnormal white matter (WM) microstructure in patients with schizophrenia. However, its genetic underpinnings and relevant biological pathways remain unclear. In order to unravel the genes and the pathways associated with abnormal WM microstructure in schizophrenia, we recruited 100 first-episode, drug-naïve patients with schizophrenia and 140 matched healthy controls to conduct genome-wide association analysis of fractional anisotropy (FA) value measured using diffusing tensor imaging (DTI), followed by multivariate association study and pathway enrichment analysis. The results showed that one intergenic SNP (rs11901793), which is 20 kb upstream of CXCR7 gene on chromosome 2, was associated with the total mean FA values with genome-wide significance (p = 4.37 × 10−8), and multivariate association analysis identified a strong association between one region-specific SNP (rs10509852), 400 kb upstream of SORCS1 gene on chromosome 10, and the global trait of abnormal WM microstructure (p = 1.89 × 10−7). Furthermore, one pathway that is involved in cell cycle regulation, REACTOME_CHROMOSOME _MAINTENANCE, was significantly enriched by the genes that were identified in our study (p = 1.54 × 10−17). In summary, our study provides suggestive evidence that abnormal WM microstructure in schizophrenia is associated with genes that are likely involved in diverse biological signals and cell-cycle regulation although further replication in a larger independent sample is needed.
Collapse
|
86
|
Wu PR, Cho KK, Vogt D, Sohal VS, Rubenstein JL. The Cytokine CXCL12 Promotes Basket Interneuron Inhibitory Synapses in the Medial Prefrontal Cortex. Cereb Cortex 2017; 27:4303-4313. [PMID: 27497284 PMCID: PMC6410508 DOI: 10.1093/cercor/bhw230] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Prenatally, the cytokine CXCL12 regulates cortical interneuron migration, whereas its postnatal functions are poorly understood. Here, we report that CXCL12 is expressed postnatally in layer V pyramidal neurons and localizes on their cell bodies in the medial prefrontal cortex (mPFC), while its receptors CXCR4/CXCR7 localize to the axon terminals of parvalbumin (PV) interneurons. Conditionally eliminating CXCL12 in neonatal layer V pyramidal neurons led to decreased axon targeting and reduced inhibitory perisomatic synapses from PV+ basket interneurons onto layer V pyramidal neurons. Consequently, the mPFC of Cxcl12 conditional mutants displayed attenuated inhibitory postsynaptic currents onto layer V pyramidal neurons. Thus, postnatal CXCL12 signaling promotes a specific interneuron circuit that inhibits mPFC activity.
Collapse
Affiliation(s)
- Pei-Rung Wu
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA 94143,
USA
| | - Kathleen K.A. Cho
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA 94143,
USA
- Center for Integrative Neuroscience, University of California, San
Francisco, San Francisco,
CA94143, USA
- Sloan-Swartz Center for Theoretical Neurobiology, University of California, San
Francisco, San Francisco,
CA94143, USA
| | - Daniel Vogt
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA 94143,
USA
| | - Vikaas S. Sohal
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA 94143,
USA
- Center for Integrative Neuroscience, University of California, San
Francisco, San Francisco,
CA94143, USA
- Sloan-Swartz Center for Theoretical Neurobiology, University of California, San
Francisco, San Francisco,
CA94143, USA
| | - John L.R. Rubenstein
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA 94143,
USA
| |
Collapse
|
87
|
Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2017; 38:1188-1234. [PMID: 28768055 DOI: 10.1002/med.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists (e.g., PlerixaforTM ) have been successfully validated as stem cell mobilizers for peripheral blood stem cell transplantation. Applications of the CXCR4 antagonists have heralded the era of cell-based therapy and opened a potential therapeutic horizon for many unmet medical needs such as kidney injury, ischemic stroke, cancer, and myocardial infarction. In this review, we first introduce the central role of CXCR4 in diverse cellular signaling pathways and discuss its involvement in several disease progressions. We then highlight the molecular design and optimization strategies for targeting CXCR4 from a large number of case studies, concluding that polyamines are the preferred CXCR4-binding ligands compared to other structural options, presumably by mimicking the highly positively charged natural ligand CXCL12. These results could be further justified with computer-aided docking into the CXCR4 crystal structure wherein both major and minor subpockets of the binding cavity are considered functionally important. Finally, from the clinical point of view, CXCR4 antagonists could mobilize hematopoietic stem/progenitor cells with long-term repopulating capacity to the peripheral blood, promising to replace surgically obtained bone marrow cells as a preferred source for stem cell transplantation.
Collapse
Affiliation(s)
- Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | | | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| |
Collapse
|
88
|
Fused cerebral organoids model interactions between brain regions. Nat Methods 2017; 14:743-751. [PMID: 28504681 PMCID: PMC5540177 DOI: 10.1038/nmeth.4304] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 02/08/2023]
Abstract
Human brain development involves complex interactions between different areas, including long distance neuronal migration or formation of major axonal tracts. 3D cerebral organoids allow the growth of diverse brain regions in vitro, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a co-culture method combining various brain regions of choice within one organoid tissue. By fusing organoids specified toward dorsal and ventral forebrain, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate robust directional GABAergic interneuron migration from ventral into dorsal forebrain. We describe methodology for time-lapse imaging of human interneuron migration that is inhibited by the CXCR4 antagonist AMD3100. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions offer the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients, and to test potential therapeutic compounds.
Collapse
|
89
|
Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon. Sci Rep 2017; 7:42895. [PMID: 28276447 PMCID: PMC5343589 DOI: 10.1038/srep42895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023] Open
Abstract
During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon.
Collapse
|
90
|
Close JL, Yao Z, Levi BP, Miller JA, Bakken TE, Menon V, Ting JT, Wall A, Krostag AR, Thomsen ER, Nelson AM, Mich JK, Hodge RD, Shehata SI, Glass IA, Bort S, Shapovalova NV, Ngo NK, Grimley JS, Phillips JW, Thompson CL, Ramanathan S, Lein E. Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation. Neuron 2017; 93:1035-1048.e5. [PMID: 28279351 PMCID: PMC5480972 DOI: 10.1016/j.neuron.2017.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/12/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
Abstract
GABAergic interneurons are essential for neural circuit function, and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and, ultimately, for therapeutic cell replacement. Here we describe a protocol for generating cortical interneurons from hESCs and analyze the properties and maturation time course of cell types using single-cell RNA-seq. We find that the cell types produced mimic in vivo temporal patterns of neuron and glial production, with immature progenitors and neurons observed early and mature cortical neurons and glial cell types produced late. By comparing the transcriptomes of immature interneurons to those of more mature neurons, we identified genes important for human interneuron differentiation. Many of these genes were previously implicated in neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennie L Close
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Vilas Menon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Abigail Wall
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Angel M Nelson
- Allen Institute for Cell Science, Seattle, WA 98109, USA
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan Bort
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - N Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Sharad Ramanathan
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
91
|
Volk DW, Edelson JR, Lewis DA. Altered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia. Schizophr Res 2016; 177:3-9. [PMID: 26972474 PMCID: PMC5018248 DOI: 10.1016/j.schres.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Dysfunction of prefrontal cortex (PFC) inhibitory neurons that express the calcium-binding protein parvalbumin or the neuropeptide somatostatin in schizophrenia may be related to disturbances in the migration, phenotypic specification, and/or maturation of these neurons. These pre- and postnatal developmental stages are regulated in a cell type-specific manner by various transcription factors and co-activators, fibroblast growth factor receptors (FgfR), and other molecular markers. Consequently, we used quantitative PCR to quantify mRNA levels for these developmental regulators in the PFC of 62 schizophrenia subjects in whom parvalbumin and somatostatin neuron disturbances were previously reported, and in antipsychotic-exposed monkeys. Relative to unaffected comparison subjects, subjects with schizophrenia exhibited elevated mRNA levels for 1) the transcription factor MafB, which is expressed by parvalbumin and somatostatin neurons as they migrate from the medial ganglionic eminence to the cortex, 2) the transcriptional coactivator PGC-1α, which is expressed postnatally by parvalbumin neurons to maintain parvalbumin levels and inhibitory function, and 3) FgfR1, which is required for the migration and phenotypic specification of parvalbumin and somatostatin neurons. Elevations in these markers were most prominent in younger schizophrenia subjects and were not present in antipsychotic-exposed monkeys. Finally, expression levels of other important developmental regulators (i.e. Dlx1, Dlx5, Dlx6, SATB1, Sip1/Zeb2, ST8SIA4, cMaf, Nkx6.2, and Arx) were not altered in schizophrenia. The over-expression of a subset of molecular markers with distinct roles in the pre- and postnatal development of parvalbumin and somatostatin neurons might reflect compensatory mechanisms to sustain the development of these neurons in the face of other insults.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Corresponding Author: David W. Volk, MD, PhD, W1655 BST, 3811 O'Hara St, Pittsburgh, PA 15213, Tel: 412-648-9617,
| | - Jessica R. Edelson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
92
|
Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. LAB ON A CHIP 2016; 16:4152-4162. [PMID: 27722368 DOI: 10.1039/c6lc00946h] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration of neural progenitors in the complex tissue environment of the central nervous system is not well understood. Progress in this area has the potential to drive breakthroughs in neuroregenerative therapies, brain cancer treatments, and neurodevelopmental studies. To a large extent, advances have been limited due to a lack of controlled environments recapitulating characteristics of the central nervous system milieu. Reductionist cell culture models are frequently too simplistic, and physiologically more relevant approaches such as ex vivo brain slices or in situ experiments provide little control and make information extraction difficult. Here, we present a brain-on-chip model that bridges the gap between cell culture and ex vivo/in vivo conditions through recapitulation of self-organized neural differentiation. We use a new multi-layer silicone elastomer device, over the course of four weeks to differentiate pluripotent human (NTERA2) cells into neuronal clusters interconnected with thick axonal bundles and interspersed with astrocytes, resembling the brain parenchyma. Neurons within the device express the neurofilament heavy (NF200) mature axonal marker and the microtubule-associated protein (MAP2ab) mature dendritic marker, demonstrating that the devices are sufficiently biocompatible to allow neuronal maturation. This neuronal-glial environment is interfaced with a layer of human brain microvascular endothelial cells showing characteristics of the blood-brain barrier including the expression of zonula occludens (ZO1) tight junctions and increased trans-endothelial electrical resistance. We used this device to model migration of human neural progenitors in response to chemotactic cues within a brain-tissue setting. We show that in the presence of an environment mimicking brain conditions, neural progenitor cells show a significantly enhanced chemotactic response towards shallow gradients of CXCL12, a key chemokine expressed during embryonic brain development and in pathological tissue regions of the central nervous system. Our brain-on-chip model thus provides a convenient and scalable model of neural differentiation and maturation extensible to analysis of complex cell and tissue behaviors.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yun Feng
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Department of Pharmacology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA and CAAT-Europe, University of Konstanz, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
93
|
Szpakowska M, Dupuis N, Baragli A, Counson M, Hanson J, Piette J, Chevigné A. Human herpesvirus 8-encoded chemokine vCCL2/vMIP-II is an agonist of the atypical chemokine receptor ACKR3/CXCR7. Biochem Pharmacol 2016; 114:14-21. [DOI: 10.1016/j.bcp.2016.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
|
94
|
Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein. Sci Rep 2016; 6:27054. [PMID: 27270970 PMCID: PMC4895231 DOI: 10.1038/srep27054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment.
Collapse
|
95
|
Poon K, Barson JR, Ho HT, Leibowitz SF. Relationship of the Chemokine, CXCL12, to Effects of Dietary Fat on Feeding-Related Behaviors and Hypothalamic Neuropeptide Systems. Front Behav Neurosci 2016; 10:51. [PMID: 27047354 PMCID: PMC4800166 DOI: 10.3389/fnbeh.2016.00051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022] Open
Abstract
The intake of a high fat diet (HFD), in addition to stimulating orexigenic neuropeptides in the hypothalamus while promoting overeating and reducing locomotor behavior, is known to increase inflammatory mediators that modulate neuronal systems in the brain. To understand the involvement of chemokines in the effects of a HFD, we examined in rats whether HFD intake affects a specific chemokine, CXCL12, and its receptors, CXCR4 and CXCR7, in the hypothalamus together with the neuropeptides and whether CXCL12 itself acts similarly to a HFD in stimulating the neuropeptides and altering ingestion and locomotor behavior. Compared to low-fat chow, a HFD for 5 days significantly increased the expression of CXCL12 and its receptors, in both the paraventricular nucleus (PVN) where the neuropeptides enkephalin (ENK) and galanin were also stimulated and the perifornical lateral hypothalamus (PFLH) where orexin (OX) and melanin-concentrating hormone (MCH) were increased. In contrast, the HFD had no impact on expression of CXCL12 or its receptors in the arcuate nucleus (ARC) where the carbohydrate-related peptide, neuropeptide Y (NPY), was suppressed. Analysis of protein levels revealed a similar stimulatory effect of a HFD on CXCL12 levels in the PVN and PFLH, as well as in blood, and an increase in the number of CXCR4-positive cells in the PVN. In the ARC, in contrast, levels of CXCL12 and number of CXCR4-positive cells were too low to measure. When centrally administered, CXCL12 was found to have similar effects to a HFD. Injection of CXCL12 into the third cerebral ventricle immediately anterior to the hypothalamus significantly stimulated the ingestion of a HFD, reduced novelty-induced locomotor activity, and increased expression of ENK in the PVN where the CXCR4 receptors were dense. It had no impact, however, on NPY in the ARC or on OX and MCH in the PFLH where the CXCR4 receptors were not detected. These results, showing CXCL12 in the hypothalamus to be stimulated by a HFD and to mimic the effects of the HFD where its receptors are located, suggest that this chemokine system may have a role in mediating both the neuronal and behavioral effects induced by a fat-rich diet.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New YorkNY, USA
| |
Collapse
|
96
|
Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats. Neurosci Bull 2016; 32:27-40. [PMID: 26781879 DOI: 10.1007/s12264-015-0007-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that CXCL12/CXCR4 signaling is involved in chronic pain. However, few studies have systemically assessed its role in direct nerve injury-induced neuropathic pain and the underlying mechanism. Here, we determined that spared nerve injury (SNI) increased the expression of CXCL12 and its cognate receptor CXCR4 in lumbar 5 dorsal root ganglia (DRG) neurons and satellite glial cells. SNI also induced long-lasting upregulation of CXCL12 and CXCR4 in the ipsilateral L4-5 spinal cord dorsal horn, characterized by CXCL12 expression in neurons and microglia, and CXCR4 expression in neurons and astrocytes. Moreover, SNI-induced a sustained increase in TNF-α expression in the DRG and spinal cord. Intraperitoneal injection (i.p.) of the TNF-α synthesis inhibitor thalidomide reduced the SNI-induced mechanical hypersensitivity and inhibited the expression of CXCL12 in the DRG and spinal cord. Intrathecal injection (i.t.) of the CXCR4 antagonist AMD3100, both 30 min before and 7 days after SNI, reduced the behavioral signs of allodynia. Rats given an i.t. or i.p. bolus of AMD3100 on day 8 of SNI exhibited attenuated abnormal pain behaviors. The neuropathic pain established following SNI was also impaired by i.t. administration of a CXCL12-neutralizing antibody. Moreover, repetitive i.t. AMD3100 administration prevented the activation of ERK in the spinal cord. The mechanical hypersensitivity induced in naïve rats by i.t. CXCL12 was alleviated by pretreatment with the MEK inhibitor PD98059. Collectively, our results revealed that TNF-α might mediate the upregulation of CXCL12 in the DRG and spinal cord following SNI, and that CXCL12/CXCR4 signaling via ERK activation contributes to the development and maintenance of neuropathic pain.
Collapse
|
97
|
Intermediate Progenitors Facilitate Intracortical Progression of Thalamocortical Axons and Interneurons through CXCL12 Chemokine Signaling. J Neurosci 2015; 35:13053-63. [PMID: 26400936 DOI: 10.1523/jneurosci.1488-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which is known to guide axons outside the neural tube and interneurons in the cortex, is expressed in the meninges and IPCs. Using mouse genetics, we dissected the influence of IPC-derived CXCL12 on TCAs and interneurons by showing that Cxcl12 ablation in IPCs, leaving meningeal Cxcl12 intact, attenuates intracortical TCA growth and disrupts tangential interneuron migration in the subventricular zone. In accordance with strong CXCR4 expression in the forming thalamus and TCAs, we identified a CXCR4-dependent growth-promoting effect of CXCL12 on TCAs in thalamus explants. Together, our findings indicate a cell-autonomous role of CXCR4 in promoting TCA growth. We propose that CXCL12 signals from IPCs link cortical neurogenesis to the progression of TCAs and interneurons spatially and temporally. Significance statement: The cerebral cortex exerts higher brain functions including perceptual and emotional processing. Evolutionary expansion of the mammalian cortex is mediated by intermediate progenitors, transient amplifying cells generating cortical excitatory neurons. During the peak period of cortical neurogenesis, migrating precursors of inhibitory interneurons originating in subcortical areas and thalamic axons invade the cortex. Although defects in the assembly of cortical network elements cause neurological and mental disorders, little is known how neurogenesis, interneuron recruitment, and axonal ingrowth are coordinated. We demonstrate that intermediate progenitors release the chemotactic cytokine CXCL12 to promote intracortical interneuron migration and growth of thalamic axons via the cognate receptor CXCR4. This paracrine signal may ensure thalamocortical connectivity and dispersion of inhibitory neurons in the rapidly growing cortex.
Collapse
|
98
|
Barber M, Pierani A. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells. Dev Neurobiol 2015; 76:847-81. [PMID: 26581033 DOI: 10.1002/dneu.22363] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016.
Collapse
Affiliation(s)
- Melissa Barber
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France.,Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Alessandra Pierani
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France
| |
Collapse
|
99
|
Golonzhka O, Nord A, Tang PLF, Lindtner S, Ypsilanti AR, Ferretti E, Visel A, Selleri L, Rubenstein JLR. Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons. Neuron 2015; 88:1192-1207. [PMID: 26671461 DOI: 10.1016/j.neuron.2015.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
We demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2(+/-) sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex. Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate.
Collapse
Affiliation(s)
- Olga Golonzhka
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA; Acetylon Pharmaceuticals, 70 Fargo Street, Suite 205, Boston, MA 02210, USA.
| | - Alex Nord
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Paul L F Tang
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA; The Danish Stem Cell Center, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
100
|
Kim HY, Lee SY, Kim DY, Moon JY, Choi YS, Song IC, Lee HJ, Yun HJ, Kim S, Jo DY. Expression and functional roles of the chemokine receptor CXCR7 in acute myeloid leukemia cells. Blood Res 2015; 50:218-226. [PMID: 26770949 PMCID: PMC4705047 DOI: 10.5045/br.2015.50.4.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The C-X-C chemokine receptor 7 (CXCR7) has been shown to be a decoy receptor for CXCR4 in certain cell types. We investigated the expression status and functional roles of CXCR7 in acute myeloid leukemia (AML) cells in vitro. METHODS CXCR7 mRNA was knocked down in AML cells by using small interfering RNA (siRNA) technology, and subsequent biological alterations in the cells were evaluated in vitro. RESULTS All AML cell lines examined in this study (U937, K562, KG1a, HL-60, and MO7e) and primary CD34(+) cells obtained from patients with AML expressed CXCR7 mRNA at various levels. Western blotting showed that all AML cells produced CXCR7. Furthermore, all AML cells expressed CXCR7 in both the cytoplasm and on the cell surface at various levels. Stromal cell-derived factor-1 (SDF-1; C-X-C motif ligand 12 (CXCL12)) induced internalization of cell surface CXCR7. However, neither hypoxia nor the examined hematopoietic growth factors (interleukin-1β (IL-1β), IL-3, IL-6, granulocyte-colony-stimulating factor, granulocyte, macrophage-colony-stimulating factor, and stem cell factor) and proinflammatory cytokines (interferon-γ, transforming growth factor-β, and tumor necrosis factor-α) were found to alter cell surface CXCR7 expression. The transfection of AML cells with CXCR4 siRNA, but not CXCR7 siRNA, significantly impaired the CXCL12-induced transmigration of the cells. The transfection of AML cells with CXCR7 siRNA did not affect the survival or proliferation of these cells. Knockdown of CXCR7, but not CXCR4, induced the upregulation of CXCL12 mRNA expression and CXCL12 production in AML cells. CONCLUSION CXCR7 is involved in the regulation of autocrine CXCL12 in AML cells.
Collapse
Affiliation(s)
- Ha-Yon Kim
- Department of Drug Activity, New Drug Development Center, Medical Innovation Foundation, Osong, Daejeon, Korea
| | - So-Yeon Lee
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Deog-Young Kim
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Ji-Young Moon
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Yoon-Seok Choi
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Ik-Chan Song
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyo-Jin Lee
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Hwan-Jung Yun
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Samyong Kim
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Deog-Yeon Jo
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|