51
|
Basics and Current Approaches to Tissue Engineering in Peripheral Nerve Reconstruction. ACTA ACUST UNITED AC 2009. [DOI: 10.1097/wnq.0b013e3181a361c6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Karumbayaram S, Kelly TK, Paucar AA, Roe AJT, Umbach JA, Charles A, Goldman SA, Kornblum HI, Wiedau-Pazos M. Human embryonic stem cell-derived motor neurons expressing SOD1 mutants exhibit typical signs of motor neuron degeneration linked to ALS. Dis Model Mech 2009; 2:189-95. [PMID: 19259395 DOI: 10.1242/dmm.002113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/18/2008] [Indexed: 11/20/2022] Open
Abstract
Human embryonic stem cell (hESC)-derived neurons have the potential to model neurodegenerative disorders. Here, we demonstrate the expression of a mutant gene, superoxide dismutase 1(SOD1), linked to familial amyotrophic lateral sclerosis (ALS) in hESC-derived motor neurons. Green fluorescent protein (GFP) expression under the control of the HB9 enhancer was used to identify SOD1-transfected motor neurons that express human wild-type SOD1 or one of three different mutants (G93A, A4V and I113T) of SOD1. Neurons transfected with mutant SOD1 exhibited reduced cell survival and shortened axonal processes as compared with control-transfected cells, which could survive for 3 weeks or more. The results indicate that hESC-derived cell populations can be directed to express disease-relevant genes and to display characteristics of the disease-specific cell type. These genetically manipulated hESC-derived motor neurons can facilitate and advance the study of disease-specific cellular pathways, and serve as a model system to test new therapeutic approaches.
Collapse
Affiliation(s)
- Saravanan Karumbayaram
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boehning D, Yu Y, Wu P. Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res 2009; 87:318-32. [PMID: 18803285 PMCID: PMC2738861 DOI: 10.1002/jnr.21856] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neural stem cells (NSCs) have some specified properties but are generally uncommitted and so can change their fate after exposure to environmental cues. It is unclear to what extent this NSC plasticity can be modulated by extrinsic cues and what are the molecular mechanisms underlying neuronal fate determination. Basic fibroblast growth factor (bFGF) is a well-known mitogen for proliferating NSCs. However, its role in guiding stem cells for neuronal subtype specification is undefined. Here we report that in-vitro-expanded human fetal forebrain-derived NSCs can generate cholinergic neurons with spinal motor neuron properties when treated with bFGF within a specific time window. bFGF induces NSCs to express the motor neuron marker Hb9, which is blocked by specific FGF receptor inhibitors and bFGF neutralizing antibodies. This development of spinal motor neuron properties is independent of selective proliferation or survival and does not require high levels of MAPK activation. Thus our study indicates that bFGF can play an important role in modulating plasticity and neuronal fate of human NSCs and presumably has implications for exploring the full potential of brain NSCs for clinical applications, particularly in spinal motor neuron regeneration.
Collapse
Affiliation(s)
- Paivi M. Jordan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Luis D. Ojeda
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Jason R. Thonhoff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Junling Gao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Darren Boehning
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Ping Wu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| |
Collapse
|
54
|
Abstract
Spinal muscular atrophy (SMA) is a potentially devastating and lethal neuromuscular disease frequently manifesting in infancy and childhood. The discovery of the underlying mutation in the survival of motor neurons 1 (SMN1) gene has accelerated preclinical research, leading to treatment targets and transgenic mouse models, but there is still no effective treatment. The clinical severity is inversely related to the copy number of SMN2, a modifying gene producing some full-length SMN transcript. Drugs shown to increase SMN2 function in vitro, therefore, have the potential to benefit patients with SMA. Because several drugs are now on the horizon of clinical investigation, we review recent clinical trials for SMA and discuss the challenges and opportunities associated with SMA drug development. Although an orphan disease, SMA is well-positioned for successful trials given that it has a common genetic etiology in most cases, that it can be readily diagnosed, that preclinical research in vitro and in transgenic animals has identified candidate compounds, and that trial networks have been established.
Collapse
Affiliation(s)
- Maryam Oskoui
- />Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Quebec Canada
| | - Petra Kaufmann
- />The Neurological Institute, Columbia University, 710 West 168th Street, 10032-3784 New York, NY
| |
Collapse
|
55
|
Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem 2008; 389:873-88. [DOI: 10.1515/bc.2008.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractRecently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair.
Collapse
|
56
|
Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 2008; 30:5-16. [PMID: 18387258 DOI: 10.1179/174313208x284070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanical trauma to the spinal cord is often accompanied by irreversible tissue damage, limited endogenous repair and permanent loss of motor, sensory and autonomic function. The implantation of exogenous cells or the stimulation of endogenous cells, to repopulate and replace or to provide a conducive environment for repair, offers a promising therapeutic direction for overcoming the multitude of obstacles facing successful recovery from spinal cord injury. Although relatively new to the scene of cell based therapies for reparative medicine, stem cells and their progenitors have been labeled as the 'cell of the future' for revolutionizing the treatment of CNS injury and neurodegenerative disorders. The following review examines the different types of stem cells and their progenitors, their utility in experimental models of spinal cord injury and explores the outstanding issues that still need to be addressed before they move towards clinical implementation.
Collapse
Affiliation(s)
- J Louro
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
57
|
Jordan PM, Cain LD, Wu P. Astrocytes enhance long-term survival of cholinergic neurons differentiated from human fetal neural stem cells. J Neurosci Res 2008; 86:35-47. [PMID: 17729316 DOI: 10.1002/jnr.21460] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Establishment of an in vitro model of human cholinergic neurons would be highly desirable for understanding and developing treatment for Alzheimer's and motoneuron diseases. Previously we reported that the combination of basic fibroblast growth factor (bFGF), heparin, and laminin directs human fetal neural stem cells to form cholinergic neurons. One problem, however, is that long-term in vitro survival of these cells is low. Our goal for this study was to determine whether astrocytes or their secreted factors enhance differentiation and survival of cholinergic neurons under long-term differentiation conditions. We demonstrate here that astrocytes or astrocyte conditioned media did not enhance cholinergic differentiation but did increase the long-term survival of differentiated human neural stem cells, particularly cholinergic neurons. We further show that astrocytes protected long-term-differentiated cells from apoptotic cell death, which is at least partially mediated by astrocyte-secreted bFGF. Our findings indicate that long-term survival of human stem cell-derived cholinergic neurons requires trophic factors from nonneuronal cells. This data may provide insights into the development of an in vitro model of long-term cultured human cholinergic neurons useful for understanding of the mechanisms of cholinergic differentiation and developing treatments for neurological diseases.
Collapse
Affiliation(s)
- Paivi M Jordan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0620, USA
| | | | | |
Collapse
|
58
|
Riley J, Sweeney W, Boulis N. Shifting the balance: cell-based therapeutics as modifiers of the amyotrophic lateral sclerosis–specific neuronal microenvironment. Neurosurg Focus 2008; 24:E10. [DOI: 10.3171/foc/2008/24/3-4/e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
✓ Recent advances in the laboratory have improved the current understanding of neurobiological mechanisms underlying the initiating events and pathological progression observed in amyotrophic lateral sclerosis (ALS). Whereas initial studies have revealed the late-stage intracellular cascades contributing to neuronal dysfunction and cell death, more recently collected data have begun to elucidate the presence and importance of a “non–cell autonomous” component indicating that affected glial cell subtypes may serve distinct and required roles. Pharmacological interventions for ALS have largely been disappointing likely in part because they have failed to address either the proximate events contributing to neuronal dysfunction and death or the deleterious contributions of non-neuronal cells within the local microenvironment. Alternatively, cell-based therapeutics offer the potential of a multifaceted approach oriented toward the dual ends of protecting remaining viable neurons and attempting to restore neuronal function lost as a manifestation of disease progression. The authors review the evolving knowledge of disease initiation and progression, with specific emphasis on the role of affected glia as crucial contributors to the observed ALS phenotype. This basis is used to underscore the potential roles of cell-based therapeutics as modifiers of the ALS-specific microenvironment.
Collapse
Affiliation(s)
- Jonathan Riley
- 1Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Walter Sweeney
- 1Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
59
|
Cui L, Jiang J, Wei L, Zhou X, Fraser JL, Snider BJ, Yu SP. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells 2008; 26:1356-65. [PMID: 18308951 DOI: 10.1634/stemcells.2007-0333] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extensive research has focused on transplantation of pluripotent stem cells for the treatment of central nervous system disorders, the therapeutic potential of stem cell therapy for injured peripheral nerves is largely unknown. We used a rat sciatic nerve transection model to test the ability of implanted embryonic stem (ES) cell-derived neural progenitor cells (ES-NPCs) in promoting repair of a severely injured peripheral nerve. Mouse ES cells were neurally induced in vitro; enhanced expression and/or secretion of growth factors were detected in differentiating ES cells. One hour after removal of a 1-cm segment of the left sciatic nerve, ES-NPCs were implanted into the gap between the nerve stumps with the surrounding epineurium as a natural conduit. The transplantation resulted in substantial axonal regrowth and nerve repair, which were not seen in culture medium controls. One to 3 months after axotomy, co-immunostaining with the mouse neural cell membrane specific antibody M2/M6 and the Schwann cell marker S100 suggested that transplanted ES-NPCs had survived and differentiated into myelinating cells. Regenerated axons were myelinated and showed a uniform connection between proximal and distal stumps. Nerve stumps had near normal diameter with longitudinally oriented, densely packed Schwann cell-like phenotype. Fluoro-Gold retrogradely labeled neurons were found in the spinal cord (T12-13) and DRG (L4-L6), suggesting reconnection of axons across the transection. Electrophysiological recordings showed functional activity recovered across the injury gap. These data suggest that transplanted neurally induced ES cells differentiate into myelin-forming cells and provide a potential therapy for severely injured peripheral nerves.
Collapse
Affiliation(s)
- Lin Cui
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P. Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 2008; 1187:42-51. [PMID: 18021754 PMCID: PMC2176077 DOI: 10.1016/j.brainres.2007.10.046] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/28/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
Stroke and spinal cord or brain injury often result in cavity formation. Stem cell transplantation in combination with tissue engineering has the potential to fill such a cavity and replace lost neurons. Several hydrogels containing unique features particularly suitable for the delicate nervous system were tested by determining whether these materials were compatible with fetal human neural stem cells (hNSCs) in terms of toxicity and ability to support stem cell differentiation in vitro. The hydrogels examined were pluronic F127 (PF127), Matrigel and PuraMatrix. We found that PF127, in a gelated (30%) form, was toxic to hNSCs, and Matrigel, in a gelated (1-50%) form, prevented hNSCs' normal capacity for neuronal differentiation. In contrast, PuraMatrix was the most optimal hydrogel for hNSCs, since it showed low toxicity when gelated (0.25%) and retained several crucial properties of hNSCs, including migration and neuronal differentiation. Further optimization and characterization of PuraMatrix is warranted to explore its full potential in assisting neural regeneration in vivo.
Collapse
Affiliation(s)
- Jason R. Thonhoff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Dianne I. Lou
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Paivi M. Jordan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Xu Zhao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Ping Wu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
61
|
Webber DJ, Bradbury EJ, McMahon SB, Minger SL. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med 2007; 2:929-45. [PMID: 18034631 DOI: 10.2217/17460751.2.6.929] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Endogenous repair after injury in the adult CNS is limited by a number of factors including cellular loss, inflammation, cavitation and glial scarring. Spinal cord neural progenitor cells (SCNPCs) may provide a valuable cellular source for promoting repair following spinal cord injury. SCNPCs are multipotent, can be expanded in vitro, have the capacity to differentiate into CNS cell lineages and are capable of long-term survival following transplantation. AIMS & METHOD To determine the extent to which SCNPCs may contribute to spinal cord repair SCNPCs isolated from rat fetal spinal cord were expanded ex vivo and transplanted into the adult rat spinal cord after a dorsal column crush lesion. RESULTS The survival and distribution of transplanted cells were examined at 24 h, 1, 2 and 6 weeks after injury. Transplanted cells were identified at all time points, located mainly at the lesion perimeter, indicating good post-transplant cell survival. Furthermore, SCNPCs maintained their ability to differentiate in vivo, with approximately 40% differentiating into cells with a glial morphology, whilst 8% displayed a neural morphology. Transplanted animals were also assessed on a number of behavioral tasks measuring sensorimotor and proprioceptive function to determine the extent to which SCNPC transplants might attenuate lesion-induced functional deficits. SCNPCs failed to promote significant functional recovery, with a small improvement observed in only one of the four tasks employed, primarily related to improvements in sensory function. Tracing of the corticospinal tract and ascending dorsal column pathway revealed no regeneration of the axons beyond the lesion site. CONCLUSIONS These data indicate that, although transplanted SCNPCs show good survival in the spinal cord injury environment, combination with other treatment strategies is likely to be required for these cells to fully exert their therapeutic potential.
Collapse
Affiliation(s)
- Daniel J Webber
- University of Cambridge, Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK.
| | | | | | | |
Collapse
|
62
|
Hedlund E, Hefferan MP, Marsala M, Isacson O. REVIEW ARTILCE: Cell therapy and stem cells in animal models of motor neuron disorders. Eur J Neurosci 2007; 26:1721-37. [PMID: 17897390 DOI: 10.1111/j.1460-9568.2007.05780.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), spinal bulbar muscular atrophy (or Kennedy's disease), spinal muscular atrophy and spinal muscular atrophy with respiratory distress 1 are neurodegenerative disorders mainly affecting motor neurons and which currently lack effective therapies. Recent studies in animal models as well as primary and embryonic stem cell models of ALS, utilizing over-expression of mutated forms of Cu/Zn superoxide dismutase 1, have shown that motor neuron degeneration in these models is in part a non cell-autonomous event and that by providing genetically non-compromised supporting cells such as microglia or growth factor-excreting cells, onset can be delayed and survival increased. Using models of acute motor neuron injury it has been shown that embryonic stem cell-derived motor neurons implanted into the spinal cord can innervate muscle targets and improve functional recovery. Thus, a rationale exists for the development of cell therapies in motor neuron diseases aimed at either protecting and/or replacing lost motor neurons, interneurons as well as non-neuronal cells. This review evaluates approaches used in animal models of motor neuron disorders and their therapeutic relevance.
Collapse
Affiliation(s)
- Eva Hedlund
- Neuroregeneration Laboratory, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
63
|
Guo J, Zeng Y, Liang Y, Wang L, Su H, Wu W. Cyclosporine affects the proliferation and differentiation of neural stem cells in culture. Neuroreport 2007; 18:863-8. [PMID: 17515791 DOI: 10.1097/wnr.0b013e32811d6d36] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclosporine is one of the foremost immunosuppressive agents for cell, tissue, and organ transplantation. Cyclosporine is, however, associated with significant side effects in the host, and may also affect the fate of the donor cells. This study was performed to test whether cyclosporine may change the fate of neural stem cells, as neural stem cell transplant has become a potential treatment for neurological disorders and damage. Results of this study showed that cyclosporine inhibited the proliferation significantly in a dosage-dependent manner. Cyclosporine also affected the differentiation of neural stem cells, which mainly increased astrocyte genesis and decreased neuron differentiation.
Collapse
Affiliation(s)
- Jiasong Guo
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
64
|
Pakkasjärvi N, Kerosuo L, Nousiainen H, Gentile M, Saharinen J, Suhonen S, Sariola H, Peltonen L, Kestilä M, Wartiovaara K. Neural precursor cells from a fatal human motoneuron disease differentiate despite aberrant gene expression. Dev Neurobiol 2007; 67:270-84. [PMID: 17443787 DOI: 10.1002/dneu.20350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Precursor cells of the human central nervous system can be cultured in vitro to reveal pathogenesis of diseases or developmental disorders. Here, we have studied the biology of neural precursor cells (NPCs) from patients of lethal congenital contracture syndrome (LCCS), a severe motoneuron disease leading to prenatal death before the 32nd gestational week. LCCS fetuses are immobile because of a motoneuron defect, seen as degeneration of the anterior horn and descending tracts of the developing spinal cord. The genetic defect for the syndrome is unknown. We show that NPCs isolated postmortem from LCCS fetuses grow and are maintained in culture, but display increased cell cycle activity. Global transcript analysis of undifferentiated LCCS precursor cells present with changes in EGF-related signaling when compared with healthy age-matched human controls. Further, we show that LCCS-derived NPCs differentiate into cells of neuronal and glial lineage and that the initial differentiation is not accompanied by overt apoptosis. Cells expressing markers Islet-1 and Hb9 are also generated from the LCCS NPCs, suggesting that the pathogenic mechanism of LCCS does not directly affect the differentiation capacity or survival of the cells, but the absence of motoneurons in LCCS may be caused by a noncell autonomous mechanism.
Collapse
Affiliation(s)
- Niklas Pakkasjärvi
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Corti S, Locatelli F, Papadimitriou D, Del Bo R, Nizzardo M, Nardini M, Donadoni C, Salani S, Fortunato F, Strazzer S, Bresolin N, Comi GP. Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. ACTA ACUST UNITED AC 2007; 130:1289-305. [PMID: 17439986 DOI: 10.1093/brain/awm043] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of the motor neurons. We tested whether treatment of superoxide dismutase (SOD1)-G93A transgenic mouse, a model of ALS, with a neural stem cell subpopulation double positive for Lewis X and the chemokine receptor CXCR4 (LeX+CXCR4+) can modify the disease's progression. In vitro, after exposure to morphogenetic stimuli, LeX+CXCR4+ cells generate cholinergic motor neuron-like cells upon differentiation. LeX+CXCR4+ cells deriving from mice expressing Green Fluorescent Protein in all tissues or only in motor neurons, after a period of priming in vitro, were grafted into spinal cord of SOD1-G93A mice. Transplanted transgenic mice exhibited a delayed disease onset and progression, and survived significantly longer than non-treated animals by 23 days. Examination of the spinal cord revealed integration of donor-derived cells that differentiated mostly in neurons and in a lower proportion in motor neuron-like cells. Quantification of motor neurons of the spinal cord suggests a significant neuroprotection by LeX+CXCR4+ cells. Both VEGF- and IGF1-dependent pathways were significantly modulated in transplanted animals compared to controls, suggesting a role of these neurotrophins in MN protection. Our results support the therapeutic potential of neural stem cell fractions through both neurogenesis and growth factors release in motor neuron disorders.
Collapse
Affiliation(s)
- Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Gao J, Coggeshall RE, Chung JM, Wang J, Wu P. Functional motoneurons develop from human neural stem cell transplants in adult rats. Neuroreport 2007; 18:565-9. [PMID: 17413658 DOI: 10.1097/wnr.0b013e3280b10c2c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have shown previously that primed human fetal neural stem cells, after transplantation into rat spinal cords, differentiated into cholinergic motoneurons that sent axons to contact medial gastrocnemius myocytes. Here we demonstrate that (i) axons from the transplanted cells are cholinergic and myelinated, (ii) putative synapses form on transplanted somata and dendrites in the ventral horn, (iii) human fetal neural stem cells transplantation led to normal electromyograms from medial gastrocnemius muscles, and (iv) the gait of transplanted animals was much improved. Accumulatively, our data indicate that some transplanted human fetal neural stem cells in adult motoneuron-deficient ventral horns differentiate into relatively normal motoneurons that are integrated into spinal and peripheral circuitry. These findings are steps towards the long-term goal of providing stem cell transplants for motoneuron loss.
Collapse
Affiliation(s)
- Junling Gao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
67
|
Belegu V, Oudega M, Gary DS, McDonald JW. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies. Neurosurg Clin N Am 2007; 18:143-68, xi. [PMID: 17244561 DOI: 10.1016/j.nec.2006.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although neural regeneration is an active research field today, no current treatments can aid regeneration after spinal cord injury. This article reviews the feasibility of spinal cord repair and provides an overview of the range of strategies scientists are taking toward regeneration. The major focus of this article is the future role of stem cell transplantation and similar rehabilitative restorative approaches designed to optimize spontaneous regeneration by mobilizing endogenous stem cells and facilitating other cellular mechanisms of regeneration, such as axonal growth and myelination.
Collapse
Affiliation(s)
- Visar Belegu
- The International Center for Spinal Cord Injury, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Room 518, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
68
|
Gulino R, Cataudella T, Casamenti F, Pepeu G, Stanzani S, Leanza G. Acetylcholine release from fetal tissue homotopically grafted to the motoneuron-depleted lumbar spinal cord. An in vivo microdialysis study in the awake rat. Exp Neurol 2007; 204:326-38. [PMID: 17234186 DOI: 10.1016/j.expneurol.2006.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/16/2006] [Accepted: 11/18/2006] [Indexed: 01/19/2023]
Abstract
Grafts of spinal cord (SC) tissue can survive and develop into the severed SC, but no conclusive data are available concerning the functional activity of transplanted neurons. In the present study, suspensions of prelabeled embryonic ventral SC tissue were grafted to the lumbar SC of rats with motoneuron loss induced by perinatal injection of volkensin. Eight to ten months post-grafting, acetylcholine (ACh) release was measured by microdialysis in awake rats, under either basal or stimulated conditions. In normal animals, baseline ACh output averaged 1.6 pmol/30 microl, it exhibited a 4-fold increase after KCl-induced depolarization or handling, and it was completely inhibited by tetrodotoxin administration. Moreover, ACh levels did not change following acute SC transection performed under anesthesia during ongoing dialysis, suggesting an intrinsic source for spinal ACh. Treatment with volkensin produced a severe (>85%) motoneuronal loss accompanied by a similar reduction in baseline ACh release and almost completely abolished effects of depolarization or handling. In transplanted animals, many motoneuron-like labeled cells were found within and just outside the graft area, but apparently in no case were they able to extend fibers towards the denervated muscle. However, the grafts restored baseline ACh output up to near-normal levels and responded with significantly increased release to depolarization, but not to handling. The present findings indicate that spinal neuroblasts can survive and develop within the motoneuron-depleted SC and release ACh in a near-normal, but apparently non-regulated, manner. This may be of importance for future studies involving intraspinal stem cell grafts.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|
69
|
Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K, Koliatsos VE. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 2007; 4:e39. [PMID: 17298165 PMCID: PMC1796906 DOI: 10.1371/journal.pmed.0040039] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 12/18/2006] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages. METHODS AND FINDINGS In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. CONCLUSIONS NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain, especially with respect to the establishment of neuromuscular connections.
Collapse
Affiliation(s)
- Jun Yan
- Department of Pathology, Division of Neuropathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Leyan Xu
- Department of Pathology, Division of Neuropathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Annie M Welsh
- Department of Pathology, Division of Neuropathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Glen Hatfield
- Department of Pathology, Division of Neuropathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Thomas Hazel
- Neuralstem, Rockville, Maryland, United States of America
| | - Karl Johe
- Neuralstem, Rockville, Maryland, United States of America
| | - Vassilis E Koliatsos
- Department of Pathology, Division of Neuropathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Neuroscience, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
70
|
Major LA, Hegedus J, Weber DJ, Gordon T, Jones KE. Method for counting motor units in mice and validation using a mathematical model. J Neurophysiol 2006; 97:1846-56. [PMID: 17151224 DOI: 10.1152/jn.00904.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Weakness and atrophy are clinical signs that accompany muscle denervation resulting from motor neuron disease, peripheral neuropathies, and injury. Advances in our understanding of the genetics and molecular biology of these disorders have led to the development of therapeutic alternatives designed to slow denervation and promote reinnervation. Preclinical in vitro research gave rise to the need of a method for measuring the effects in animal models. Our goal was to develop an efficient method to determine the number of motor neurons making functional connections to muscle in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). We developed a novel protocol for motor unit number estimation (MUNE) using incremental stimulation. The method involves analysis of twitch waveforms using a new software program, ITS-MUNE, designed for interactive calculation of motor unit number. The method was validated by testing simulated twitch data from a mathematical model of the neuromuscular system. Computer simulations followed the same stimulus-response protocol and produced waveform data that were indistinguishable from experiments. We show that our MUNE protocol is valid, with high precision and small bias across a wide range of motor unit numbers. The method is especially useful for large muscle groups where MUNE could not be done using manual methods. The results are reproducible across naïve and expert analysts, making it suitable for easy implementation. The ITS-MUNE analysis method has the potential to quantitatively measure the progression of motor neuron diseases and therefore the efficacy of treatments designed to alleviate pathologic processes of muscle denervation.
Collapse
Affiliation(s)
- Lora A Major
- Centre for Neuroscience, and Department of Biomedical Engineering, University of Alberta, 8308-114 Street, Edmonton, Alberta T6G 2V2, Canada
| | | | | | | | | |
Collapse
|
71
|
Nayak MS, Kim YS, Goldman M, Keirstead HS, Kerr DA. Cellular therapies in motor neuron diseases. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1128-38. [PMID: 16872810 DOI: 10.1016/j.bbadis.2006.06.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/28/2006] [Accepted: 06/08/2006] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are prototypical motor neuron diseases that result in progressive weakness as a result of motor neuron dysfunction and death. Though much work has been done in both diseases to identify the cellular mechanisms of motor neuron dysfunction, once motor neurons have died, one of potential therapies to restore function would be through the use of cellular transplantation. In this review, we discuss potential strategies whereby cellular therapies, including the use of stem cells, neural progenitors and cells engineered to secrete trophic factors, may be used in motor neuron diseases. We review pre-clinical data in rodents with each of these approaches and discuss advances and regulatory issues regarding the use of cellular therapies in human motor neuron diseases.
Collapse
Affiliation(s)
- Mamatha S Nayak
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
72
|
Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 2006; 60:32-44. [PMID: 16802299 DOI: 10.1002/ana.20901] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE We explored the potential of embryonic stem cell-derived motor neurons to functionally replace those cells destroyed in paralyzed adult rats. METHODS We administered a phosphodiesterase type 4 inhibitor and dibutyryl cyclic adenosine monophosphate to overcome myelin-mediated repulsion and provided glial cell-derived neurotrophic factor within the sciatic nerve to attract transplanted embryonic stem cell-derived axons toward skeletal muscle targets. RESULTS We found that these strategies significantly increased the success of transplanted axons extending out of the spinal cord into ventral roots. Furthermore, transplant-derived axons reached muscle, formed neuromuscular junctions, were physiologically active, and mediated partial recovery from paralysis. INTERPRETATION We conclude that restoration of functional motor units by embryonic stem cells is possible and represents a potential therapeutic strategy for patients with paralysis. To our knowledge, this is the first report of the anatomical and functional replacement of a motor neuron circuit within the adult mammalian host.
Collapse
Affiliation(s)
- Deepa M Deshpande
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-6965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Enzmann GU, Benton RL, Talbott JF, Cao Q, Whittemore SR. Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 2006; 23:479-95. [PMID: 16629631 DOI: 10.1089/neu.2006.23.479] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells hold great promise for therapeutic repair after spinal cord injury (SCI). This review compares the current experimental approaches taken towards a stem cell-based therapy for SCI. It critically evaluates stem cell sources, injury paradigms, and functional measurements applied to detect behavioral changes after transplantation into the spinal cord. Many of the documented improvements do not exclusively depend on lineage-specific cellular differentiation. In most of the studies, the functional tests used cannot unequivocally demonstrate how differentiation of the transplanted cells contributes to the observed effects. Standardized cell isolation and transplantation protocols could facilitate the assessment of the true contribution of various experimental parameters on recovery. We conclude that at present embryonic stem (ES)-derived cells hold the most promise for therapeutic utility, but that non-neural cells may ultimately be optimal if the mechanism of possible transdifferentiation can be elucidated.
Collapse
Affiliation(s)
- Gaby U Enzmann
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
74
|
Pagani F, Lauro C, Fucile S, Catalano M, Limatola C, Eusebi F, Grassi F. Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo. J Neurosci Res 2006; 83:1494-501. [PMID: 16547970 DOI: 10.1002/jnr.20835] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neural stem cells can be propagated in culture as neurospheres, yielding neurons and glial cells upon differentiation. Although the neurosphere model is widely used, the functional properties of the neurosphere-derived neurons have been only partially characterized, and it is unclear whether repeated passaging alters their functional properties. In this study, we analyzed voltage- and transmitter-gated responses in neuron-like cells obtained by differentiating fetal mouse neurospheres at increasing passages in culture. We report that neurons fire overshooting action potentials in response to depolarizing currents up to passage 10 but loose this capability at later passages, as the density of voltage-gated Na(+) and K(+) currents decreases. In contrast, the immunoreactivity for the neuronal marker beta-tubulin remains unaltered up to passage 21, indicating that this marker is not representative of cell function. In almost all neurons, gamma-aminobutyric acid (GABA) evoked bicuculline-sensitive whole-cell currents, resulting from the activation of GABA(A) receptors, which appeared to be excitatory, insofar as the reversal potential of GABA-gated current was about -50 mV. Much smaller currents were elicited by the glutamatergic agonist AMPA, and only occasional responses to glycine were detected. In these functional aspects, neurosphere-derived neurons are similar to immature neurons differentiating in vivo. Therefore, at least for a limited number of passages in vitro, neurospheres provide an adequate model of in vivo neurogenesis.
Collapse
Affiliation(s)
- Francesca Pagani
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Fisiologia Umana e Farmacologia and Centro di Eccellenza BEMM, Universitá di Roma La Sapienza, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
75
|
Bréjot T, Blanchard S, Hocquemiller M, Haase G, Liu S, Nosjean A, Heard JM, Bohl D. Forced expression of the motor neuron determinant HB9 in neural stem cells affects neurogenesis. Exp Neurol 2006; 198:167-82. [PMID: 16434037 DOI: 10.1016/j.expneurol.2005.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/12/2005] [Accepted: 11/22/2005] [Indexed: 11/25/2022]
Abstract
In contrast to mouse embryonic stem cells and in spite of overlapping gene expression profiles, neural stem cells (NSCs) isolated from the embryonic spinal cord do not respond to physiological morphogenetic stimuli provided by Sonic hedgehog and retinoic acid and do not generate motor neurons upon differentiation. Transcription factors expressed in motor neuron progenitors during embryogenesis include Pax6, Ngn2, Nkx6.1 and Olig2, whose expression precedes that of factors specifying motor neuron fate, including HB9, Islet1 and LIM3. We showed that all these factors were present in neural progenitors derived from mouse ES cells, whereas NSCs derived from the rat embryonic spinal cord expressed neither HB9 nor Islet1 and contained low levels of Nkx6.1 and LIM3. We constructed a lentivirus vector to express HB9 and GFP in NSCs and examined the consequences of HB9 expression on other transcription factors and cell differentiation. Compared to cell expressing GFP alone, NSCs expressing GFP and HB9 cycled less rapidly, downregulated Pax6 and Ngn2 mRNA levels, produced higher proportions of neurons in vitro and lower numbers of neurons after transplantation in the spinal cord of recipient rats. Oligodendrocytic and astrocytic differentiations were not affected. HB9 expressing NSCs did not express Islet1 or upregulate LIM3. They neither responded to Sonic hedgehog and retinoic acid nor produced cholinergic neurons. We concluded that forced HB9 expression affected neurogenesis but was not sufficient to confer motor neuron fate to NSCs.
Collapse
Affiliation(s)
- Thomas Bréjot
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Département Neuroscience, Institut Pasteur, 28, rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
76
|
King C, Bartlett C, Sauvé Y, Lund R, Dunlop S, Beazley L. Retinal ganglion cell axons regenerate in the presence of intact sensory fibres. Neuroreport 2006; 17:195-9. [PMID: 16407770 DOI: 10.1097/01.wnr.0000195668.07467.a8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel allograft paradigm was used to test whether adult mammalian central axons regenerate within a peripheral nerve environment containing intact sensory axons. Retinal ganglion cell axon regeneration was compared following anastomosis of dorsal root ganglia grafts or conventional peripheral nerve grafts to the adult rat optic nerve. Dorsal root ganglia grafts comprised intact sensory and degenerate motor axons, whereas conventional grafts comprised both degenerating sensory and motor axons. Retinal ganglion cell axons were traced after 2 months. Dorsal root ganglia survived with their axons persisting throughout the graft. Comparable numbers of retinal ganglion cells regenerated axons into both dorsal root ganglia (1053+/-223) and conventional grafts (1323+/-881; P>0.05). The results indicate that an intact sensory environment supports central axon regeneration.
Collapse
Affiliation(s)
- Carolyn King
- School of Animal Biology, University of Western Australia, Nedlands, Western Australia.
| | | | | | | | | | | |
Collapse
|
77
|
Tarasenko YI, Gao J, Nie L, Johnson KM, Grady JJ, Hulsebosch CE, McAdoo DJ, Wu P. Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 2006; 85:47-57. [PMID: 17075895 DOI: 10.1002/jnr.21098] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Grafted human neural stem cells (hNSCs) may help to alleviate functional deficits resulting from spinal cord injury by bridging gaps, replacing lost neurons or oligodendrocytes, and providing neurotrophic factors. Previously, we showed that primed hNSCs differentiated into cholinergic neurons in an intact spinal cord. In this study, we tested the fate of hNSCs transplanted into a spinal cord T10 contusion injury model. When grafted into injured spinal cords of adult male rats on either the same day or 3 or 9 days after a moderate contusion injury, both primed and unprimed hNSCs survived for 3 months postengraftment only in animals that received grafts at 9 days postinjury. Histological analyses revealed that primed hNSCs tended to survive better and differentiated at higher rates into neurons and oligodendrocytes than did unprimed counterparts. Furthermore, only primed cells gave rise to cholinergic neurons. Animals receiving primed hNSC grafts on the ninth day postcontusion improved trunk stability, as determined by rearing activity measurements 3 months after grafting. This study indicates that human neural stem cell fate determination in vivo is influenced by the predifferentiation stage of stem cells prior to grafting. Furthermore, stem cell-mediated facilitation of functional improvement depends on the timing of transplantation after injury, the grafting sites, and the survival of newly differentiated neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Yevgeniya I Tarasenko
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Corti S, Locatelli F, Papadimitriou D, Donadoni C, Del Bo R, Crimi M, Bordoni A, Fortunato F, Strazzer S, Menozzi G, Salani S, Bresolin N, Comi GP. Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 2005; 15:167-87. [PMID: 16339214 DOI: 10.1093/hmg/ddi446] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an infantile autosomal-recessive motor neuron disease caused by mutations in the immunoglobulin micro-binding protein 2. We investigated the potential of a spinal cord neural stem cell population isolated on the basis of aldehyde dehydrogenase (ALDH) activity to modify disease progression of nmd mice, an animal model of SMARD1. ALDH(hi)SSC(lo) stem cells are self-renewing and multipotent and when intrathecally transplanted in nmd mice generate motor neurons properly localized in the spinal cord ventral horns. Transplanted nmd animals presented delayed disease progression, sparing of motor neurons and ventral root axons and increased lifespan. To further investigate the molecular events responsible for these differences, microarray and real-time reverse transcription-polymerase chain reaction analyses of wild-type, mutated and transplanted nmd spinal cord were undertaken. We demonstrated a down-regulation of genes involved in excitatory amino acid toxicity and oxidative stress handling, as well as an up-regulation of genes related to the chromatin organization in nmd compared with wild-type mice, suggesting that they may play a role in SMARD1 pathogenesis. Spinal cord of nmd-transplanted mice expressed high transcript levels for genes related to neurogenesis such as doublecortin (DCX), LIS1 and drebrin. The presence of DCX-expressing cells in adult nmd spinal cord suggests that both exogenous and endogenous neurogeneses may contribute to the observed nmd phenotype amelioration.
Collapse
Affiliation(s)
- Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Corti S, Locatelli F, Papadimitriou D, Donadoni C, Del Bo R, Fortunato F, Strazzer S, Salani S, Bresolin N, Comi GP. Multipotentiality, homing properties, and pyramidal neurogenesis of CNS‐derived LeX(ssea‐1)
+
/CXCR4
+
stem cells. FASEB J 2005; 19:1860-2. [PMID: 16150803 DOI: 10.1096/fj.05-4170fje] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Achieving efficient distribution of neural stem cells throughout the central nervous system (CNS) and robust generation of specific neurons is a major challenge for the development of cell-mediated therapy for neurodegenerative diseases. We isolated a primitive neural stem cell subset, double positive for LeX(Le) and CXCR4(CX) antigens that possesses CNS homing potential and extensive neuronal repopulating capacity. Le+CX+ cells are multipotential and can generate neurons as well as myogenic and endothelial cells. In vivo Le+CX+ cells displayed widespread incorporation and differentiated into cortical and hippocampal pyramidal neurons. Since intravenous delivery could be a less invasive route of transplantation, we investigated whether Le+CX+ cells could migrate across endothelial monolayers. Intracerebral coadministration of SDF enabled migration of intravenously injected Le+CX+ cells into the CNS and a small, yet significant, number of donor cells differentiated into neurons. The isolation of a specific neural stem cell population could offer major advantages to neuronal replacement strategies.
Collapse
Affiliation(s)
- Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation, Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|