51
|
|
52
|
Michurina A, Sakib MS, Kerimoglu C, Krüger DM, Kaurani L, Islam MR, Joshi PD, Schröder S, Centeno TP, Zhou J, Pradhan R, Cha J, Xu X, Eichele G, Zeisberg EM, Kranz A, Stewart AF, Fischer A. Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuron-enriched genes. EMBO J 2022; 41:e106459. [PMID: 34806773 PMCID: PMC8724770 DOI: 10.15252/embj.2020106459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.
Collapse
Affiliation(s)
- Alexandra Michurina
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - M Sadman Sakib
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Cemil Kerimoglu
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Dennis Manfred Krüger
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Lalit Kaurani
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Md Rezaul Islam
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Parth Devesh Joshi
- Department for Gene and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Sophie Schröder
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Tonatiuh Pena Centeno
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Jiayin Zhou
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Ranjit Pradhan
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Julia Cha
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Xingbo Xu
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
| | - Gregor Eichele
- Department for Gene and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Elisabeth M Zeisberg
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGermany
| | - Andrea Kranz
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringDresden University of TechnologyDresdenGermany
| | - A Francis Stewart
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringDresden University of TechnologyDresdenGermany
- Max‐Planck‐Institute for Cell Biology and GeneticsDresdenGermany
| | - André Fischer
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
53
|
Wang S, Bleeck A, Nadif Kasri N, Kleefstra T, van Rhijn JR, Schubert D. SETD1A Mediated H3K4 Methylation and Its Role in Neurodevelopmental and Neuropsychiatric Disorders. Front Mol Neurosci 2021; 14:772000. [PMID: 34803610 PMCID: PMC8595121 DOI: 10.3389/fnmol.2021.772000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Posttranslational modification of histones and related gene regulation are shown to be affected in an increasing number of neurological disorders. SETD1A is a chromatin remodeler that influences gene expression through the modulation of mono- di- and trimethylation marks on Histone-H3-Lysine-4 (H3K4me1/2/3). H3K4 methylation is predominantly described to result in transcriptional activation, with its mono- di- and trimethylated forms differentially enriched at promoters or enhancers. Recently, dominant mostly de novo variants in SETD1A have clinically been linked to developmental delay, intellectual disability (DD/ID), and schizophrenia (SCZ). Affected individuals often display both developmental and neuropsychiatric abnormalities. The primary diagnoses are mainly dependent on the age at which the individual is assessed. Investigations in mouse models of SETD1A dysfunction have been able to recapitulate key behavioral features associated with ID and SCZ. Furthermore, functional investigations suggest disrupted synaptic and neuronal network function in these mouse models. In this review, we provide an overview of pre-clinical studies on the role of SETD1A in neuronal development. A better understanding of the pathobiology underlying these disorders may provide novel opportunities for therapeutic intervention. As such, we will discuss possible strategies to move forward in elucidating the genotype-phenotype correlation in SETD1A associated disorders.
Collapse
Affiliation(s)
- Shan Wang
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Anna Bleeck
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands.,Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Jon-Ruben van Rhijn
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
54
|
Ng B, Casazza W, Kim NH, Wang C, Farhadi F, Tasaki S, Bennett DA, De Jager PL, Gaiteri C, Mostafavi S. Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants. PLoS Genet 2021; 17:e1009918. [PMID: 34807913 PMCID: PMC8648125 DOI: 10.1371/journal.pgen.1009918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/06/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms. The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, combines the effect of genetic variants on DNA methylation as well as gene expression. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes.
Collapse
Affiliation(s)
- Bernard Ng
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - William Casazza
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nam Hee Kim
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chendi Wang
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Farnush Farhadi
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Christopher Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Paul G. Allen School for Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
55
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
56
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
57
|
Zhang X, Wang X, Wu T, Yin W, Yan J, Sun Y, Zhao D. Therapeutic potential of targeting LSD1/ KDM1A in cancers. Pharmacol Res 2021; 175:105958. [PMID: 34718134 DOI: 10.1016/j.phrs.2021.105958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/21/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
LSD1 was the first histone demethylase identified by Professor Shi Yang and his team members in 2004. LSD1 employs FAD as its cofactor, which catalyzes the demethylation of H3K4 and H3K9. It is aberrantly overexpressed in different types of cancers and is associated with the growth, invasion, and metastasis of cancer cells. The knockout or inhibition of LSD1 could effectively suppress tumor development, and thus, it has become an attractive molecular target for cancer therapy. Moreover, many LSD1 inhibitors have been developed in preclinical and clinical trials to treat solid tumors and hematological malignancy. This study made an extensive review of the research obtained from the literature retrieval of electronic databases, such as PubMed, Web of Science, RCSB PDB, ClinicalTrials.gov, and EU clinical trials register. This review summarizes recent studies on the advances of LSD1 inhibitors in the literature, covering January 2015 to June 2021. It focuses on the function of LSD1 in tumor cells, summarizes the crystal structures of homo sapiens LSD1, reviews the structural characteristics of LSD1 inhibitors, compares the screening methods of LSD1 inhibitors, and proposes guidelines for the future exploitation of LSD1 inhibitors.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Xinran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing 102488, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Jiangkun Yan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China.
| |
Collapse
|
58
|
Valencia AM, Pașca SP. Chromatin dynamics in human brain development and disease. Trends Cell Biol 2021; 32:98-101. [PMID: 34610892 DOI: 10.1016/j.tcb.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022]
Abstract
Chromatin-related genes are frequently mutated in neurodevelopmental disorders; yet, the mechanisms by which these perturbations disrupt brain assembly and function are not understood. Here, we describe how recent advances in transcriptional and chromatin profiling in combination with cellular models are beginning to inform our understanding of neurodevelopment and chromatinopathies.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
59
|
Curtis D. Analysis of 200 000 exome-sequenced UK Biobank subjects fails to identify genes influencing probability of developing a mood disorder resulting in psychiatric referral. Psychiatr Genet 2021; 31:194-198. [PMID: 34050118 DOI: 10.1097/ypg.0000000000000282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Depression is moderately heritable but there is no common genetic variant which has a major effect on susceptibility. A previous analysis of 50 000 exome-sequenced subjects failed to implicate any genes or sets of genes in which rare variants were associated with risk of affective disorder requiring specialist treatment. A much larger exome-sequenced dataset is now available. METHODS Data from 200 632 exome-sequenced UK Biobank participants was analysed. Subjects were treated as cases if they had reported having seen a psychiatrist for 'nerves, anxiety, tension or depression'. Gene-wise weighted burden analysis was performed to see if there were any genes or sets of genes for which there was an excess of rare, functional variants in cases. RESULTS There were 22 886 cases and 176 486 controls. There were 22 642 informative genes but no gene or gene set produced a statistically significant result after correction for multiple testing. None of the genes or gene sets with the lowest P values appeared to be an obvious biological candidate. CONCLUSIONS The results conform exactly with the expectation under the null hypothesis. It seems unlikely that the use of common, poorly defined phenotypes will produce useful advances in understanding genetic contributions to affective disorder and it might be preferable to focus instead on obtaining large exome-sequenced samples of conditions such as bipolar 1 disorder and severe, recurrent depression. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, University College London
- Centre for Psychiatry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
60
|
Kim D, Kim KI, Baek SH. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J Biomed Sci 2021; 28:41. [PMID: 34082769 PMCID: PMC8175190 DOI: 10.1186/s12929-021-00737-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
61
|
Kummeling J, Stremmelaar DE, Raun N, Reijnders MRF, Willemsen MH, Ruiterkamp-Versteeg M, Schepens M, Man CCO, Gilissen C, Cho MT, McWalter K, Sinnema M, Wheless JW, Simon MEH, Genetti CA, Casey AM, Terhal PA, van der Smagt JJ, van Gassen KLI, Joset P, Bahr A, Steindl K, Rauch A, Keller E, Raas-Rothschild A, Koolen DA, Agrawal PB, Hoffman TL, Powell-Hamilton NN, Thiffault I, Engleman K, Zhou D, Bodamer O, Hoefele J, Riedhammer KM, Schwaibold EMC, Tasic V, Schubert D, Top D, Pfundt R, Higgs MR, Kramer JM, Kleefstra T. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol Psychiatry 2021; 26:2013-2024. [PMID: 32346159 DOI: 10.1038/s41380-020-0725-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Collapse
Affiliation(s)
- Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diante E Stremmelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Margot R F Reijnders
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martina Ruiterkamp-Versteeg
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marga Schepens
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Calvin C O Man
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | - Margje Sinnema
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - James W Wheless
- Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Casie A Genetti
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia M Casey
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper J van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Elmar Keller
- Division of Neuropediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Annick Raas-Rothschild
- Institute of Rare Disease, Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor L Hoffman
- Regional Department of Genetics, Southern California Kaiser Permanente Medical Group, 1188N. Euclid Street, Anaheim, CA, 92801, USA
| | - Nina N Powell-Hamilton
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Dihong Zhou
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, Skopje, North Macedonia
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Deniz Top
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
62
|
Lorenzo PI, Martin Vazquez E, López-Noriega L, Fuente-Martín E, Mellado-Gil JM, Franco JM, Cobo-Vuilleumier N, Guerrero Martínez JA, Romero-Zerbo SY, Perez-Cabello JA, Rivero Canalejo S, Campos-Caro A, Lachaud CC, Crespo Barreda A, Aguilar-Diosdado M, García Fuentes E, Martin-Montalvo A, Álvarez Dolado M, Martin F, Rojo-Martinez G, Pozo D, Bérmudez-Silva FJ, Comaills V, Reyes JC, Gauthier BR. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics 2021; 11:6983-7004. [PMID: 34093866 PMCID: PMC8171100 DOI: 10.7150/thno.57237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José M. Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jaime M. Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José A. Guerrero Martínez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
| | - Jesús A. Perez-Cabello
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sabrina Rivero Canalejo
- Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville, Spain
| | - Antonio Campos-Caro
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Christian Claude Lachaud
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Alejandra Crespo Barreda
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Aguilar-Diosdado
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
- Endocrinology and Metabolism Department, University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Eduardo García Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Álvarez Dolado
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Rojo-Martinez
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José C. Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
63
|
Deng X, Iwagawa T, Fukushima M, Suzuki Y, Watanabe S. Setd1a Plays Pivotal Roles for the Survival and Proliferation of Retinal Progenitors via Histone Modifications of Uhrf1. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33938913 PMCID: PMC8107498 DOI: 10.1167/iovs.62.6.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The trimethylation of histone H3 at lysine 4 (H3K4me3) facilitates transcriptional gene activation, and Setd1a is the methyltransferase specific to H3K4. H3K4me3 has been reported to regulate rod photoreceptor differentiation; however, the roles H3K4me3 plays in retinal progenitor cell (RPC) proliferation and differentiation during early retinal development remain unclear. Methods Using an in vitro retinal explant culture system, we suppressed the expression of Setd1a by introducing shSetd1a. We examined the expression level and H3K4me3 level of genes by RNA Sequencing and ChIP assay, respectively. Results We found that Setd1a depletion resulted in increased apoptosis and proliferation failure in late RPCs. Expression of wild-type SETD1A, but not SETD1A that lacked the catalytic SET domain, reversed the shSetd1a-induced phenotype. RNA Sequencing revealed that proliferation-related genes were downregulated upon shSetd1a expression. Based on publicly available H3K4me3-ChIP sequencing data of retinal development, we identified Uhrf1 as a candidate target gene of Setd1a. The expression of shSetd1a led to a decrease in Uhrf1 transcript levels and reduced H3K4me3 levels at the Uhrf1 locus. Increased apoptosis and the suppression of proliferation in late RPCs were observed in retinal explants expressing shUhrf1, similar to the outcomes observed in shSetd1a-expressing retinas. The overexpression of UHRF1 did not rescue shSetd1a-induced apoptosis, but reversed the suppression of proliferation. Conclusions These results indicate that Setd1a contributes to the survival and proliferation of retinal cells by regulating histone methylation, Setd1a regulates Uhrf1 expression, and these two molecules cooperate to regulate RPC survival and proliferation.
Collapse
Affiliation(s)
- Xiaoyue Deng
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaya Fukushima
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
64
|
Greulich F, Wierer M, Mechtidou A, Gonzalez-Garcia O, Uhlenhaut NH. The glucocorticoid receptor recruits the COMPASS complex to regulate inflammatory transcription at macrophage enhancers. Cell Rep 2021; 34:108742. [PMID: 33567280 PMCID: PMC7873837 DOI: 10.1016/j.celrep.2021.108742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids (GCs) are effective anti-inflammatory drugs; yet, their mechanisms of action are poorly understood. GCs bind to the glucocorticoid receptor (GR), a ligand-gated transcription factor controlling gene expression in numerous cell types. Here, we characterize GR’s protein interactome and find the SETD1A (SET domain containing 1A)/COMPASS (complex of proteins associated with Set1) histone H3 lysine 4 (H3K4) methyltransferase complex highly enriched in activated mouse macrophages. We show that SETD1A/COMPASS is recruited by GR to specific cis-regulatory elements, coinciding with H3K4 methylation dynamics at subsets of sites, upon treatment with lipopolysaccharide (LPS) and GCs. By chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq, we identify subsets of GR target loci that display SETD1A occupancy, H3K4 mono-, di-, or tri-methylation patterns, and transcriptional changes. However, our data on methylation status and COMPASS recruitment suggest that SETD1A has additional transcriptional functions. Setd1a loss-of-function studies reveal that SETD1A/COMPASS is required for GR-controlled transcription of subsets of macrophage target genes. We demonstrate that the SETD1A/COMPASS complex cooperates with GR to mediate anti-inflammatory effects. GR’s transcriptional complex in macrophages includes COMPASS proteins GR ligand changes SETD1A chromatin occupancy in activated macrophages Subsets of GR target sites show COMPASS binding and H3K4 methylation dynamics SETD1A is required for some of GR’s anti-inflammatory actions
Collapse
Affiliation(s)
- Franziska Greulich
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany; Metabolic Programming, School of Life Sciences Weihenstephan, ZIEL - Institute for Food & Health, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Aikaterini Mechtidou
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany
| | - Omar Gonzalez-Garcia
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany; Metabolic Programming, School of Life Sciences Weihenstephan, ZIEL - Institute for Food & Health, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany; Metabolic Biochemistry and Genetics, Gene Center, Ludwig-Maximilians-Universitaet LMU, 81377 Munich, Germany.
| |
Collapse
|
65
|
Dhindsa RS, Zoghbi AW, Krizay DK, Vasavda C, Goldstein DB. A Transcriptome-Based Drug Discovery Paradigm for Neurodevelopmental Disorders. Ann Neurol 2021; 89:199-211. [PMID: 33159466 PMCID: PMC8122510 DOI: 10.1002/ana.25950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Advances in genetic discoveries have created substantial opportunities for precision medicine in neurodevelopmental disorders. Many of the genes implicated in these diseases encode proteins that regulate gene expression, such as chromatin-associated proteins, transcription factors, and RNA-binding proteins. The identification of targeted therapeutics for individuals carrying mutations in these genes remains a challenge, as the encoded proteins can theoretically regulate thousands of downstream targets in a considerable number of cell types. Here, we propose the application of a drug discovery approach originally developed for cancer called "transcriptome reversal" for these neurodevelopmental disorders. This approach attempts to identify compounds that reverse gene-expression signatures associated with disease states. ANN NEUROL 2021;89:199-211.
Collapse
Affiliation(s)
- Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anthony W. Zoghbi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA
| | - Daniel K. Krizay
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, USA
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
66
|
Antonijoan RM, Ferrero-Cafiero JM, Coimbra J, Puntes M, Martínez-Colomer J, Arévalo MI, Mascaró C, Molinero C, Buesa C, Maes T. First-in-Human Randomized Trial to Assess Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of the KDM1A Inhibitor Vafidemstat. CNS Drugs 2021; 35:331-344. [PMID: 33755924 PMCID: PMC7985749 DOI: 10.1007/s40263-021-00797-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Vafidemstat, an inhibitor of the histone lysine-specific demethylase KDM1A, corrects cognition deficits and behavior alterations in rodent models. Here, we report the results from the first-in-human trial of vafidemstat in healthy young and older adult volunteers. A total of 110 volunteers participated: 87 were treated with vafidemstat and 23 with placebo. OBJECTIVES The study aimed to determine the safety and tolerability of vafidemstat, to characterize its pharmacokinetic and pharmacodynamic profiles, to assess its central nervous system (CNS) exposure, and to acquire the necessary data to select the appropriate doses for long-term treatment of patients with CNS disease in phase II trials. METHODS This single-center, randomized, double-blind, placebo-controlled phase I trial included a single and 5-day repeated dose-escalation and open-label CNS penetration substudy. Primary outcomes were safety and tolerability; secondary outcomes included analysis of the pharmacokinetics and pharmacodynamics, including chemoprobe-based immune analysis of KDM1A target engagement (TE) in peripheral blood mononuclear cells (PBMCs) and platelet monoamine oxidase B (MAOB) inhibition. CNS and cognitive function were also evaluated. RESULTS No severe adverse events (AEs) were reported in the dose-escalation stage. AEs were reported at all dose levels; none were dose dependent, and no significant differences were observed between active treatment and placebo. Biochemistry, urinalysis, vital signs, electrocardiogram, and hematology did not change significantly with dose escalation, with the exception of a transient reduction of platelet counts in an extra dose level incorporated for that purpose. Vafidemstat exhibits rapid oral absorption, approximate dose-proportional exposures, and moderate systemic accumulation after 5 days of treatment. The cerebrospinal fluid-to-plasma unbound ratio demonstrated CNS penetration. Vafidemstat bound KDM1A in PBMCs in a dose-dependent manner. No MAOB inhibition was detected. Vafidemstat did not affect the CNS or cognitive function. CONCLUSIONS Vafidemstat displayed good safety and tolerability. This phase I trial confirmed KDM1A TE and CNS penetration and permitted characterization of platelet dynamics and selection of phase IIa doses. TRIAL REGISTRATION EUDRACT No. 2015-003721-33, filed 30 October 2015.
Collapse
Affiliation(s)
- Rosa María Antonijoan
- Centre d'Investigació del Medicament, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Pharmacology and Therapeutics Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Juan Manuel Ferrero-Cafiero
- Centre d'Investigació del Medicament, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Jimena Coimbra
- Centre d'Investigació del Medicament, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Montse Puntes
- Centre d'Investigació del Medicament, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Joan Martínez-Colomer
- Centre d'Investigació del Medicament, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - María Isabel Arévalo
- Oryzon Genomics S.A. Carrer Sant Ferran 74, Cornellà de Llobregat, 08940, Barcelona, Spain
| | - Cristina Mascaró
- Oryzon Genomics S.A. Carrer Sant Ferran 74, Cornellà de Llobregat, 08940, Barcelona, Spain
| | - Cesar Molinero
- Oryzon Genomics S.A. Carrer Sant Ferran 74, Cornellà de Llobregat, 08940, Barcelona, Spain
| | - Carlos Buesa
- Oryzon Genomics S.A. Carrer Sant Ferran 74, Cornellà de Llobregat, 08940, Barcelona, Spain
| | - Tamara Maes
- Oryzon Genomics S.A. Carrer Sant Ferran 74, Cornellà de Llobregat, 08940, Barcelona, Spain.
| |
Collapse
|
67
|
Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020; 9:cells9122716. [PMID: 33353064 PMCID: PMC7766983 DOI: 10.3390/cells9122716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The systematic mutation of histone 3 (H3) genes in model organisms has proven to be a valuable tool to distinguish the functional role of histone residues. No system exists in mammalian cells to directly manipulate canonical histone H3 due to a large number of clustered and multi-loci histone genes. Over the years, oncogenic histone mutations in a subset of H3 have been identified in humans, and have advanced our understanding of the function of histone residues in health and disease. The oncogenic mutations are often found in one allele of the histone variant H3.3 genes, but they prompt severe changes in the epigenetic landscape of cells, and contribute to cancer development. Therefore, mutation approaches using H3.3 genes could be relevant to the determination of the functional role of histone residues in mammalian development without the replacement of canonical H3 genes. In this review, we describe the key findings from the H3 mutation studies in model organisms wherein the genetic replacement of canonical H3 is possible. We then turn our attention to H3.3 mutations in human cancers, and discuss H3.3 substitutions in the N-terminus, which were generated in order to explore the specific residue or associated post-translational modification.
Collapse
|
68
|
Hoersting AK, Schmucker D. Axonal branch patterning and neuronal shape diversity: roles in developmental circuit assembly: Axonal branch patterning and neuronal shape diversity in developmental circuit assembly. Curr Opin Neurobiol 2020; 66:158-165. [PMID: 33232861 DOI: 10.1016/j.conb.2020.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Recent progress in human genetics and single cell sequencing rapidly expands the list of molecular factors that offer important new contributions to our understanding of brain wiring. Yet many new molecular factors are being discovered that have never been studied in the context of neuronal circuit development. This is clearly asking for increased efforts to better understand the developmental mechanisms of circuit assembly [1]. Moreover, recent studies characterizing the developmental causes of some psychiatric diseases show impressive progress in reaching cellular resolution in their analysis. They provide concrete support emphasizing the importance of axonal branching and synapse formation as a hotspot for potential defects. Inspired by these new studies we will discuss progress but also challenges in understanding how neurite branching and neuronal shape diversity itself impacts on specificity of neuronal circuit assembly. We discuss the idea that neuronal shape acquisition itself is a key specificity factor in neuronal circuit assembly.
Collapse
Affiliation(s)
| | - Dietmar Schmucker
- Life and Medical Sciences Institute (LIMES), University Bonn, Bonn, Germany; Center for Brain and Disease Research, VIB Leuven, University Leuven, Belgium.
| |
Collapse
|
69
|
Naujock M, Speidel A, Fischer S, Kizner V, Dorner-Ciossek C, Gillardon F. Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit DPP6 That Contributes to Decreased Neuronal Activity. Stem Cells Dev 2020; 29:1577-1587. [PMID: 33143549 DOI: 10.1089/scd.2020.0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids. RNA sequencing revealed little overlap in differentially expressed genes between 2D and 3D neuron cultures from SZ iPSC compared with controls. Notably, mRNA transcripts encoding dipeptidyl peptidase-like protein 6 (DPP6), an accessory subunit of Kv4.2 voltage-gated potassium channels, were massively increased in cortical neurons from SZ iPSC in the 2D and 3D model. Consistently, multielectrode array recordings and calcium imaging showed significantly decreased neuronal activity both in 2D and in 3D cultures from SZ neurons. To show a causal relationship, we treated iPSC-derived neurons in 2D cultures with lentiviral DPP6 shRNA vectors and the Kv4.2 channel blocker AmmTx3, respectively. Both treatments successfully reversed neuronal hypoexcitability and hypoactivity in cortical neurons from SZ iPSC. Our data highlight a contribution of DPP6 and Kv4.2 to the deficit in neurotransmission in an iPSC model for SZ, which may be of therapeutic relevance for a subset of SZ patients.
Collapse
Affiliation(s)
- Maximilian Naujock
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Anna Speidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Sandra Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Valeria Kizner
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| |
Collapse
|
70
|
Memory Alone Does Not Account for the Way Rats Learn a Simple Spatial Alternation Task. J Neurosci 2020; 40:7311-7317. [PMID: 32753514 PMCID: PMC7534917 DOI: 10.1523/jneurosci.0972-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023] Open
Abstract
Animal behavior provides context for understanding disease models and physiology. However, that behavior is often characterized subjectively, creating opportunity for misinterpretation and misunderstanding. For example, spatial alternation tasks are treated as paradigmatic tools for examining memory; however, that link is actually an assumption. To test this assumption, we simulated a reinforcement learning (RL) agent equipped with a perfect memory process. We found that it learns a simple spatial alternation task more slowly and makes different errors than a group of male rats, illustrating that memory alone may not be sufficient to capture the behavior. We demonstrate that incorporating spatial biases permits rapid learning and enables the model to fit rodent behavior accurately. Our results suggest that even simple spatial alternation behaviors reflect multiple cognitive processes that need to be taken into account when studying animal behavior.SIGNIFICANCE STATEMENT Memory is a critical function for cognition whose impairment has significant clinical consequences. Experimental systems aimed at testing various sorts of memory are therefore also central. However, experimental designs to test memory are typically based on intuition about the underlying processes. We tested this using a popular behavioral paradigm: a spatial alternation task. Using behavioral modeling, we show that the straightforward intuition that these tasks just probe spatial memory fails to account for the speed at which rats learn or the types of errors they make. Only when memory-independent dynamic spatial preferences are added can the model learn like the rats. This highlights the importance of respecting the complexity of animal behavior to interpret neural function and validate disease models.
Collapse
|
71
|
Nagahama K, Sakoori K, Watanabe T, Kishi Y, Kawaji K, Koebis M, Nakao K, Gotoh Y, Aiba A, Uesaka N, Kano M. Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Rep 2020; 32:108126. [PMID: 32937141 DOI: 10.1016/j.celrep.2020.108126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keita Kawaji
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
72
|
Hamm JP, Shymkiv Y, Mukai J, Gogos JA, Yuste R. Aberrant Cortical Ensembles and Schizophrenia-like Sensory Phenotypes in Setd1a +/- Mice. Biol Psychiatry 2020; 88:215-223. [PMID: 32143831 PMCID: PMC7363535 DOI: 10.1016/j.biopsych.2020.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND A breakdown of synchrony within neuronal ensembles leading to destabilization of network "attractors" could be a defining aspect of neuropsychiatric diseases such as schizophrenia, representing a common downstream convergence point for the diverse etiological pathways associated with the disease. Using a mouse genetic model, we demonstrated that altered ensembles are associated with pathological sensory cortical processing phenotypes resulting from loss of function mutations in the Setd1a gene, a recently identified rare risk genotype with very high penetrance for schizophrenia. METHODS We used fast two-photon calcium imaging of neuronal populations (calcium indicator GCaMP6s, 10 Hz, 100-250 cells, layer 2/3 of primary visual cortex, i.e., V1) in awake head-fixed mice (Setd1a+/- vs. wild-type littermate control) during rest and visual stimulation with moving full-field square-wave gratings (0.04 cycles per degree, 2.0 cycles per second, 100% contrast, 12 directions). Multielectrode recordings were analyzed in the time-frequency domain to assess stimulus-induced oscillations and cross-layer phase synchrony. RESULTS Neuronal activity and orientation/direction selectivity were unaffected in Setd1a+/- mice, but correlations between cell pairs in V1 showed altered distributions compared with wild-type mice, in both ongoing and visually evoked activity. Furthermore, population-wide "ensemble activations" in Setd1a+/- mice were markedly less reliable over time during rest and visual stimulation, resulting in unstable encoding of basic visual information. This alteration of ensembles coincided with reductions in alpha and high-gamma band phase synchrony within and between cortical layers. CONCLUSIONS These results provide new evidence for an ensemble hypothesis of schizophrenia and highlight the utility of Setd1a+/- mice for modeling sensory-processing phenotypes.
Collapse
Affiliation(s)
- Jordan P. Hamm
- Neurotechnology Center, Columbia University, New York, New York,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Yuriy Shymkiv
- Neurotechnology Center, Columbia University, New York, New York
| | - Jun Mukai
- College of Physicians and Surgeons; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York,Laboratory of Molecular Psychiatry and Neuroscience, Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Joseph A. Gogos
- Department of Biological Sciences; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York,College of Physicians and Surgeons; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York,Department of Neuroscience, Columbia University, New York, New York
| | - Rafael Yuste
- Neurotechnology Center, Columbia University, New York, New York
| |
Collapse
|
73
|
Maes T, Mascaró C, Rotllant D, Lufino MMP, Estiarte A, Guibourt N, Cavalcanti F, Griñan-Ferré C, Pallàs M, Nadal R, Armario A, Ferrer I, Ortega A, Valls N, Fyfe M, Martinell M, Castro Palomino JC, Buesa Arjol C. Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. PLoS One 2020; 15:e0233468. [PMID: 32469975 PMCID: PMC7259601 DOI: 10.1371/journal.pone.0233468] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription disequilibria are characteristic of many neurodegenerative diseases. The activity-evoked transcription of immediate early genes (IEGs), important for neuronal plasticity, memory and behavior, is altered in CNS diseases and governed by epigenetic modulation. KDM1A, a histone 3 lysine 4 demethylase that forms part of transcription regulation complexes, has been implicated in the control of IEG transcription. Here we report the development of vafidemstat (ORY-2001), a brain penetrant inhibitor of KDM1A and MAOB. ORY-2001 efficiently inhibits brain KDM1A at doses suitable for long term treatment, and corrects memory deficit as assessed in the novel object recognition testing in the Senescence Accelerated Mouse Prone 8 (SAMP8) model for accelerated aging and Alzheimer's disease. Comparison with a selective KDM1A or MAOB inhibitor reveals that KDM1A inhibition is key for efficacy. ORY-2001 further corrects behavior alterations including aggression and social interaction deficits in SAMP8 mice and social avoidance in the rat rearing isolation model. ORY-2001 increases the responsiveness of IEGs, induces genes required for cognitive function and reduces a neuroinflammatory signature in SAMP8 mice. Multiple genes modulated by ORY-2001 are differentially expressed in Late Onset Alzheimer's Disease. Most strikingly, the amplifier of inflammation S100A9 is highly expressed in LOAD and in the hippocampus of SAMP8 mice, and down-regulated by ORY-2001. ORY-2001 is currently in multiple Phase IIa studies.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | | | | | | | | | | | | | - Christian Griñan-Ferré
- Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patologica, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | | | - Nuria Valls
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | - Matthew Fyfe
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | | | | | | |
Collapse
|
74
|
Moriano J, Boeckx C. Modern human changes in regulatory regions implicated in cortical development. BMC Genomics 2020; 21:304. [PMID: 32299352 PMCID: PMC7161147 DOI: 10.1186/s12864-020-6706-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent paleogenomic studies have highlighted a very small set of proteins carrying modern human-specific missense changes in comparison to our closest extinct relatives. Despite being frequently alluded to as highly relevant, species-specific differences in regulatory regions remain understudied. Here, we integrate data from paleogenomics, chromatin modification and physical interaction, and single-cell gene expression of neural progenitor cells to identify derived regulatory changes in the modern human lineage in comparison to Neanderthals/Denisovans. We report a set of genes whose enhancers and/or promoters harbor modern human single nucleotide changes and are active at early stages of cortical development. RESULTS We identified 212 genes controlled by regulatory regions harboring modern human changes where Neanderthals/Denisovans carry the ancestral allele. These regulatory regions significantly overlap with putative modern human positively-selected regions and schizophrenia-related genetic loci. Among the 212 genes, we identified a substantial proportion of genes related to transcriptional regulation and, specifically, an enrichment for the SETD1A histone methyltransferase complex, known to regulate WNT signaling for the generation and proliferation of intermediate progenitor cells. CONCLUSIONS This study complements previous research focused on protein-coding changes distinguishing our species from Neanderthals/Denisovans and highlights chromatin regulation as a functional category so far overlooked in modern human evolution studies. We present a set of candidates that will help to illuminate the investigation of modern human-specific ontogenetic trajectories.
Collapse
Affiliation(s)
- Juan Moriano
- Universitat de Barcelona, Gran Via de les Corts Catalanes, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems, Martı́ Franquès, Barcelona, Spain.
| | - Cedric Boeckx
- Universitat de Barcelona, Gran Via de les Corts Catalanes, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems, Martı́ Franquès, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies, Passeig Lluı́s Companys, Barcelona, Spain.
| |
Collapse
|
75
|
Affiliation(s)
- René S Kahn
- Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, N.Y.; and VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, N.Y
| |
Collapse
|
76
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|