51
|
Gabele L, Bochow I, Rieke N, Sieben C, Michaelsen-Preusse K, Hosseini S, Korte M. H7N7 viral infection elicits pronounced, sex-specific neuroinflammatory responses in vitro. Front Cell Neurosci 2024; 18:1444876. [PMID: 39171200 PMCID: PMC11335524 DOI: 10.3389/fncel.2024.1444876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Influenza A virus (IAV) infection can increase the risk of neuroinflammation, and subsequent neurodegenerative diseases. Certain IAV strains, such as avian H7N7 subtype, possess neurotropic properties, enabling them to directly invade the brain parenchyma and infect neurons and glia cells. Host sex significantly influences the severity of IAV infections. Studies indicate that females of the reproductive age exhibit stronger innate and adaptive immune responses to IAVs compared to males. This heightened immune response correlates with increased morbidity and mortality, and potential neuronal damage in females. Understanding the sex-specific neurotropism of IAV and associated mechanisms leading to adverse neurological outcomes is essential. Our study reveals that primary hippocampal cultures from female mice show heightened interferon-β and pro-inflammatory chemokine secretion following neurotropic IAV infection. We observed sex-specific differences in microglia activation: both sexes showed a transition into a hyper-ramified state, but only male-derived microglia exhibited an increase in amoeboid-shaped cells. These disparities extended to alterations in neuronal morphology. Neurons derived from female mice displayed increased spine density within 24 h post-infection, while no significant change was observed in male cultures. This aligns with sex-specific differences in microglial synaptic pruning. Data suggest that amoeboid-shaped microglia preferentially target postsynaptic terminals, potentially reducing neuronal hyperexcitability. Conversely, hyper-ramified microglia may focus on presynaptic terminals, potentially limiting viral spread. In conclusion, our findings underscore the utility of primary hippocampal cultures, incorporating microglia, as an effective model to study sex-specific, virus-induced effects on brain-resident cells.
Collapse
Affiliation(s)
- Lea Gabele
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Isabell Bochow
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nele Rieke
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
| | - Christian Sieben
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
52
|
Lana D, Traini C, Bulli I, Sarti G, Magni G, Attorre S, Giovannini MG, Vannucchi MG. Chronic administration of prebiotics and probiotics ameliorates pathophysiological hallmarks of Alzheimer's disease in a APP/PS1 transgenic mouse model. Front Pharmacol 2024; 15:1451114. [PMID: 39166107 PMCID: PMC11333230 DOI: 10.3389/fphar.2024.1451114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction: The gut microbiota (MB), although one of the main producers of Aβ in the body, in physiological conditions contributes to the maintainance of a healthy brain. Dysbiosis, the dysbalance between Gram-negative and Gram-positive bacteria in the MB increases Aβ production, contributing to the accumulation of Aβ plaques in the brain, the main histopathological hallmark of Alzheimer's disease (AD). Administration of prebiotics and probiotics, maintaining or recovering gut-MB composition, could represent a nutraceutical strategy to prevent or reduce AD sympthomathology. Aim of this research was to evaluate whether treatment with pre- and probiotics could modify the histopathological signs of neurodegeneration in hippocampal CA1 and CA3 areas of a transgenic mouse model of AD (APP/PS1 mice). The hippocampus is one of the brain regions involved in AD. Methods: Tg mice and Wt littermates (Wt-T and Tg-T) were fed daily for 6 months from 2 months of age with a diet supplemented with prebiotics (a multi-extract of fibers and plant complexes, containing inulin/fruit-oligosaccharides) and probiotics (a 50%-50% mixture of Lactobacillus rhamnosus and Lactobacillus paracasei). Controls were Wt and Tg mice fed with a standard diet. Brain sections were immunostained for Aβ plaques, neurons, astrocytes, microglia, and inflammatory proteins that were evaluated qualitatively and quantitatively by immunofluorescence, confocal microscopy and digital imaging with ImageJ software. Results: Quantitative analyses demonstrated that: 1) The treatment with pre- and probiotics significantly decreased Aβ plaques in CA3, while in CA1 the reduction was not significant; 2) Neuronal damage in CA1 Stratum Pyramidalis was significantly prevented in Tg-T mice; no damage was found in CA3; 3) In both CA1 and CA3 the treatment significantly increased astrocytes density, and GFAP and IBA1 expression, especially around plaques; 4) Microglia reacted differently in CA1 and CA3: in CA3 of Tg-T mice there was a significant increase of CD68+ phagocytic microglia (ball-and-chain phenomic) and of CX3CR1 compared with CA1. Discussion: The higher microglia reactivity could be responsible for their more efficient scavenging activity towards Aβ plaques in CA3 in comparison to CA1. Treatment with pre- and probiotics, modifying many of the physiopathological hallmarks of AD, could be considered an effective nutraceutical strategy against AD symptomatology.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Chiara Traini
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Irene Bulli
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giorgia Sarti
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giada Magni
- Cnr — Istituto di Fisica Applicata “Nello Carrara”, Sesto Fiorentino, Italy
| | - Selene Attorre
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
53
|
Oishi R, Takeda I, Ode Y, Okada Y, Kato D, Nakashima H, Imagama S, Wake H. Neuromodulation with transcranial direct current stimulation contributes to motor function recovery via microglia in spinal cord injury. Sci Rep 2024; 14:18031. [PMID: 39098975 PMCID: PMC11298548 DOI: 10.1038/s41598-024-69127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
Spinal cord injury (SCI) is damage or trauma to the spinal cord, which often results in loss of function, sensation, or mobility below the injury site. Transcranial direct current stimulation (tDCS) is a non-invasive and affordable brain stimulation technique used to modulate neuronal circuits, which changes the morphology and activity of microglia in the cerebral cortex. However, whether similar morphological changes can be observed in the spinal cord remains unclear. Therefore, we evaluated neuronal population activity in layer 5 (L5) of M1 following SCI and investigated whether changes in the activities of L5 neurons affect microglia-axon interactions using C57BL/6J mice. We discovered that L5 of the primary motor cortex (corticospinal neurons) exhibited reduced synchronized activity after SCI that correlates with microglial morphology, which was recovered using tDCS. This indicates that tDCS promotes changes in the morphological properties and recovery of microglia after SCI. Combining immunotherapy with tDCS may be effective in treating SCI.
Collapse
Affiliation(s)
- Ryotaro Oishi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | - Yukihito Ode
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yuya Okada
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
- Center for Optical Scattering Image Science, Kobe University, Kobe, Japan.
- Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Shonan, Hayama, Kanagawa, 240-0193, Japan.
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
54
|
Brockie S, Zhou C, Fehlings MG. Resident immune responses to spinal cord injury: role of astrocytes and microglia. Neural Regen Res 2024; 19:1678-1685. [PMID: 38103231 PMCID: PMC10960308 DOI: 10.4103/1673-5374.389630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury can be traumatic or non-traumatic in origin, with the latter rising in incidence and prevalence with the aging demographics of our society. Moreover, as the global population ages, individuals with co-existent degenerative spinal pathology comprise a growing number of traumatic spinal cord injury cases, especially involving the cervical spinal cord. This makes recovery and treatment approaches particularly challenging as age and comorbidities may limit regenerative capacity. For these reasons, it is critical to better understand the complex milieu of spinal cord injury lesion pathobiology and the ensuing inflammatory response. This review discusses microglia-specific purinergic and cytokine signaling pathways, as well as microglial modulation of synaptic stability and plasticity after injury. Further, we evaluate the role of astrocytes in neurotransmission and calcium signaling, as well as their border-forming response to neural lesions. Both the inflammatory and reparative roles of these cells have eluded our complete understanding and remain key therapeutic targets due to their extensive structural and functional roles in the nervous system. Recent advances have shed light on the roles of glia in neurotransmission and reparative injury responses that will change how interventions are directed. Understanding key processes and existing knowledge gaps will allow future research to effectively target these cells and harness their regenerative potential.
Collapse
Affiliation(s)
- Sydney Brockie
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Cindy Zhou
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
55
|
Wickel J, Chung HY, Ceanga M, von Stackelberg N, Hahn N, Candemir Ö, Baade-Büttner C, Mein N, Tomasini P, Woldeyesus DM, Andreas N, Baumgarten P, Koch P, Groth M, Wang ZQ, Geis C. Repopulated microglia after pharmacological depletion decrease dendritic spine density in adult mouse brain. Glia 2024; 72:1484-1500. [PMID: 38780213 DOI: 10.1002/glia.24541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.
Collapse
Affiliation(s)
- Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nina Hahn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Özge Candemir
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Carolin Baade-Büttner
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Paula Tomasini
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Dan M Woldeyesus
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nico Andreas
- Department of Neurosurgery, Jena University Hospital, Jena, Germany
| | - Peter Baumgarten
- Department of Neurosurgery, Jena University Hospital, Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
56
|
Malik S, Xavier S, Soch A, Younesi S, Yip J, Slayo M, Barrientos RM, Sominsky L, Spencer SJ. High-fat diet and aging-associated memory impairments persist in the absence of microglia in female rats. Neurobiol Aging 2024; 140:22-32. [PMID: 38703636 DOI: 10.1016/j.neurobiolaging.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Aging is associated with a priming of microglia such that they are hypersensitive to further immune challenges. As such high-fat diet during aging can have detrimental effects on cognition that is not seen in the young. However, conflicting findings also suggest that obesity may protect against cognitive decline during aging. Given this uncertainty we aimed here to examine the role of microglia in high-fat, high-sucrose diet (HFSD)-induced changes in cognitive performance in the aging brain. We hypothesised that 8 weeks of HFSD-feeding would alter microglia and the inflammatory milieu in aging and worsen aging-related cognitive deficits in a microglia-dependent manner. We found that both aging and HFSD reduced hippocampal neuron numbers and open field exploration; they also impaired recognition memory. However, the aging-related deficits occurred in the absence of a pro-inflammatory response and the deficits in memory performance persisted after depletion of microglia in the Cx3cr1-Dtr knock-in rat. Our data suggest that mechanisms additional to the acute microglial contribution play a role in aging- and HFSD-associated memory dysfunction.
Collapse
Affiliation(s)
- Sajida Malik
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Soniya Xavier
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jackson Yip
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Mary Slayo
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, Marburg, Germany
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Barwon Health, Geelong, Victoria, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
57
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
58
|
Sánchez-Puebla L, de Hoz R, Salobrar-García E, Arias-Vázquez A, González-Jiménez M, Ramírez AI, Fernández-Albarral JA, Matamoros JA, Elvira-Hurtado L, Saido TC, Saito T, Nieto Vaquero C, Cuartero MI, Moro MA, Salazar JJ, López-Cuenca I, Ramírez JM. Age-Related Retinal Layer Thickness Changes Measured by OCT in APPNL-F/NL-F Mice: Implications for Alzheimer's Disease. Int J Mol Sci 2024; 25:8221. [PMID: 39125789 PMCID: PMC11312090 DOI: 10.3390/ijms25158221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In Alzheimer's disease (AD), transgenic mouse models have established links between abnormalities in the retina and those in the brain. APPNL-F/NL-F is a murine, humanized AD model that replicates several pathological features observed in patients with AD. Research has focused on obtaining quantitative parameters from optical coherence tomography (OCT) in AD. The aim of this study was to analyze, in a transversal case-control study using manual retinal segmentation via SD-OCT, the changes occurring in the retinal layers of the APPNL/F-NF/L AD model in comparison to C57BL/6J mice (WT) at 6, 9, 12, 15, 17, and 20 months of age. The analysis focused on retinal thickness in RNFL-GCL, IPL, INL, OPL, and ONL based on the Early Treatment Diabetic Retinopathy Study (ETDRS) sectors. Both APPNL-F/NL-F-model and WT animals exhibited thickness changes at the time points studied. While WT showed significant changes in INL, OPL, and ONL, the AD model showed changes in all retinal layers analyzed. The APPNL-F/NL-F displayed significant thickness variations in the analyzed layers except for the IPL compared to related WT. These thickness changes closely resembled those found in humans during preclinical stages, as well as during mild and moderate AD stages, making this AD model behave more similarly to the disease in humans.
Collapse
Affiliation(s)
- Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alberto Arias-Vázquez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
| | - María González-Jiménez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
| | - Takaomi C. Saido
- Brain Science Institute, RIKEN, Laboratory for Proteolytic Neuroscience, Wako 351-0198, Japan;
| | - Takashi Saito
- Institute of Brain Science, Faculty of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan;
| | - Carmen Nieto Vaquero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (C.N.V.); (M.A.M.)
- Hospital 12 de Octubre Research Institute (i + 12), 28041 Madrid, Spain;
- University Institute for Research in Neurochemistry, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - María I. Cuartero
- Hospital 12 de Octubre Research Institute (i + 12), 28041 Madrid, Spain;
- University Institute for Research in Neurochemistry, Complutense University of Madrid (UCM), 28040 Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - María A. Moro
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (C.N.V.); (M.A.M.)
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (R.d.H.); (E.S.-G.); (A.A.-V.); (M.G.-J.); (A.I.R.); (J.A.F.-A.); (J.A.M.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
59
|
Carrier M, Robert MÈ, St-Pierre MK, Ibáñez FG, Gonçalves de Andrade E, Laroche A, Picard K, Vecchiarelli HA, Savage JC, Boilard É, Desjardins M, Tremblay MÈ. Bone marrow-derived myeloid cells transiently colonize the brain during postnatal development and interact with glutamatergic synapses. iScience 2024; 27:110037. [PMID: 39021809 PMCID: PMC11253522 DOI: 10.1016/j.isci.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024] Open
Abstract
Although the roles of embryonic yolk sac-derived, resident microglia in neurodevelopment were extensively studied, the possible involvement of bone marrow-derived cells remains elusive. In this work, we used a fate-mapping strategy to selectively label bone marrow-derived cells and their progeny in the brain (FLT3+IBA1+). FLT3+IBA1+ cells were confirmed to be transiently present in the healthy brain during early postnatal development. FLT3+IBA1+ cells have a distinct morphology index at postnatal day(P)0, P7, and P14 compared with neighboring microglia. FLT3+IBA1+ cells also express the microglial markers P2RY12 and TMEM119 and interact with VGLUT1 synapses at P14. Scanning electron microscopy indeed showed that FLT3+ cells contact and engulf pre-synaptic elements. Our findings suggest FLT3+IBA1+ cells might assist microglia in their physiological functions in the developing brain including synaptic pruning which is performed using their purinergic sensors. Our findings stimulate further investigation on the involvement of peripheral macrophages during homeostatic and pathological development.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Marie-Ève Robert
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Audrée Laroche
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | | | - Julie C. Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Éric Boilard
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC G1V 0A6, Canada
- Oncology Division, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
60
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
61
|
Pinto MJ, Bizien L, Fabre JM, Ðukanović N, Lepetz V, Henderson F, Pujol M, Sala RW, Tarpin T, Popa D, Triller A, Léna C, Fabre V, Bessis A. Microglial TNFα controls daily changes in synaptic GABAARs and sleep slow waves. J Cell Biol 2024; 223:e202401041. [PMID: 38695719 PMCID: PMC11070559 DOI: 10.1083/jcb.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.
Collapse
Affiliation(s)
- Maria Joana Pinto
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Lucy Bizien
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julie M.J. Fabre
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nina Ðukanović
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Valentin Lepetz
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fiona Henderson
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Marine Pujol
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Romain W. Sala
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Thibault Tarpin
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Daniela Popa
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Véronique Fabre
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Alain Bessis
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
62
|
Yoshioka M, Takahashi M, Kershaw J, Handa M, Takada A, Takuwa H. Two-photon optogenetics-based assessment of neuronal connectivity in healthy and chronic hypoperfusion mice. NEUROPHOTONICS 2024; 11:035009. [PMID: 39345733 PMCID: PMC11436461 DOI: 10.1117/1.nph.11.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
Significance Two-photon optogenetics and simultaneous calcium imaging can be used to visualize the response of surrounding neurons with respect to the activity of an optically stimulated target neuron, providing a direct method to assess neuronal connectivity. Aim We aim to develop a two-photon optogenetics-based method for evaluating neuronal connectivity, compare it to the existing indirect resting-state synchrony method, and investigate the application of the method to brain pathophysiology. Approach C1V1-mScarlet was introduced into GCaMP6s-expressing transgenic mice with an adeno-associated virus. Optical stimulation of a single target neuron and simultaneous calcium imaging of the target and surrounding cells were performed. Neuronal connectivity was evaluated from the correlation between the fluorescence intensity of the target and surrounding cells. Results The neuronal connectivity in the living brain was evaluated using two-photon optogenetics. However, resting-state synchrony was not always consistent with two-photon optogenetics-based connectivity. Comparison with neuronal synchrony measured during sensory stimulation suggested that the disagreement was due to external sensory input. Two-photon optogenetics-based connectivity significantly decreased in the common carotid artery occlusion model, whereas there was no significant change in the control group. Conclusions We successfully developed a direct method to evaluate neuronal connectivity in the living brain using two-photon optogenetics. The technique was successful in detecting connectivity impairment in hypoperfusion model mice.
Collapse
Affiliation(s)
- Masaki Yoshioka
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Medicine, Department of Neurological Surgery, Chiba, Japan
| | - Manami Takahashi
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
| | - Jeff Kershaw
- National Institutes for Quantum Science and Technology, Institute for Quantum Medical Science, Department of Molecular Imaging and Theranostics, Chiba, Japan
| | - Mariko Handa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Ayaka Takada
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| |
Collapse
|
63
|
Wen W, Zhou J, Zhan C, Wang J. Microglia as a Game Changer in Epilepsy Comorbid Depression. Mol Neurobiol 2024; 61:4021-4037. [PMID: 38048030 DOI: 10.1007/s12035-023-03810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
As one of the most common neurological diseases, epilepsy is often accompanied by psychiatric disorders. Depression is the most universal comorbidity of epilepsy, especially in temporal lobe epilepsy (TLE). Therefore, it is urgently needed to figure out potential mechanisms and the optimization of therapeutic strategies. Microglia play a pivotal role in the coexistent relationship between epilepsy and depression. Activated microglia released cytokines like IL-6 and IL-1β, orchestrating neuroinflammation especially in the hippocampus, worsening both depression and epilepsy. The decrease of intracellular K+ is a common part in various molecular changes. The P2X7-NLRP3-IL-1β is a major inflammatory pathway that disrupts brain network. Extra ATP and CX3CL1 also lead to neuronal excitotoxicity and blood-brain barrier (BBB) disruption. Regulating neuroinflammation aiming at microglia-related molecules is capable of suspending the vicious mutual aggravating circle of epilepsy and depression. Other overlaps between epilepsy and depression lie in transcriptomic, neuroimaging, diagnosis and treatment. Hippocampal sclerosis (HS) and amygdala enlargement (AE) may be the underlying macroscopic pathological changes according to current studies. Extant evidence shows that cognitive behavioral therapy (CBT) and antidepressants like selective serotonin-reuptake inhibitors (SSRIs) are safe, but the effect is limited. Improvement in depression is likely to reduce the frequency of seizure. More comprehensive experiments are warranted to better understand the relationship between them.
Collapse
Affiliation(s)
- Wenrong Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingsheng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang'an Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
64
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
65
|
Ugursu B, Sah A, Sartori S, Popp O, Mertins P, Dunay IR, Kettenmann H, Singewald N, Wolf SA. Microglial sex differences in innate high anxiety and modulatory effects of minocycline. Brain Behav Immun 2024; 119:465-481. [PMID: 38552926 DOI: 10.1016/j.bbi.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Microglia modulate synaptic refinement in the central nervous system (CNS). We have previously shown that a mouse model with innate high anxiety-related behavior (HAB) displays higher CD68+ microglia density in the key regions of anxiety circuits compared to mice with normal anxiety-related behavior (NAB) in males, and that minocycline treatment attenuated the enhanced anxiety of HAB male. Given that a higher prevalence of anxiety is widely reported in females compared to males, little is known concerning sex differences at the cellular level. Herein, we address this by analyzing microglia heterogeneity and function in the HAB and NAB brains of both sexes. Single-cell RNA sequencing revealed ten distinct microglia clusters varied by their frequency and gene expression profile. We report striking sex differences, especially in the major microglia clusters of HABs, indicating a higher expression of genes associated with phagocytosis and synaptic engulfment in the female compared to the male. On a functional level, we show that female HAB microglia engulfed a greater amount of hippocampal vGLUT1+ excitatory synapses compared to the male. We moreover show that female HAB microglia engulfed more synaptosomes compared to the male HAB in vitro. Due to previously reported effects of minocycline on microglia, we finally administered oral minocycline to HABs of both sexes and showed a significant reduction in the engulfment of synapses by female HAB microglia. In parallel to our microglia-specific findings, we further showed an anxiolytic effect of minocycline on female HABs, which is complementary to our previous findings in the male HABs. Our study, therefore, identifies the altered function of synaptic engulfment by microglia as a potential avenue to target and resolve microglia heterogeneity in mice with innate high anxiety.
Collapse
Affiliation(s)
- Bilge Ugursu
- Psychoneuroimmunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Experimental Ophthalmology, ChariteUniversitätsmedizin Berlin, Germany
| | - Anupam Sah
- Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Austria
| | - Simone Sartori
- Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Austria
| | - Oliver Popp
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute of Health, Berlin, Germany
| | - Philip Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute of Health, Berlin, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Germany
| | - Helmut Kettenmann
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nicolas Singewald
- Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Austria
| | - Susanne A Wolf
- Psychoneuroimmunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Experimental Ophthalmology, ChariteUniversitätsmedizin Berlin, Germany.
| |
Collapse
|
66
|
Olschewski DN, Nazarzadeh N, Lange F, Koenig AM, Kulka C, Abraham JA, Blaschke SJ, Merkel R, Hoffmann B, Fink GR, Schroeter M, Rueger MA, Vay SU. The angiotensin II receptors type 1 and 2 modulate astrocytes and their crosstalk with microglia and neurons in an in vitro model of ischemic stroke. BMC Neurosci 2024; 25:29. [PMID: 38926677 PMCID: PMC11202395 DOI: 10.1186/s12868-024-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Astrocytes are the most abundant cell type of the central nervous system and are fundamentally involved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on their neighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specific differences in astrocytic acting. The renin-angiotensin-aldosterone system regulates arterial blood pressure through endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2 receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensin II receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia. Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker) or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygen and glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effects on microglia and cortical neurons. RESULT The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes during ischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10, a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resulted in both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reduced the expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia. Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes. CONCLUSION Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthy and ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this work emphasizes the strong interference of the different cells in the CNS and that targeting astrocytes might serve as a therapeutic strategy to influence the acting of glia-neuronal network in de- and regenerative context.
Collapse
Affiliation(s)
- Daniel Navin Olschewski
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
| | - Nilufar Nazarzadeh
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Felix Lange
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Anna Maria Koenig
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Christina Kulka
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jella-Andrea Abraham
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Stefan Johannes Blaschke
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Rudolf Merkel
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Bernd Hoffmann
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Sabine Ulrike Vay
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
67
|
Su L, Zhang M, Ji F, Zhao J, Wang Y, Wang W, Zhang S, Ma H, Wang Y, Jiao J. Microglia homeostasis mediated by epigenetic ARID1A regulates neural progenitor cells response and leads to autism-like behaviors. Mol Psychiatry 2024; 29:1595-1609. [PMID: 35858990 DOI: 10.1038/s41380-022-01703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023]
Abstract
Microglia are resident macrophages of the central nervous system that selectively emerge in embryonic cortical proliferative zones and regulate neurogenesis by altering molecular and phenotypic states. Despite their important roles in inflammatory phagocytosis and neurodegenerative diseases, microglial homeostasis during early brain development has not been fully elucidated. Here, we demonstrate a notable interplay between microglial homeostasis and neural progenitor cell signal transduction during embryonic neurogenesis. ARID1A, an epigenetic subunit of the SWI/SNF chromatin-remodeling complex, disrupts genome-wide H3K9me3 occupancy in microglia and changes the epigenetic chromatin landscape of regulatory elements that influence the switching of microglial states. Perturbation of microglial homeostasis impairs the release of PRG3, which regulates neural progenitor cell self-renewal and differentiation during embryonic development. Furthermore, the loss of microglia-driven PRG3 alters the downstream cascade of the Wnt/β-catenin signaling pathway through its interaction with the neural progenitor receptor LRP6, which leads to misplaced regulation in neuronal development and causes autism-like behaviors at later stages. Thus, during early fetal brain development, microglia progress toward a more homeostatic competent phenotype, which might render neural progenitor cells respond to environmental cross-talk perturbations.
Collapse
Affiliation(s)
- Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Shukui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hongyan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
68
|
Gómez-Pascual A, Naccache T, Xu J, Hooshmand K, Wretlind A, Gabrielli M, Lombardo MT, Shi L, Buckley NJ, Tijms BM, Vos SJB, Ten Kate M, Engelborghs S, Sleegers K, Frisoni GB, Wallin A, Lleó A, Popp J, Martinez-Lage P, Streffer J, Barkhof F, Zetterberg H, Visser PJ, Lovestone S, Bertram L, Nevado-Holgado AJ, Gualerzi A, Picciolini S, Proitsi P, Verderio C, Botía JA, Legido-Quigley C. Paired plasma lipidomics and proteomics analysis in the conversion from mild cognitive impairment to Alzheimer's disease. Comput Biol Med 2024; 176:108588. [PMID: 38761503 DOI: 10.1016/j.compbiomed.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. METHOD Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. RESULTS Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. CONCLUSIONS This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.
Collapse
Affiliation(s)
- Alicia Gómez-Pascual
- Department of Information and Communications Engineering Faculty of Informatics, University of Murcia, Murcia, Spain; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Talel Naccache
- Department of Data Science, City University of London, United Kingdom
| | - Jin Xu
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | | | | | | | - Marta Tiffany Lombardo
- CNR Institute of Neuroscience, 20854, Vedano al Lambro, Italy; School of Medicine and Surgery, University of Milano-Bicocca, 20126, Italy
| | - Liu Shi
- Novo Nordisk Research Centre Oxford (NNRCO), Oxford, United Kingdom
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, United Kingdom; Kavli Institute for Nanoscience Discovery, Denmark
| | - Betty M Tijms
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Mara Ten Kate
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Bru-BRAIN, UZ Brussel and Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kristel Sleegers
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giovanni B Frisoni
- University of Geneva, Geneva, Switzerland; IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alberto Lleó
- Neurology Department, Hospital Sant Pau, Barcelona, Spain, Centro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED)
| | - Julius Popp
- Old age psychiatry, University Hospital of Lausanne, University of Lausanne, Switzerland; Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, University of Zürich, Switzerland
| | | | - Johannes Streffer
- AC Immune SA, Lausanne, Switzerland, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conduct
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, United Kingdom
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Pieter Jelle Visser
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands; Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, United Kingdom; Janssen Medical (UK), High Wycombe, United Kingdom
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS in Milan, Italy
| | | | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | | | - Juan A Botía
- Department of Information and Communications Engineering Faculty of Informatics, University of Murcia, Murcia, Spain
| | - Cristina Legido-Quigley
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Institute of Pharmaceutical Science, King's College London, London, United Kingdom.
| |
Collapse
|
69
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
70
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
71
|
Chunchai T, Chinchapo T, Sripetchwandee J, Thonusin C, Chattipakorn N, Chattipakorn SC. Lipopolysaccharide exacerbates depressive-like behaviors in obese rats through complement C1q-mediated synaptic elimination by microglia. Acta Physiol (Oxf) 2024; 240:e14130. [PMID: 38462756 DOI: 10.1111/apha.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
AIM Prolonged high-fat diet (HFD) consumption has been shown to impair cognition and depression. The combined effects of HFD and lipopolysaccharide (LPS) administration on those outcomes have never been thoroughly investigated. This study investigated the effects of LPS, HFD consumption, and a combination of both conditions on microglial dysfunction, microglial morphological alterations, synaptic loss, cognitive dysfunction, and depressive-like behaviors. METHODS Sixty-four male Wistar rats were fed either a normal diet (ND) or HFD for 12 weeks, followed by single dose-subcutaneous injection of either vehicle or LPS. Then, cognitive function and depressive-like behaviors were assessed. Then, rats were euthanized, and the whole brain, hippocampus, and spleen were collected for further investigation, including western blot analysis, qRT-PCR, immunofluorescence staining, and brain metabolome determination. RESULTS HFD-fed rats developed obese characteristics. Both HFD-fed rats with vehicle and ND-fed rats with LPS increased cholesterol and serum LPS levels, which were exacerbated in HFD-fed rats with LPS. HFD consumption, but not LPS injection, caused oxidative stress, blood-brain barrier disruption, and decreased neurogenesis. Both HFD and LPS administration triggered an increase in inflammatory genes on microglia and astrocytes, increased c1q colocalization with microglia, and increased dendritic spine loss, which were exacerbated in the combined conditions. Both HFD and LPS altered neurotransmitters and disrupted brain metabolism. Interestingly, HFD consumption, but not LPS, induced cognitive decline, whereas both conditions individually induced depressive-like behaviors, which were exacerbated in the combined conditions. CONCLUSIONS Our findings suggest that LPS aggravates metabolic disturbances, neuroinflammation, microglial synaptic engulfment, and depressive-like behaviors in obese rats.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thirathada Chinchapo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
72
|
Xie C, Zhang Q, Ye X, Wu W, Cheng X, Ye X, Ruan J, Pan X. Periodontitis-induced neuroinflammation impacts dendritic spine immaturity and cognitive impairment. Oral Dis 2024; 30:2558-2569. [PMID: 37455416 DOI: 10.1111/odi.14674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE This study investigated the spinal changes in ligature-induced periodontitis and the role of periodontitis in cognitive impairment. METHODS Twenty mice were randomized into the control and chronic periodontitis (CP) groups, with the latter receiving ligature-induced periodontitis. Cognitive performance was assessed by fear conditioning test. Periodontal inflammation and alveolar bone resorption were evaluated by micro-computed tomography and histopathology. The hippocampal microglial activation was evaluated by immunohistochemistry (IHC). The expressions of hippocampal cytokines (TNF-α, iNOS, IL-1β, IL-4, IL-10, and TREM2) were measured by reverse transcription-polymerase chain reaction. The morphology and density of the dendritic spines were determined by Golgi-Cox staining. RESULTS The CP mice reported significant inflammatory cell infiltration and alveolar bone resorption, with marked increases in cytokine levels (TNF-α, iNOS, IL-1β, and TREM2) in the brain. Moreover, the CP mice showed significantly reduced freezing to the conditioned stimulus in the cued and contextual tests, indicating impaired memory. Further analyses revealed, in the hippocampus of the CP mice, enhanced microglial activation, decreased dendritic spine density, and increased proportion of thin dendritic spines. CONCLUSIONS Periodontitis-induced neuroinflammation may impair the cognitive function by activating hippocampal microglia and inducing dendritic spine immaturity.
Collapse
Affiliation(s)
- Changfu Xie
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qiuyang Zhang
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou Second Hospital, Fuzhou, China
| | - Xinyi Ye
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Weiliang Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojuan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaoan Ye
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jianyong Ruan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
73
|
Ayyubova G, Fazal N. Beneficial versus Detrimental Effects of Complement-Microglial Interactions in Alzheimer's Disease. Brain Sci 2024; 14:434. [PMID: 38790413 PMCID: PMC11119363 DOI: 10.3390/brainsci14050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Research indicates that brain-region-specific synapse loss and dysfunction are early hallmarks and stronger neurobiological correlates of cognitive decline in Alzheimer's disease (AD) than amyloid plaque and neurofibrillary tangle counts or neuronal loss. Even though the precise mechanisms underlying increased synaptic pruning in AD are still unknown, it has been confirmed that dysregulation of the balance between complement activation and inhibition is a crucial driver of its pathology. The complement includes three distinct activation mechanisms, with the activation products C3a and C5a, potent inflammatory effectors, and a membrane attack complex (MAC) leading to cell lysis. Besides pro-inflammatory cytokines, the dysregulated complement proteins released by activated microglia bind to amyloid β at the synaptic regions and cause the microglia to engulf the synapses. Additionally, research indicating that microglia-removed synapses are not always degenerating and that suppression of synaptic engulfment can repair cognitive deficits points to an essential opportunity for intervention that can prevent the loss of intact synapses. In this study, we focus on the latest research on the role and mechanisms of complement-mediated microglial synaptic pruning at different stages of AD to find the right targets that could interfere with complement dysregulation and be relevant for therapeutic intervention at the early stages of the disease.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku 370022, Azerbaijan;
| | - Nadeem Fazal
- College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL 60628, USA
| |
Collapse
|
74
|
Cresto N, Courret M, Génin A, Martin CMP, Bourret J, Sakkaki S, de Bock F, Janvier A, Polizzi A, Payrastre L, Ellero-Simatos S, Audinat E, Perroy J, Marchi N. Continuous low-level dietary exposure to glyphosate elicits dose and sex-dependent synaptic and microglial adaptations in the rodent brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123477. [PMID: 38307239 DOI: 10.1016/j.envpol.2024.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Prolonged exposure to low levels of dietary contaminants is a context in modern life that could alter organ physiology gradually. Here, we aimed to investigate the impact of continuous exposure to acceptable daily intake (ADI) and non-observable adverse effect level (NOAEL) of glyphosate from gestation to adulthood using C57BL/6J mice and incorporating these levels into their food pellets. From adulthood, we analyzed neurophysiological and neuro-glia cellular adaptations in male and female animals. Using ex-vivo hippocampal slice electrophysiology, we found a reduced efficacy of Schaffer collateral-to-CA1 excitatory synapses in glyphosate-exposed dietary conditions, with ADI and NOAEL dose-dependent effects. Short-term facilitation of excitatory synaptic transmission was specifically increased in NOAEL conditions, with a predominant influence in males, suggesting a reduced probability of neurotransmitter release. Long-term synaptic potentiation (LTP) was decreased in NOAEL-exposed mice. Next, we explore whether these neurophysiological modifications are associated with neuro-glia changes in the somatosensory cortex and hippocampus. High-resolution confocal microscopy analyses unveil a dose-dependent increased density of excitatory Vglut1+ Homer1+ synapses. Microglial Iba1+ cells displayed a shortening of their ramifications, a sign of cellular reactivity that was more pronounced in males at NOAEL levels. The morphology of GFAP+ astrocytes was generally not modified. Finally, we asked whether mouse-specific cross-correlations exist among all data sets generated. This examination included the novel object recognition (NOR) test performed before ex vivo functional and immunohistochemical examinations. We report a negative linear regression between the number of synapses and NOR or LTP maintenance when plotting ADI and NOAEL datasets. These results outline synaptic and microglial cell adaptations resulting from prenatal and continuous dietary low levels of glyphosate, discernible in, but not limited to, adult males exposed to the NOAEL. We discuss the potential significance of these findings to real-world consumer situations and long-term brain resilience.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Margot Courret
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Athénaïs Génin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Julie Bourret
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Sakkaki
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Frederic de Bock
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alicia Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
75
|
You Y, An DD, Wan YS, Zheng BX, Dai HB, Zhang SH, Zhang XN, Wang RR, Shi P, Jin M, Wang Y, Jiang L, Chen Z, Hu WW. Cell-specific IL-1R1 regulates the regional heterogeneity of microglial displacement of GABAergic synapses and motor learning ability. Cell Mol Life Sci 2024; 81:116. [PMID: 38438808 PMCID: PMC10912170 DOI: 10.1007/s00018-023-05111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024]
Abstract
Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1β negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1β on synaptic displacement. This study demonstrates that IL-1β is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Da-Dao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu-Shan Wan
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bai-Xiu Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hai-Bin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - She-Hong Zhang
- Department of Rehabilitation Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Xiang-Nan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rong-Rong Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
| | - Yi Wang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
76
|
Peng X, Mao Y, Liu Y, Dai Q, Tai Y, Luo B, Liang Y, Guan R, Zhou W, Chen L, Zhang Z, Shen G, Wang H. Microglial activation in the lateral amygdala promotes anxiety-like behaviors in mice with chronic moderate noise exposure. CNS Neurosci Ther 2024; 30:e14674. [PMID: 38468130 PMCID: PMC10927919 DOI: 10.1111/cns.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Long-term non-traumatic noise exposure, such as heavy traffic noise, can elicit emotional disorders in humans. However, the underlying neural substrate is still poorly understood. METHODS We exposed mice to moderate white noise for 28 days to induce anxiety-like behaviors, measured by open-field, elevated plus maze, and light-dark box tests. In vivo multi-electrode recordings in awake mice were used to examine neuronal activity. Chemogenetics were used to silence specific brain regions. Viral tracing, immunofluorescence, and confocal imaging were applied to define the neural circuit and characterize the morphology of microglia. RESULTS Exposure to moderate noise for 28 days at an 85-dB sound pressure level resulted in anxiety-like behaviors in open-field, elevated plus maze, and light-dark box tests. Viral tracing revealed that fibers projecting from the auditory cortex and auditory thalamus terminate in the lateral amygdala (LA). A noise-induced increase in spontaneous firing rates of the LA and blockade of noise-evoked anxiety-like behaviors by chemogenetic inhibition of LA glutamatergic neurons together confirmed that the LA plays a critical role in noise-induced anxiety. Noise-exposed animals were more vulnerable to anxiety induced by acute noise stressors than control mice. In addition to these behavioral abnormalities, ionized calcium-binding adaptor molecule 1 (Iba-1)-positive microglia in the LA underwent corresponding morphological modifications, including reduced process length and branching and increased soma size following noise exposure. Treatment with minocycline to suppress microglia inhibited noise-associated changes in microglial morphology, neuronal electrophysiological activity, and behavioral changes. Furthermore, microglia-mediated synaptic phagocytosis favored inhibitory synapses, which can cause an imbalance between excitation and inhibition, leading to anxiety-like behaviors. CONCLUSIONS Our study identifies LA microglial activation as a critical mediator of noise-induced anxiety-like behaviors, leading to neuronal and behavioral changes through selective synapse phagocytosis. Our results highlight the pivotal but previously unrecognized roles of LA microglia in chronic moderate noise-induced behavioral changes.
Collapse
Affiliation(s)
- Xiaoqi Peng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yunfeng Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yehao Liu
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Qian Dai
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Yingju Tai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Bin Luo
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Department of PsychiatryThe First Affiliated Hospital of USTCHefeiChina
| | - Yue Liang
- Department of OtolaryngologyThe First Affiliated Hospital of USTCHefeiChina
| | - Ruirui Guan
- Department of OtolaryngologyThe First Affiliated Hospital of USTCHefeiChina
| | - Wenjie Zhou
- Songjiang Research InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lin Chen
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Guoming Shen
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Haitao Wang
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| |
Collapse
|
77
|
Kusui Y, Izuo N, Tokuhara R, Asano T, Nitta A. Neuronal activation of nucleus accumbens by local methamphetamine administration induces cognitive impairment through microglial inflammation in mice. J Pharmacol Sci 2024; 154:127-138. [PMID: 38395513 DOI: 10.1016/j.jphs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/25/2024] Open
Abstract
More than half of methamphetamine (METH) users present with cognitive impairment, making it difficult for them to reintegrate into society. However, the mechanisms of METH-induced cognitive impairment remain unclear. METH causes neuronal hyperactivation in the nucleus accumbens (NAc) by aberrantly releasing dopamine, which triggers dependence. In this study, to clarify the involvement of hyperactivation of NAc in METH-induced cognitive impairment, mice were locally microinjected with METH into NAc (mice with METH (NAc)) and investigated their cognitive phenotype. Mice with METH (NAc) exhibited cognitive dysfunction in behavioral analyses and decreased long-term potentiation in the hippocampus, with NAc activation confirmed by expression of FosB, a neuronal activity marker. In the hippocampus of mice with METH (NAc), activated microglia, but not astroglia, and upregulated microglia-related genes, Il1b and C1qa were observed. Finally, administration of minocycline, a tetracycline antibiotic with suppressive effect on microglial activation, to mice with METH (NAc) ameliorated cognitive impairment and synaptic dysfunction by suppressing the increased expression of Il1b and C1qa in the hippocampus. In conclusion, activation of NAc by injection of METH into NAc elicited cognitive impairment by facilitating immune activation in mice. This study suggests that immunological intervention could be a therapeutic strategy for addiction-related cognitive disturbances.
Collapse
Affiliation(s)
- Yuka Kusui
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Reika Tokuhara
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
78
|
Severino L, Kim J, Nam MH, McHugh TJ. From synapses to circuits: What mouse models have taught us about how autism spectrum disorder impacts hippocampal function. Neurosci Biobehav Rev 2024; 158:105559. [PMID: 38246230 DOI: 10.1016/j.neubiorev.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD's impact on hippocampal circuit function.
Collapse
Affiliation(s)
- Leandra Severino
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea.
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi Saitama, Japan.
| |
Collapse
|
79
|
Nonato DTT, Aragão GF, Craveiro RMCB, Pereira MG, Vasconcelos SMM, Wong DVT, Júnior RCPL, Soares PMG, Lima MADS, Assreuy AMS, Chaves EMC. Polysaccharide-rich extract of Genipa americana leaves protects seizures and oxidative stress in the mice model of pentylenetetrazole-induced epilepsy. Biomed Pharmacother 2024; 172:116212. [PMID: 38364734 DOI: 10.1016/j.biopha.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Plant polysaccharides have biological activities in the brain and those obtained from Genipa americana leaves present antioxidant and anticonvulsant effects in the mice model of pentylenetetrazole (PTZ)-induced acute seizures. This study aimed to evaluate the polysaccharide-rich extract of Genipa americana leaves (PRE-Ga) in the models of acute seizures and chronic epilepsy (kindling) induced by PTZ. In the acute seizure model, male Swiss mice (25-35 g) received PRE-Ga (1 or 9 mg/kg; intraperitoneal- IP), alone or associated with diazepam (0.01 mg/kg), 30 min before induction of seizures with PTZ (70 mg/kg; IP). In the chronic epilepsy model, seizures were induced by PTZ (40 mg/kg) 30 min after treatment and in alternated days up to 30 days and evaluated by video. Brain areas (prefrontal cortex, hippocampus, striatum) were assessed for inflammatory and oxidative stress markers. Diazepam associated to PRE-Ga (9 mg/kg; i.p.) increased the latency of seizures in acute (222.4 ± 47.57 vs. saline: 62.00 ± 4.709 s) and chronic models (6.267 ± 0.502 vs. saline: 4.067 ± 0.407 s). In hippocampus, PRE-Ga (9 mg/kg) inhibited TNF-α (105.9 ± 5.38 vs. PTZ: 133.5 ± 7.62 pmol/g) and malondialdehyde (MDA) (473.6 ± 60.51) in the chronic model. PTZ increased glial fibrillar acid proteins (GFAP) and Iba-1 in hippocampus, which was reversed by PRE-Ga (GFAP: 1.9 ± 0.23 vs PTZ: 3.1 ± 1.3 and Iba-1: 2.2 ± 0.8 vs PTZ: 3.2 ± 1.4). PRE-Ga presents neuroprotector effect in the mice model of epilepsy induced by pentylenetetrazole reducing seizures, gliosis, inflammatory cytokines and oxidative stress.
Collapse
Affiliation(s)
| | - Gislei Frota Aragão
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | | | - Maria Gonçalves Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | | | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, Federal University of Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | | | - Pedro Marcos Gomes Soares
- Department of Physiology and Pharmacology, Federal University of Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | | | - Ana Maria Sampaio Assreuy
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | - Edna Maria Camelo Chaves
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil.
| |
Collapse
|
80
|
You Y, Chen Z, Hu WW. The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets? Pharmacol Ther 2024; 255:108606. [PMID: 38346477 DOI: 10.1016/j.pharmthera.2024.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Microglia play a crucial role in interacting with neuronal synapses and modulating synaptic plasticity. This function is particularly significant during postnatal development, as microglia are responsible for removing excessive synapses to prevent neurodevelopmental deficits. Dysregulation of microglial synaptic function has been well-documented in various pathological conditions, notably Alzheimer's disease and multiple sclerosis. The recent application of RNA sequencing has provided a powerful and unbiased means to decipher spatial and temporal microglial heterogeneity. By identifying microglia with varying gene expression profiles, researchers have defined multiple subgroups of microglia associated with specific pathological states, including disease-associated microglia, interferon-responsive microglia, proliferating microglia, and inflamed microglia in multiple sclerosis, among others. However, the functional roles of these distinct subgroups remain inadequately characterized. This review aims to refine our current understanding of the potential roles of heterogeneous microglia in regulating synaptic plasticity and their implications for various brain disorders, drawing from recent sequencing research and functional studies. This knowledge may aid in the identification of pathogenetic biomarkers and potential factors contributing to pathogenesis, shedding new light on the discovery of novel drug targets. The field of sequencing-based data mining is evolving toward a multi-omics approach. With advances in viral tools for precise microglial regulation and the development of brain organoid models, we are poised to elucidate the functional roles of microglial subgroups detected through sequencing analysis, ultimately identifying valuable therapeutic targets.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
81
|
Asghari Adib E, Shadrach JL, Reilly-Jankowiak L, Dwivedi MK, Rogers AE, Shahzad S, Passino R, Giger RJ, Pierchala BA, Collins CA. DLK signaling in axotomized neurons triggers complement activation and loss of upstream synapses. Cell Rep 2024; 43:113801. [PMID: 38363678 PMCID: PMC11088462 DOI: 10.1016/j.celrep.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer L Shadrach
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Manish K Dwivedi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Abigail E Rogers
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Catherine A Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
82
|
Ali HT, Sula I, AbuHamdia A, Elejla SA, Elrefaey A, Hamdar H, Elfil M. Nervous System Response to Neurotrauma: A Narrative Review of Cerebrovascular and Cellular Changes After Neurotrauma. J Mol Neurosci 2024; 74:22. [PMID: 38367075 PMCID: PMC10874332 DOI: 10.1007/s12031-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
Neurotrauma is a significant cause of morbidity and mortality worldwide. For instance, traumatic brain injury (TBI) causes more than 30% of all injury-related deaths in the USA annually. The underlying cause and clinical sequela vary among cases. Patients are liable to both acute and chronic changes in the nervous system after such a type of injury. Cerebrovascular disruption has the most common and serious effect in such cases because cerebrovascular autoregulation, which is one of the main determinants of cerebral perfusion pressure, can be effaced in brain injuries even in the absence of evident vascular injury. Disruption of the blood-brain barrier regulatory function may also ensue whether due to direct injury to its structure or metabolic changes. Furthermore, the autonomic nervous system (ANS) can be affected leading to sympathetic hyperactivity in many patients. On a cellular scale, the neuroinflammatory cascade medicated by the glial cells gets triggered in response to TBI. Nevertheless, cellular and molecular reactions involved in cerebrovascular repair are not fully understood yet. Most studies were done on animals with many drawbacks in interpreting results. Therefore, future studies including human subjects are necessarily needed. This review will be of relevance to clinicians and researchers interested in understanding the underlying mechanisms in neurotrauma cases and the development of proper therapies as well as those with a general interest in the neurotrauma field.
Collapse
Affiliation(s)
| | - Idris Sula
- College of Medicine, Sulaiman Al Rajhi University, Al Bukayriyah, Al Qassim, Saudi Arabia
| | - Abrar AbuHamdia
- Department of Medical Laboratory Science, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | | - Hiba Hamdar
- Medical Learning Skills Academy, Beirut, Lebanon
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
83
|
Tan X, Ma H, Guo X, Mao M, Qiu L, Dai H, Dai Y, Cao J, Ma H, Sun J. Disinhibition of hippocampal parvalbumin interneurons on pyramidal neurons participates in LPS-induced cognitive dysfunction. Neurosci Lett 2024; 821:137614. [PMID: 38159880 DOI: 10.1016/j.neulet.2023.137614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The vulnerability of hippocampal pyramidal (PY) neurons played a key role in the onset of cognitive impairment. Multiple researches revealed that neuroinflammation together with microglia activation and parvalbumin (PV) interneurons participated in the pathogenesis of cognitive dysfunction. However, the underlying mechanism was still unclear. This study aimed to determine whether microglia activation would induce PV interneurons impairment and PY neurons disinhibition, and as a result, promote cognitive dysfunction after lipopolysaccharide (LPS) challenge. METHODS Male C57BL/6J mice were injected with LPS to establish systemic inflammation model, and animal behavioral tests were performed. For chemogenetics, the virus was injected bilaterally into the CA1 region. Clozapine N-Oxide (CNO) was used to activate the PV interneurons. Whole-cell patch clamp recording was applied to detect spontaneous inhibitory post synaptic current (sIPSC) and spontaneous excitatory post synaptic current (sEPSC) of PY neurons in the CA1 region. RESULTS LPS induced hippocampal dependent memory impairment, which was accompanied with microglia activation. Meanwhile, PV protein level in hippocampus were decreased, and IPSCs of PY neurons in the CA1 were also suppressed. Minocycline reversed all the above changes. In addition, rescuing PV function with CNO improved memory impairment, sIPSCs of PY neurons and perisomatic PV boutons around PY neurons without affecting microglia activation. CONCLUSION Disinhibition of hippocampal parvalbumin interneurons on pyramidal neurons participates in LPS-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Xiaoxiang Tan
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Meng Mao
- Department of Anesthesiology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Hongyu Dai
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Yuchen Dai
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Jinyuan Cao
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei Province, China.
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
84
|
Rusin D, Vahl Becirovic L, Lyszczarz G, Krueger M, Benmamar-Badel A, Vad Mathiesen C, Sigurðardóttir Schiöth E, Lykke Lambertsen K, Wlodarczyk A. Microglia-Derived Insulin-like Growth Factor 1 Is Critical for Neurodevelopment. Cells 2024; 13:184. [PMID: 38247874 PMCID: PMC10813844 DOI: 10.3390/cells13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone essential for the proper development and growth of the organism, as a complete knockout of Igf1 in mice is lethal, causing microcephaly, growth retardation and the defective development of organs. In the central nervous system, neurons and glia have been reported to express Igf1, but their relative importance for postnatal development has not yet been fully defined. In order to address this, here, we obtained mice with a microglia-specific inducible conditional knockout of Igf1. We show that the deficiency in microglial Igf1, starting in the first postnatal week, leads to body and brain growth retardation, severely impaired myelination, changes in microglia numbers, and behavioral abnormalities. These results emphasize the importance of microglial-derived Igf1 for brain development and function and open new perspectives for the investigation of the role of microglial-Igf1 in neurological diseases.
Collapse
Affiliation(s)
- Dominika Rusin
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Lejla Vahl Becirovic
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Gabriela Lyszczarz
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Martin Krueger
- Institute for Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Anouk Benmamar-Badel
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Cecilie Vad Mathiesen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Neuroscience Academy Denmark, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Eydís Sigurðardóttir Schiöth
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Clinical Research, BRIDGE—Brain Research Interdisciplinary Guided Excellence, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Clinical Research, BRIDGE—Brain Research Interdisciplinary Guided Excellence, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
85
|
Xu P, Yu Y, Wu P. Role of microglia in brain development after viral infection. Front Cell Dev Biol 2024; 12:1340308. [PMID: 38298216 PMCID: PMC10825034 DOI: 10.3389/fcell.2024.1340308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Microglia are immune cells in the brain that originate from the yolk sac and enter the developing brain before birth. They play critical roles in brain development by supporting neural precursor proliferation, synaptic pruning, and circuit formation. However, microglia are also vulnerable to environmental factors, such as infection and stress that may alter their phenotype and function. Viral infection activates microglia to produce inflammatory cytokines and anti-viral responses that protect the brain from damage. However, excessive or prolonged microglial activation impairs brain development and leads to long-term consequences such as autism spectrum disorder and schizophrenia spectrum disorder. Moreover, certain viruses may attack microglia and deploy them as "Trojan horses" to infiltrate the brain. In this brief review, we describe the function of microglia during brain development and examine their roles after infection through microglia-neural crosstalk. We also identify limitations for current studies and highlight future investigated questions.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
86
|
Getachew B, Hauser SR, Bennani S, El Kouhen N, Sari Y, Tizabi Y. Adolescent alcohol drinking interaction with the gut microbiome: implications for adult alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:11881. [PMID: 38322648 PMCID: PMC10846679 DOI: 10.3389/adar.2024.11881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Reciprocal communication between the gut microbiota and the brain, commonly referred to as the "gut-brain-axis" is crucial in maintaining overall physiological homeostasis. Gut microbiota development and brain maturation (neuronal connectivity and plasticity) appear to be synchronized and to follow the same timeline during childhood (immature), adolescence (expansion) and adulthood (completion). It is important to note that the mesolimbic reward circuitry develops early on, whereas the maturation of the inhibitory frontal cortical neurons is delayed. This imbalance can lead to increased acquirement of reward-seeking and risk-taking behaviors during adolescence, and consequently eventuate in heightened risk for substance abuse. Thus, there is high initiation of alcohol drinking in early adolescence that significantly increases the risk of alcohol use disorder (AUD) in adulthood. The underlying causes for heightened AUD risk are not well understood. It is suggested that alcohol-associated gut microbiota impairment during adolescence plays a key role in AUD neurodevelopment in adulthood. Furthermore, alcohol-induced dysregulation of microglia, either directly or indirectly through interaction with gut microbiota, may be a critical neuroinflammatory pathway leading to neurodevelopmental impairments and AUD. In this review article, we highlight the influence of adolescent alcohol drinking on gut microbiota, gut-brain axis and microglia, and eventual manifestation of AUD. Furthermore, novel therapeutic interventions via gut microbiota manipulations are discussed briefly.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
87
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 PMCID: PMC11784324 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
88
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
89
|
Matrisciano F. Functional foods and neuroinflammation: Focus on autism spectrum disorder and schizophrenia. FUNCTIONAL FOODS AND CHRONIC DISEASE 2024:213-230. [DOI: 10.1016/b978-0-323-91747-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
90
|
Chen K, Qi X, Zhu LL, Li ML, Cong B, Li YM. Quantitative analysis of microglia morphological changes in the hypothalamus of chronically stressed rats. Brain Res Bull 2024; 206:110861. [PMID: 38141789 DOI: 10.1016/j.brainresbull.2023.110861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Based on the successful establishment of a rat model of chronic restraint stress, we used multiple algorithms to quantify the morphological changes of rat hypothalamic microglia from various perspectives, providing a pathomorphological basis for the subsequent study of molecular mechanisms of hypothalamic stress injury, such as neuroinflammation. To verify the successful establishment of the chronic stress model, an enzyme-linked immunosorbent assay was performed to detect serum glucocorticoid levels. Microglia labeled with Iba1 in frozen sections of rat hypothalamus were scanned and photographed at multiple levels using confocal microscopy. Subsequently, images were processed for external contouring and skeletonization, and morphological indices of microglia were calculated and analyzed using fractal, skeleton, and Sholl analysis. In addition, the co-expression of CD68 (a marker that can reflect phagocytic activity) and Iba1 was observed by immunofluorescence technique. Compared with the control group, microglia in the chronic stress group displayed reduced fractal dimension and lacunarity, increased density and circularity, enlarged soma areas, and shortened and reduced branches. Sholl analysis confirmed the reduced complexity of microglia following chronic stress. Meanwhile, microglia CD68 increased significantly, indicating that the microglia in the chronic stress group have greater phagocytosis activity. In summary, chronic restraint stress promoted the conversion of microglia in the rat hypothalamus to a less complex form, manifested as larger soma, shorter and fewer branches, more uniform and dense texture, and increased circularity; indeed, the shape of these microglia resembled that of amoeba and they displayed strong phagocytosis activity.
Collapse
Affiliation(s)
- Ke Chen
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Xin Qi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Lin-Lin Zhu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Mei-Li Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China.
| | - Ying-Min Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China.
| |
Collapse
|
91
|
Jaunmuktane Z. Neuropathology of white matter disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:3-20. [PMID: 39322386 DOI: 10.1016/b978-0-323-99209-1.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The hallmark neuropathologic feature of all leukodystrophies is depletion or alteration of the white matter of the central nervous system; however increasing genetic discoveries highlight the genetic heterogeneity of white matter disorders. These discoveries have significantly helped to advance the understanding of the complexity of molecular mechanisms involved in the biogenesis and maintenance of healthy white matter. Accordingly, genetic discoveries and functional studies have enabled us to firmly establish that multiple distinct structural defects can lead to white matter pathology. Leukodystrophies can develop not only due to defects in proteins essential for myelin biogenesis and maintenance or oligodendrocyte function, but also due to mutations encoding myriad of proteins involved in the function of neurons, astrocytes, microglial cells as well as blood vessels. To a variable extent, some leukodystrophies also show gray matter, peripheral nervous system, or multisystem involvement. Depending on the genetic defect and its role in the formation or maintenance of the white matter, leukodystrophies can present either in early childhood or adulthood. In this chapter, the classification of leukodystrophies will be discussed from the cellular defect point of view, followed by a description of known neuropathologic alterations for all leukodystrophies.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
92
|
George AJ, Wei W, Pyaram DN, Gomez M, Shree N, Kadirvelu J, Lail H, Wanders D, Murphy AZ, Mabb AM. Gordon Holmes Syndrome Model Mice Exhibit Alterations in Microglia, Age, and Sex-Specific Disruptions in Cognitive and Proprioceptive Function. eNeuro 2024; 11:ENEURO.0074-23.2023. [PMID: 38164552 PMCID: PMC10849025 DOI: 10.1523/eneuro.0074-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
Gordon Holmes syndrome (GHS) is a neurological disorder associated with neuroendocrine, cognitive, and motor impairments with corresponding neurodegeneration. Mutations in the E3 ubiquitin ligase RNF216 are strongly linked to GHS. Previous studies show that deletion of Rnf216 in mice led to sex-specific neuroendocrine dysfunction due to disruptions in the hypothalamic-pituitary-gonadal axis. To address RNF216 action in cognitive and motor functions, we tested Rnf216 knock-out (KO) mice in a battery of motor and learning tasks for a duration of 1 year. Although male and female KO mice did not demonstrate prominent motor phenotypes, KO females displayed abnormal limb clasping. KO mice also showed age-dependent strategy and associative learning impairments with sex-dependent alterations of microglia in the hippocampus and cortex. Additionally, KO males but not females had more negative resting membrane potentials in the CA1 hippocampus without any changes in miniature excitatory postsynaptic current (mEPSC) frequencies or amplitudes. Our findings show that constitutive deletion of Rnf216 alters microglia and neuronal excitability, which may provide insights into the etiology of sex-specific impairments in GHS.
Collapse
Affiliation(s)
- Arlene J George
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Dhanya N Pyaram
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Morgan Gomez
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | - Nitheyaa Shree
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | | | - Hannah Lail
- Department of Nutrition, Georgia State University, Atlanta 30303, Georgia
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta 30303, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| |
Collapse
|
93
|
Rezaie P, Hanisch UK. History of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:15-37. [PMID: 39207684 DOI: 10.1007/978-3-031-55529-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The term 'microglia' was first introduced into the scientific literature a century ago. The various eras of microglial research have been defined not only by the number of reports subsequently generated but, more critically, also by the concepts that have shaped our present-day views and understanding of microglia. Key methods, technologies, and models, as well as seminal discoveries made possible through their deployment have enabled breakthroughs, and now pave the way for lines of investigation that could not have been anticipated even a decade ago. Advances in our understanding of the microglial origin, forms, and functions have relied fundamentally on parallel developments in immunology. As the 'neuro-immune' cells of the brain, microglia are now under the spotlight in various disciplines. This chapter surveys the gradual processes and precipitous events that helped form ideas concerning the developmental origin of microglia and their roles in health and disease. It first covers the dawning phase during which the early pioneers of microglial research discovered cellular entities and already assigned functions to them. Following a recess period, the 1960s brought about a renaissance of active interest, with the development of tools and models-and fundamental notions on microglial contributions to central nervous system (CNS) pathologies. These seminal efforts laid the foundation for the awakening of a sweeping research era beginning in the 1980s and spurred on by a blast of immunological discoveries. Finally, this chapter stresses the advancements in molecular, genetic, and imaging approaches to the study of microglia with the turn of the millennium, enabling insights into virtually all facets of microglial physiology. Moving forward, it is clear that the future holds substantial promise for further discoveries. The next epoch in the history of microglial research has just begun.
Collapse
Affiliation(s)
- Payam Rezaie
- School of Life, Health & Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK.
| | | |
Collapse
|
94
|
Shaikh SN, Willis EF, Dierich M, Xu Y, Stuart SJS, Gobe GC, Bashaw AA, Rawashdeh O, Kim SJ, Vukovic J. CSF-1R inhibitor PLX3397 attenuates peripheral and brain chronic GVHD and improves functional outcomes in mice. J Neuroinflammation 2023; 20:300. [PMID: 38102698 PMCID: PMC10725001 DOI: 10.1186/s12974-023-02984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a serious complication of otherwise curative allogeneic haematopoietic stem cell transplants. Chronic GVHD induces pathological changes in peripheral organs as well as the brain and is a frequent cause of late morbidity and death after bone-marrow transplantation. In the periphery, bone-marrow-derived macrophages are key drivers of pathology, but recent evidence suggests that these cells also infiltrate into cGVHD-affected brains. Microglia are also persistently activated in the cGVHD-affected brain. To understand the involvement of these myeloid cell populations in the development and/or progression of cGVHD pathology, we here utilized the blood-brain-barrier permeable colony stimulating factor-1 receptor (CSF-1R) inhibitor PLX3397 (pexidartinib) at varying doses to pharmacologically deplete both cell types. We demonstrate that PLX3397 treatment during the development of cGVHD (i.e., 30 days post-transplant) improves disease symptoms, reducing both the clinical scores and histopathology of multiple cGVHD target organs, including the sequestration of T cells in cGVHD-affected skin tissue. Cognitive impairments associated with cGVHD and neuroinflammation were also attenuated by PLX3397 treatment. PLX3397 treatment prior to the onset of cGVHD (i.e., immediately post-transplant) did not change in clinical scores or histopathology. Overall, our data demonstrate significant benefits of using PLX3397 for the treatment of cGVHD and associated organ pathologies in both the periphery and brain, highlighting the therapeutic potential of pexidartinib for this condition.
Collapse
Affiliation(s)
- Samreen N Shaikh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Emily F Willis
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Max Dierich
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yi Xu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Samuel J S Stuart
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Glenda C Gobe
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Abate A Bashaw
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
95
|
Wu M, Chen L, Lin L, Fan Y, Li H, Lian H, Zheng B. Changes of optical coherence tomographic hyperreflective foci in rhegmatogenous retinal detachment patients after successful surgery. Photodiagnosis Photodyn Ther 2023; 44:103763. [PMID: 37643664 DOI: 10.1016/j.pdpdt.2023.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To assess the changes of hyperreflective foci (HRF) in rhegmatogenous retinal detachment (RRD) patients after successful reattachment surgery. METHODS Twenty-nine macula-off RRD eyes with successful reattachment surgery were retrospectively analyzed. Optical coherence tomography (OCT) was used to image macular regions and measure HRF in outer retina and inner retina at 0.5, 1, 3, 6, 12 months after surgery. The relationships between HRF and photoreceptor layer status, visual outcomes were evaluated. RESULTS After retinal reattachment, HRF mainly distributed at the location where external limiting membrane (ELM) or inner and outer segment (IS/OS) line was disrupted. The HRF numbers in outer and inner retina were greater in eyes with discontinuous IS/OS line than eyes with continuous IS/OS line (all p<0.05). In the outer retina, HRF increased in the initial three months after retinal reattachment, and then decreased gradually after 3 months (p<0.05). The HRF number in the outer retina at postoperative 0.5 months was associated with favorable visual outcomes at 6 and 12 months (r=-0.487, p =0.025; r=-0.626, p=0.005, respectively), nevertheless, the HRF number at 3 months was correlated with poor visual results at 6 and 12 months (r=0.441, p =0.017; r=0.477, p=0.019, respectively). CONCLUSION HRF mainly occurred near the site where ELM or IS/OS line was injured after retinal reattachment. In the outer retina, the number of HRF gradually increased in the first 3 months and then gradually decreased. The early appearance of HRF in the outer retina was associated with a good visual prognosis, while the late appearance may suggest a less favorable visual outcome.
Collapse
Affiliation(s)
- Mengai Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Li Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanyuan Fan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haidong Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hengli Lian
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bin Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
96
|
Lee JY, Jeong EA, Lee J, Shin HJ, Lee SJ, An HS, Kim KE, Kim WH, Bae YC, Kang H, Roh GS. TonEBP Haploinsufficiency Attenuates Microglial Activation and Memory Deficits in Middle-Aged and Amyloid β Oligomer-Treated Mice. Cells 2023; 12:2612. [PMID: 37998347 PMCID: PMC10670066 DOI: 10.3390/cells12222612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Age-related microglial activation is associated with cognitive impairment. Tonicity-responsive enhancer-binding protein (TonEBP) is a critical mediator of microglial activation in response to neuroinflammation. However, the precise role of TonEBP in the middle-aged brain is not yet known. We used TonEBP haploinsufficient mice to investigate the role of TonEBP in middle-aged or amyloid β oligomer (AβO)-injected brains and examined the effect of TonEBP knockdown on AβO-treated BV2 microglial cells. Consistent with an increase in microglial activation with aging, hippocampal TonEBP expression levels were increased in middle-aged (12-month-old) and old (24-month-old) mice compared with young (6-month-old) mice. Middle-aged TonEBP haploinsufficient mice showed reduced microglial activation and fewer memory deficits than wild-type mice. Electron microscopy revealed that synaptic pruning by microglial processes was reduced by TonEBP haploinsufficiency. TonEBP haploinsufficiency also reduced dendritic spine loss and improved memory deficits in AβO-treated mice. Furthermore, TonEBP knockdown attenuated migration and phagocytosis in AβO-treated BV2 cells. These findings suggest that TonEBP plays important roles in age-related microglial activation and memory deficits.
Collapse
Affiliation(s)
- Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - So Jeong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Heeyoung Kang
- Department of Neurology, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| |
Collapse
|
97
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
98
|
Di Palma M, Catalano M, Serpe C, De Luca M, Monaco L, Kunzelmann K, Limatola C, Conti F, Fattorini G. Lipopolysaccharide augments microglial GABA uptake by increasing GABA transporter-1 trafficking and bestrophin-1 expression. Glia 2023; 71:2527-2540. [PMID: 37431178 DOI: 10.1002/glia.24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the brain, affects numerous immune cell functions. Microglia, the brain's resident innate immune cells, regulate GABA signaling through GABA receptors and express the complete GABAergic machinery for GABA synthesis, uptake, and release. Here, the use of primary microglial cell cultures and ex vivo brain tissue sections allowed for demonstrating that treatment with lipopolysaccharide (LPS) increased microglial GABA uptake as well as GABA transporter (GAT)-1 trafficking. This effect was not entirely abolished by treatment with GAT inhibitors (GAT-Is). Notably, LPS also induced microglial upregulation of bestrophin-1 (BEST-1), a Ca2+ -activated Cl- channel permeable to GABA. Combined administration of GAT-Is and a BEST-1 inhibitor completely abolished LPS-induced microglial GABA uptake. Interestingly, increased microglial GAT-1 membrane turnover via syntaxin 1A was detected in LPS-treated cultures after BEST-1 blockade. Altogether, these findings provided evidence for a novel mechanism through which LPS may trigger the inflammatory response by directly altering microglial GABA clearance and identified the GAT-1/BEST-1 interplay as a potential novel mechanism involved in brain inflammation.
Collapse
Affiliation(s)
- Michael Di Palma
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Carmela Serpe
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Mariassunta De Luca
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
- Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| |
Collapse
|
99
|
Loonen AJ. Putative role of immune reactions in the mechanism of tardive dyskinesia. Brain Behav Immun Health 2023; 33:100687. [PMID: 37810262 PMCID: PMC10550815 DOI: 10.1016/j.bbih.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The term extrapyramidal disorders is most often used for conditions such as Parkinson's disease or Huntington's disease, but also refers to a group of extrapyramidal side effects of antipsychotics (EPS), such as tardive dyskinesia (TD). After a brief description of some clinical features of TD, this article summarizes the relatively scarce results of research on a possible link between mainly cytokine levels and TD. This data was found by systematically searching Pubmed and Embase. The limitations of these types of studies are a major obstacle to interpretation. After describing relevant aspects of the neuroinflammatory response and the neuroanatomical backgrounds of EPS, a new hypothesis for the origin of TD is presented with emphasis on dysfunctions in the striosomal compartment of the striatum and the dorsal diencephalic connection system (DDCS). It is postulated that (partly immunologically-induced) increase in oxidative stress and the dopamine-dependent immune response in classic TD proceed primarily via the DDCS, which itself is activated from evolutionarily older parts of the forebrain. Neuroinflammatory responses in the choroid plexus of the third ventricle may contribute due to its proximity to the habenula. It is concluded that direct evidence for a possible role of inflammatory processes in the mechanism of TD is still lacking because research on this is still too much of a niche, but there are indications that warrant further investigation.
Collapse
Affiliation(s)
- Anton J.M. Loonen
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| |
Collapse
|
100
|
García-Bermúdez MY, Vohra R, Freude K, van Wijngaarden P, Martin K, Thomsen MS, Aldana BI, Kolko M. Potential Retinal Biomarkers in Alzheimer's Disease. Int J Mol Sci 2023; 24:15834. [PMID: 37958816 PMCID: PMC10649108 DOI: 10.3390/ijms242115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) represents a major diagnostic challenge, as early detection is crucial for effective intervention. This review examines the diagnostic challenges facing current AD evaluations and explores the emerging field of retinal alterations as early indicators. Recognizing the potential of the retina as a noninvasive window to the brain, we emphasize the importance of identifying retinal biomarkers in the early stages of AD. However, the examination of AD is not without its challenges, as the similarities shared with other retinal diseases introduce complexity in the search for AD-specific markers. In this review, we address the relevance of using the retina for the early diagnosis of AD and the complex challenges associated with the search for AD-specific retinal biomarkers. We provide a comprehensive overview of the current landscape and highlight avenues for progress in AD diagnosis by retinal examination.
Collapse
Affiliation(s)
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Kristine Freude
- Group of Stem Cell Models and Embryology, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keith Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health, Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Blanca Irene Aldana
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| |
Collapse
|