51
|
Abstract
Over the years, fluorescence microscopy has evolved and has become a necessary element of life science studies. Microscopy has elucidated biological processes in live cells and organisms, and also enabled tracking of biomolecules in real time. Development of highly sensitive photodetectors and light sources, in addition to the evolution of various illumination methods and fluorophores, has helped microscopy acquire single-molecule fluorescence sensitivity, enabling single-molecule fluorescence imaging and detection. Low-light photodetectors used in microscopy are classified into two categories: point photodetectors and wide-field photodetectors. Although point photodetectors, notably photomultiplier tubes (PMTs), have been commonly used in laser scanning microscopy (LSM) with a confocal illumination setup, wide-field photodetectors, such as electron-multiplying charge-coupled devices (EMCCDs) and scientific complementary metal-oxide-semiconductor (sCMOS) cameras have been used in fluorescence imaging. This review focuses on the former low-light point photodetectors and presents their fluorescence microscopy applications and recent progress. These photodetectors include conventional PMTs, single photon avalanche diodes (SPADs), hybrid photodetectors (HPDs), in addition to newly emerging photodetectors, such as silicon photomultipliers (SiPMs) (also known as multi-pixel photon counters (MPPCs)) and superconducting nanowire single photon detectors (SSPDs). In particular, this review shows distinctive features of HPD and application of HPD to wide-field single-molecule fluorescence detection.
Collapse
|
52
|
Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR, Darvishi S, Khandoker AH, Baumert M. Progress in Brain Computer Interface: Challenges and Opportunities. Front Syst Neurosci 2021; 15:578875. [PMID: 33716680 PMCID: PMC7947348 DOI: 10.3389/fnsys.2021.578875] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Brain computer interfaces (BCI) provide a direct communication link between the brain and a computer or other external devices. They offer an extended degree of freedom either by strengthening or by substituting human peripheral working capacity and have potential applications in various fields such as rehabilitation, affective computing, robotics, gaming, and neuroscience. Significant research efforts on a global scale have delivered common platforms for technology standardization and help tackle highly complex and non-linear brain dynamics and related feature extraction and classification challenges. Time-variant psycho-neurophysiological fluctuations and their impact on brain signals impose another challenge for BCI researchers to transform the technology from laboratory experiments to plug-and-play daily life. This review summarizes state-of-the-art progress in the BCI field over the last decades and highlights critical challenges.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Khawza Ahmed
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Raqibul Mostafa
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Ganesh R. Naik
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sam Darvishi
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Ahsan H. Khandoker
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
53
|
Confocal imaging capacity on a widefield microscope using a spatial light modulator. PLoS One 2021; 16:e0244034. [PMID: 33591984 PMCID: PMC7886194 DOI: 10.1371/journal.pone.0244034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Confocal microscopes can reject out-of-focus and scattered light; however, widefield microscopes are far more common in biological laboratories due to their accessibility and lower cost. We report confocal imaging capacity on a widefield microscope by adding a spatial light modulator (SLM) and utilizing custom illumination and acquisition methods. We discuss our illumination strategy and compare several procedures for postprocessing the acquired image data. We assessed the performance of this system for rejecting out-of-focus light by comparing images taken at 1.4 NA using our widefield microscope, our SLM-enhanced setup, and a commercial confocal microscope. The optical sectioning capability, assessed on thin fluorescent film, was 0.85 ± 0.04 μm for our SLM-enhanced setup and 0.68 ± 0.04 μm for a confocal microscope, while a widefield microscope exhibited no sectioning capability. We demonstrate our setup by imaging the same set of neurons in C. elegans on widefield, SLM, and confocal microscopes. SLM enhancement greatly reduces background from the cell body, allowing visualization of dim fibers nearby. Our SLM-enhanced setup identified 96% of the dim neuronal fibers seen in confocal images while a widefield microscope only identified 50% of the same fibers. Our microscope add-on represents a very simple (2-component) and inexpensive (<$600) approach to enable widefield microscopes to optically section thick samples.
Collapse
|
54
|
Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision. Neurosci Res 2021; 171:9-18. [PMID: 33607170 DOI: 10.1016/j.neures.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Spatiotemporal patterns of neural activity generate brain functions, such as perception, memory, and behavior. Four-dimensional (4-D: x, y, z, t) analyses of such neural activity will facilitate understanding of brain functions. However, conventional two-photon microscope systems observe single-plane brain tissue alone at a time with cellular resolution. It faces a trade-off between the spatial resolution in the x-, y-, and z-axes and the temporal resolution by a limited point-by-point scan speed. To overcome this trade-off in 4-D imaging, we developed a holographic two-photon microscope for dual-plane imaging. A spatial light modulator (SLM) provided an additional focal plane at a different depth. Temporal multiplexing of split lasers with an optical chopper allowed fast imaging of two different focal planes. We simultaneously recorded the activities of neurons on layers 2/3 and 5 of the cerebral cortex in awake mice in vivo. The present study demonstrated the proof-of-concept of dual-plane two-photon imaging of neural circuits by using the temporally multiplexed SLM-based microscope. The temporally multiplexed holographic microscope, combined with in vivo labeling with genetically encoded probes, enabled 4-D imaging and analysis of neural activities at cellular resolution and physiological timescales. Large-scale 4-D imaging and analysis will facilitate studies of not only the nervous system but also of various biological systems.
Collapse
|
55
|
Daie K, Svoboda K, Druckmann S. Targeted photostimulation uncovers circuit motifs supporting short-term memory. Nat Neurosci 2021; 24:259-265. [PMID: 33495637 DOI: 10.1038/s41593-020-00776-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022]
Abstract
Short-term memory is associated with persistent neural activity that is maintained by positive feedback between neurons. To explore the neural circuit motifs that produce memory-related persistent activity, we measured coupling between functionally characterized motor cortex neurons in mice performing a memory-guided response task. Targeted two-photon photostimulation of small (<10) groups of neurons produced sparse calcium responses in coupled neurons over approximately 100 μm. Neurons with similar task-related selectivity were preferentially coupled. Photostimulation of different groups of neurons modulated activity in different subpopulations of coupled neurons. Responses of stimulated and coupled neurons persisted for seconds, far outlasting the duration of the photostimuli. Photostimuli produced behavioral biases that were predictable based on the selectivity of the perturbed neuronal population, even though photostimulation preceded the behavioral response by seconds. Our results suggest that memory-related neural circuits contain intercalated, recurrently connected modules, which can independently maintain selective persistent activity.
Collapse
Affiliation(s)
- Kayvon Daie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Stanford University, Stanford, CA, USA.
| |
Collapse
|
56
|
Zhang Z, Cong L, Bai L, Wang K. Light-field microscopy for fast volumetric brain imaging. J Neurosci Methods 2021; 352:109083. [PMID: 33484746 DOI: 10.1016/j.jneumeth.2021.109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023]
Abstract
Recording neural activities over large populations is critical for a better understanding of the functional mechanisms of animal brains. Traditional optical imaging technologies for in vivo neural activity recording are usually limited in throughput and cannot cover a large imaging volume at high speed. Light-field microscopy features a highly parallelized imaging collection mechanism and can simultaneously record optical signals from different depths. Therefore, it can potentially increase the imaging throughput substantially. Furthermore, its unique instantaneous volumetric imaging capability enables the capture of highly dynamic processes, such as recording whole-animal neural activities in freely moving Caenorhabditis elegans and whole-brain neural activity in freely swimming larval zebrafish during prey capture. Here, we summarize the principles of and considerations in the practical implementation of light-field microscopy as currently applied in biological imaging experiments. We also discuss the strategies that light-field microscopy can employ when imaging thick tissues in the presence of scattering and background interference. Finally, we present a few examples of applying light-field microscopy in neuroscientific studies in several important animal models.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Cong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
57
|
Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cell Dev Biol Anim 2021; 57:191-206. [PMID: 33438114 PMCID: PMC7802613 DOI: 10.1007/s11626-020-00532-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Microphysiological systems (MPS) designed to study the complexities of the peripheral and central nervous systems have made marked improvements over the years and have allowed researchers to assess in two and three dimensions the functional interconnectivity of neuronal tissues. The recent generation of brain organoids has further propelled the field into the nascent recapitulation of structural, functional, and effective connectivities which are found within the native human nervous system. Herein, we will review advances in culture methodologies, focused especially on those of human tissues, which seek to bridge the gap from 2D cultures to hierarchical and defined 3D MPS with the end goal of developing a robust nervous system-on-a-chip platform. These advances have far-reaching implications within basic science, pharmaceutical development, and translational medicine disciplines.
Collapse
|
58
|
Yang W, Yuste R. Holographic Imaging and Stimulation of Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:613-639. [PMID: 33398846 DOI: 10.1007/978-981-15-8763-4_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A critical neuroscience challenge is the need to optically image and manipulate neural activity with high spatiotemporal resolution over large brain volumes. The last three decades have seen the development of calcium imaging to record activity from neuronal populations, as well as optochemistry and optogenetics to optically manipulate neural activity. These methods are typically implemented with wide-field or laser-scanning microscopes. While the former approach has a good temporal resolution, it generally lacks spatial resolution or specificity, particularly in scattering tissues such as the nervous system; meanwhile, the latter approach, particularly when combined with two-photon excitation, has high spatial resolution and specificity but poor temporal resolution. As a new technique, holographic microscopy combines the advantages of both approaches. By projecting a holographic pattern on the brain through a spatial light modulator, the activity of specific groups of neurons in 3D brain volumes can be imaged or stimulated with high spatiotemporal resolution. In a combination of other techniques such as fast scanning or temporal focusing, this high spatiotemporal resolution can be further improved. Holographic microscopy enables all-optical interrogating of neural activity in 3D, a critical tool to dissect the function of neural circuits.
Collapse
Affiliation(s)
- Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, CA, USA.
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA
- Donostia International Physics Center, DIPC, San Sebastian, Spain
| |
Collapse
|
59
|
Peinado A, Bendek E, Yokoyama S, Poskanzer KE. Deformable mirror-based axial scanning for two-photon mammalian brain imaging. NEUROPHOTONICS 2021; 8:015003. [PMID: 33437848 PMCID: PMC7778453 DOI: 10.1117/1.nph.8.1.015003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Significance: To expand our understanding of the roles of astrocytes in neural circuits, there is a need to develop optical tools tailored specifically to capture their complex spatiotemporal Ca 2 + dynamics. This interest is not limited to 2D, but to multiple depths. Aim: The focus of our work was to design and evaluate the optical performance of an enhanced version of a two-photon (2P) microscope with the addition of a deformable mirror (DM)-based axial scanning system for live mammalian brain imaging. Approach: We used a DM to manipulate the beam wavefront by applying different defocus terms to cause a controlled axial shift of the image plane. The optical design and performance were evaluated by an analysis of the optical model, followed by an experimental characterization of the implemented instrument. Results: Key questions related to this instrument were addressed, including impact of the DM curvature change on vignetting, field of view size, image plane flatness, wavefront error, and point spread function. The instrument was used for imaging several neurobiological samples at different depths, including fixed brain slices and in vivo mouse cerebral cortex. Conclusions: Our implemented instrument was capable of recording z -stacks of 53 μ m in depth with a fine step size, parameters that make it useful for astrocyte biology research. Future work includes adaptive optics and intensity normalization.
Collapse
Affiliation(s)
- Alba Peinado
- University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California, United States
| | - Eduardo Bendek
- National Aeronautics and Space Administration, AMES Research Center, Moffet Field, California, United States
| | - Sae Yokoyama
- University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California, United States
| | - Kira E. Poskanzer
- University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California, United States
- Kavli Institute for Fundamental Neuroscience, San Francisco, California, United States
| |
Collapse
|
60
|
Identification and quantification of neuronal ensembles in optical imaging experiments. J Neurosci Methods 2020; 351:109046. [PMID: 33359231 DOI: 10.1016/j.jneumeth.2020.109046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Recent technical advances in molecular biology and optical imaging have made it possible to record from up to thousands of densely packed neurons in superficial and deep brain regions in vivo, with cellular subtype specificity and high spatiotemporal fidelity. Such optical neurotechnologies are enabling increasingly fine-scaled studies of neuronal circuits and reliably co-active groups of neurons, so-called ensembles. Neuronal ensembles are thought to constitute the basic functional building blocks of brain systems, potentially exhibiting collective computational properties. While the technical framework of in vivo optical imaging and quantification of neuronal activity follows certain widely held standards, analytical methods for study of neuronal co-activity and ensembles lack consensus and are highly varied across the field. Here we provide a comprehensive step-by-step overview of theoretical, experimental, and analytical considerations for the identification and quantification of neuronal ensemble dynamics in high-resolution in vivo optical imaging studies.
Collapse
|
61
|
May MA, Bawart M, Langeslag M, Bernet S, Kress M, Ritsch-Marte M, Jesacher A. High-NA two-photon single cell imaging with remote focusing using a diffractive tunable lens. BIOMEDICAL OPTICS EXPRESS 2020; 11:7183-7191. [PMID: 33408989 PMCID: PMC7747902 DOI: 10.1364/boe.405863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Fast, volumetric structural and functional imaging of cellular and sub-cellular dynamics inside the living brain is one of the most desired capabilities in the neurosciences, but still faces serious challenges. Specifically, while few solutions for rapid 3D scanning exist, it is generally much easier to facilitate fast in-plane scanning than it is to scan axially at high speeds. Remote focusing in which the imaging plane is shifted along the optical axis by a tunable lens while maintaining the position of the sample and objective is a promising approach to increase the axial scan speed, but existing techniques often introduce severe optical aberrations in high-NA imaging systems, eliminating the possibility of diffraction-limited single-cell imaging. Here, we demonstrate near diffraction-limited, volumetric two-photon fluorescence microscopy in which we resolve the deep sub-micron structures of single microglia cells with axial scanning performed using a novel high-NA remote focusing method. Image contrast is maintained to within 7% compared to mechanical sample stepping and the focal volume remains nearly diffraction-limited over an axial range greater than 86 µm.
Collapse
Affiliation(s)
- Molly A. May
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Martin Bawart
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Michiel Langeslag
- Institute of Physiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Stefan Bernet
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Monika Ritsch-Marte
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Alexander Jesacher
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| |
Collapse
|
62
|
Jiang H, Wang C, Wei B, Gan W, Cai D, Cui M. Long-range remote focusing by image-plane aberration correction. OPTICS EXPRESS 2020; 28:34008-34014. [PMID: 33182878 PMCID: PMC7679183 DOI: 10.1364/oe.409225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Laser scanning plays an important role in a broad range of applications. Toward 3D aberration-free scanning, a remote focusing technique has been developed for high-speed imaging applications. However, the implementation of remote focusing often suffers from a limited axial scan range as a result of unknown aberration. Through simple analysis, we show that the sample-to-image path length conservation is crucially important to the remote focusing performance. To enhance the axial scan range, we propose and demonstrate an image-plane aberration correction method. Using a static correction, we can effectively improve the focus quality over a large defocusing range. Experimentally, we achieved ∼three times greater defocusing range than that of conventional methods. This technique can broadly benefit the implementations of high-speed large-volume 3D imaging.
Collapse
Affiliation(s)
- Hehai Jiang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chenmao Wang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Bowen Wei
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Dawen Cai
- Department of Cell and Development Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
63
|
Antonini A, Sattin A, Moroni M, Bovetti S, Moretti C, Succol F, Forli A, Vecchia D, Rajamanickam VP, Bertoncini A, Panzeri S, Liberale C, Fellin T. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness. eLife 2020; 9:58882. [PMID: 33048047 PMCID: PMC7685710 DOI: 10.7554/elife.58882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Abstract
Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.
Collapse
Affiliation(s)
- Andrea Antonini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Monica Moroni
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Vijayakumar P Rajamanickam
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea Bertoncini
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Carlo Liberale
- Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| |
Collapse
|
64
|
Cheng Z, Jiang H, Gan W, Cui M. Pupil plane actuated remote focusing for rapid focal depth control. OPTICS EXPRESS 2020; 28:26407-26413. [PMID: 32906913 PMCID: PMC7679197 DOI: 10.1364/oe.402787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Laser scanning is widely employed in imaging and material processing. Common laser scanners are often fast for 2D transverse scanning. Rapid focal depth control is highly desired in many applications. Although remote focusing has been developed to achieve fast focal depth control, the implementation is limited by the laser damage to the actuator near laser focus. Here, we present a new method named pupil plane actuated remote focusing, which enables sub-millisecond response time while avoiding laser damage. We demonstrate its application by implementing a dual-plane two-photon laser scanning fluorescence microscope for in vivo recording of calcium transient of neurons in mouse neocortex.
Collapse
Affiliation(s)
- Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hehai Jiang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
65
|
Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat Biotechnol 2020; 39:74-83. [PMID: 32778840 DOI: 10.1038/s41587-020-0628-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
A detailed understanding of the function of neural networks and how they are supported by a dynamic vascular system requires fast three-dimensional imaging in thick tissues. Here we present confocal light field microscopy, a method that enables fast volumetric imaging in the brain at depths of hundreds of micrometers. It uses a generalized confocal detection scheme that selectively collects fluorescent signals from the in-focus volume and provides optical sectioning capability to improve imaging resolution and sensitivity in thick tissues. We demonstrate recording of whole-brain calcium transients in freely swimming zebrafish larvae and observe behaviorally correlated activities in single neurons during prey capture. Furthermore, in the mouse brain, we detect neural activities at depths of up to 370 μm and track blood cells at 70 Hz over a volume of diameter 800 μm × thickness 150 μm and depth of up to 600 μm.
Collapse
|
66
|
Griffiths VA, Valera AM, Lau JY, Roš H, Younts TJ, Marin B, Baragli C, Coyle D, Evans GJ, Konstantinou G, Koimtzis T, Nadella KMNS, Punde SA, Kirkby PA, Bianco IH, Silver RA. Real-time 3D movement correction for two-photon imaging in behaving animals. Nat Methods 2020; 17:741-748. [PMID: 32483335 PMCID: PMC7370269 DOI: 10.1038/s41592-020-0851-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022]
Abstract
Two-photon microscopy is widely used to investigate brain function across multiple spatial scales. However, measurements of neural activity are compromised by brain movement in behaving animals. Brain motion-induced artifacts are typically corrected using post hoc processing of two-dimensional images, but this approach is slow and does not correct for axial movements. Moreover, the deleterious effects of brain movement on high-speed imaging of small regions of interest and photostimulation cannot be corrected post hoc. To address this problem, we combined random-access three-dimensional (3D) laser scanning using an acousto-optic lens and rapid closed-loop field programmable gate array processing to track 3D brain movement and correct motion artifacts in real time at up to 1 kHz. Our recordings from synapses, dendrites and large neuronal populations in behaving mice and zebrafish demonstrate real-time movement-corrected 3D two-photon imaging with submicrometer precision.
Collapse
Affiliation(s)
- Victoria A Griffiths
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Antoine M Valera
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Joanna Yn Lau
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Hana Roš
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Thomas J Younts
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Bóris Marin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Chiara Baragli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- , Paris, France
| | - Diccon Coyle
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Geoffrey J Evans
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Department of Engineering, Sencon (UK) Ltd., Droitwich, UK
| | - George Konstantinou
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Theo Koimtzis
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Optical Metrology Service, Stansted, UK
| | | | - Sameer A Punde
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Paul A Kirkby
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
67
|
Dong L, Kollipara A, Darville T, Zou F, Zheng X. Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information. Sci Rep 2020; 10:5434. [PMID: 32214192 PMCID: PMC7096458 DOI: 10.1038/s41598-020-62330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
Deconvolution of bulk transcriptomics data from mixed cell populations is vital to identify the cellular mechanism of complex diseases. Existing deconvolution approaches can be divided into two major groups: supervised and unsupervised methods. Supervised deconvolution methods use cell type-specific prior information including cell proportions, reference cell type-specific gene signatures, or marker genes for each cell type, which may not be available in practice. Unsupervised methods, such as non-negative matrix factorization (NMF) and Convex Analysis of Mixtures (CAM), in contrast, completely disregard prior information and thus are not efficient for data with partial cell type-specific information. In this paper, we propose a semi-supervised deconvolution method, semi-CAM, that extends CAM by utilizing marker information from partial cell types. Analysis of simulation and two benchmark data have demonstrated that semi-CAM outperforms CAM by yielding more accurate cell proportion estimations when markers from partial/all cell types are available. In addition, when markers from all cell types are available, semi-CAM achieves better or similar accuracy compared to the supervised method using signature genes, CIBERSORT, and the marker-based supervised methods semi-NMF and DSA. Furthermore, analysis of human chlamydia-infection data with bulk expression profiles from six cell types and prior marker information of only three cell types suggests that semi-CAM achieves more accurate cell proportion estimations than CAM.
Collapse
Affiliation(s)
- Li Dong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Xiaojing Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
68
|
High spatiotemporal resolution and low photo-toxicity fluorescence imaging in live cells and in vivo. Biochem Soc Trans 2020; 47:1635-1650. [PMID: 31829403 DOI: 10.1042/bst20190020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Taking advantage of high contrast and molecular specificity, fluorescence microscopy has played a critical role in the visualization of subcellular structures and function, enabling unprecedented exploration from cell biology to neuroscience in living animals. To record and quantitatively analyse complex and dynamic biological processes in real time, fluorescence microscopes must be capable of rapid, targeted access deep within samples at high spatial resolutions, using techniques including super-resolution fluorescence microscopy, light sheet fluorescence microscopy, and multiple photon microscopy. In recent years, tremendous breakthroughs have improved the performance of these fluorescence microscopies in spatial resolution, imaging speed, and penetration. Here, we will review recent advancements of these microscopies in terms of the trade-off among spatial resolution, sampling speed and penetration depth and provide a view of their possible applications.
Collapse
|
69
|
Simultaneous multiplane imaging with reverberation two-photon microscopy. Nat Methods 2020; 17:283-286. [PMID: 32042186 DOI: 10.1038/s41592-019-0728-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022]
Abstract
Multiphoton microscopy has gained enormous popularity because of its unique capacity to provide high-resolution images from deep within scattering tissue. Here, we demonstrate video-rate multiplane imaging with two-photon microscopy by performing near-instantaneous axial scanning while maintaining three-dimensional micrometer-scale resolution. Our technique, termed reverberation microscopy, enables the monitoring of neuronal populations over large depth ranges and can be implemented as a simple add-on to a conventional design.
Collapse
|
70
|
Shin J, Tran DN, Stroud JR, Chin S, Tran TD, Foster MA. A minimally invasive lens-free computational microendoscope. SCIENCE ADVANCES 2019; 5:eaaw5595. [PMID: 31840055 PMCID: PMC6897551 DOI: 10.1126/sciadv.aaw5595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/13/2019] [Indexed: 05/21/2023]
Abstract
Ultra-miniaturized microendoscopes are vital for numerous biomedical applications. Such minimally invasive imagers allow for navigation into hard-to-reach regions and observation of deep brain activity in freely moving animals. Conventional solutions use distal microlenses. However, as lenses become smaller and less invasive, they develop greater aberrations and restricted fields of view. In addition, most of the imagers capable of variable focusing require mechanical actuation of the lens, increasing the distal complexity and weight. Here, we demonstrate a distal lens-free approach to microendoscopy enabled by computational image recovery. Our approach is entirely actuation free and uses a single pseudorandom spatial mask at the distal end of a multicore fiber. Experimentally, this lensless approach increases the space-bandwidth product, i.e., field of view divided by resolution, by threefold over a best-case lens-based system. In addition, the microendoscope demonstrates color resolved imaging and refocusing to 11 distinct depth planes from a single camera frame without any actuated parts.
Collapse
Affiliation(s)
- Jaewook Shin
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dung N. Tran
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jasper R. Stroud
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Chin
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Boston University, Boston, MA 02215, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
| | - Trac D. Tran
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mark A. Foster
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Corresponding author.
| |
Collapse
|
71
|
Li X, Zhang Y, Liu K, Xie H, Wang H, Kong L, Dai Q. Adaptive optimization for axial multi-foci generation in multiphoton microscopy. OPTICS EXPRESS 2019; 27:35948-35961. [PMID: 31878759 DOI: 10.1364/oe.27.035948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To improve imaging speed, multifocal excitation is widely adopted as a parallel strategy in laser-scanning microscopy. Specifically, axial multifocal microscopy is popular in neuroscience as it enables functional imaging of neurons in multiple depths simultaneously. However, previous phase searching algorithms for axial multi-foci generation generally generate foci of uniform intensities, which cannot compensate the scattering-induced power loss in deep tissue and causes inhomogeneous excitation. Here, we propose a novel adaptive optimization-based phase-searching method (AdaPS) to generate axial multi-foci with arbitrary intensity modulations for scattering-induced loss compensation. By adopting Adaptive Moment Estimation (Adam) as the searching algorithm, our method could escape from unsatisfactory local minima and stably converge to the optimal phase pattern with errors at least an order of magnitude lower. We validate AdaPS through both numerical simulations and experiments and demonstrate that AdaPS could provide uniform multi-depth imaging in scattering phantom and enable high-fidelity multi-depth recordings of neural network dynamics in mouse brain in vivo.
Collapse
|
72
|
Clough M, Chen JL. CELLULAR RESOLUTION IMAGING OF NEURONAL ACTIVITY ACROSS SPACE AND TIME IN THE MAMMALIAN BRAIN. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:95-101. [PMID: 32104747 DOI: 10.1016/j.cobme.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While the action potential has long been understood to be the fundamental bit of information in brain, how these spikes encode representations of stimuli and drive behavior remains unclear. Large-scale neuronal recordings with cellular and spike-time resolution spanning multiple brain regions are needed to capture relevant network dynamics that can be sparse and distributed across the population. This review focuses on recent advancements in optical methods that have pushed the boundaries for simultaneous population recordings at increasing volumes, distances, depths, and speeds. The integration of these technologies will be critical for overcoming fundamental limits in the pursuit of whole brain imaging in mammalian species.
Collapse
Affiliation(s)
- Mitchell Clough
- Department of Biomedical Engineering, Boston University, Boston, USA.,Department of Biology, Boston University, Boston, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, USA.,Department of Biology, Boston University, Boston, USA.,Center for Neurophotonics, Boston University, Boston, USA
| |
Collapse
|
73
|
Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging. Lasers Med Sci 2019; 35:317-328. [PMID: 31729608 DOI: 10.1007/s10103-019-02908-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Deep tissue imaging using two-photon fluorescence (TPF) techniques have revolutionized the optical imaging community by providing in depth molecular information at the single-cell level. These techniques provide structural and functional aspects of mammalian brain at unprecedented depth and resolution. However, wavefront distortions introduced by the optical system as well as the biological sample (tissue) limit the achievable fluorescence signal-to-noise ratio and resolution with penetration depth. In this review, we discuss on the advances in TPF microscopy techniques for in vivo functional imaging and offer guidelines as to which technologies are best suited for different imaging applications with special reference to adaptive optics.
Collapse
|
74
|
Lecoq J, Orlova N, Grewe BF. Wide. Fast. Deep: Recent Advances in Multiphoton Microscopy of In Vivo Neuronal Activity. J Neurosci 2019; 39:9042-9052. [PMID: 31578235 PMCID: PMC6855689 DOI: 10.1523/jneurosci.1527-18.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023] Open
Abstract
Multiphoton microscopy (MPM) has emerged as one of the most powerful and widespread technologies to monitor the activity of neuronal networks in awake, behaving animals over long periods of time. MPM development spanned across decades and crucially depended on the concurrent improvement of calcium indicators that report neuronal activity as well as surgical protocols, head fixation approaches, and innovations in optics and microscopy technology. Here we review the last decade of MPM development and highlight how in vivo imaging has matured and diversified, making it now possible to concurrently monitor thousands of neurons across connected brain areas or, alternatively, small local networks with sampling rates in the kilohertz range. This review includes different laser scanning approaches, such as multibeam technologies as well as recent developments to image deeper into neuronal tissues using new, long-wavelength laser sources. As future development will critically depend on our ability to resolve and discriminate individual neuronal spikes, we will also describe a simple framework that allows performing quantitative comparisons between the reviewed MPM instruments. Finally, we provide our own opinion on how the most recent MPM developments can be leveraged at scale to enable the next generation of discoveries in brain function.
Collapse
Affiliation(s)
- Jérôme Lecoq
- Allen Institute for Brain Science, Seattle 98109, Washington,
| | - Natalia Orlova
- Allen Institute for Brain Science, Seattle 98109, Washington
| | - Benjamin F Grewe
- Institute of Neuroinformatics, UZH and ETH Zurich, Zurich 8057, Switzerland
- Department of Electrical Engineering and Information Technology, ETH Zurich, Zurich 8092, Switzerland, and
- Faculty of Sciences, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
75
|
Huang C, Tai CY, Yang KP, Chang WK, Hsu KJ, Hsiao CC, Wu SC, Lin YY, Chiang AS, Chu SW. All-Optical Volumetric Physiology for Connectomics in Dense Neuronal Structures. iScience 2019; 22:133-146. [PMID: 31765994 PMCID: PMC6883334 DOI: 10.1016/j.isci.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
All-optical physiology (AOP) manipulates and reports neuronal activities with light, allowing for interrogation of neuronal functional connections with high spatiotemporal resolution. However, contemporary high-speed AOP platforms are limited to single-depth or discrete multi-plane recordings that are not suitable for studying functional connections among densely packed small neurons, such as neurons in Drosophila brains. Here, we constructed a 3D AOP platform by incorporating single-photon point stimulation and two-photon high-speed volumetric recordings with a tunable acoustic gradient-index (TAG) lens. We demonstrated the platform effectiveness by studying the anterior visual pathway (AVP) of Drosophila. We achieved functional observation of spatiotemporal coding and the strengths of calcium-sensitive connections between anterior optic tubercle (AOTU) sub-compartments and >70 tightly assembled 2-μm bulb (BU) microglomeruli in 3D coordinates with a single trial. Our work aids the establishment of in vivo 3D functional connectomes in neuron-dense brain areas. All-optical volumetric physiology = precise stimulation + fast volumetric recording Precise single-photon point stimulation among genetically defined neurons 3D two-photon imaging by an acoustic gradient-index lens for dense neural structures Observation of 3D functional connectivity in Drosophila anterior visual pathway
Collapse
Affiliation(s)
- Chiao Huang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chu-Yi Tai
- Institute of Biotechnology, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Kai-Ping Yang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Kun Chang
- Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Kuo-Jen Hsu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Ching-Chun Hsiao
- Department of Engineering and System Science, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Yen-Yin Lin
- Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan.
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Kavli Institute for Brain and Mind, University of California, San Diego, CA 92161, USA.
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Molecular Imaging Center, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
76
|
Takasaki KT, Tsyboulski D, Waters J. Dual-plane 3-photon microscopy with remote focusing. BIOMEDICAL OPTICS EXPRESS 2019; 10:5585-5599. [PMID: 31799032 PMCID: PMC6865092 DOI: 10.1364/boe.10.005585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 05/04/2023]
Abstract
3-photon excitation enables in vivo fluorescence microscopy deep in densely labeled and highly scattering samples. To date, 3-photon excitation has been restricted to scanning a single focus, limiting the speed of volume acquisition. Here, for the first time to our knowledge, we implemented and characterized dual-plane 3-photon microscopy with temporal multiplexing and remote focusing, and performed simultaneous in vivo calcium imaging of two planes beyond 600 µm deep in the cortex of a pan-excitatory GCaMP6s transgenic mouse with a per-plane framerate of 7 Hz and an effective 2 MHz laser repetition rate. This method is a straightforward and generalizable modification to single-focus 3PE systems, doubling the rate of volume (column) imaging with off-the-shelf components and minimal technical constraints.
Collapse
Affiliation(s)
- Kevin T. Takasaki
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA 98109, USA
| | - Dmitri Tsyboulski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jack Waters
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA 98109, USA
| |
Collapse
|
77
|
Liu R, Ball N, Brockill J, Kuan L, Millman D, White C, Leon A, Williams D, Nishiwaki S, de Vries S, Larkin J, Sullivan D, Slaughterbeck C, Farrell C, Saggau P. Aberration-free multi-plane imaging of neural activity from the mammalian brain using a fast-switching liquid crystal spatial light modulator. BIOMEDICAL OPTICS EXPRESS 2019; 10:5059-5080. [PMID: 31646030 PMCID: PMC6788611 DOI: 10.1364/boe.10.005059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/03/2019] [Indexed: 05/27/2023]
Abstract
We report a novel two-photon fluorescence microscope based on a fast-switching liquid crystal spatial light modulator and a pair of galvo-resonant scanners for large-scale recording of neural activity from the mammalian brain. The spatial light modulator is used to achieve fast switching between different imaging planes in multi-plane imaging and correct for intrinsic optical aberrations associated with this imaging scheme. The utilized imaging technique is capable of monitoring the neural activity from large populations of neurons with known coordinates spread across different layers of the neocortex in awake and behaving mice, regardless of the fluorescent labeling strategy. During each imaging session, all visual stimulus driven somatic activity could be recorded in the same behavior state. We observed heterogeneous response to different types of visual stimuli from ∼ 3,300 excitatory neurons reaching from layer II/III to V of the striate cortex.
Collapse
Affiliation(s)
- Rui Liu
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
- Now with GE Healthcare Bio-Sciences Corp, 1040 12th Ave NW, Issaquah, WA, 98027, USA
| | - Neil Ball
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - James Brockill
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Leonard Kuan
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Daniel Millman
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Cassandra White
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Arielle Leon
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Derric Williams
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Shig Nishiwaki
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Saskia de Vries
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Josh Larkin
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - David Sullivan
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | | | - Colin Farrell
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Peter Saggau
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
- Now with Italian Institute of Technology, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
78
|
Teppola H, Aćimović J, Linne ML. Unique Features of Network Bursts Emerge From the Complex Interplay of Excitatory and Inhibitory Receptors in Rat Neocortical Networks. Front Cell Neurosci 2019; 13:377. [PMID: 31555093 PMCID: PMC6742722 DOI: 10.3389/fncel.2019.00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Spontaneous network activity plays a fundamental role in the formation of functional networks during early development. The landmark of this activity is the recurrent emergence of intensive time-limited network bursts (NBs) rapidly spreading across the entire dissociated culture in vitro. The main excitatory mediators of NBs are glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-Methyl-D-aspartic-acid receptors (NMDARs) that express fast and slow ion channel kinetics, respectively. The fast inhibition of the activity is mediated through gamma-aminobutyric acid type A receptors (GABAARs). Although the AMPAR, NMDAR and GABAAR kinetics have been biophysically characterized in detail at the monosynaptic level in a variety of brain areas, the unique features of NBs emerging from the kinetics and the complex interplay of these receptors are not well understood. The goal of this study is to analyze the contribution of fast GABAARs on AMPAR- and NMDAR- mediated spontaneous NB activity in dissociated neonatal rat cortical cultures at 3 weeks in vitro. The networks were probed by both acute and gradual application of each excitatory receptor antagonist and combinations of acute excitatory and inhibitory receptor antagonists. At the same time, the extracellular network-wide activity was recorded with microelectrode arrays (MEAs). We analyzed the characteristic NB measures extracted from NB rate profiles and the distributions of interspike intervals, interburst intervals, and electrode recruitment time as well as the similarity of spatio-temporal patterns of network activity under different receptor antagonists. We show that NBs were rapidly initiated and recruited as well as diversely propagated by AMPARs and temporally and spatially maintained by NMDARs. GABAARs reduced the spiking frequency in AMPAR-mediated networks and dampened the termination of NBs in NMDAR-mediated networks as well as slowed down the recruitment of activity in all networks. Finally, we show characteristic super bursts composed of slow NBs with highly repetitive spatio-temporal patterns in gradually AMPAR blocked networks. To the best of our knowledge, this study is the first to unravel in detail how the three main mediators of synaptic transmission uniquely shape the NB characteristics, such as the initiation, maintenance, recruitment and termination of NBs in cortical cell cultures in vitro.
Collapse
Affiliation(s)
- Heidi Teppola
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jugoslava Aćimović
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marja-Leena Linne
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
79
|
Adesnik H, Naka A. Cracking the Function of Layers in the Sensory Cortex. Neuron 2019; 100:1028-1043. [PMID: 30521778 DOI: 10.1016/j.neuron.2018.10.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
Abstract
Understanding how cortical activity generates sensory perceptions requires a detailed dissection of the function of cortical layers. Despite our relatively extensive knowledge of their anatomy and wiring, we have a limited grasp of what each layer contributes to cortical computation. We need to develop a theory of cortical function that is rooted solidly in each layer's component cell types and fine circuit architecture and produces predictions that can be validated by specific perturbations. Here we briefly review the progress toward such a theory and suggest an experimental road map toward this goal. We discuss new methods for the all-optical interrogation of cortical layers, for correlating in vivo function with precise identification of transcriptional cell type, and for mapping local and long-range activity in vivo with synaptic resolution. The new technologies that can crack the function of cortical layers are finally on the immediate horizon.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Alexander Naka
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
80
|
Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, Kadmon J, Raja C, Chibukhchyan A, Ramakrishnan C, Inoue M, Shane JC, McKnight DJ, Yoshizawa S, Kato HE, Ganguli S, Deisseroth K. Cortical layer-specific critical dynamics triggering perception. Science 2019; 365:eaaw5202. [PMID: 31320556 PMCID: PMC6711485 DOI: 10.1126/science.aaw5202] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022]
Abstract
Perceptual experiences may arise from neuronal activity patterns in mammalian neocortex. We probed mouse neocortex during visual discrimination using a red-shifted channelrhodopsin (ChRmine, discovered through structure-guided genome mining) alongside multiplexed multiphoton-holography (MultiSLM), achieving control of individually specified neurons spanning large cortical volumes with millisecond precision. Stimulating a critical number of stimulus-orientation-selective neurons drove widespread recruitment of functionally related neurons, a process enhanced by (but not requiring) orientation-discrimination task learning. Optogenetic targeting of orientation-selective ensembles elicited correct behavioral discrimination. Cortical layer-specific dynamics were apparent, as emergent neuronal activity asymmetrically propagated from layer 2/3 to layer 5, and smaller layer 5 ensembles were as effective as larger layer 2/3 ensembles in eliciting orientation discrimination behavior. Population dynamics emerging after optogenetic stimulation both correctly predicted behavior and resembled natural internal representations of visual stimuli at cellular resolution over volumes of cortex.
Collapse
Affiliation(s)
- James H Marshel
- CNC Department, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Timothy A Machado
- CNC Department, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sean Quirin
- CNC Department, Stanford University, Stanford, CA 94305, USA
| | - Brandon Benson
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Kadmon
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Cephra Raja
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | - Susumu Yoshizawa
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8564, Japan
| | - Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- CNC Department, Stanford University, Stanford, CA 94305, USA.
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
81
|
Merkle CW, Zhu J, Bernucci MT, Srinivasan VJ. Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo. Neuroimage 2019; 202:116067. [PMID: 31394180 DOI: 10.1016/j.neuroimage.2019.116067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Studies of flow-metabolism coupling often presume that microvessel architecture is a surrogate for blood flow. To test this assumption, we introduce an in vivo Dynamic Contrast Optical Coherence Tomography (DyC-OCT) method to quantify layer-resolved microvascular blood flow and volume across the full depth of the mouse neocortex, where the angioarchitecture has been previously described. First, we cross-validate average DyC-OCT cortical flow against conventional Doppler OCT flow. Next, with laminar DyC-OCT, we discover that layer 4 consistently exhibits the highest microvascular blood flow, approximately two-fold higher than the outer cortical layers. While flow differences between layers are well-explained by microvascular volume and density, flow differences between subjects are better explained by transit time. Finally, from layer-resolved tracer enhancement, we also infer that microvascular hematocrit increases in deep cortical layers, consistent with predictions of plasma skimming. Altogether, our results show that while the cortical blood supply derives mainly from the pial surface, laminar hemodynamics ensure that the energetic needs of individual cortical layers are met. The laminar trends reported here provide data that links predictions based on the cortical angioarchitecture to cerebrovascular physiology in vivo.
Collapse
Affiliation(s)
- Conrad W Merkle
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Jun Zhu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Marcel T Bernucci
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA; Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
82
|
Kazemipour A, Novak O, Flickinger D, Marvin JS, Abdelfattah AS, King J, Borden PM, Kim JJ, Al-Abdullatif SH, Deal PE, Miller EW, Schreiter ER, Druckmann S, Svoboda K, Looger LL, Podgorski K. Kilohertz frame-rate two-photon tomography. Nat Methods 2019; 16:778-786. [PMID: 31363222 PMCID: PMC6754705 DOI: 10.1038/s41592-019-0493-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 µm and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.
Collapse
Affiliation(s)
- Abbas Kazemipour
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Ondrej Novak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Daniel Flickinger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | | | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeong Jun Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Parker E Deal
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
83
|
Zhang Y, Zhou T, Hu X, Li X, Xie H, Fang L, Kong L, Dai Q. Overcoming tissue scattering in wide-field two-photon imaging by extended detection and computational reconstruction. OPTICS EXPRESS 2019; 27:20117-20132. [PMID: 31510112 DOI: 10.1364/oe.27.020117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Compared to point-scanning multiphoton microscopy, line-scanning temporal focusing microscopy (LTFM) is competitive in high imaging speed while maintaining tight axial confinement. However, considering its wide-field detection mode, LTFM suffers from shallow penetration depth as a result of the crosstalk induced by tissue scattering. In contrast to the spatial filtering based on confocal slit detection, here we propose the extended detection LTFM (ED-LTFM), the first wide-field two-photon imaging technique to extract signals from scattered photons and thus effectively extend the imaging depth. By recording a succession of line-shape excited signals in 2D and reconstructing signals under Hessian regularization, we can push the depth limitation of wide-field imaging in scattering tissues. We validate the concept with numerical simulations, and demonstrate the performance of enhanced imaging depth in in vivo imaging of mouse brains.
Collapse
|
84
|
Tehrani KF, Latchoumane CV, Southern WM, Pendleton EG, Maslesa A, Karumbaiah L, Call JA, Mortensen LJ. Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing. BIOMEDICAL OPTICS EXPRESS 2019; 10:3591-3604. [PMID: 31360606 PMCID: PMC6640832 DOI: 10.1364/boe.10.003591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 05/08/2023]
Abstract
Multi-photon scanning microscopy provides a robust tool for optical sectioning, which can be used to capture fast biological events such as blood flow, mitochondrial activity, and neuronal action potentials. For many studies, it is important to visualize several different focal planes at a rate akin to the biological event frequency. Typically, a microscope is equipped with mechanical elements to move either the sample or the objective lens to capture volumetric information, but these strategies are limited due to their slow speeds or inertial artifacts. To overcome this problem, remote focusing methods have been developed to shift the focal plane axially without physical movement of the sample or the microscope. Among these methods is liquid lens technology, which adjusts the focus of the lens by changing the wettability of the liquid and hence its curvature. Liquid lenses are inexpensive active optical elements that have the potential for fast multi-photon volumetric imaging, hence a promising and accessible approach for the study of biological systems with complex dynamics. Although remote focusing using liquid lens technology can be used for volumetric point scanning multi-photon microscopy, optical aberrations and the effects of high energy laser pulses have been concerns in its implementation. In this paper, we characterize a liquid lens and validate its use in relevant biological applications. We measured optical aberrations that are caused by the liquid lens, and calculated its response time, defocus hysteresis, and thermal response to a pulsed laser. We applied this method of remote focusing for imaging and measurement of multiple in-vivo specimens, including mesenchymal stem cell dynamics, mouse tibialis anterior muscle mitochondrial electrical potential fluctuations, and mouse brain neural activity. Our system produces 5 dimensional (x,y,z,λ,t) data sets at the speed of 4.2 volumes per second over volumes as large as 160 x 160 x 35 µm3.
Collapse
Affiliation(s)
- Kayvan Forouhesh Tehrani
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Charles V. Latchoumane
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - W. Michael Southern
- Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
- Currently with: Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ana Maslesa
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Jarrod A. Call
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
85
|
Hsu KJ, Lin YY, Lin YY, Su K, Feng KL, Wu SC, Lin YC, Chiang AS, Chu SW. Millisecond two-photon optical ribbon imaging for small-animal functional connectome study. OPTICS LETTERS 2019; 44:3190-3193. [PMID: 31259918 DOI: 10.1364/ol.44.003190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
We developed a high-speed two-photon optical ribbon imaging system, which combines galvo-mirrors for an arbitrary curve scan on a lateral plane and a tunable acoustic gradient-index lens for a 100 kHz-1 MHz axial scan. The system provides micrometer/millisecond spatiotemporal resolutions, which enable continuous readout of functional dynamics from small and densely packed neurons in a living adult Drosophila brain. Compared to sparse sampling techniques, the ribbon imaging modality avoids motion artifacts. Combined with a Drosophila anatomical connectome database, which is the most complete among all model animals, this technique paves the way toward establishing whole-brain functional connectome.
Collapse
|
86
|
Belmouaddine H, Madugundu GS, Wagner JR, Couairon A, Houde D, Sanche L. DNA Base Modifications Mediated by Femtosecond Laser-Induced Cold Low-Density Plasma in Aqueous Solutions. J Phys Chem Lett 2019; 10:2753-2760. [PMID: 31039309 DOI: 10.1021/acs.jpclett.9b00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Applications based on near-infrared femtosecond laser-induced plasma in biological materials involve numerous ionization events that inevitably mediate physicochemical effects. Here, the physical chemistry underlying the action of such plasma is characterized in a system of biological interest. We have implemented wavefront shaping techniques to control the generation of laser-induced low electron density plasma channels in DNA aqueous solutions, which minimize the unwanted thermo-mechanical effects associated with plasma of higher density. The number of DNA base modifications per unit of absolute energy deposited by such cold plasma is compared to those induced by either ultraviolet or standard ionizing radiation (γ-rays). Analyses of various photoinduced, oxidative, and reductive DNA base products show that the effects of laser-induced cold plasma are mainly mediated by reactive radical species produced upon the ionization of water, rather than by the direct interaction of the strong laser field with DNA. In the plasma environment, reactions among densely produced primary radicals result in a dramatic decrease in the yields of DNA damages relative to sparse ionizing radiation. This intense radical production also drives the local depletion of oxygen.
Collapse
Affiliation(s)
- Hakim Belmouaddine
- Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, University of Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - Guru S Madugundu
- Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, University of Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, University of Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - Arnaud Couairon
- CPHT, CNRS, Ecole polytechnique, IP Paris , F-91128 Palaiseau , France
| | - Daniel Houde
- Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, University of Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, University of Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| |
Collapse
|
87
|
Multiplane Calcium Imaging Reveals Disrupted Development of Network Topology in Zebrafish pcdh19 Mutants. eNeuro 2019; 6:ENEURO.0420-18.2019. [PMID: 31061071 PMCID: PMC6525332 DOI: 10.1523/eneuro.0420-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Functional brain networks self-assemble during development, although the molecular basis of network assembly is poorly understood. Protocadherin-19 (pcdh19) is a homophilic cell adhesion molecule that is linked to neurodevelopmental disorders, and influences multiple cellular and developmental events in zebrafish. Although loss of PCDH19 in humans and model organisms leads to functional deficits, the underlying network defects remain unknown. Here, we employ multiplane, resonant-scanning in vivo two-photon calcium imaging of developing zebrafish, and use graph theory to characterize the development of resting state functional networks in both wild-type and pcdh19 mutant larvae. We find that the brain networks of pcdh19 mutants display enhanced clustering and an altered developmental trajectory of network assembly. Our results show that functional imaging and network analysis in zebrafish larvae is an effective approach for characterizing the developmental impact of lesions in genes of clinical interest.
Collapse
|
88
|
Han S, Yang W, Yuste R. Two-Color Volumetric Imaging of Neuronal Activity of Cortical Columns. Cell Rep 2019; 27:2229-2240.e4. [PMID: 31091458 PMCID: PMC6582979 DOI: 10.1016/j.celrep.2019.04.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 01/23/2023] Open
Abstract
To capture the emergent properties of neural circuits, high-speed volumetric imaging of neural activity at cellular resolution is needed. Here, we introduce wavelength multiplexing to perform fast volumetric two-photon imaging of cortical columns (>2,000 neurons in 10 planes at 10 vol/s), using two different calcium indicators, an electrically tunable lens and a spatial light modulator. We image the activity of neuronal populations from layers 2/3 to 5 of primary visual cortex from awake mice, finding a lack of columnar structures in orientation responses and revealing correlations between layers which differ from trial to trial. We also simultaneously image functional correlations between presynaptic layer 1 axons and postsynaptic layer 2/3 neurons. Wavelength multiplexing enhances high-speed volumetric microscopy and can be combined with other optical multiplexing methods to easily boost imaging throughput.
Collapse
Affiliation(s)
- Shuting Han
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Weijian Yang
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
89
|
Wenzel M, Han S, Smith EH, Hoel E, Greger B, House PA, Yuste R. Reduced Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced Loss of Consciousness. Cell Syst 2019; 8:467-474.e4. [PMID: 31054810 DOI: 10.1016/j.cels.2019.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/20/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Medically induced loss of consciousness (mLOC) during anesthesia is associated with a macroscale breakdown of brain connectivity, yet the neural microcircuit correlates of mLOC remain unknown. To explore this, we applied different analytical approaches (t-SNE/watershed segmentation, affinity propagation clustering, PCA, and LZW complexity) to two-photon calcium imaging of neocortical and hippocampal microcircuit activity and local field potential (LFP) measurements across different anesthetic depths in mice, and to micro-electrode array recordings in human subjects. We find that in both cases, mLOC disrupts population activity patterns by generating (1) fewer discriminable network microstates and (2) fewer neuronal ensembles. Our results indicate that local neuronal ensemble dynamics could causally contribute to the emergence of conscious states.
Collapse
Affiliation(s)
- Michael Wenzel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA.
| | - Shuting Han
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Elliot H Smith
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Erik Hoel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Bradley Greger
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Paul A House
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| |
Collapse
|
90
|
Hu J, Wang D, Bhowmik D, Liu T, Deng S, Knudson MP, Ao X, Odom TW. Lattice-Resonance Metalenses for Fully Reconfigurable Imaging. ACS NANO 2019; 13:4613-4620. [PMID: 30896920 DOI: 10.1021/acsnano.9b00651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper describes a reconfigurable metalens system that can image at visible wavelengths based on arrays of coupled plasmonic nanoparticles. These lenses manipulated the wavefront and focused light by exciting surface lattice resonances that were tuned by patterned polymer blocks on single-particle sites. Predictive design of the dielectric nanoblocks was performed using an evolutionary algorithm to create a range of three-dimensional focusing responses. For scalability, we demonstrated a simple technique for erasing and writing the polymer nanostructures on the metal nanoparticle arrays in a single step using solvent-assisted nanoscale embossing. This reconfigurable materials platform enables tunable focusing with diffraction-limited resolution and offers prospects for highly adaptive, compact imaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianyu Ao
- Centre for Optical and Electromagnetic Research and South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou , Guangdong 510006 China
| | | |
Collapse
|
91
|
Badon A, Bensussen S, Gritton HJ, Awal MR, Gabel CV, Han X, Mertz J. Video-rate large-scale imaging with Multi-Z confocal microscopy. OPTICA 2019; 6:389-395. [PMID: 34504902 PMCID: PMC8425499 DOI: 10.1364/optica.6.000389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fast, volumetric imaging over large scales has been a long-standing challenge in biological microscopy. To address this challenge, we report an augmented variant of confocal microscopy that uses a series of reflecting pinholes axially distributed in the detection space, such that each pinhole probes a different depth within the sample. We thus obtain simultaneous multiplane imaging without the need for axial scanning. Our microscope technique is versatile and configured here to provide two-color fluorescence imaging with a field of view larger than a millimeter at video rate. Its general applicability is demonstrated with neuronal imaging of both Caenorhabditis elegans and mouse brains in vivo.
Collapse
Affiliation(s)
- Amaury Badon
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Corresponding author:
| | - Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Howard J. Gritton
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Mehraj R. Awal
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02218, USA
| | - Christopher V. Gabel
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02218, USA
- Boston University Photonics Center, Boston, Massachusetts 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Boston University Photonics Center, Boston, Massachusetts 02215, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Boston University Photonics Center, Boston, Massachusetts 02215, USA
| |
Collapse
|
92
|
Weisenburger S, Tejera F, Demas J, Chen B, Manley J, Sparks FT, Martínez Traub F, Daigle T, Zeng H, Losonczy A, Vaziri A. Volumetric Ca 2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy. Cell 2019; 177:1050-1066.e14. [PMID: 30982596 DOI: 10.1016/j.cell.2019.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/19/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Calcium imaging using two-photon scanning microscopy has become an essential tool in neuroscience. However, in its typical implementation, the tradeoffs between fields of view, acquisition speeds, and depth restrictions in scattering brain tissue pose severe limitations. Here, using an integrated systems-wide optimization approach combined with multiple technical innovations, we introduce a new design paradigm for optical microscopy based on maximizing biological information while maintaining the fidelity of obtained neuron signals. Our modular design utilizes hybrid multi-photon acquisition and allows volumetric recording of neuroactivity at single-cell resolution within up to 1 × 1 × 1.22 mm volumes at up to 17 Hz in awake behaving mice. We establish the capabilities and potential of the different configurations of our imaging system at depth and across brain regions by applying it to in vivo recording of up to 12,000 neurons in mouse auditory cortex, posterior parietal cortex, and hippocampus.
Collapse
Affiliation(s)
- Siegfried Weisenburger
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Frank Tejera
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Brandon Chen
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA; Research Institute of Molecular Pathology, Vienna, Austria; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
93
|
Cayco-Gajic NA, Silver RA. Re-evaluating Circuit Mechanisms Underlying Pattern Separation. Neuron 2019; 101:584-602. [PMID: 30790539 PMCID: PMC7028396 DOI: 10.1016/j.neuron.2019.01.044] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
Abstract
When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Collapse
Affiliation(s)
- N Alex Cayco-Gajic
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
94
|
Pnevmatikakis EA. Analysis pipelines for calcium imaging data. Curr Opin Neurobiol 2019; 55:15-21. [PMID: 30529147 DOI: 10.1016/j.conb.2018.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/11/2018] [Accepted: 11/19/2018] [Indexed: 11/26/2022]
Abstract
Calcium imaging is a popular tool among neuroscientists because of its capability to monitor in vivo large neural populations across weeks with single neuron and single spike resolution. Before any downstream analysis, the data needs to be pre-processed to extract the location and activity of the neurons and processes in the observed field of view. The ever increasing size of calcium imaging datasets necessitates scalable analysis pipelines that are reproducible and fully automated. This review focuses on recent methods for addressing the pre-processing problems that arise in calcium imaging data analysis, and available software tools for high throughput analysis pipelines.
Collapse
|
95
|
Paninski L, Cunningham JP. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience. Curr Opin Neurobiol 2019; 50:232-241. [PMID: 29738986 DOI: 10.1016/j.conb.2018.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/12/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023]
Abstract
Modern large-scale multineuronal recording methodologies, including multielectrode arrays, calcium imaging, and optogenetic techniques, produce single-neuron resolution data of a magnitude and precision that were the realm of science fiction twenty years ago. The major bottlenecks in systems and circuit neuroscience no longer lie in simply collecting data from large neural populations, but also in understanding this data: developing novel scientific questions, with corresponding analysis techniques and experimental designs to fully harness these new capabilities and meaningfully interrogate these questions. Advances in methods for signal processing, network analysis, dimensionality reduction, and optimal control-developed in lockstep with advances in experimental neurotechnology-promise major breakthroughs in multiple fundamental neuroscience problems. These trends are clear in a broad array of subfields of modern neuroscience; this review focuses on recent advances in methods for analyzing neural time-series data with single-neuronal precision.
Collapse
Affiliation(s)
- L Paninski
- Department of Statistics, Grossman Center for the Statistics of Mind, Zuckerman Mind Brain Behavior Institute, Center for Theoretical Neuroscience, Columbia University, United States; Department of Neuroscience, Grossman Center for the Statistics of Mind, Zuckerman Mind Brain Behavior Institute, Center for Theoretical Neuroscience, Columbia University, United States.
| | - J P Cunningham
- Department of Statistics, Grossman Center for the Statistics of Mind, Zuckerman Mind Brain Behavior Institute, Center for Theoretical Neuroscience, Columbia University, United States
| |
Collapse
|
96
|
Xue Y, Berry KP, Boivin JR, Rowlands CJ, Takiguchi Y, Nedivi E, So PTC. Scanless volumetric imaging by selective access multifocal multiphoton microscopy. OPTICA 2019; 6:76-83. [PMID: 31984218 PMCID: PMC6980307 DOI: 10.1364/optica.6.000076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/17/2018] [Indexed: 05/14/2023]
Abstract
Simultaneous, high-resolution imaging across a large number of synaptic and dendritic sites is critical for understanding how neurons receive and integrate signals. Yet, functional imaging that targets a large number of submicrometer-sized synaptic and dendritic locations poses significant technical challenges. We demonstrate a new parallelized approach to address such questions, increasing the signal-to-noise ratio by an order of magnitude compared to previous approaches. This selective access multifocal multiphoton microscopy uses a spatial light modulator to generate multifocal excitation in three dimensions (3D) and a Gaussian-Laguerre phase plate to simultaneously detect fluorescence from these spots throughout the volume. We test the performance of this system by simultaneously recording Ca2+ dynamics from cultured neurons at 98-118 locations distributed throughout a 3D volume. This is the first demonstration of 3D imaging in a "single shot" and permits synchronized monitoring of signal propagation across multiple different dendrites.
Collapse
Affiliation(s)
- Yi Xue
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Kalen P. Berry
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Josiah R. Boivin
- Picower Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Christopher J. Rowlands
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Yu Takiguchi
- Laser Biomedical Research Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Elly Nedivi
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Picower Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
97
|
Jayant K, Wenzel M, Bando Y, Hamm JP, Mandriota N, Rabinowitz JH, Plante IJL, Owen JS, Sahin O, Shepard KL, Yuste R. Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In Vivo. Cell Rep 2019; 26:266-278.e5. [PMID: 30605681 PMCID: PMC7263204 DOI: 10.1016/j.celrep.2018.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/23/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022] Open
Abstract
Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10-25 nm and spring constant of ∼0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ∼800 MΩ, 5 to ∼10 cells/nanopipette, and duration of ∼1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo.
Collapse
Affiliation(s)
- Krishna Jayant
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Michael Wenzel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Yuki Bando
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Nicola Mandriota
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jake H Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Ilan Jen-La Plante
- Department of Chemistry, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Physics, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| |
Collapse
|
98
|
Chong EZ, Panniello M, Barreiros I, Kohl MM, Booth MJ. Quasi-simultaneous multiplane calcium imaging of neuronal circuits. BIOMEDICAL OPTICS EXPRESS 2019; 10:267-282. [PMID: 30775099 PMCID: PMC6363184 DOI: 10.1364/boe.10.000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Two-photon excitation fluorescence microscopy is widely used to study the activity of neuronal circuits. However, the fast imaging is typically constrained to a single lateral plane for a standard microscope design. Given that cortical neuronal networks in a mouse brain are complex three-dimensional structures organised in six histologically defined layers which extend over many hundreds of micrometres, there is a strong demand for microscope systems that can record neuronal signalling in volumes. Henceforth, we developed a quasi-simultaneous multiplane imaging technique combining an acousto-optic deflector and static remote focusing to provide fast imaging of neurons from different axial positions inside the cortical layers without the need for mechanical disturbance of either the objective lens or the specimen. The hardware and the software are easily adaptable to existing two-photon microscopes. Here, we demonstrated that our imaging method can record, at high speed and high image contrast, the calcium dynamics of neurons in two different imaging planes separated axially with the in-focus and the refocused planes 120 µm and 250 µm below the brain surface respectively.
Collapse
Affiliation(s)
- Ee Zhuan Chong
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK
| | - Mariangela Panniello
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, OX1 3PT, UK
| | - Inês Barreiros
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, OX1 3PT, UK
| | - Michael M Kohl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, OX1 3PT, UK
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK
| |
Collapse
|
99
|
Ronzitti E, Emiliani V, Papagiakoumou E. Methods for Three-Dimensional All-Optical Manipulation of Neural Circuits. Front Cell Neurosci 2018; 12:469. [PMID: 30618626 PMCID: PMC6304748 DOI: 10.3389/fncel.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Optical means for modulating and monitoring neuronal activity, have provided substantial insights to neurophysiology and toward our understanding of how the brain works. Optogenetic actuators, calcium or voltage imaging probes and other molecular tools, combined with advanced microscopies have allowed an "all-optical" readout and modulation of neural circuits. Completion of this remarkable work is evolving toward a three-dimensional (3D) manipulation of neural ensembles at a high spatiotemporal resolution. Recently, original optical methods have been proposed for both activating and monitoring neurons in a 3D space, mainly through optogenetic compounds. Here, we review these methods and anticipate possible combinations among them.
Collapse
Affiliation(s)
| | | | - Eirini Papagiakoumou
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris, France
| |
Collapse
|
100
|
Soltanian-Zadeh S, Gong Y, Farsiu S. Information-Theoretic Approach and Fundamental Limits of Resolving Two Closely Timed Neuronal Spikes in Mouse Brain Calcium Imaging. IEEE Trans Biomed Eng 2018; 65:2428-2439. [PMID: 29993383 PMCID: PMC6230443 DOI: 10.1109/tbme.2018.2812078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Although optical imaging of neurons using fluorescent genetically encoded calcium sensors has enabled large-scale in vivo experiments, the sensors' slow dynamics often blur closely timed action potentials into indistinguishable transients. While several previous approaches have been proposed to estimate the timing of individual spikes, they have overlooked the important and practical problem of estimating interspike interval (ISI) for overlapping transients. METHODS We use statistical detection theory to find the minimum detectable ISI under different levels of signal-to-noise ratio (SNR), model complexity, and recording speed. We also derive the Cramer-Rao lower bounds (CRBs) for the problem of ISI estimation. We use Monte-Carlo simulations with biologically derived parameters to numerically obtain the minimum detectable ISI and evaluate the performance of our estimators. Furthermore, we apply our detector to distinguish overlapping transients from experimentally obtained calcium imaging data. RESULTS Experiments based on simulated and real data across different SNR levels and recording speeds show that our algorithms can accurately distinguish two fluorescence signals with ISI on the order of tens of milliseconds, shorter than the waveform's rise time. Our study shows that the statistically optimal ISI estimators closely approached the CRBs. CONCLUSION Our work suggests that full analysis using recording speed, sensor kinetics, SNR, and the sensor's stochastically distributed response to action potentials can accurately resolve ISIs much smaller than the fluorescence waveform's rise time in modern calcium imaging experiments. SIGNIFICANCE Such analysis aids not only in future spike detection methods, but also in future experimental design when choosing sensors of neuronal activity.
Collapse
|