51
|
Colín-Martínez E, Espino-de-la-Fuente C, Arias C. Age- and Sex-Associated Wnt Signaling Dysregulation is Exacerbated from the Early Stages of Neuropathology in an Alzheimer's Disease Model. Neurochem Res 2024; 49:3094-3104. [PMID: 39167347 PMCID: PMC11449975 DOI: 10.1007/s11064-024-04224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Emerging studies suggest that Wnt signaling is dysregulated in the brains of AD patients, suggesting that this pathway may also contribute to disease progression. However, it remains to be determined whether alterations in the Wnt pathway are the cause or consequence of this disease and which elements of Wnt signaling mainly contribute to the appearance of AD histopathological markers early in disease compared to what occurs during normal aging. The present study aimed to describe the status of several canonical Wnt pathway components and the expression of the AD marker p-tau in the hippocampi of female and male 3xTg-AD mice during disease progression compared to those during normal aging. We analyzed the levels of the canonical Wnt components Wnt7a, Dkk-1, LRP6 and GSK3β as well as the levels of p-tau and BDNF at 3, 6, 9-12 and 18 months of age. We found a gradual increase in Dkk-1 levels during aging prior to Wnt7a and LRP5/6 depletion, which was strongly exacerbated in 3xTg-AD mice even at young ages and correlated with GSK3β activation and p-tau-S202/Thr205 expression. Dkk-1 upregulation, as well as the level of p-tau, was significantly greater in females than in males. Our results suggest that Dkk-1 upregulation is involved in the expression of several features of AD at early stages, which supports the possibility of positively modulating the canonical Wnt pathway as a therapeutic tool to delay this disease at early stages.
Collapse
Affiliation(s)
- Elizabeth Colín-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - César Espino-de-la-Fuente
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| |
Collapse
|
52
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. RESEARCH SQUARE 2024:rs.3.rs-5229472. [PMID: 39574902 PMCID: PMC11581049 DOI: 10.21203/rs.3.rs-5229472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8±2.4%), MCI (32.8±5.4%) and preclinical AD (28.3±6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6±2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
|
53
|
Son A, Kim H, Diedrich JK, Bamberger C, McClatchy DB, Lipton SA, Yates JR. Using in vivo intact structure for system-wide quantitative analysis of changes in proteins. Nat Commun 2024; 15:9310. [PMID: 39468068 PMCID: PMC11519357 DOI: 10.1038/s41467-024-53582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Mass spectrometry-based methods can provide a global expression profile and structural readout of proteins in complex systems. Preserving the in vivo conformation of proteins in their innate state is challenging during proteomic experiments. Here, we introduce a whole animal in vivo protein footprinting method using perfusion of reagents to add dimethyl labels to exposed lysine residues on intact proteins which provides information about protein conformation. When this approach is used to measure dynamic structural changes during Alzheimer's disease (AD) progression in a mouse model, we detect 433 proteins that undergo structural changes attributed to AD, independent of aging, across 7 tissues. We identify structural changes of co-expressed proteins and link the communities of these proteins to their biological functions. Our findings show that structural alterations of proteins precede changes in expression, thereby demonstrating the value of in vivo protein conformation measurement. Our method represents a strategy for untangling mechanisms of proteostasis dysfunction caused by protein misfolding. In vivo whole-animal footprinting should have broad applicability for discovering conformational changes in systemic diseases and for the design of therapeutic interventions.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Hyunsoo Kim
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences School of Medicine University of California, San Diego, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
54
|
Kitani A, Matsui Y. Integrative Network Analysis Reveals Novel Moderators of Aβ-Tau Interaction in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599092. [PMID: 39554095 PMCID: PMC11565825 DOI: 10.1101/2024.06.14.599092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Although interactions between amyloid-beta and tau proteins have been implicated in Alzheimer's disease (AD), the precise mechanisms by which these interactions contribute to disease progression are not yet fully understood. Moreover, despite the growing application of deep learning in various biomedical fields, its application in integrating networks to analyze disease mechanisms in AD research remains limited. In this study, we employed BIONIC, a deep learning-based network integration method, to integrate proteomics and protein-protein interaction data, with an aim to uncover factors that moderate the effects of the Aβ-tau interaction on mild cognitive impairment (MCI) and early-stage AD. Methods Proteomic data from the ROSMAP cohort were integrated with protein-protein interaction (PPI) data using a Deep Learning-based model. Linear regression analysis was applied to histopathological and gene expression data, and mutual information was used to detect moderating factors. Statistical significance was determined using the Benjamini-Hochberg correction (p < 0.05). Results Our results suggested that astrocytes and GPNMB+ microglia moderate the Aβ-tau interaction. Based on linear regression with histopathological and gene expression data, GFAP and IBA1 levels and GPNMB gene expression positively contributed to the interaction of tau with Aβ in non-dementia cases, replicating the results of the network analysis. Conclusions These findings indicate that GPNMB+ microglia moderate the Aβ-tau interaction in early AD and therefore are a novel therapeutic target. To facilitate further research, we have made the integrated network available as a visualization tool for the scientific community (URL: https://igcore.cloud/GerOmics/AlzPPMap).
Collapse
Affiliation(s)
- Akihiro Kitani
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Matsui
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, 461-8673 Nagoya, Aichi, Japan
| |
Collapse
|
55
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human-mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620263. [PMID: 39484428 PMCID: PMC11527136 DOI: 10.1101/2024.10.25.620263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. We comprehensively profiled age-dependent brain proteome and phosphoproteome (n > 10,000 for both) across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata, and prioritized novel components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Determining the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identify potential new targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh 522240, India
- These authors contributed equally
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
56
|
Jia F, Han W, Gao S, Huang J, Zhao W, Lu Z, Zhao W, Li Z, Wang Z, Guo Y. Novel cuproptosis metabolism-related molecular clusters and diagnostic signature for Alzheimer's disease. Front Mol Biosci 2024; 11:1478611. [PMID: 39513039 PMCID: PMC11540791 DOI: 10.3389/fmolb.2024.1478611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder with no effective treatments available. There is growing evidence that cuproptosis contributes to the pathogenesis of this disease. This study developed a novel molecular clustering based on cuproptosis-related genes and constructed a signature for AD patients. Methods The differentially expressed cuproptosis-related genes (DECRGs) were identified using the DESeq2 R package. The GSEA, PPI network, GO, KEGG, and correlation analysis were conducted to explore the biological functions of DECRGs. Molecular clusters were performed using unsupervised cluster analysis. Differences in biological processes between clusters were evaluated by GSVA and immune infiltration analysis. The optimal model was constructed by WGCNA and machine learning techniques. Decision curve analysis, calibration curves, receiver operating characteristic (ROC) curves, and two additional datasets were employed to confirm the prediction results. Finally, immunofluorescence (IF) staining in AD mice models was used to verify the expression levels of risk genes. Results GSEA and CIBERSORT showed higher levels of resting NK cells, M2 macrophages, naïve CD4+ T cells, neutrophils, monocytes, and plasma cells in AD samples compared to controls. We classified 310 AD patients into two molecular clusters with distinct expression profiles and different immunological characteristics. The C1 subtype showed higher abundance of cuproptosis-related genes, with higher proportions of regulatory T cells, CD8+T cells, and resting dendritic cells. We subsequently constructed a diagnostic model which was confirmed by nomogram, calibration, and decision curve analysis. The values of area under the curves (AUC) were 0.738 and 0.931 for the external datasets, respectively. The expression levels of risk genes were further validated in mouse brain samples. Conclusion Our study provided potential targets for AD treatment, developed a promising gene signature, and offered novel insights for exploring the pathogenesis of AD.
Collapse
Affiliation(s)
- Fang Jia
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wanhong Han
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuangqi Gao
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianwei Huang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wujie Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenwei Lu
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangyu Li
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Guo
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
57
|
Huber AD, Jung YH, Li Y, Lin W, Wu J, Poudel S, Carrigan AG, Mishra A, High AA, Chen T. First-in-Class Small Molecule Degrader of Pregnane X Receptor Enhances Chemotherapy Efficacy. J Med Chem 2024; 67:18549-18575. [PMID: 39405362 PMCID: PMC11584202 DOI: 10.1021/acs.jmedchem.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Pregnane X receptor (PXR) is a ligand-activated transcription factor that binds diverse compounds and upregulates drug metabolism machinery in response. PXR activation is detrimental to drug efficacy and safety because it reduces active drug concentrations and increases reactive metabolites, leading to toxicity and/or drug-drug interactions. Thus, effort must be expended in drug development pipelines to assess PXR activation by lead candidates and chemically modify agonists to reduce PXR liabilities while maintaining on-target potencies. Coadministration of drugs with PXR antagonists could prevent PXR-mediated metabolism events, but such compounds are rare and may themselves be converted to agonists by metabolic enzymes or PXR mutations. Here, we report the design, synthesis, optimization, and biological validation of proteolysis targeting chimeras that induce PXR degradation through E3 ubiquitin ligase recruitment. PXR degradation blocks agonist-induced gene expression and enhances anticancer effects of the chemotherapy paclitaxel, a known PXR agonist and substrate of downstream metabolic enzymes.
Collapse
Affiliation(s)
- Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Young-Hwan Jung
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Annalise G. Carrigan
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| |
Collapse
|
58
|
Dai Z, Pang X, Chen N, Fan X, Liu W, Liu J, Chen Z, Fang S, Cai C, Fang J. Network Medicine Approach Unravels Endophenotype Signature in Alzheimer's Disease through Large-Scale Comparative Proteomics Analysis: Vascular Dysfunction as a Prime Example. J Chem Inf Model 2024; 64:7758-7771. [PMID: 39322987 DOI: 10.1021/acs.jcim.4c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Collapse
Affiliation(s)
- Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Nan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuang Chen
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
59
|
Niu W, Yu S, Li X, Wang Z, Chen R, Michalski C, Jahangiri A, Zohdy Y, Chern JJ, Whitworth TJ, Wang J, Xu J, Zhou Y, Qin Z, Li B, Gambello MJ, Peng J, Wen Z. Longitudinal multi-omics reveals pathogenic TSC2 variants disrupt developmental trajectories of human cortical organoids derived from Tuberous Sclerosis Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617121. [PMID: 39416123 PMCID: PMC11482767 DOI: 10.1101/2024.10.07.617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tuberous Sclerosis Complex (TSC), an autosomal dominant condition, is caused by heterozygous mutations in either the TSC1 or TSC2 genes, manifesting in systemic growth of benign tumors. In addition to brain lesions, neurologic sequelae represent the greatest morbidity in TSC patients. Investigations utilizing TSC1/2-knockout animal or human stem cell models suggest that TSC deficiency-causing hyper-activation of mTOR signaling might precipitate anomalous neurodevelopmental processes. However, how the pathogenic variants of TSC1/2 genes affect the longitudinal trajectory of human brain development remains largely unexplored. Here, we employed 3-dimensional cortical organoids derived from induced pluripotent stem cells (iPSCs) from TSC patients harboring TSC2 variants, alongside organoids from age- and sex-matched healthy individuals as controls. Through comprehensively longitudinal molecular and cellular analyses of TSC organoids, we found that TSC2 pathogenic variants dysregulate neurogenesis, synaptogenesis, and gliogenesis, particularly for reactive astrogliosis. The altered developmental trajectory of TSC organoids significantly resembles the molecular signatures of neuropsychiatric disorders, including autism spectrum disorders, epilepsy, and intellectual disability. Intriguingly, single cell transcriptomic analyses on TSC organoids revealed that TSC2 pathogenic variants disrupt the neuron/reactive astrocyte crosstalk within the NLGN-NRXN signaling network. Furthermore, cellular and electrophysiological assessments of TSC cortical organoids, along with proteomic analyses of synaptosomes, demonstrated that the TSC2 variants precipitate perturbations in synaptic transmission, neuronal network activity, mitochondrial translational integrity, and neurofilament formation. Notably, similar perturbations were observed in surgically resected cortical specimens from TSC patients. Collectively, our study illustrates that disease-associated TSC2 variants disrupt the neurodevelopmental trajectories through perturbations of gene regulatory networks during early cortical development, leading to mitochondrial dysfunction, aberrant neurofilament formation, impaired synaptic formation and neuronal network activity.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Shaojun Yu
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Xiangru Li
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Zhen Wang
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arman Jahangiri
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Youssef Zohdy
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Joshua J Chern
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322, USA
| | - Jianjun Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
60
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. Mol Neurodegener 2024; 19:68. [PMID: 39385222 PMCID: PMC11465638 DOI: 10.1186/s13024-024-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced. Referred to as the NULISAseq CNS disease panel, the assay simultaneously measures ~ 120 analytes related to neurodegenerative diseases, including those linked to both core (i.e., tau and amyloid-beta (Aβ)) and non-core AD processes. This study aimed to evaluate the technical and clinical performance of this novel targeted proteomic panel. METHODS The NULISAseq CNS disease panel was applied to 176 plasma samples from 113 individuals in the MYHAT-NI cohort of predominantly cognitively normal participants from an economically underserved region in southwestern Pennsylvania, USA. Classical AD biomarkers, including p-tau181, p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were independently measured using Single Molecule Array (Simoa) and correlations and diagnostic performances compared. Aβ pathology, tau pathology, and neurodegeneration (AT(N) statuses) were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and an MRI-based AD-signature composite cortical thickness index, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA and neuroimaging-determined AT(N) biomarkers. RESULTS NULISA concurrently measured 116 plasma biomarkers with good technical performance (97.2 ± 13.9% targets gave signals above assay limits of detection), and significant correlation with Simoa assays for the classical biomarkers. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET + participants, including TIMP3, BDNF, MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET + participants. Novel plasma biomarkers with tau PET-dependent longitudinal changes included proteins associated with neuroinflammation, synaptic function, and cerebrovascular integrity, such as CHIT1, CHI3L1, NPTX1, PGF, PDGFRB, and VEGFA; all previously linked to AD but only reliable when measured in cerebrospinal fluid. The autophagosome cargo protein SQSTM1 exhibited significant association with neurodegeneration after adjusting age, sex, and APOE ε4 genotype. CONCLUSIONS Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes, consistent with the recently revised biological and diagnostic framework. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Ann D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
61
|
Li D, Wang Y, Wang J, Tang Q. Identification of key proteins in early-onset Alzheimer's disease based on WGCNA. Front Aging Neurosci 2024; 16:1412222. [PMID: 39444808 PMCID: PMC11496171 DOI: 10.3389/fnagi.2024.1412222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Early-onset Alzheimer's disease (EOAD) is sporadic, highly heterogeneous, and its underlying pathogenic mechanisms remain largely elusive. Proteomics research aims to uncover the biological processes and key proteins involved in disease progression. However, no proteomic studies to date have specifically focused on EOAD brain tissue. Method We integrated proteomic data from brain tissues of two Alzheimer's disease (AD) cohorts and constructed a protein co-expression network using weighted gene co-expression network analysis (WGCNA). We identified modules associated with EOAD, conducted functional enrichment analysis to understand the biological processes involved in EOAD, and pinpointed potential key proteins within the core modules most closely linked to AD pathology. Results In this study, we identified a total of 2,749 proteins associated with EOAD. Through protein co-expression network analysis, we discovered 41 distinct co-expression modules. Notably, the proteins within the core module most closely linked to AD pathology were significantly enriched in neutrophil degranulation. Additionally, we identified two potential key proteins within this core module that have not been previously reported in AD and validated their expression levels in 5xFAD mice. Conclusion In summary, through a protein co-expression network analysis, we identified EOAD-related biological processes and molecular pathways, and screened and validated two key proteins, ERBB2IP and LSP1. These proteins may play an important role in the progression of EOAD, suggesting they could serve as potential therapeutic targets for the disease.
Collapse
Affiliation(s)
| | | | | | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
62
|
Reddy JS, Heath L, Linden AV, Allen M, Lopes KDP, Seifar F, Wang E, Ma Y, Poehlman WL, Quicksall ZS, Runnels A, Wang Y, Duong DM, Yin L, Xu K, Modeste ES, Shantaraman A, Dammer EB, Ping L, Oatman SR, Scanlan J, Ho C, Carrasquillo MM, Atik M, Yepez G, Mitchell AO, Nguyen TT, Chen X, Marquez DX, Reddy H, Xiao H, Seshadri S, Mayeux R, Prokop S, Lee EB, Serrano GE, Beach TG, Teich AF, Haroutunian V, Fox EJ, Gearing M, Wingo A, Wingo T, Lah JJ, Levey AI, Dickson DW, Barnes LL, De Jager P, Zhang B, Bennett D, Seyfried NT, Greenwood AK, Ertekin‐Taner N. Bridging the gap: Multi-omics profiling of brain tissue in Alzheimer's disease and older controls in multi-ethnic populations. Alzheimers Dement 2024; 20:7174-7192. [PMID: 39215503 PMCID: PMC11485084 DOI: 10.1002/alz.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked Black Americans (BA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS To bridge this gap, Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS We generated multi-omics data and curated and harmonized phenotypic data from BA (n = 306), LA (n = 326), or BA and LA (n = 4) brain donors plus non-Hispanic White (n = 252) and other (n = 20) ethnic groups, to establish a foundational dataset enriched for BA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION The inclusion of traditionally underrepresented groups in multi-omics studies is essential to discovering the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD. HIGHLIGHTS Accelerating Medicines Partnership in Alzheimer's Disease Diversity Initiative led brain tissue profiling in multi-ethnic populations. Brain multi-omics data is generated from Black American, Latin American, and non-Hispanic White donors. RNA, whole genome sequencing and tandem mass tag proteomicsis completed and shared. Multiple brain regions including caudate, temporal and dorsolateral prefrontal cortex were profiled.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erming Wang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yiyi Ma
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
| | | | | | | | - Yanling Wang
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Duc M. Duong
- Emory University School of MedicineAtlantaGeorgiaUSA
| | - Luming Yin
- Emory University School of MedicineAtlantaGeorgiaUSA
| | - Kaiming Xu
- Emory University School of MedicineAtlantaGeorgiaUSA
| | | | | | | | - Lingyan Ping
- Emory University School of MedicineAtlantaGeorgiaUSA
| | | | | | | | | | - Merve Atik
- Mayo Clinic FloridaJacksonvilleFloridaUSA
| | | | | | | | | | - David X. Marquez
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- University of Illinois ChicagoChicagoIllinoisUSA
| | - Hasini Reddy
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Harrison Xiao
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Sudha Seshadri
- The Glen Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of TexasSan AntonioTexasUSA
| | - Richard Mayeux
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
| | | | - Edward B. Lee
- Center for Neurodegenerative Disease Brain Bank at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | - Andrew F. Teich
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Varham Haroutunian
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Edward J. Fox
- Emory University School of MedicineAtlantaGeorgiaUSA
| | - Marla Gearing
- Emory University School of MedicineAtlantaGeorgiaUSA
| | - Aliza Wingo
- Emory University School of MedicineAtlantaGeorgiaUSA
| | - Thomas Wingo
- Emory University School of MedicineAtlantaGeorgiaUSA
| | - James J. Lah
- Emory University School of MedicineAtlantaGeorgiaUSA
| | | | | | - Lisa L. Barnes
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Philip De Jager
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | | | | | | |
Collapse
|
63
|
Pichet Binette A, Gaiteri C, Wennström M, Kumar A, Hristovska I, Spotorno N, Salvadó G, Strandberg O, Mathys H, Tsai LH, Palmqvist S, Mattsson-Carlgren N, Janelidze S, Stomrud E, Vogel JW, Hansson O. Proteomic changes in Alzheimer's disease associated with progressive Aβ plaque and tau tangle pathologies. Nat Neurosci 2024; 27:1880-1891. [PMID: 39187705 PMCID: PMC11452344 DOI: 10.1038/s41593-024-01737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Proteomics can shed light on the dynamic and multifaceted alterations in neurodegenerative disorders like Alzheimer's disease (AD). Combining radioligands measuring β-amyloid (Aβ) plaques and tau tangles with cerebrospinal fluid proteomics, we uncover molecular events mirroring different stages of AD pathology in living humans. We found 127 differentially abundant proteins (DAPs) across the AD spectrum. The strongest Aβ-related proteins were mainly expressed in glial cells and included SMOC1 and ITGAM. A dozen proteins linked to ATP metabolism and preferentially expressed in neurons were independently associated with tau tangle load and tau accumulation. Only 20% of the DAPs were also altered in other neurodegenerative diseases, underscoring AD's distinct proteome. Two co-expression modules related, respectively, to protein metabolism and microglial immune response encompassed most DAPs, with opposing, staggered trajectories along the AD continuum. We unveil protein signatures associated with Aβ and tau proteinopathy in vivo, offering insights into complex neural responses and potential biomarkers and therapeutics targeting different disease stages.
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | - Chris Gaiteri
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- Rush University Alzheimer's Disease Center, Rush University, Chicago, IL, USA
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Atul Kumar
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Ines Hristovska
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Rush University Alzheimer's Disease Center, Rush University, Chicago, IL, USA
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
64
|
Guo Y, Chen SD, You J, Huang SY, Chen YL, Zhang Y, Wang LB, He XY, Deng YT, Zhang YR, Huang YY, Dong Q, Feng JF, Cheng W, Yu JT. Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer's disease. Nat Hum Behav 2024; 8:2047-2066. [PMID: 38987357 DOI: 10.1038/s41562-024-01924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin-Bo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
65
|
He M, Zong X, Xu B, Qi W, Huang W, Djekidel MN, Zhang Y, Pagala VR, Li J, Hao X, Guy C, Bai L, Cross R, Li C, Peng J, Feng Y. Dynamic Foxp3-chromatin interaction controls tunable Treg cell function. J Exp Med 2024; 221:e20232068. [PMID: 38935023 PMCID: PMC11211070 DOI: 10.1084/jem.20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Nuclear factor Foxp3 determines regulatory T (Treg) cell fate and function via mechanisms that remain unclear. Here, we investigate the nature of Foxp3-mediated gene regulation in suppressing autoimmunity and antitumor immune response. Contrasting with previous models, we find that Foxp3-chromatin binding is regulated by Treg activation states, tumor microenvironment, and antigen and cytokine stimulations. Proteomics studies uncover dynamic proteins within Foxp3 proximity upon TCR or IL-2 receptor signaling in vitro, reflecting intricate interactions among Foxp3, signal transducers, and chromatin. Pharmacological inhibition and genetic knockdown experiments indicate that NFAT and AP-1 protein Batf are required for enhanced Foxp3-chromatin binding in activated Treg cells and tumor-infiltrating Treg cells to modulate target gene expression. Furthermore, mutations at the Foxp3 DNA-binding domain destabilize the Foxp3-chromatin association. These representative settings delineate context-dependent Foxp3-chromatin interaction, suggesting that Foxp3 associates with chromatin by hijacking DNA-binding proteins resulting from Treg activation or differentiation, which is stabilized by direct Foxp3-DNA binding, to dynamically regulate Treg cell function according to immunological contexts.
Collapse
Affiliation(s)
- Minghong He
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xinying Zong
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjie Qi
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjun Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jun Li
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xiaolei Hao
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lu Bai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard Cross
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structure Biology and Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
66
|
Mohallem R, Schaser AJ, Aryal UK. Molecular Signatures of Neurodegenerative Diseases Identified by Proteomic and Phosphoproteomic Analyses in Aging Mouse Brain. Mol Cell Proteomics 2024; 23:100819. [PMID: 39069073 PMCID: PMC11381985 DOI: 10.1016/j.mcpro.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024] Open
Abstract
A central hallmark of neurodegenerative diseases is the irreversible accumulation of misfolded proteins in the brain by aberrant phosphorylation. Understanding the mechanisms underlying protein phosphorylation and its role in pathological protein aggregation within the context of aging is crucial for developing therapeutic strategies aimed at preventing or reversing such diseases. Here, we applied multi-protease digestion and quantitative mass spectrometry to compare and characterize dysregulated proteins and phosphosites in the mouse brain proteome using three different age groups: young-adult (3-4 months), middle-age (10 months), and old mice (19-21 months). Proteins associated with senescence, neurodegeneration, inflammation, cell cycle regulation, the p53 hallmark pathway, and cytokine signaling showed significant age-dependent changes in abundances and level of phosphorylation. Several proteins implicated in Alzheimer's disease (AD) and Parkinson's disease (PD) including tau (Mapt), Nefh, and Dpysl2 (also known as Crmp2) were hyperphosphorylated in old mice brain suggesting their susceptibility to the diseases. Cdk5 and Gsk3b, which are known to phosphorylate Dpysl2 at multiple specific sites, had also increased phosphorylation levels in old mice suggesting a potential crosstalk between them to contribute to AD. Hapln2, which promotes α-synuclein aggregation in patients with PD, was one of the proteins with highest abundance in old mice. CD9, which regulates senescence through the PI3K-AKT-mTOR-p53 signaling was upregulated in old mice and its regulation was correlated with the activation of phosphorylated AKT1. Overall, the findings identify a significant association between aging and the dysregulation of proteins involved in various pathways linked to neurodegenerative diseases with potential therapeutic implications.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
67
|
Liu Z, Zhou Q, He L, Liao Z, Cha Y, Zhao H, Zheng W, Lu D, Yang S. Identification of energy metabolism anomalies and serum biomarkers in the progression of premature ovarian failure via extracellular vesicles' proteomic and metabolomic profiles. Reprod Biol Endocrinol 2024; 22:104. [PMID: 39160560 PMCID: PMC11331654 DOI: 10.1186/s12958-024-01277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a clinical condition characterized by the cessation of ovarian function, leading to infertility. The underlying molecular mechanisms remain unclear, and no predictable biomarkers have been identified. This study aimed to investigate the protein and metabolite contents of serum extracellular vesicles to investigate underlying molecular mechanisms and explore potential biomarkers. METHODS This study was conducted on a cohort consisting of 14 POF patients and 16 healthy controls. The extracellular vesicles extracted from the serum of each group were subjected to label-free proteomic and unbiased metabolomic analysis. Differentially expressed proteins and metabolites were annotated. Pathway network clustering was conducted with further correlation analysis. The biomarkers were confirmed by ROC analysis and random forest machine learning. RESULTS The proteomic and metabolomic profiles of POF patients and healthy controls were compared. Two subgroups of POF patients, Pre-POF and Pro-POF, were identified based on the proteomic profile, while all patients displayed a distinguishable metabolomic profile. Proteomic analysis suggested that inflammation serves as an early factor contributing to the infertility of POF patients. For the metabolomic analysis, despite the dysfunction of metabolism, oxidative stress and hormone imbalance were other key factors appearing in POF patients. Signaling pathway clustering of proteomic and metabolomic profiles revealed the progression of dysfunctional energy metabolism during the development of POF. Moreover, correlation analysis identified that differentially expressed proteins and metabolites were highly associated, with six of them being selected as potential biomarkers. ROC curve analysis, together with random forest machine learning, suggested that AFM combined with 2-oxoarginine was the best diagnostic biomarker for POF. CONCLUSIONS Omics analysis revealed that inflammation, oxidative stress, and hormone imbalance are factors that damage ovarian tissue, but the progressive dysfunction of energy metabolism might be the critical pathogenic pathway contributing to the development of POF. AFM combined with 2-oxoarginine serves as a precise biomarker for clinical POF diagnosis.
Collapse
Affiliation(s)
- Zhen Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University Medical School, Shenzhen, China
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Qilin Zhou
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Liangge He
- Shenzhen University Medical School, Shenzhen, China
| | - Zhengdong Liao
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Yajing Cha
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Hongyu Zhao
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Wenchao Zheng
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Sheng Yang
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China.
| |
Collapse
|
68
|
Shantaraman A, Dammer EB, Ugochukwu O, Duong DM, Yin L, Carter EK, Gearing M, Chen-Plotkin A, Lee EB, Trojanowski JQ, Bennett DA, Lah JJ, Levey AI, Seyfried NT, Higginbotham L. Network proteomics of the Lewy body dementia brain reveals presynaptic signatures distinct from Alzheimer's disease. Mol Neurodegener 2024; 19:60. [PMID: 39107789 PMCID: PMC11302177 DOI: 10.1186/s13024-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.
Collapse
Affiliation(s)
- Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Obiadada Ugochukwu
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - E Kathleen Carter
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - James J Lah
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Lenora Higginbotham
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
69
|
Ke C, Shan S, Tan Y, Cao Y, Xie Z, Shi S, Pan J, Zhang W. Signaling pathways in the treatment of Alzheimer's disease with acupuncture: a narrative review. Acupunct Med 2024; 42:216-230. [PMID: 38859546 DOI: 10.1177/09645284241256669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND To date, there is no effective treatment for Alzheimer's disease (AD), a progressive neurodegenerative disorder that is increasing in prevalence worldwide. The objective of this review was to summarize the core targets and signaling pathways involved in acupuncture treatment for AD. METHODS We reviewed numerous signaling pathways, including mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-protein kinase B (PI3 K/Akt), adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), nuclear factor (NF)-kB, p53, Wnt, nitric oxide (NO), Janus kinase / signal transducer and activator of transcription (JAK/ STAT), RhoA/ROCK (Rho-associated protein kinase) and Ca2+/ calmodulin-dependent protein kinase II (CaMKII) / cyclic adenosine monophosphate-response element-binding protein (CREB). The relevant data were obtained from PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI) and Wanfang databases. RESULTS In summary, the effects of acupuncture are mediated by multiple targets and pathways. Furthermore, acupuncture can improve pathological changes associated with AD (such as abnormal deposition of amyloid (A)β, tau hyperphosphorylation, synaptic dysfunction and neuronal apoptosis) through multiple signaling pathways. CONCLUSION Overall, our findings provide a basis for future research into the effects of acupuncture on AD.
Collapse
Affiliation(s)
- Chao Ke
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shengtao Shan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Tan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhengrong Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Senjie Shi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jiang Pan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
70
|
Zhang N, Westerhaus A, Wilson M, Wang E, Goff L, Sockanathan S. Physiological regulation of neuronal Wnt activity is essential for TDP-43 localization and function. EMBO J 2024; 43:3388-3413. [PMID: 38918634 PMCID: PMC11329687 DOI: 10.1038/s44318-024-00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons, which is sufficient to cause NCT deficits, nuclear pore abnormalities, and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further, GDE2 deficits are evident in human neural cell models of ALS, which display erroneous Wnt activation that, when inhibited, increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease.
Collapse
Affiliation(s)
- Nan Zhang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Westerhaus
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Macey Wilson
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- Department of Cellular Biology, University of Georgia, Biological Sciences 302, 120 Cedar St., Athens, GA, 30602, USA
| | - Ethan Wang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Kavli Neurodiscovery Institute, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
71
|
Cheng PL, Wang H, Dombroski BA, Farrell JJ, Horng I, Chung T, Tosto G, Kunkle BW, Bush WS, Vardarajan B, Schellenberg GD, Lee WP. A Specialized Reference Panel with Structural Variants Integration for Improving Genotype Imputation in Alzheimer's Disease and Related Dementias (ADRD). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310827. [PMID: 39108532 PMCID: PMC11302603 DOI: 10.1101/2024.07.22.24310827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
We developed an imputation panel for Alzheimer's disease (AD) and related dementias (ADRD) using whole-genome sequencing (WGS) data from the Alzheimer's Disease Sequencing Project (ADSP). Recognizing the significant associations between structural variants (SVs) and AD, and their underrepresentation in existing public reference panels, our panel uniquely integrates single nucleotide variants (SNVs), short insertions and deletions (indels), and SVs. This panel enhances the imputation of disease susceptibility, including rare AD-associated SNVs, indels, and SVs, onto genotype array data, offering a cost-effective alternative to whole-genome sequencing while significantly augmenting statistical power. Notably, we discovered 10 rare indels nominal significant related to AD that are absent in the TOPMed-r2 panel and identified three suggestive significant (p-value < 1E-05) AD-associated SVs in the genes EXOC3L2 and DMPK, were identified. These findings provide new insights into AD genetics and underscore the critical role of imputation panels in advancing our understanding of complex diseases like ADRD.
Collapse
Affiliation(s)
- Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Iris Horng
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Chung
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Brian W Kunkle
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
72
|
Cutrona MB, Wu J, Yang K, Peng J, Chen T. Pancreatic cancer organoid-screening captures personalized sensitivity and chemoresistance suppression upon cytochrome P450 3A5-targeted inhibition. iScience 2024; 27:110289. [PMID: 39055940 PMCID: PMC11269815 DOI: 10.1016/j.isci.2024.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 3A5 (CYP3A5) has been proposed as a predictor of therapy response in subtypes of pancreatic ductal adenocarcinoma cancer (PDAC). To validate CYP3A5 as a therapeutic target, we developed a high-content image organoid-based screen to quantify the phenotypic responses to the selective inhibition of CYP3A5 enzymatic activity by clobetasol propionate (CBZ), using a cohort of PDAC-derived organoids (PDACOs). The chemoresistance of PDACOs to a panel of standard-of-care drugs, alone or in combination with CBZ, was investigated. PDACO pharmaco-profiling revealed CBZ to have anti-cancer activity that was dependent on the CYP3A5 level. In addition, CBZ restored chemo-vulnerability to cisplatin in a subset of PDACOs. A correlative proteomic analysis established that CBZ caused the suppression of multiple cancer pathways sustained by or associated with a mutant form of p53. Limiting the active pool of CYP3A5 enables targeted and personalized therapy to suppress pro-oncogenic mechanisms that fuel chemoresistance in some PDAC tumors.
Collapse
Affiliation(s)
- Meritxell B. Cutrona
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Ka Yang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
73
|
Tan MS, Cheah PL, Chin AV, Looi LM, Chang SW. A multi-ethnic proteomic profiling analysis in Alzheimer's disease identifies the disparities in dysregulation of proteins and pathogenesis. PeerJ 2024; 12:e17643. [PMID: 39035156 PMCID: PMC11260413 DOI: 10.7717/peerj.17643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia that affects the elderly population. Lately, blood-based proteomics have been intensively sought in the discovery of AD biomarkers studies due to the capability to link external environmental factors with the development of AD. Demographic differences have been shown to affect the expression of the proteins in different populations which play a vital role in the degeneration of cognitive function. Method In this study, a proteomic study focused on Malaysian Chinese and Malay prospects was conducted. Differentially expressed proteins (DEPs) in AD patients and normal controls for Chinese and Malays were identified. Functional enrichment analysis was conducted to further interpret the biological functions and pathways of the DEPs. In addition, a survey investigating behavioural practices among Chinese and Malay participants was conducted to support the results from the proteomic analysis. Result The variation of dysregulated proteins identified in Chinese and Malay samples suggested the disparities of pathways involved in this pathological condition for each respective ethnicity. Functional enrichment analysis supported this assumption in understanding the protein-protein interactions of the identified protein signatures and indicate that differentially expressed proteins identified from the Chinese group were significantly enriched with the functional terms related to Aβ/tau protein-related processes, oxidative stress and inflammation whereas neuroinflammation was associated with the Malay group. Besides that, a significant difference in sweet drinks/food intake habits between these two groups implies a relationship between sugar levels and the dysregulation of protein APOA4 in the Malay group. Additional meta-analysis further supported the dysregulation of proteins TF, AHSG, A1BG, APOA4 and C4A among AD groups. Conclusion These findings serve as a preliminary understanding in the molecular and demographic studies of AD in a multi-ethnic population.
Collapse
Affiliation(s)
- Mei Sze Tan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Phaik-Leng Cheah
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ai-Vyrn Chin
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre of Research in System Biology, Structural, Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
74
|
Beaufort N, Ingendahl L, Merdanovic M, Schmidt A, Podlesainski D, Richter T, Neumann T, Kuszner M, Vetter IR, Stege P, Burston SG, Filipovic A, Ruiz-Blanco YB, Bravo-Rodriguez K, Mieres-Perez J, Beuck C, Uebel S, Zobawa M, Schillinger J, Malik R, Todorov-Völgyi K, Rey J, Roberti A, Hagemeier B, Wefers B, Müller SA, Wurst W, Sanchez-Garcia E, Zimmermann A, Hu XY, Clausen T, Huber R, Lichtenthaler SF, Schmuck C, Giese M, Kaiser M, Ehrmann M, Dichgans M. Rational correction of pathogenic conformational defects in HTRA1. Nat Commun 2024; 15:5944. [PMID: 39013852 PMCID: PMC11252331 DOI: 10.1038/s41467-024-49982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Linda Ingendahl
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Melisa Merdanovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, Munich, Germany
| | - David Podlesainski
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Tim Richter
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thorben Neumann
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Kuszner
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Ingrid R Vetter
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Patricia Stege
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Anto Filipovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Kenny Bravo-Rodriguez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Joel Mieres-Perez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stephan Uebel
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Monika Zobawa
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juliana Rey
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Annabell Roberti
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Birte Hagemeier
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Technische Universität München-Weihenstephan, Freising, Germany
| | - Elsa Sanchez-Garcia
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Alexander Zimmermann
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Xiao-Yu Hu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carsten Schmuck
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Giese
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
75
|
Barba L, Bellomo G, Oeckl P, Chiasserini D, Gaetani L, Torrigiani EG, Paoletti FP, Steinacker P, Abu-Rumeileh S, Parnetti L, Otto M. CSF neurosecretory proteins VGF and neuroserpin in patients with Alzheimer's and Lewy body diseases. J Neurol Sci 2024; 462:123059. [PMID: 38850771 DOI: 10.1016/j.jns.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND VGF and neuroserpin are neurosecretory proteins involved in the pathophysiology of neurodegenerative diseases. We aimed to evaluate their cerebrospinal fluid (CSF) concentrations in patients with Alzheimer's disease (AD) and Lewy body disease (LBD). METHODS We measured CSF VGF [AQEE] peptide and neuroserpin levels in 108 LBD patients, 76 AD patients and 37 controls, and tested their associations with clinical scores and CSF AD markers. RESULTS We found decreased CSF levels of VGF [AQEE] in patients with LBD and dementia compared to controls (p = 0.016) and patients with AD-dementia (p = 0.011), but with significant influence of age and sex distribution. Moreover, we observed, on the one hand, a significant associations between lower VGF [AQEE] and neuroserpin levels and poorer cognitive performance (i.e., lower Mini-Mental State Examination scores). On the other hand, higher levels of CSF tau proteins, especially pTau181, were significantly associated with higher concentrations of VGF [AQEE] and neuroserpin. Indeed, LBD patients with AD-like CSF profiles, especially T+ profiles, had higher levels of VGF [AQEE] and neuroserpin compared to controls and LBD/T- cases. DISCUSSION CSF VGF [AQEE] and neuroserpin may show a complex relationship with cognitive decline when the levels are reduced, and with AD pathology when levels are increased. They may represent novel markers of neurosecretory impairment in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Helmholzstrasse 8/1, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE e.V.), Helmholzstrasse 8/1, 89081 Ulm, Germany
| | - Davide Chiasserini
- Section of Biochemistry, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Edoardo Guido Torrigiani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
76
|
Frye BM, Negrey JD, Johnson CSC, Kim J, Barcus RA, Lockhart SN, Whitlow CT, Chiou KL, Snyder-Mackler N, Montine TJ, Craft S, Shively CA, Register TC. Mediterranean diet protects against a neuroinflammatory cortical transcriptome: Associations with brain volumetrics, peripheral inflammation, social isolation, and anxiety in nonhuman primates (Macaca fascicularis). Brain Behav Immun 2024; 119:681-692. [PMID: 38636565 PMCID: PMC12051215 DOI: 10.1016/j.bbi.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/17/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets; however, the underlying biology is poorly understood. We assessed the effects of Western versus Mediterranean-like diets on RNAseq-generated transcriptional profiles in lateral temporal cortex and their relationships with longitudinal changes in neuroanatomy, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques (Macaca fascicularis). Diet resulted in differential expression of seven transcripts (FDR < 0.05). Cyclin dependent kinase 14 (CDK14), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" (LFNG), mannose receptor C type 2 (MRC2), solute carrier family 3 member 2 (SLCA32), butyrophilin subfamily 2 member A1 (BTN2A1), katanin regulatory subunit B1 (KATNB1), and transmembrane protein 268 (TMEM268)] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14, LFNG, MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with peripheral monocyte transcript levels, neuroanatomical changes determined by MRI, and with social isolation and anxiety. These results provide important insights into the potential mechanistic processes linking diet, peripheral and central inflammation, and behavior. Collectively, our results provide evidence that, relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and socioemotional behavior. Ultimately, such protective effects may confer resilience to the development of neuropathology and associated disease.
Collapse
Affiliation(s)
- Brett M Frye
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Biology, Emory and Henry College, Emory, VA, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| | - Jacob D Negrey
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; School of Anthropology, University of Arizona, Tucson, AZ, USA
| | | | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard A Barcus
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher T Whitlow
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | | | - Suzanne Craft
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol A Shively
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA.
| | - Thomas C Register
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA.
| |
Collapse
|
77
|
Oveisgharan S, Yu L, de Paiva Lopes K, Tasaki S, Wang Y, Menon V, Schneider JA, Seyfried NT, Bennett DA. Proteins linking APOE ɛ4 with Alzheimer's disease. Alzheimers Dement 2024; 20:4499-4511. [PMID: 38856164 PMCID: PMC11247662 DOI: 10.1002/alz.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION The ɛ4 allele of the apolipoprotein E gene (APOE ɛ4) is the strongest genetic risk factor for Alzheimer's disease (AD), but the mechanisms connecting APOE ɛ4 to AD are not clear. METHODS Participants (n = 596) were from two clinical-pathological studies. Tissues from dorsolateral prefrontal cortex were examined to identify 8425 proteins. Post mortem pathological assessment used immunohistochemistry to obtain amyloid beta (Aβ) load and tau tangle density. RESULTS In separate models, APOE ɛ4 was associated with 18 proteins, which were associated with Aβ and tau tangles. Examining the proteins in a single model identified Netrin-1 and secreted frizzled-related protein 1 (SFRP1) as the two proteins linking APOE ɛ4 with Aβ with the largest effect sizes and Netrin-1 and testican-3 linking APOE ɛ4 with tau tangles. DISCUSSION We identified Netrin-1, SFRP1, and testican-3 as the most promising proteins that link APOE ɛ4 with Aβ and tau tangles. HIGHLIGHTS Of 8425 proteins extracted from prefrontal cortex, 18 were related to APOE ɛ4. The 18 proteins were also related to amyloid beta (Aβ) and tau. The 18 proteins were more related to APOE ɛ4 than other AD genetic risk variants. Netrin-1 and secreted frizzled-related protein 1 were the two most promising proteins linking APOE ɛ4 with Aβ. Netrin-1 and testican-3 were two most promising proteins linking APOE ɛ4 with tau.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Shinya Tasaki
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Yanling Wang
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Vilas Menon
- Center for Translational and Computational NeuroimmunologyDepartment of Neurology & Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Julie A. Schneider
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Nicholas T. Seyfried
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of BiochemistryEmory UniversityAtlantaGeorgiaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
78
|
Piersma SR, Valles-Marti A, Rolfs F, Pham TV, Henneman AA, Jiménez CR. Inferring kinase activity from phosphoproteomic data: Tool comparison and recent applications. MASS SPECTROMETRY REVIEWS 2024; 43:725-751. [PMID: 36156810 DOI: 10.1002/mas.21808] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aberrant cellular signaling pathways are a hallmark of cancer and other diseases. One of the most important signaling mechanisms involves protein phosphorylation/dephosphorylation. Protein phosphorylation is catalyzed by protein kinases, and over 530 protein kinases have been identified in the human genome. Aberrant kinase activity is one of the drivers of tumorigenesis and cancer progression and results in altered phosphorylation abundance of downstream substrates. Upstream kinase activity can be inferred from the global collection of phosphorylated substrates. Mass spectrometry-based phosphoproteomic experiments nowadays routinely allow identification and quantitation of >10k phosphosites per biological sample. This substrate phosphorylation footprint can be used to infer upstream kinase activities using tools like Kinase Substrate Enrichment Analysis (KSEA), Posttranslational Modification Substrate Enrichment Analysis (PTM-SEA), and Integrative Inferred Kinase Activity Analysis (INKA). Since the topic of kinase activity inference is very active with many new approaches reported in the past 3 years, we would like to give an overview of the field. In this review, an inventory of kinase activity inference tools, their underlying algorithms, statistical frameworks, kinase-substrate databases, and user-friendliness is presented. The most widely-used tools are compared in-depth. Subsequently, recent applications of the tools are described focusing on clinical tissues and hematological samples. Two main application areas for kinase activity inference tools can be discerned. (1) Maximal biological insights can be obtained from large data sets with group comparisons using multiple complementary tools (e.g., PTM-SEA and KSEA or INKA). (2) In the oncology context where personalized treatment requires analysis of single samples, INKA for example, has emerged as tool that can prioritize actionable kinases for targeted inhibition.
Collapse
Affiliation(s)
- Sander R Piersma
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andrea Valles-Marti
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Frank Rolfs
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alex A Henneman
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Connie R Jiménez
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
79
|
Xie Y, Wang R, McClatchy DB, Ma Y, Diedrich J, Sanchez-Alavez M, Petrascheck M, Yates JR, Cline HT. Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600712. [PMID: 38979362 PMCID: PMC11230442 DOI: 10.1101/2024.06.30.600712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related processes. We identified Emerin as the top activity-induced candidate plasticity protein and demonstrated that its rapid activity-induced synthesis is transcription-independent. In contrast to its nuclear localization and function in myocytes, activity-induced neuronal Emerin is abundant in the endoplasmic reticulum and broadly inhibits protein synthesis, including translation regulators and synaptic proteins. Downregulating Emerin shifted the dendritic spine population from predominantly mushroom morphology to filopodia and decreased network connectivity. In mice, decreased Emerin reduced visual response magnitude and impaired visual information processing. Our findings support an experience-dependent feed-forward role for Emerin in temporally gating neuronal plasticity by negatively regulating translation.
Collapse
|
80
|
Cox D, Hatters DM. PERCEPT: Replacing binary p-value thresholding with scaling for more nuanced identification of sample differences. iScience 2024; 27:109891. [PMID: 38832020 PMCID: PMC11145341 DOI: 10.1016/j.isci.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Key to a biologists' capacity to understand data is the ability to make meaningful conclusions about differences in experimental observations. Typically, data are noisy, and conventional methods rely on replicates to average out noise and enable univariate statistical tests to assign p-values. Yet thresholding p-values to determine significance is controversial and often misleading, especially for omics datasets with few replicates. This study introduces PERCEPT, an alternative that transforms data using an ad-hoc scaling factor derived from p-values. By applying this method, low confidence effects are suppressed compared to high confidence ones, enabling clearer patterns to emerge from noisy datasets. The effectiveness of PERCEPT scaling is demonstrated using simulated datasets and published omics studies. The approach reduces the exclusion of datapoints, enhances accuracy, and enables nuanced interpretation of data. PERCEPT is easy to apply for the non-expert in statistics and provides researchers a straightforward way to improve data-driven analyses.
Collapse
Affiliation(s)
- Dezerae Cox
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500 Australia
| | - Danny M. Hatters
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
81
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308975. [PMID: 38947065 PMCID: PMC11213097 DOI: 10.1101/2024.06.15.24308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks. Methods The NULISAseq panel was applied to 176 plasma samples from the MYHAT-NI cohort of cognitively normal participants from an economically underserved region in Western Pennsylvania. Classical AD biomarkers, including p-tau181 p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were also measured using Single Molecule Array (Simoa). Amyloid pathology, tau pathology, and neurodegeneration were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and MRI, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA biomarkers and AD pathologies. Spearman correlations were used to compare NULISA and Simoa. Results NULISA concurrently measured 116 plasma biomarkers with good technical performance, and good correlation with Simoa measures. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET+ participants, including TIMP3, which regulates brain Aβ production, the neurotrophic factor BDNF, the energy metabolism marker MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET+ participants. Markers with tau PET-dependent longitudinal changes included the microglial activation marker CHIT1, the reactive astrogliosis marker CHI3L1, the synaptic protein NPTX1, and the cerebrovascular markers PGF, PDGFRB, and VEFGA; all previously linked to AD but only reliably measured in cerebrospinal fluid. SQSTM1, the autophagosome cargo protein, exhibited a significant association with neurodegeneration status after adjusting age, sex, and APOE ε4 genotype. Conclusions Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Tara K. Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pamela C. L. Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William E. Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Ann D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
82
|
Peng J, Zaman M, Yang S, Huang Y, Yarbro J, Wang Z, Liu D, Soliman H, Hemphill A, Harvey S, Pruett-Miller S, Stewart V, Tanwar A, Kalathur R, Grace C, Turk M, Chittori S, Jiao Y, Wu Z, High A, Wang X, Serrano G, Beach T, Yu G, Yang Y, Chen PC. Midkine Attenuates Aβ Fibril Assembly and AmyloidPlaque Formation. RESEARCH SQUARE 2024:rs.3.rs-4361125. [PMID: 38883748 PMCID: PMC11177971 DOI: 10.21203/rs.3.rs-4361125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aβ since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aβ assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aβ40 and Aβ42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdkgene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and aggregated proteome in these mouse models indicates significant accumulation of Aβ and Aβ-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Shu Yang
- St Jude Children's Research Hospital
| | - Ya Huang
- St Jude Children's Research Hospital
| | | | - Zhen Wang
- St Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | | | | | | - Yun Jiao
- St Jude Children's Research Hospital
| | | | | | | | | | | | - Gang Yu
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
83
|
Wang J, Tan H, Fu Y, Mishra A, Sun H, Wang Z, Wu Z, Wang X, Serrano GE, Beach TG, Peng J, High AA. Evaluation of Protein Identification and Quantification by the diaPASEF Method on timsTOF SCP. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1253-1260. [PMID: 38754071 DOI: 10.1021/jasms.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Accurate and precise quantification is crucial in modern proteomics, particularly in the context of exploring low-amount samples. While the innovative 4D-data-independent acquisition (DIA) quantitative proteomics facilitated by timsTOF mass spectrometers gives enhanced sensitivity and selectivity for protein identification, the diaPASEF (parallel accumulation-serial fragmentation combined with data-independent acquisition) parameters have not been systematically optimized, and a comprehensive evaluation of the quantification is currently lacking. In this study, we conducted a thorough optimization of key parameters on a timsTOF SCP instrument, including sample loading amount (50 ng), ramp/accumulation time (140 ms), isolation window width (20 m/z), and gradient time (60 min). To further improve the identification of proteins in low-amount samples, we utilized different column settings and introduced 0.02% n-dodecyl-β-d-maltoside (DDM) in the sample reconstitution solution, resulting in a remarkable 19-fold increase in protein identification at the single-cell-equivalent level. Moreover, a comprehensive comparison of protein quantification using a tandem mass tag reporter (TMT-reporter), complement TMT ions (TMTc), and diaPASEF revealed a strong correlation between these methods. Both diaPASEF and TMTc have effectively addressed the issue of ratio compression, highlighting the diaPASEF method's effectiveness in achieving accurate quantification data compared to TMT reporter quantification. Additionally, an in-depth analysis of in-group variation positioned diaPASEF between the TMT-reporter and TMTc methods. Therefore, diaPASEF quantification on the timsTOF SCP instrument emerges as a precise and accurate methodology for quantitative proteomics, especially for samples with small amounts.
Collapse
Affiliation(s)
- Ju Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Huan Sun
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
84
|
Wojtas AM, Dammer EB, Guo Q, Ping L, Shantaraman A, Duong DM, Yin L, Fox EJ, Seifar F, Lee EB, Johnson ECB, Lah JJ, Levey AI, Levites Y, Rangaraju S, Golde TE, Seyfried NT. Proteomic changes in the human cerebrovasculature in Alzheimer's disease and related tauopathies linked to peripheral biomarkers in plasma and cerebrospinal fluid. Alzheimers Dement 2024; 20:4043-4065. [PMID: 38713744 PMCID: PMC11180878 DOI: 10.1002/alz.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 05/09/2024]
Abstract
INTRODUCTION Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Eric B. Dammer
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Qi Guo
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Lingyan Ping
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Ananth Shantaraman
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Luming Yin
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Edward J. Fox
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Fatemeh Seifar
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPennsylvaniaUSA
| | - Erik C. B. Johnson
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - James J. Lah
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan I. Levey
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Yona Levites
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Srikant Rangaraju
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Todd E. Golde
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
85
|
Abyadeh M, Kaya A. Application of Multiomics Approach to Investigate the Therapeutic Potentials of Stem Cell-derived Extracellular Vesicle Subpopulations for Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593647. [PMID: 38798317 PMCID: PMC11118424 DOI: 10.1101/2024.05.10.593647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) presents a complex interplay of molecular alterations, yet understanding its pathogenesis remains a challenge. In this study, we delved into the intricate landscape of proteome and transcriptome changes in AD brains compared to healthy controls, examining 788 brain samples revealing common alterations at both protein and mRNA levels. Moreover, our analysis revealed distinct protein-level changes in aberrant energy metabolism pathways in AD brains that were not evident at the mRNA level. This suggests that the changes in protein expression could provide a deeper molecular representation of AD pathogenesis. Subsequently, using a comparative proteomic approach, we explored the therapeutic potential of mesenchymal stem cell-derived extracellular vehicles (EVs), isolated through various methods, in mitigating AD-associated changes at the protein level. Our analysis revealed a particular EV-subtype that can be utilized for compensating dysregulated mitochondrial proteostasis in the AD brain. By using network biology approaches, we further revealed the potential regulators of key therapeutic proteins. Overall, our study illuminates the significance of proteome alterations in AD pathogenesis and identifies the therapeutic promise of a specific EV subpopulation with reduced pro-inflammatory protein cargo and enriched proteins to target mitochondrial proteostasis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
86
|
Tao X, Liu J, Diaz-Perez Z, Foley JR, Nwafor A, Stewart TM, Casero RA, Zhai RG. Reduction of spermine synthase enhances autophagy to suppress Tau accumulation. Cell Death Dis 2024; 15:333. [PMID: 38740758 PMCID: PMC11091227 DOI: 10.1038/s41419-024-06720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.
Collapse
Affiliation(s)
- Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley Nwafor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
87
|
Gouveia Roque C, Phatnani H, Hengst U. The broken Alzheimer's disease genome. CELL GENOMICS 2024; 4:100555. [PMID: 38697121 PMCID: PMC11099344 DOI: 10.1016/j.xgen.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/25/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024]
Abstract
The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease. In addition to highlighting biological pathways beyond the classical pathology hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore how their integration enables a better understanding of the multicellular imbalances contributing to this heterogeneous condition. The frontiers opening on the back of these research milestones promise a future of AD care that is both more personalized and predictive.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
88
|
Yan H, Lu C, Lan C, Wang S, Zhang W, He Z, Hu J, Ai J, Liu GH, Ma S, Zhou Y, Qu J. Degeneration Directory: a multi-omics web resource for degenerative diseases. Protein Cell 2024; 15:385-392. [PMID: 38153694 PMCID: PMC11074994 DOI: 10.1093/procel/pwad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Affiliation(s)
- Haoteng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, XuanwuHospital, Capital Medical University, Beijing 100053, China
| | - Changfa Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenyang Lan
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, XuanwuHospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- Aging Biomarker Consortium, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China NationalCenter for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zan He
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, XuanwuHospital, Capital Medical University, Beijing 100053, China
| | - Jinghao Hu
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, XuanwuHospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Ai
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, XuanwuHospital, Capital Medical University, Beijing 100053, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, XuanwuHospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchun Zhou
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
89
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
90
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
91
|
Doolen S, Ayoubi R, Laflamme C, Betarbet R, Zoeller E, Williams SPG, Fu H, Levey AI, Sukoff Rizzo SJ. Validation and in vivo characterization of research antibodies for Moesin, CD44, Midkine, and sFRP-1. F1000Res 2024; 12:1070. [PMID: 39444645 PMCID: PMC11497330 DOI: 10.12688/f1000research.138354.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 10/25/2024] Open
Abstract
Background A major goal of the Target Enablement to Accelerate Therapy Development for Alzheimer's disease (TREAT-AD) program is to develop and identify high-quality tools to test target or mechanistic hypotheses. As part of this initiative, it is important that commercial reagents including research antibodies being used to interrogate drug targets have confirmed validation data in knock-out cell lines. Ideally, these antibodies should also have utility for both in vitro and in vivo studies such that the levels of target proteins in target tissues can be quantified. Methods We evaluated commercial antibodies against TREAT-AD protein targets Moesin (Uniprot ID: P26038), CD44 (Uniprot ID: P16070), Midkine (Uniprot ID: P21741) and Secreted frizzled-related protein 1, referred to as "sFRP-1" (sFRP-1; Uniprot ID: Q8N474). Moesin, Midkine and sFRP-1, that were confirmed as selective based on data in knock-out cell lines. Western blot analysis was used to compare protein levels in brain homogenates from a mouse model with AD-relevant pathology (5XFAD) versus age-matched C57BL/6J control mice. Results Anti-Moesin ab52490 reacted in mouse brain homogenate with a predicted molecular weight of 68 kDa. Moesin protein expression was 2.8 times higher in 5xFAD compared to WT. Anti-CD44 ab189524 reacted with a band at the predicted size of 82 kDa. CD44 protein expression was 1.9 times higher in 5xFAD compared to WT. Anti-Midkine AF7769 reacted with a band ~16 kDa and a 17.8 times greater expression in 5xFAD compared to WT. Anti-sFRP-1 ab267466 reacted with a band at 35 kDa as predicted. sFRP-1 protein expression was 11.9 times greater in 5xFAD compared to WT. Conclusions These data confirm the utility of these selective commercially available antibodies against Moesin, CD44, Midkine, and sFRP-1 for in vivo studies in mice and provide insight into the use of 5XFAD mice for in vivo target engagement studies for these target proteins.
Collapse
Affiliation(s)
- Suzanne Doolen
- Aging Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, USA
| | - Riham Ayoubi
- Neurology and Neurosurgery, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Carl Laflamme
- Neurology and Neurosurgery, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Ranjita Betarbet
- Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia, 30322, USA
- Department of Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
| | - Elizabeth Zoeller
- Department of Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Haian Fu
- Department of Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
- Chemical Biology Discovery Center, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Allan I. Levey
- Neurology, Emory University, Atlanta, Georgia, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, USA
| | - S. J. Sukoff Rizzo
- Aging Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, USA
| |
Collapse
|
92
|
Reddy JS, Heath L, Vander Linden A, Allen M, de Paiva Lopes K, Seifar F, Wang E, Ma Y, Poehlman WL, Quicksall ZS, Runnels A, Wang Y, Duong DM, Yin L, Xu K, Modeste ES, Shantaraman A, Dammer EB, Ping L, Oatman SR, Scanlan J, Ho C, Carrasquillo MM, Atik M, Yepez G, Mitchell AO, Nguyen TT, Chen X, Marquez DX, Reddy H, Xiao H, Seshadri S, Mayeux R, Prokop S, Lee EB, Serrano GE, Beach TG, Teich AF, Haroutunian V, Fox EJ, Gearing M, Wingo A, Wingo T, Lah JJ, Levey AI, Dickson DW, Barnes LL, De Jager P, Zhang B, Bennett D, Seyfried NT, Greenwood AK, Ertekin-Taner N. Bridging the Gap: Multi-Omics Profiling of Brain Tissue in Alzheimer's Disease and Older Controls in Multi-Ethnic Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589592. [PMID: 38659743 PMCID: PMC11042309 DOI: 10.1101/2024.04.16.589592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.
Collapse
Affiliation(s)
- Joseph S Reddy
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Laura Heath
- Sage Bionetworks, 2901 3rd Ave #330, Seattle, WA 98121
| | | | - Mariet Allen
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL 60612
| | - Fatemeh Seifar
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY 10029
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029
| | - Yiyi Ma
- Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032
| | | | | | - Alexi Runnels
- New York Genome Center, 101 6th Ave, New York, NY 10013
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL 60612
| | - Duc M Duong
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Luming Yin
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Kaiming Xu
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Erica S Modeste
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | | | - Eric B Dammer
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Lingyan Ping
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | | | - Jo Scanlan
- Sage Bionetworks, 2901 3rd Ave #330, Seattle, WA 98121
| | - Charlotte Ho
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | | | - Merve Atik
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Geovanna Yepez
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | | | - Thuy T Nguyen
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Xianfeng Chen
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - David X Marquez
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL 60612
- University of Illinois Chicago, 1200 West Harrison St., Chicago, Illinois 60607
| | - Hasini Reddy
- Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032
| | - Harrison Xiao
- Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032
| | - Sudha Seshadri
- The Glen Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas, 8300 Floyd Curl Drive, San Antonio TX 78229
| | - Richard Mayeux
- Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032
| | | | - Edward B Lee
- Center for Neurodegenerative Disease Brain Bank at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-2676
| | - Geidy E Serrano
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ 85351
| | - Thomas G Beach
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ 85351
| | - Andrew F Teich
- Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032
| | - Varham Haroutunian
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY 10029
| | - Edward J Fox
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Marla Gearing
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Aliza Wingo
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Thomas Wingo
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - James J Lah
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Allan I Levey
- Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322
| | - Dennis W Dickson
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL 60612
| | - Philip De Jager
- Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY 10029
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL 60612
| | | | | | | |
Collapse
|
93
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
94
|
Zhou X, Lee YK, Li X, Kim H, Sanchez-Priego C, Han X, Tan H, Zhou S, Fu Y, Purtell K, Wang Q, Holstein GR, Tang B, Peng J, Yang N, Yue Z. Integrated proteomics reveals autophagy landscape and an autophagy receptor controlling PKA-RI complex homeostasis in neurons. Nat Commun 2024; 15:3113. [PMID: 38600097 PMCID: PMC11006854 DOI: 10.1038/s41467-024-47440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.
Collapse
Affiliation(s)
- Xiaoting Zhou
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - You-Kyung Lee
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xianting Li
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Kim
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carlos Sanchez-Priego
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kerry Purtell
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Qian Wang
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gay R Holstein
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Nan Yang
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Institute for Regenerative Medicine, Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center of Parkinson's Disease Neurobiology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
95
|
Shrestha HK, Lee D, Wu Z, Wang Z, Fu Y, Wang X, Serrano GE, Beach TG, Peng J. Profiling Protein-Protein Interactions in the Human Brain by Refined Cofractionation Mass Spectrometry. J Proteome Res 2024; 23:1221-1231. [PMID: 38507900 PMCID: PMC11065482 DOI: 10.1021/acs.jproteome.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.
Collapse
Affiliation(s)
- Him K. Shrestha
- Departments of Structural Biology and Developmental Neurobiology
| | - DongGeun Lee
- Departments of Structural Biology and Developmental Neurobiology
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology
| | - Yingxue Fu
- Departments of Structural Biology and Developmental Neurobiology
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, 38105, USA
| | | | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology
| |
Collapse
|
96
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
97
|
Fang W, Yin B, Fang Z, Tian M, Ke L, Ma X, Di Q. Heat stroke-induced cerebral cortex nerve injury by mitochondrial dysfunction: A comprehensive multi-omics profiling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170869. [PMID: 38342446 DOI: 10.1016/j.scitotenv.2024.170869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
In recent years, global warming has led to frequent instances of extremely high temperatures during summer, arousing significant concern about the adverse effects of high temperature. Among these, heat stroke is the most serious, which has detrimental effects on the all organs of human body, especially on brain. However, the comprehensive pathogenesis leading to brain damage remains unclear. In this study, we constructed a mouse model of heat stroke and conducted multi-omics profiling to identify relevant pathogenesis induced by heat stroke. The mice were placed in a constant temperature chamber at 42 °C with a humidity of 50 %, and the criteria for success in modeling were that the rectal temperature reached 42 °C and that the mice were trembling. Then the mice were immediately taken out for further experiments. Firstly, we conducted cFos protein localization and identified the cerebral cortex, especially the anterior cingulate cortex as the region exhibiting the most pronounced damage. Secondly, we performed metabolomics, transcriptomics, and proteomics analysis on cerebral cortex. This multi-omics investigation unveiled noteworthy alterations in proteins and metabolites within pathways associated with neurotransmitter systems, heatstroke-induced mitochondrial dysfunction, encompassing histidine and pentose phosphate metabolic pathways, as well as oxidative stress. In addition, the cerebral cortex exhibited pronounced Reactive Oxygen Species (ROS) production, alongside significant downregulation of the mitochondrial outer membrane protein Tomm40 and mitochondrial permeability transition pore, implicating cerebral cortex mitochondrial dysfunction as the primary instigator of neural impairment. This study marks a significant milestone as the first to employ multi-omics analysis in exploring the molecular mechanisms underlying heat stroke-induced damage in cerebral cortex neurons. It comprehensively identifies all potentially impacted pathways by heat stroke, laying a solid foundation for ensuing research endeavors. Consequently, this study introduces a fresh angle to clinical approaches in heatstroke prevention and treatment, as well as establishes an innovative groundwork for shaping future-forward environmental policies.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Mengyi Tian
- School of Medicine, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Ma
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
98
|
Eteleeb AM, Novotny BC, Tarraga CS, Sohn C, Dhungel E, Brase L, Nallapu A, Buss J, Farias F, Bergmann K, Bradley J, Norton J, Gentsch J, Wang F, Davis AA, Morris JC, Karch CM, Perrin RJ, Benitez BA, Harari O. Brain high-throughput multi-omics data reveal molecular heterogeneity in Alzheimer's disease. PLoS Biol 2024; 22:e3002607. [PMID: 38687811 PMCID: PMC11086901 DOI: 10.1371/journal.pbio.3002607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/10/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.
Collapse
Affiliation(s)
- Abdallah M. Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
| | - Brenna C. Novotny
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Carolina Soriano Tarraga
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Christopher Sohn
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Eliza Dhungel
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Logan Brase
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Aasritha Nallapu
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Jared Buss
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Fabiana Farias
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Kristy Bergmann
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joseph Bradley
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joanne Norton
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Jen Gentsch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Fengxian Wang
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Albert A. Davis
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - John C. Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Celeste M. Karch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Richard J. Perrin
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Bruno A. Benitez
- Department of Neurology and Neuroscience, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Oscar Harari
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
99
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi M, Phinney BS, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585597. [PMID: 38585836 PMCID: PMC10996607 DOI: 10.1101/2024.03.25.585597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.
Collapse
|
100
|
Morgan GR, Carlyle BC. Interrogation of the human cortical peptidome uncovers cell-type specific signatures of cognitive resilience against Alzheimer's disease. Sci Rep 2024; 14:7161. [PMID: 38531951 DOI: 10.1038/s41598-024-57104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterised by age-related cognitive decline. Brain accumulation of amyloid-β plaques and tau tangles is required for a neuropathological AD diagnosis, yet up to one-third of AD-pathology positive community-dwelling elderly adults experience no symptoms of cognitive decline during life. Conversely, some exhibit chronic cognitive impairment in absence of measurable neuropathology, prompting interest into cognitive resilience-retained cognition despite significant neuropathology-and cognitive frailty-impaired cognition despite low neuropathology. Synapse loss is widespread within the AD-dementia, but not AD-resilient, brain. Recent evidence points towards critical roles for synaptic proteins, such as neurosecretory VGF, in cognitive resilience. However, VGF and related proteins often signal as peptide derivatives. Here, nontryptic peptidomic mass spectrometry was performed on 102 post-mortem cortical samples from individuals across cognitive and neuropathological spectra. Neuropeptide signalling proteoforms derived from VGF, somatostatin (SST) and protachykinin-1 (TAC1) showed higher abundance in AD-resilient than AD-dementia brain, whereas signalling proteoforms of cholecystokinin (CCK) and chromogranin (CHG) A/B and multiple cytoskeletal molecules were enriched in frail vs control brain. Integrating our data with publicly available single nuclear RNA sequencing (snRNA-seq) showed enrichment of cognition-related genes in defined cell-types with established links to cognitive resilience, including SST interneurons and excitatory intratelencephalic cells.
Collapse
Affiliation(s)
- G R Morgan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK
| | - B C Carlyle
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|