51
|
Abstract
Cannabis use has been increasing in the United States and throughout the world. It is derived from one of the earliest plants cultivated by humans - Cannabis sativa. Cannabis (also called marijuana) is the most commonly used psychoactive substance worldwide. The cannabis plant has more than 400 chemicals, of which more than 100 cannabinoids (such as cannabigerol, cannabidiol, and cannabinol) have been identified. The endocannabinoid system (ECS) plays an essential role in the effects of cannabis on end organs. Although cannabis use has been reported for many decades, some of its unique adverse effects of nausea, vomiting, and abdominal pain, termed as cannabis hyperemesis syndrome (CHS), were noted recently. The legal status of cannabis in the United States has been rapidly changing from state to state. The incidence of CHS is expected to rise with rising access to cannabis in the United States. Furthermore, CHS is frequently underdiagnosed due to a lack of uniform criteria, subjective nature of symptoms, and overlap with cyclical vomiting syndrome (CVS). Understanding the ECS and its role in biphasic response (proemetic and antiemetic) of CHS is critical to explain its pathophysiology. As the use of cannabis increases globally, awareness of CHS is warranted for early recognition and prompt treatment to avoid complications. We describe the putative mechanism of CHS with an overview of the clinical features in these patients. Furthermore, we highlight the differences between CHS and CVS with important differentials to consider. We provide a narrative update on the current evidence on CHS pathophysiology, diagnosis, treatment, and identifying research gaps.
Collapse
Affiliation(s)
- Abhilash Perisetti
- Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Hemant Goyal
- The Wright Center for Graduate Medical Education, Scranton, Pennsylvania, USA
| |
Collapse
|
52
|
Schmill MP, Thompson Z, Argueta DA, DiPatrizio NV, Garland T. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiol Behav 2021; 245:113675. [PMID: 34929258 DOI: 10.1016/j.physbeh.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA; Department of Medicine, School of Medicine, University of California, Irvine, 92697, USA
| | - Nicholas V DiPatrizio
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 92521, USA.
| |
Collapse
|
53
|
Gallego-Landin I, García-Baos A, Castro-Zavala A, Valverde O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front Pharmacol 2021; 12:762738. [PMID: 34938182 PMCID: PMC8685322 DOI: 10.3389/fphar.2021.762738] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder is a high-impact, debilitating disease and it is currently considered the most prevalent mental illness. It is associated with disability, as well as increased morbidity and mortality. Despite its significant repercussions in our society, its exact pathophysiology remains unclear and therefore, available antidepressant treatment options are limited and, in some cases, ineffective. In the past years, research has focused on the development of a multifactorial theory of depression. Simultaneously, evidence supporting the role of the endocannabinoid system in the neurobiology of neuropsychiatric diseases has emerged. Studies have shown that the endocannabinoid system strongly impacts neurotransmission, and the neuroendocrine and neuroimmune systems, which are known to be dysfunctional in depressive patients. Accordingly, common antidepressants were shown to have a direct impact on the expression of cannabinoid receptors throughout the brain. Therefore, the relationship between the endocannabinoid system and major depressive disorder is worth consideration. Nevertheless, most studies focus on smaller pieces of what is undoubtedly a larger mosaic of interdependent processes. Therefore, the present review summarizes the existing literature regarding the role of the endocannabinoid system in depression aiming to integrate this information into a holistic picture for a better understanding of the relationship between the two.
Collapse
Affiliation(s)
- Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
54
|
Corpetti C, Del Re A, Seguella L, Palenca I, Rurgo S, De Conno B, Pesce M, Sarnelli G, Esposito G. Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line. Phytother Res 2021; 35:6893-6903. [PMID: 34643000 PMCID: PMC8662250 DOI: 10.1002/ptr.7302] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
Given the abundancy of angiotensin converting enzyme 2 (ACE‐2) receptors density, beyond the lung, the intestine is considered as an alternative site of infection and replication for severe acute respiratory syndrome by coronavirus type 2 (SARS‐CoV‐2). Cannabidiol (CBD) has recently been proposed in the management of coronavirus disease 2019 (COVID‐19) respiratory symptoms because of its anti‐inflammatory and immunomodulatory activity exerted in the lung. In this study, we demonstrated the in vitro PPAR‐γ‐dependent efficacy of CBD (10−9‐10−7 M) in preventing epithelial damage and hyperinflammatory response triggered by SARS‐CoV‐2 spike protein (SP) in a Caco‐2 cells. Immunoblot analysis revealed that CBD was able to reduce all the analyzed proinflammatory markers triggered by SP incubation, such as tool‐like receptor 4 (TLR‐4), ACE‐2, family members of Ras homologues A‐GTPase (RhoA‐GTPase), inflammasome complex (NLRP3), and Caspase‐1. CBD caused a parallel inhibition of interleukin 1 beta (IL‐1β), IL‐6, tumor necrosis factor alpha (TNF‐α), and IL‐18 by enzyme‐linked immunosorbent assay (ELISA) assay. By immunofluorescence analysis, we observed increased expression of tight‐junction proteins and restoration of transepithelial electrical resistance (TEER) following CBD treatment, as well as the rescue of fluorescein isothiocyanate (FITC)–dextran permeability induced by SP. Our data indicate, in conclusion, that CBD is a powerful inhibitor of SP protein enterotoxicity in vitro.
Collapse
Affiliation(s)
- Chiara Corpetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Irene Palenca
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
55
|
Haddad M. The Impact of CB1 Receptor on Nuclear Receptors in Skeletal Muscle Cells. PATHOPHYSIOLOGY 2021; 28:457-470. [PMID: 35366244 PMCID: PMC8830471 DOI: 10.3390/pathophysiology28040029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022] Open
Abstract
Cannabinoids are abundant signaling compounds; their influence predominantly arises via engagement with the principal two G-protein-coupled cannabinoid receptors, CB1 and CB2. One suggested theory is that cannabinoids regulate a variety of physiological processes within the cells of skeletal muscle. Earlier publications have indicated that expression of CB1 receptor mRNA and protein has been recognized within myotubes and tissues of skeletal muscle from both murines and humans, thus representing a potentially significant pathway which plays a role in the control of skeletal muscular activities. The part played by CB1 receptor activation or inhibition with respect to these functions and relevant to targets in the periphery, especially skeletal muscle, is not fully delineated. Thus, the aim of the current research was to explore the influence of CB1 receptor stimulation and inhibition on downstream signaling of the nuclear receptor, NR4A, which regulates the immediate impacts of arachidonyl-2′-chloroethylamide (ACEA) and/or rimonabant in the cells of skeletal muscle. Murine L6 skeletal muscle cells were used in order to clarify additional possible molecular signaling pathways which contribute to alterations in the CB1 receptor. Skeletal muscle cells have often been used; it is well-documented that they express cannabinoid receptors. Quantitative real-time probe-based polymerase chain reaction (qRT-PCR) assays are deployed in order to assess the gene expression characteristics of CB1 receptor signaling. In the current work, it is demonstrated that skeletal muscle cells exhibit functional expression of CB1 receptors. This can be deduced from the qRT-PCR assays; triggering CB1 receptors amplifies both NR4A1 and NR4A3 mRNA gene expression. The impact of ACEA is inhibited by the selective CB1 receptor antagonist, rimonabant. The present research demonstrated that 10 nM of ACEA notably amplified mRNA gene expression of NR4A1 and NR4A3; this effect was suppressed by the addition of 100 nM rimonabant. Furthermore, the CB1 receptor antagonist led to the downregulation of mRNA gene expression of NR4A1, NR4A2 and NR4A3. In conclusion, in skeletal muscle, CB1 receptors were recognized to be important moderators of NR4A1 and NR4A3 mRNA gene expression; these actions may have possible clinical benefits. Thus, in skeletal muscle cells, a possible physiological expression of CB1 receptors was identified. It is as yet unknown whether these CB1 receptors contribute to pathways underlying skeletal muscle biological function and disease processes. Further research is required to fully delineate their role(s).
Collapse
Affiliation(s)
- Mansour Haddad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| |
Collapse
|
56
|
Bisogno T, Lauritano A, Piscitelli F. The Endocannabinoid System: A Bridge between Alzheimer's Disease and Gut Microbiota. Life (Basel) 2021; 11:934. [PMID: 34575083 PMCID: PMC8470731 DOI: 10.3390/life11090934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that progresses from mild cognitive impairment to severe dementia over time. The main clinical hallmarks of the disease (e.g., beta-amyloid plaques and neurofibrillary tangles) begin during preclinical AD when cognitive deficits are not yet apparent. Hence, a more profound understanding of AD pathogenesis is needed to develop new therapeutic strategies. In this context, the endocannabinoid (eCB) system and the gut microbiome are increasingly emerging as important players in maintaining the general homeostasis and the health status of the host. However, their interaction has come to light just recently with gut microbiota regulating the eCB tone at both receptor and enzyme levels in intestinal and adipose tissues. Importantly, eCB system and gut microbiome, have been suggested to play a role in AD in both animal and human studies. Therefore, the microbiome gut-brain axis and the eCB system are potential common denominators in the AD physiopathology. Hence, the aim of this review is to provide a general overview on the role of both the eCB system and the microbiome gut-brain axis in AD and to suggest possible mechanisms that underlie the potential interplay of these two systems.
Collapse
Affiliation(s)
- Tiziana Bisogno
- Endocannabinoid Research Group, Istituto di Farmacologia Traslazionale, Consiglio Nazionale Delle Ricerche, Area Della Ricerca di Roma 2 Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| |
Collapse
|
57
|
Dunford J, Lee AT, Morgan MM. Tetrahydrocannabinol (THC) Exacerbates Inflammatory Bowel Disease in Adolescent and Adult Female Rats. THE JOURNAL OF PAIN 2021; 22:1040-1047. [PMID: 33727159 DOI: 10.1016/j.jpain.2021.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a life-long disorder that often begins between the ages of 15 and 30. Anecdotal reports suggest cannabinoids may be an effective treatment. This study sought to determine whether home cage wheel running is an effective method to assess IBD, and whether Tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, can restore wheel running depressed by IBD. Adolescent and adult female Sprague-Dawley rats were individually housed in a cage with a running wheel. Rats were injected with trinitrobenzene sulphonic acid (TNBS) into the rectum to induce IBD-like symptoms. One day later, both vehicle and TNBS treated rats were injected with a low dose of THC (0.32 mg/kg, s.c.) or vehicle. Administration of TNBS depressed wheel running in adolescent and adult rats. No antinociceptive effect of THC was evident when administered 1 day after TNBS. In fact, administration of THC prolonged TNBS-induced depression of wheel running for over 5 days in adolescent and adult rats. These results show that home cage wheel running is depressed by TNBS-induced IBD, making it a useful tool to evaluate the behavioral consequences of IBD, and that administration of THC, instead of producing antinociception, exacerbates TNBS-induced IBD. PERSPECTIVE: This article advances research on inflammatory bowel disease in two important ways: 1) Home cage wheel running is a new and sensitive tool to assess the behavioral consequences of IBD in adolescent and adult rats; and 2) Administration of the cannabinoid THC exacerbates the negative behavioral effects of IBD.
Collapse
Affiliation(s)
- Jeremy Dunford
- Department of Psychology, Washington State University Vancouver, Vancouver, WA
| | - Andrea T Lee
- Department of Psychology, Washington State University Vancouver, Vancouver, WA
| | - Michael M Morgan
- Department of Psychology, Washington State University Vancouver, Vancouver, WA.
| |
Collapse
|
58
|
Carmona-Hidalgo B, García-Martín A, Muñoz E, González-Mariscal I. Detrimental Effect of Cannabidiol on the Early Onset of Diabetic Nephropathy in Male Mice. Pharmaceuticals (Basel) 2021; 14:ph14090863. [PMID: 34577563 PMCID: PMC8466593 DOI: 10.3390/ph14090863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Anti-inflammatory and antidiabetogenic properties have been ascribed to cannabidiol (CBD). CBD-based medicinal drugs have been approved for over a lustrum, and a boom in the commercialization of CBD products started in parallel. Herein, we explored the efficacy of CBD in streptozotocin (STZ)-induced diabetic mice to prevent diabetic nephropathy at onset. Eight-to-ten-week-old C57BL6J male mice were treated daily intraperitoneally with 10 mg/kg of CBD or vehicle for 14 days. After 8 days of treatment, mice were challenged with STZ or vehicle (healthy-control). At the end of the study, non-fasting blood glucose (FBG) level was 276 ± 42 mg/dL in vehicle-STZ-treated compared to 147 ± 9 mg/dL (p ≤ 0.01) in healthy-control mice. FBG was 114 ± 8 mg/dL in vehicle-STZ-treated compared to 89 ± 4 mg/dL in healthy-control mice (p ≤ 0.05). CBD treatment did not prevent STZ-induced hyperglycemia, and non-FBG and FBG levels were 341 ± 40 and 133 ± 26 mg/dL, respectively. Additionally, treatment with CBD did not avert STZ-induced glucose intolerance or pancreatic beta cell mass loss compared to vehicle-STZ-treated mice. Anatomopathological examination showed that kidneys from vehicle-STZ-treated mice had a 35% increase of glomerular size compared to healthy-control mice (p ≤ 0.001) and presented lesions with a 43% increase in fibrosis and T cell infiltration (p ≤ 0.001). Although treatment with CBD prevented glomerular hypertrophy and reduced T cell infiltration, it significantly worsened overall renal damage (p ≤ 0.05 compared to vehicle-STZ mice), leading to a more severe renal dysfunction than STZ alone. In conclusion, we showed that CBD could be detrimental for patients with type 1 diabetes, particularly those undergoing complications such as diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Correspondence: (E.M.); (I.G.-M.)
| | - Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Correspondence: (E.M.); (I.G.-M.)
| |
Collapse
|
59
|
Haddad M. The Impact of CB1 Receptor on Inflammation in Skeletal Muscle Cells. J Inflamm Res 2021; 14:3959-3967. [PMID: 34421307 PMCID: PMC8373309 DOI: 10.2147/jir.s322247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Various factors trigger the inflammatory response and cytokine activation in skeletal muscle. Inflamed muscle will exhibit significant levels of inflammation and cytokine activity. Interleukin-6 (IL-6), a pro-inflammatory cytokine, exerts pleiotropic effects on skeletal muscle. Endocannabinoid produced by all cell types binds to a class of G protein-coupled receptors, in particular cannabinoid CB1 receptors, to induce skeletal muscle actions. Objective The purpose of this research was to discover whether activation of cannabinoid CB1 receptors in L6 skeletal muscle cells may promote IL-6 gene expression. Materials and Methods L6 skeletal muscle cells were cultured in 25 cm2 flasks and quantitative reverse transcription-polymerase chain reaction (probe-based) utilised to quantify IL-6 gene expression levels among different treatment settings. Results Arachidonyl-2'-chloroethylamide (ACEA) 10 nM, a persistent selective CB1 receptor agonist, promotes IL-6 gene expression in a time-dependent manner. Rimonabant 100 nM, a selective cannabinoid CB1 receptor antagonist, blocks the impact of ACEA. However, insulin does not change IL-6 gene expression. Conclusion For the first time, a unique link between ACEA and IL-6 up-regulation has been established; IL-6 up-regulation generated by ACEA is mediated in skeletal muscle through cannabinoid CB1 receptor activation. As a result, cannabinoid CB1 receptors may be useful pharmaceutical targets in the treatment of inflammation and related disorders in skeletal muscle tissues.
Collapse
Affiliation(s)
- Mansour Haddad
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| |
Collapse
|
60
|
Graczyk M, Lewandowska AA, Dzierżanowski T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26154551. [PMID: 34361704 PMCID: PMC8347461 DOI: 10.3390/molecules26154551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Significant growth of interest in cannabis (Cannabis sativa L.), especially its natural anti-inflammatory and antioxidative properties, has been observed recently. This narrative review aimed to present the state of the art of research concerning the anti-inflammatory activity of all classes of cannabinoids published in the last five years. Multimodal properties of cannabinoids include their involvement in immunological processes, anti-inflammatory, and antioxidative effects. Cannabinoids and non-cannabinoid compounds of cannabis proved their anti-inflammatory effects in numerous animal models. The research in humans is missing, and the results are unconvincing. Although preclinical evidence suggests cannabinoids are of value in treating chronic inflammatory diseases, the clinical evidence is scarce, and further well-designed clinical trials are essential to determine the prospects for using cannabinoids in inflammatory conditions.
Collapse
Affiliation(s)
- Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | | - Tomasz Dzierżanowski
- Laboratory of Palliative Medicine, Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warsaw, Poland
- Correspondence:
| |
Collapse
|
61
|
Kumar P, Mahato DK, Kamle M, Borah R, Sharma B, Pandhi S, Tripathi V, Yadav HS, Devi S, Patil U, Xiao J, Mishra AK. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother Res 2021; 35:6010-6029. [PMID: 34237796 DOI: 10.1002/ptr.7213] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Marijuana, or Cannabis sativa L., is a common psychoactive plant used for both recreational and medicinal purposes. In many countries, cannabis-based medicines have been legalized under certain conditions because of their immense prospects in medicinal applications. With a comprehensive insight into the prospects and challenges associated with the pharmacological use and global trade of C. sativa, this mini-review focuses on the medicinal importance of the plant and its legal status worldwide; the pharmacological compounds and its therapeutic potential along with the underlying public health concerns and future perspective are herein discussed. The existence of major compounds including Δ9 -tetrahydrocannabinol (Δ9 -THC), cannabidiol, cannabinol, and cannabichromene contributes to the medicinal effects of the cannabis plant. These compounds are also involved in the treatment of various types of cancer, epilepsy, and Parkinson's disease displaying several mechanisms of action. Cannabis sativa is a plant with significant pharmacological potential. However, several aspects of the plant need an in-depth understanding of the drug mechanism and its interaction with other drugs. Only after addressing these health concerns, legalization of cannabis could be utilized to its full potential as a future medicine.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Rituraj Borah
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Sheetal Devi
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, India
| | - Umesh Patil
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | | |
Collapse
|
62
|
Hurtado-Lorenzo A, Honig G, Weaver SA, Larkin PB, Heller C. Chronic Abdominal Pain in IBD Research Initiative: Unraveling Biological Mechanisms and Patient Heterogeneity to Personalize Treatment and Improve Clinical Outcomes. CROHN'S & COLITIS 360 2021; 3:otab034. [PMID: 36776666 PMCID: PMC9802354 DOI: 10.1093/crocol/otab034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA,Address correspondence to: Andrés Hurtado-Lorenzo, PhD, Crohn’s & Colitis Foundation, 733 3rd Ave Suite 510, New York, NY 10017, USA ()
| | - Gerard Honig
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | | | - Paul B Larkin
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | - Caren Heller
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| |
Collapse
|
63
|
Yang N, Sun H, Xue Y, Zhang W, Wang H, Tao H, Liang X, Li M, Xu Y, Chen L, Zhang L, Huang L, Geng D. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head. Clin Transl Med 2021; 11:e447. [PMID: 34185425 PMCID: PMC8167863 DOI: 10.1002/ctm2.447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids (GCs) are used in treating viral infections, acute spinal cord injury, autoimmune diseases, and shock. Several patients develop GC-induced osteonecrosis of the femoral head (ONFH). However, the pathogenic mechanisms underlying GC-induced ONFH remain poorly understood. GC-directed bone marrow mesenchymal stem cells (BMSCs) fate is an important factor that determines GC-induced ONFH. At high concentrations, GCs induce BMSC apoptosis by promoting oxidative stress. In the present study, we aimed to elucidate the molecular mechanisms that relieve GC-induced oxidative stress in BMSCs, which would be vital for treating ONFH. The endocannabinoid system regulates oxidative stress in multiple organs. Here, we found that monoacylglycerol lipase (MAGL), a key molecule in the endocannabinoid system, was significantly upregulated during GC treatment in osteoblasts both in vitro and in vivo. MAGL expression was positively correlated with expression of the NADPH oxidase family and apoptosis-related proteins. Functional analysis showed that MAGL inhibition markedly reduced oxidative stress and partially rescued BMSC apoptosis. Additionally, in vivo studies indicated that MAGL inhibition effectively attenuated GC-induced ONFH. Pathway analysis showed that MAGL inhibition regulated oxidative stress in BMSCs via the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The expression of Nrf2, a major regulator of intracellular antioxidants, was upregulated by inhibiting MAGL. Nrf2 activation can mimic the effect of MAGL inhibition and significantly reduce GC-induced oxidative damage in BMSCs. The beneficial effects of MAGL inhibition were attenuated after the blockade of the Keap1/Nrf2 antioxidant signaling pathway. Notably, pharmacological blockade of MAGL conferred femoral head protection in GC-induced ONFH, even after oxidative stress responses were initiated. Therefore, MAGL may represent a novel target for the prevention and treatment of GC-induced ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Houyi Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineChangshuChina
| | - Weicheng Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Hongzhi Wang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Huaqiang Tao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Xiaolong Liang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Meng Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yaozeng Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lixin Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
64
|
Scheau C, Caruntu C, Badarau IA, Scheau AE, Docea AO, Calina D, Caruntu A. Cannabinoids and Inflammations of the Gut-Lung-Skin Barrier. J Pers Med 2021; 11:494. [PMID: 34072930 PMCID: PMC8227007 DOI: 10.3390/jpm11060494] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified great similarities and interferences between the epithelial layers of the digestive tract, the airways and the cutaneous layer. The relationship between these structures seems to implicate signaling pathways, cellular components and metabolic features, and has led to the definition of a gut-lung-skin barrier. Inflammation seems to involve common features in these tissues; therefore, analyzing the similarities and differences in the modulation of its biomarkers can yield significant data promoting a better understanding of the particularities of specific signaling pathways and cellular effects. Cannabinoids are well known for a wide array of beneficial effects, including anti-inflammatory properties. This paper aims to explore the effects of natural and synthetic cannabinoids, including the components of the endocannabinoid system, in relation to the inflammation of the gut-lung-skin barrier epithelia. Recent advancements in the use of cannabinoids as anti-inflammatory substances in various disorders of the gut, lungs and skin are detailed. Some studies have reported mixed or controversial results, and these have also been addressed in our paper.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| |
Collapse
|
65
|
Cannabinoid receptor type 2 ligands: an analysis of granted patents since 2010. Pharm Pat Anal 2021; 10:111-163. [DOI: 10.4155/ppa-2021-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The G-protein-coupled cannabinoid receptor type 2 (CB2R) is a key element of the endocannabinoid (EC) system. EC/CB2R signaling has significant therapeutic potential in major pathologies affecting humans such as allergies, neurodegenerative disorders, inflammation or ocular diseases. CB2R agonism exerts anti-inflammatory and tissue protective effects in preclinical animal models of cardiovascular, gastrointestinal, liver, kidney, lung and neurodegenerative disorders. Existing ligands can be subdivided into endocannabinoids, cannabinoid-like and synthetic CB2R ligands that possess various degrees of potency on and selectivity against the cannabinoid receptor type 1. This review is an account of granted CB2R ligand patents from 2010 up to the present, which were surveyed using Derwent Innovation®.
Collapse
|
66
|
DiPatrizio NV. Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients 2021; 13:nu13041214. [PMID: 33916974 PMCID: PMC8067588 DOI: 10.3390/nu13041214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
67
|
Polarity scaffolds signaling in epithelial cell permeability. Inflamm Res 2021; 70:525-538. [PMID: 33721031 DOI: 10.1007/s00011-021-01454-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/20/2021] [Accepted: 03/06/2021] [Indexed: 01/14/2023] Open
Abstract
As an integral part of the innate immune system, the epithelial membrane is exposed to an array of insults that may trigger an immune response. One of the immune system's main functions is to regulate the level of communications between the mucosa and the lumen of various tissues. While it is clear that inhaled or ingested substances, or microorganisms may induce changes that affect the epithelial barrier in various ways, the proteins involved in the signaling cascades and physiological events leading to the regulation and maintenance of the barrier are not always well characterized. We review here some of the signaling components involved in regulating the barrier's paracellular permeability, and their potential effects on the activation of an immune response. While an effective immune response must be launched against pathogenic insults, tolerance must also be maintained for non-pathogenic antigens such as those in the commensal flora or for endogenous metabolites. Along with other members of the innate and adaptive immunity, the endocannabinoid system also plays an instrumental role in maintaining the balance between inflammation and tolerance. We discuss the potential effects of endo- and phytocannabinoids on epithelial permeability and how the dysregulation of this system could be involved in diseases and targeted for therapy.
Collapse
|
68
|
Targeting the endocannabinoid system with microbial interventions to improve gut integrity. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110169. [PMID: 33186639 DOI: 10.1016/j.pnpbp.2020.110169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
The endocannabinoid system is a metabolic pathway involved in the communication between the gut microbiota and the host. In the gut, the endocannabinoid system regulates the integrity of the intestinal barrier. A compromised integrity of the intestinal barrier is associated with several disorders such as inflammatory bowel disorder, obesity and major depressive disorder. Decreasing the integrity of the intestinal barrier results in an increased translocation of bacterial metabolites, including lipopolysaccharides, across the epithelial layer of the gut, causing the subsequent inflammation. Targeting the endocannabinoid system in the gut can improve the integrity of the intestinal barrier. Currently, microbial interventions in the form of probiotics are under investigation for the treatment of diseases related to a compromised integrity of the intestinal barrier. However, the role of the endocannabinoid system in the gut is ambiguous since activity of the endocannabinoid system is increased in obesity and decreased in inflammatory bowel disease, emphasizing the need for development of personalized microbial interventions. This review discusses the role of the endocannabinoid system in regulating the gut barrier integrity and highlights current efforts to develop new endocannabinoid-targeted microbial interventions.
Collapse
|
69
|
Gajendran M, Sarosiek I, McCallum R. Metoclopramide nasal spray for management of symptoms of acute and recurrent diabetic gastroparesis in adults. Expert Rev Endocrinol Metab 2021; 16:25-35. [PMID: 33739209 DOI: 10.1080/17446651.2021.1886922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Introduction: Gastroparesis (GP) is characterized by delayed gastric emptying in the absence of mechanical obstruction. About 75% of GP patients are females. Diabetes and idiopathic are the two commonest etiologies of GP. Up to two-thirds of the GP patients do not have significant symptom responses to medical therapies, and there is a paucity of available oral prokinetic agents with only one medication approved by the U.S. Food and Drug Administration (FDA) for this indication. The oral and parenteral formulations of metoclopramide were FDA approved in 1979 to treat symptoms of acute and recurrent diabetic GP. Now, more than 40 years later, a nasal preparation of metoclopramide (GimotiTM) was approved in June 2020 for the same indication.Areas covered: PubMed search using the keywords 'nasal metoclopramide' and 'diabetic gastroparesis.' This article aims to provide a concise review of the pharmacology, clinical efficacy, and tolerability of nasal metoclopramide.Expert opinion: The nasal formulation can be systemically absorbed without relying on the passage through a poorly emptying stomach, thus assuring the delivery of a therapeutic dose of metoclopramide, even during episodes of vomiting. Hence, metoclopramide nasal spray has the potential to be used during an acute flare, potentially avoiding hospitalizations.
Collapse
Affiliation(s)
- Mahesh Gajendran
- Department of Internal Medicine, Texas Tech University, Paul L Foster School of Medicine, El Paso, TX, USA
| | - Irene Sarosiek
- Division of Gastroenterology, Center for Neurogastroenterology and GI Motility, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Richard McCallum
- Division of Gastroenterology, Center for Neurogastroenterology and GI Motility, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, USA
| |
Collapse
|
70
|
Peng H, Shahidi F. Cannabis and Cannabis Edibles: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1751-1774. [PMID: 33555188 DOI: 10.1021/acs.jafc.0c07472] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cannabis is an excellent natural source of fiber and various bioactive cannabinoids. So far, at least 120 cannabinoids have been identified, and more novel cannabinoids are gradually being unveiled by detailed cannabis studies. However, cannabinoids in both natural and isolated forms are especially vulnerable to oxygen, heat, and light. Therefore, a diversity of cannabinoids is associated with their chemical instability to a large extent. The research status of structural conversion of cannabinoids is introduced. On the other hand, the use of drug-type cannabis and the phytocannabinoids thereof has been rapidly popularized and plays an indispensable role in both medical therapy and daily recreation. The recent legalization of edible cannabis further extends its application into the food industry. The varieties of legal edible cannabis products in the current commercial market are relatively monotonous due to rigorous restrictions under the framework of Cannabis Regulations and infancy of novel developments. Meanwhile, patents/studies related to the safety and quality assurance systems of cannabis edibles are still rare and need to be developed. Furthermore, along with cannabinoids, many phytochemicals such as flavonoids, lignans, terpenoids, and polysaccharides exist in the cannabis matrix, and these may exhibit prebiotic/probiotic properties and improve the composition of the gut microbiome. During metabolism and excretion, the bioactive phytochemicals of cannabis, mostly the cannabinoids, may be structurally modified during enterohepatic detoxification and gut fermentation. However, the potential adverse effects of both acute and chronic exposure to cannabinoids and their vulnerable groups have been clearly recognized. Therefore, a comprehensive understanding of the chemistry, metabolism, toxicity, commercialization, and regulations regarding cannabinoid edibles is reviewed and updated in this contribution.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| | - Fereidoon Shahidi
- Department of Biochemistry Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| |
Collapse
|
71
|
Toschi A, Galiazzo G, Piva A, Tagliavia C, Mazzuoli-Weber G, Chiocchetti R, Grilli E. Cannabinoid and Cannabinoid-Related Receptors in the Myenteric Plexus of the Porcine Ileum. Animals (Basel) 2021; 11:263. [PMID: 33494452 PMCID: PMC7912003 DOI: 10.3390/ani11020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
An important piece of evidence has shown that molecules acting on cannabinoid receptors influence gastrointestinal motility and induce beneficial effects on gastrointestinal inflammation and visceral pain. The aim of this investigation was to immunohistochemically localize the distribution of canonical cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related receptors transient potential vanilloid receptor 1 (TRPV1), transient potential ankyrin receptor 1 (TRPA1), and serotonin receptor 5-HT1a (5-HT1aR) in the myenteric plexus (MP) of pig ileum. CB1R, TRPV1, TRPA1, and 5-HT1aR were expressed, with different intensities in the cytoplasm of MP neurons. For each receptor, the proportions of the immunoreactive neurons were evaluated using the anti-HuC/HuD antibody. These receptors were also localized on nerve fibers (CB1R, TRPA1), smooth muscle cells of tunica muscularis (CB1R, 5-HT1aR), and endothelial cells of blood vessels (TRPV1, TRPA1, 5-HT1aR). The nerve varicosities were also found to be immunoreactive for both TRPV1 and 5-HT1aR. No immunoreactivity was documented for CB2R. Cannabinoid and cannabinoid-related receptors herein investigated showed a wide distribution in the enteric neurons and nerve fibers of the pig MP. These results could provide an anatomical basis for additional research, supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders in porcine enteropathies.
Collapse
Affiliation(s)
- Andrea Toschi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Andrea Piva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
- R&D Division, Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Ester Grilli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
- R&D Division, Vetagro, Inc., 116 W. Jackson Blvd., Suite #320, Chicago, IL 60604, USA
| |
Collapse
|
72
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
73
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
74
|
Rea K, O' Mahony SM, Cryan JF. High and Mighty? Cannabinoids and the microbiome in pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100061. [PMID: 33665479 PMCID: PMC7905370 DOI: 10.1016/j.ynpai.2021.100061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
In this review, we will focus on the potential role of the endogenous cannabinoids in modulating microbiota-driven changes in peripheral and central pain processing. We also focus on the overlap in mechanisms whereby commensal gut microbiota and endocannabinoid ligands can regulate inflammation and further aim to exploit our understanding of their role in microbiota-gut-brain axis communication in pain processing.
Within the human gut, we each harbour a unique ecosystem represented by trillions of microbes that contribute to our health and wellbeing. These gut microbiota form part of a complex network termed the microbiota-gut-brain axis along with the enteric nervous system, sympathetic and parasympathetic divisions of the autonomic nervous system, and neuroendocrine and neuroimmune components of the central nervous system. Through endocrine, immune and neuropeptide/neurotransmitter systems, the microbiota can relay information about health status of the gut. This in turn can profoundly impact neuronal signalling not only in the periphery, but also in the brain itself and thus impact on emotional systems and behavioural responses. This may be true for pain, as the top-down facilitation or inhibition of pain processing occurs at a central level, while ascending afferent nociceptive information from the viscera and systemic areas travel through the periphery and spinal cord to the brain. The endogenous cannabinoid receptors are ubiquitously expressed throughout the gut, periphery and in brain regions associated with pain responding, and represent targets for endogenous and exogenous manipulation. In this review, we will focus on the potential role of the endogenous cannabinoids in modulating microbiota-driven changes in peripheral and central pain processing. We also focus on the overlap in mechanisms whereby commensal gut microbiota and endocannabinoid ligands can regulate inflammation and further aim to exploit our understanding of their role in microbiota-gut-brain axis communication in pain processing.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Siobhain M O' Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
75
|
Bashashati M, Leishman E, Bradshaw H, Sigaroodi S, Tatro E, Bright T, McCallum R, Sarosiek I. Plasma endocannabinoids and cannabimimetic fatty acid derivatives are altered in gastroparesis: A sex- and subtype-dependent observation. Neurogastroenterol Motil 2021; 33:e13961. [PMID: 32779297 PMCID: PMC8018519 DOI: 10.1111/nmo.13961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Gastroparesis (GP) is a motility disorder of the stomach presenting with upper gastrointestinal symptoms in the setting of delayed gastric emptying. Endocannabinoids are involved in the regulation of GI function including motility. However, their role in the pathophysiology of GP has not been sufficiently investigated. Our goal was to compare the circulating levels of endocannabinoids and cannabimimetic fatty acid derivatives in GP versus control subjects. METHODS The study compared plasma concentrations of endocannabinoids and their lipoamine and 2-acyl glycerol congeners, measured by high-pressure liquid chromatography/tandem mass spectrometry (HPLC-MS-MS), in adult patients with diabetic gastroparesis (DM-GP; n = 24; n = 16 female), idiopathic gastroparesis (ID-GP; n = 19; n = 11 female), diabetic patients without GP (DM; n = 19; n = 10 female), and healthy controls (HC; n = 18; n = 10 female). Data, presented as mean ± SEM, were analyzed with ANOVA (Sidak post hoc). KEY RESULTS Endocannabinoids anandamide (AEA: 0.5 ± 0.1 nMol/L) and 2-arachidonoyl glycerol (2-AG: 2.6 ± 0.7 nMol/L) were significantly lower in female DM-GP patients vs. DM females (AEA: 2.5 ± 0.7 nMol/L and 2-AG: 9.4 ± 3.3 nMol/L). Other monoacylglycerols including 2-palmitoyl glycerol and 2-oleoyl glycerol were also lower in female DM-GP patients compared to DM females. No changes were observed in men. CONCLUSIONS & INFERENCES Endocannabinoids and other fatty acid derivatives with cannabimimetic properties are reduced in female DM-GP patients. Since GP, particularly with diabetic etiology, is more prevalent among women and since cannabinoids are antiemetic, this decrease in levels may contribute to symptom development in these subjects. Targeting the endocannabinoid system may be a future therapeutic option in DM-GP patients.
Collapse
Affiliation(s)
- Mohammad Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Emma Leishman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather Bradshaw
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Solmaz Sigaroodi
- Division of Gastroenterology, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA,Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Eric Tatro
- Division of Gastroenterology, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Tamis Bright
- Division of Endocrinology, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Richard McCallum
- Division of Gastroenterology, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Irene Sarosiek
- Division of Gastroenterology, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
76
|
Neuromolecular Mechanisms of Cannabis Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:15-28. [PMID: 33332001 DOI: 10.1007/978-3-030-57369-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most of our current understanding of the neuromolecular mechanisms of Cannabis action focusses on two plant cannabinoids, THC and CBD. THC acts primarily through presynaptic CB cannabinoid receptors to regulate neurotransmitter release in the brain, spinal cord and peripheral nerves. CBD action, on the other hand, is probably mediated through multiple molecular targets.
Collapse
|
77
|
Topical Capsaicin for Treating Cannabinoid Hyperemesis Syndrome. Case Rep Gastrointest Med 2020; 2020:8868385. [PMID: 33294233 PMCID: PMC7718060 DOI: 10.1155/2020/8868385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Cannabinoid hyperemesis syndrome (CHS), associated with chronic cannabis use, presents with cyclic abdominal pain, nausea, and vomiting. With increasing use of marijuana, the incidence of CHS is expected to increase. Most patients with CHS make frequent visits to the emergency room and are usually refractory to conventional treatment. We, therefore, present a case of CHS successfully treated with topical capsaicin application. Case Presentation. A 41-year-old female with a recent excess use of cannabis presented to the emergency department for evaluation of recurrent excruciating epigastric pain accompanied by severe nausea and vomiting. She had similar, milder symptoms a year ago and underwent endoscopic evaluation which was negative except for mild reflux esophagitis for which she was started on a proton pump inhibitor. On this presentation, basic laboratory workup, EKG, and CT scan of abdomen and pelvis were unremarkable. A detailed abdominal exam was only positive for mild epigastric tenderness. She was instructed to continue pantoprazole and pain medication and outpatient repeat esophagogastroduodenoscopy. The patient returned the next day with extreme retching, nausea, and vomiting and was admitted for further evaluation. Intravenous fluids, antiemetics, and morphine were started for pain control with no symptomatic improvement. A diagnosis of cannabis hyperemesis syndrome was made based on history of chronic marijuana use and otherwise negative workup. A trial of topical capsaicin, over the epigastric region, was tried that provided dramatic relief within 24 hours. Repeat endoscopic evaluation had no evidence of ulcers, celiac disease, or esophagitis. She was discharged on topical capsaicin and counselled on marijuana abstinence, with no return of symptoms. Conclusion Based on the dramatic resolution of symptoms with topical capsaicin, our case supports this promising intervention and provides an alternate approach to antiemetics and narcotics routinely used in patients with cannabis hyperemesis syndrome.
Collapse
|
78
|
Konieczka P, Szkopek D, Kinsner M, Fotschki B, Juśkiewicz J, Banach J. Cannabis-derived cannabidiol and nanoselenium improve gut barrier function and affect bacterial enzyme activity in chickens subjected to C. perfringens challenge. Vet Res 2020; 51:141. [PMID: 33225993 PMCID: PMC7682017 DOI: 10.1186/s13567-020-00863-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Revealing the multifocal mechanisms affecting cross-talk between Clostridium perfringens pathogenesis and the host response is an urgent need in the poultry industry. Herein, the activity of Cannabis sativa-derived cannabidiol (CBD) and selenium nanoparticles (Nano-Se) in modulating the host response to Clostridium perfringens challenge was investigated in broiler chickens subjected to a mild infection model. The infected chickens exhibited no clinical manifestations, confirming the potential hazard of pathogen transmission to the food chain in the commercial sector. However, both CBD and Nano-Se affected the responses of chickens to C. perfringens challenge. The beneficial actions of both agents were manifested in the upregulated expression of genes determining gut barrier function. Both CBD and Nano-Se promoted shifts in gut bacterial enzyme activity to increased energy uptake in challenged chickens and upregulated potential collagenase activity. There was no opposite effect of CBD and Nano-Se in mediating the host response to challenge, whereas an additive effect was evidenced on the upregulation of gene determining gut integrity. Collectively, these findings indicate that understanding the action mechanisms of CBD and Nano-Se is of great interest for developing a preventive strategy for C. perfringens infection in broilers.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland. .,Department of Poultry Science, University of Warmia and Mazury, Oczapowskiego 5, 10-718, Olsztyn, Poland.
| | - Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Joanna Banach
- Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630, Poznań, Poland
| |
Collapse
|
79
|
Perisetti A, Gajendran M, Dasari CS, Bansal P, Aziz M, Inamdar S, Tharian B, Goyal H. Cannabis hyperemesis syndrome: an update on the pathophysiology and management. Ann Gastroenterol 2020; 33:571-578. [PMID: 33162734 PMCID: PMC7599351 DOI: 10.20524/aog.2020.0528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis hyperemesis syndrome (CHS) is a form of functional gut-brain axis disorder characterized by bouts of episodic nausea and vomiting worsened by cannabis intake. It is considered as a variant of cyclical vomiting syndrome seen in cannabis users especially characterized by compulsive hot bathing/showers to relieve the symptoms. CHS was reported for the first time in 2004, and since then, an increasing number of cases have been reported. With cannabis use increasing throughout the world as the threshold for legalization becomes lower, its user numbers are expected to rise over time. Despite this trend, a strict criterion for the diagnosis of CHS is lacking. Early recognition of CHS is essential to prevent complications related to severe volume depletion. The recent body of research recognizes that patients with CHS impose a burden on the healthcare systems. Understanding the pathophysiology of the endocannabinoid system (ECS) remains central in explaining the clinical features and potential drug targets for the treatment of CHS. The frequency and prevalence of CHS change in accordance with the doses of tetrahydrocannabinol and other cannabinoids in various formulations of cannabis. CHS is unique in presentation, because of the cannabis’s biphasic effect as anti-emetic at low doses and pro-emetic at higher doses, and the association with pathological hot water bathing. In this narrative review, we elaborate on the role of the ECS, its management, and the identification of gaps in our current knowledge of CHS to further enhance its understanding in the future.
Collapse
Affiliation(s)
- Abhilash Perisetti
- Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR (Abhilash Perisetti)
| | - Mahesh Gajendran
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso (Mahesh Gajendran)
| | - Chandra Shekhar Dasari
- Department of Gastroenterology and Hepatology, Kansas City VA Medical Center (Chandra Shekhar Dasari)
| | - Pardeep Bansal
- Division of Gastroenterology, Moses Taylor Hospital and Reginal Hospital of Scranton, Scranton, PA (Pardeep Bansal)
| | - Muhammad Aziz
- Department of Internal Medicine, The University of Toledo, Toledo, OH (Muhammad Aziz)
| | - Sumant Inamdar
- Endoscopy Fellowship, University of Arkansas for Medical Sciences, Little Rock, AR (Sumant Inamdar, Benjamin Tharian)
| | - Benjamin Tharian
- Endoscopy Fellowship, University of Arkansas for Medical Sciences, Little Rock, AR (Sumant Inamdar, Benjamin Tharian)
| | - Hemant Goyal
- The Wright Center for Graduate Medical Education, Scranton, PA (Hemant Goyal), USA
| |
Collapse
|
80
|
Raucci U, Borrelli O, Di Nardo G, Tambucci R, Pavone P, Salvatore S, Baldassarre ME, Cordelli DM, Falsaperla R, Felici E, Ferilli MAN, Grosso S, Mallardo S, Martinelli D, Quitadamo P, Pensabene L, Romano C, Savasta S, Spalice A, Strisciuglio C, Suppiej A, Valeriani M, Zenzeri L, Verrotti A, Staiano A, Villa MP, Ruggieri M, Striano P, Parisi P. Cyclic Vomiting Syndrome in Children. Front Neurol 2020; 11:583425. [PMID: 33224097 PMCID: PMC7667239 DOI: 10.3389/fneur.2020.583425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclic Vomiting Syndrome (CVS) is an underdiagnosed episodic syndrome characterized by frequent hospitalizations, multiple comorbidities, and poor quality of life. It is often misdiagnosed due to the unappreciated pattern of recurrence and lack of confirmatory testing. CVS mainly occurs in pre-school or early school-age, but infants and elderly onset have been also described. The etiopathogenesis is largely unknown, but it is likely to be multifactorial. Recent evidence suggests that aberrant brain-gut pathways, mitochondrial enzymopathies, gastrointestinal motility disorders, calcium channel abnormalities, and hyperactivity of the hypothalamic-pituitary-adrenal axis in response to a triggering environmental stimulus are involved. CVS is characterized by acute, stereotyped and recurrent episodes of intense nausea and incoercible vomiting with predictable periodicity and return to baseline health between episodes. A distinction with other differential diagnoses is a challenge for clinicians. Although extensive and invasive investigations should be avoided, baseline testing toward identifying organic causes is recommended in all children with CVS. The management of CVS requires an individually tailored therapy. Management of acute phase is mainly based on supportive and symptomatic care. Early intervention with abortive agents during the brief prodromal phase can be used to attempt to terminate the attack. During the interictal period, non-pharmacologic measures as lifestyle changes and the use of reassurance and anticipatory guidance seem to be effective as a preventive treatment. The indication for prophylactic pharmacotherapy depends on attack intensity and severity, the impairment of the QoL and if attack treatments are ineffective or cause side effects. When children remain refractory to acute or prophylactic treatment, or the episode differs from previous ones, the clinician should consider the possibility of an underlying disease and further mono- or combination therapy and psychotherapy can be guided by accompanying comorbidities and specific sub-phenotype. This review was developed by a joint task force of the Italian Society of Pediatric Gastroenterology Hepatology and Nutrition (SIGENP) and Italian Society of Pediatric Neurology (SINP) to identify relevant current issues and to propose future research directions on pediatric CVS.
Collapse
Affiliation(s)
- Umberto Raucci
- Pediatric Emergency Department, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Osvaldo Borrelli
- Division of Neurogastroenterology and Motility, Department of Pediatric Gastroenterology, University College London (UCL) Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Giovanni Di Nardo
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Renato Tambucci
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Piero Pavone
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Silvia Salvatore
- Pediatric Department, Ospedale “F. Del Ponte,” University of Insubria, Varese, Italy
| | | | | | - Raffaele Falsaperla
- Neonatal Intensive Care and Pediatric Units, S. Marco Hospital, Vittorio Emanuele Hospital, Catania, Italy
| | - Enrico Felici
- Unit of Pediatrics, The Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Michela Ada Noris Ferilli
- Division of Neurology, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Saverio Mallardo
- Pediatric Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric Specialties, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Paolo Quitadamo
- Department of Pediatrics, A.O.R.N. Santobono-Pausilipon, Naples, Italy
| | - Licia Pensabene
- Pediatric Unit, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Claudio Romano
- Pediatric Gastroenterology Unit, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | | | - Alberto Spalice
- Child Neurology Division, Department of Pediatrics, “Sapienza,” University of Rome, Rome, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child, General and Specialistic Surgery, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Agnese Suppiej
- Pediatric Section, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimiliano Valeriani
- Division of Neurology, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Letizia Zenzeri
- Emergency Pediatric Department, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Staiano
- Section of Pediatrics, Department of Translational Medical Science, “Federico II” University of Naples, Naples, Italy
| | - Maria Pia Villa
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- Institute for Research, Hospitalization and Health Care (IRCCS) “G. Gaslini” Institute, Genova, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
81
|
Tagliamonte S, Gill CIR, Pourshahidi LK, Slevin MM, Price RK, Ferracane R, Lawther R, O'Connor G, Vitaglione P. Endocannabinoids, endocannabinoid-like molecules and their precursors in human small intestinal lumen and plasma: does diet affect them? Eur J Nutr 2020; 60:2203-2215. [PMID: 33104865 PMCID: PMC8137602 DOI: 10.1007/s00394-020-02398-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE To determine the small intestinal concentration of endocannabinoids (ECs), N-acylethanolamines (NAEs) and their precursors N-acylphosphatidylethanolamines (NAPEs) in humans. To identify relationships between those concentrations and habitual diet composition as well as individual inflammatory status. METHODS An observational study was performed involving 35 participants with an ileostomy (18W/17M, aged 18-70 years, BMI 17-40 kg/m2). Overnight fasting samples of ileal fluid and plasma were collected and ECs, NAEs and NAPEs concentrations were determined by LC-HRMS. Dietary data were estimated from self-reported 4-day food diaries. RESULTS Regarding ECs, N-arachidonoylethanolamide (AEA) was not detected in ileal fluids while 2-arachidonoylglycerol (2-AG) was identified in samples from two participants with a maximum concentration of 129.3 µg/mL. In contrast, mean plasma concentration of AEA was 2.1 ± 0.06 ng/mL and 2-AG was 4.9 ± 1.05 ng/mL. NAEs concentrations were in the range 0.72-17.6 µg/mL in ileal fluids and 0.014-0.039 µg/mL in plasma. NAPEs concentrations were in the range 0.3-71.5 µg/mL in ileal fluids and 0.19-1.24 µg/mL in plasma being more abundant in participants with obesity than normal weight and overweight. Significant correlations between the concentrations of AEA, OEA and LEA in biological fluids with habitual energy or fat intakes were identified. Plasma PEA positively correlated with serum C-reactive protein. CONCLUSION We quantified ECs, NAEs and NAPEs in the intestinal lumen. Fat and energy intake may influence plasma and intestinal concentrations of these compounds. The luminal concentrations reported would allow modulation of the homeostatic control of food intake via activation of GPR119 receptors located on the gastro-intestinal mucosa. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE NCT04143139; www.clinicaltrials.gov .
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, NA, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Mary M Slevin
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Ruth K Price
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, NA, Italy
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Glenshane Road, Londonderry, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Glenshane Road, Londonderry, UK
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
82
|
Abstract
Cannabinoids have been known as the primary component of cannabis for decades, but the characterization of the endocannabinoid system (ECS) in the 1990s opened the doors for cannabis' use in modern medicine. The 2 main receptors of this system, cannabinoid receptors 1 and 2, are found on cells of various tissues, with significant expression in the gastrointestinal (GI) tract. The characterization of the ECS also heralded the understanding of endocannabinoids, naturally occurring compounds synthesized in the human body. Via secondary signaling pathways acting on vagal nerves, nociceptors, and immune cells, cannabinoids have been shown to have both palliative and detrimental effects on the pathophysiology of GI disorders. Although research on the effects of both endogenous and exogenous cannabinoids has been slow due to the complicated legal history of cannabis, discoveries of cannabinoids' treatment potential have been found in various fields of medicine, including the GI world. Medical cannabis has since been offered as a treatment for a myriad of conditions and malignancies, including cancer, human immunodeficiency virus/acquired immunodeficiency syndrome, multiple sclerosis, chronic pain, nausea, posttraumatic stress disorder, amyotrophic lateral sclerosis, cachexia, glaucoma, and epilepsy. This article hopes to create an overview of current research on cannabinoids and the ECS, detail the potential advantages and pitfalls of their use in GI diseases, and explore possible future developments in this field.
Collapse
|
83
|
Pagano E, Iannotti FA, Piscitelli F, Romano B, Lucariello G, Venneri T, Di Marzo V, Izzo AA, Borrelli F. Efficacy of combined therapy with fish oil and phytocannabinoids in murine intestinal inflammation. Phytother Res 2020; 35:517-529. [PMID: 32996187 DOI: 10.1002/ptr.6831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Fish oil (FO) and phytocannabinoids have received considerable attention for their intestinal anti-inflammatory effects. We investigated whether the combination of FO with cannabigerol (CBG) and cannabidiol (CBD) or a combination of all three treatments results in a more pronounced intestinal antiinflammatory action compared to the effects achieved separately. Colitis was induced in mice by 2,4-dinitrobenzenesulfonic acid (DNBS). CBD and CBG levels were detected and quantified by liquid chromatography coupled with time of flight mass spectrometry and ion trap mass spectrometry (LC-MS-IT-TOF). Endocannabinoids and related mediators were assessed by LC-MS. DNBS increased colon weight/colon length ratio, myeloperoxidase activity, interleukin-1β, and intestinal permeability. CBG, but not CBD, given by oral gavage, ameliorated DNBS-induced colonic inflammation. FO pretreatment (at the inactive dose) increased the antiinflammatory action of CBG and rendered oral CBD effective while reducing endocannabinoid levels. Furthermore, the combination of FO, CBD, and a per se inactive dose of CBG resulted in intestinal anti-inflammatory effects. Finally, FO did not alter phytocannabinoid levels in the serum and in the colon. By highlighting the apparent additivity between phytocannabinoids and FO, our preclinical data support a novel strategy of combining these substances for the potential development of a treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Fabio A Iannotti
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| |
Collapse
|
84
|
Avalos B, Argueta DA, Perez PA, Wiley M, Wood C, DiPatrizio NV. Cannabinoid CB 1 Receptors in the Intestinal Epithelium Are Required for Acute Western-Diet Preferences in Mice. Nutrients 2020; 12:nu12092874. [PMID: 32962222 PMCID: PMC7551422 DOI: 10.3390/nu12092874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of diet-induced obesity, which promotes overeating via impaired nutrient-induced gut-brain satiation signaling. We now utilized a combination of genetic, pharmacological, and behavioral approaches to identify roles for cannabinoid CB1Rs in upper small-intestinal epithelium in preferences for a western-style diet (WD, high-fat/sucrose) versus a standard rodent diet (SD, low-fat/no sucrose). Mice were maintained on SD in automated feeding chambers. During testing, mice were given simultaneous access to SD and WD, and intakes were recorded. Mice displayed large preferences for the WD, which were inhibited by systemic pretreatment with the cannabinoid CB1R antagonist/inverse agonist, AM251, for up to 3 h. We next used our novel intestinal epithelium-specific conditional cannabinoid CB1R-deficient mice (IntCB1-/-) to investigate if intestinal CB1Rs are necessary for WD preferences. Similar to AM251 treatment, preferences for WD were largely absent in IntCB1-/- mice when compared to control mice for up to 6 h. Together, these data suggest that CB1Rs in the murine intestinal epithelium are required for acute WD preferences.
Collapse
Affiliation(s)
- Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Donovan A. Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Pedro A. Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Mark Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Correspondence: ; Tel.: +1-951-827-7252
| |
Collapse
|
85
|
Christie S, O'Rielly R, Li H, Wittert GA, Page AJ. High fat diet induced obesity alters endocannabinoid and ghrelin mediated regulation of components of the endocannabinoid system in nodose ganglia. Peptides 2020; 131:170371. [PMID: 32659299 DOI: 10.1016/j.peptides.2020.170371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ghrelin and anandamide (AEA) can regulate the sensitivity of gastric vagal afferents to stretch, an effect mediated via the transient receptor potential vanilloid 1 (TPRV1) channel. High fat diet (HFD)-induced obesity alters the modulatory effects of ghrelin and AEA on gastric vagal afferent sensitivity. This may be a result of altered gastric levels of these hormones and subsequent changes in the expression of their receptors. Therefore, the current study aimed to determine the effects of ghrelin and AEA on vagal afferent cell body mRNA content of cannabinoid 1 receptor (CB1), ghrelin receptor (GHSR), TRPV1, and the enzyme responsible for the breakdown of AEA, fatty acid amide hydrolase (FAAH). METHODS Mice were fed a standard laboratory diet (SLD) or HFD for 12wks. Nodose ganglia were removed and cultured for 14 h in the absence or presence of ghrelin or methAEA (mAEA; stable analogue of AEA). Relative mRNA content of CB1, GHSR, TRPV1, and FAAH were measured. RESULTS In nodose cells from SLD-mice, mAEA increased TRPV1 and FAAH mRNA content, and decreased CB1 and GHSR mRNA content. Ghrelin decreased TRPV1, CB1, and GHSR mRNA content. In nodose cells from HFD-mice, mAEA had no effect on TRPV1 mRNA content, and increased CB1, GHSR, and FAAH mRNA content. Ghrelin decreased TRPV1 mRNA content and increased CB1 and GHSR mRNA content. CONCLUSIONS AEA and ghrelin modulate receptors and breakdown enzymes involved in the mAEA-vagal afferent satiety signalling pathways. This was disrupted in HFD-mice, which may contribute to the altered vagal afferent signalling in obesity.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia.
| |
Collapse
|
86
|
Rastelli M, Van Hul M, Terrasi R, Lefort C, Régnier M, Beiroa D, Delzenne NM, Everard A, Nogueiras R, Luquet S, Muccioli GG, Cani PD. Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. Am J Physiol Endocrinol Metab 2020; 319:E647-E657. [PMID: 32776827 DOI: 10.1152/ajpendo.00146.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking Napepld in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (NapepldΔIEC). After an overnight fast, we exposed wild-type (WT) and NapepldΔIEC mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. NapepldΔIEC mice displayed lower hypothalamic levels of N-oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic Pomc occurred in the hypothalamus of NapepldΔIEC mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in NapepldΔIEC mice. Following lipid administration, WT and NapepldΔIEC mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of NapepldΔIEC mice upon HFD. We conclude that in response to lipid, NapepldΔIEC mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.
Collapse
Affiliation(s)
- Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Charlotte Lefort
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Marion Régnier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
87
|
van Egmond N, Straub VM, van der Stelt M. Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors. Annu Rev Pharmacol Toxicol 2020; 61:441-463. [PMID: 32867595 DOI: 10.1146/annurev-pharmtox-030220-112741] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (-)-trans-Δ9-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain. Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB1 receptor stimulation by THC. Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.
Collapse
Affiliation(s)
- Noëlle van Egmond
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Verena M Straub
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
88
|
Toschi A, Tugnoli B, Rossi B, Piva A, Grilli E. Thymol modulates the endocannabinoid system and gut chemosensing of weaning pigs. BMC Vet Res 2020; 16:289. [PMID: 32787931 PMCID: PMC7425016 DOI: 10.1186/s12917-020-02516-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background The recent identification of the endocannabinoid system in the gastrointestinal tract suggests a role in controlling intestinal inflammation. In addition, the gut chemosensing system has therapeutic applications in the treatment of gastrointestinal diseases and inflammation due to the presence of a large variety of receptors. The purposes of this study were to investigate the presence of markers of the endocannabinoid system and the chemosensing system in the pig gut and, second, to determine if thymol modulates these markers. One hundred sixty 28-day-old piglets were allocated into one of 5 treatment groups (n = 32 per treatment): T1 (control), T2 (25.5 mg thymol/kg feed), T3 (51 mg thymol/kg feed), T4 (153 mg thymol/kg feed), and T5 (510 mg thymol/kg feed). After 14 days of treatment, piglets were sacrificed (n = 8), and then duodenal and ileal mucosal scrapings were collected. Gene expression of cannabinoid receptors (CB1 and CB2), transient receptor potential vanilloid 1 (TRPV1), the olfactory receptor OR1G1, diacylglycerol lipases (DGL-α and DGL-β), fatty acid amine hydrolase (FAAH), and cytokines was measured, and ELISAs of pro-inflammatory cytokines levels were performed. Results mRNAs encoding all markers tested were detected. In the duodenum and ileum, the CB1, CB2, TRPV1, and OR1G1 mRNAs were expressed at higher levels in the T4 and T5 groups compared to the control group. The level of the FAAH mRNA was increased in the ileum of the T4 group compared to the control. Regarding the immune response, the level of the tumor necrosis factor (TNF-α) mRNA was significantly increased in the duodenum of the T5 group, but this increase was not consistent with the protein level. Conclusions These results indicate the presence of endocannabinoid system and gut chemosensing markers in the piglet gut mucosa. Moreover, thymol modulated the expression of the CB1, CB2, TRPV1, and OR1G1 mRNAs in the duodenum and ileum. It also modulated the mRNA levels of enzymes involved in the biosynthesis and degradation of endocannabinoid molecules. Based on these findings, the effects of thymol on promoting gut health are potentially mediated by the activation of these receptors.
Collapse
Affiliation(s)
- Andrea Toschi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy
| | | | - Barbara Rossi
- Vetagro SpA, via Porro, 2, 42124, Reggio Emilia, Italy
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy.,Vetagro SpA, via Porro, 2, 42124, Reggio Emilia, Italy
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy. .,Vetagro, Inc., 116 W. Jackson Blvd, Chicago, IL, 60604, USA.
| |
Collapse
|
89
|
Coates MD, Seth N, Clarke K, Abdul-Baki H, Mahoney N, Walter V, Regueiro MD, Ramos-Rivers C, Koutroubakis IE, Bielefeldt K, Binion DG. Opioid Analgesics Do Not Improve Abdominal Pain or Quality of Life in Crohn's Disease. Dig Dis Sci 2020; 65:2379-2387. [PMID: 31758431 PMCID: PMC7831884 DOI: 10.1007/s10620-019-05968-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abdominal pain and opioid analgesic use are common in Crohn's disease (CD). AIMS We sought to identify factors associated with abdominal pain in CD and evaluate the impact of opioid analgesics on pain and quality-of-life scores in this setting. METHODS We performed a longitudinal cohort study using a prospective, consented IBD natural history registry from a single academic center between 2009 and 2013. Consecutive CD patients were followed for at least 1 year after an index visit. Data were abstracted regarding pain experience (from validated surveys), inflammatory activity (using endoscopic/histologic findings), laboratory studies, coexistent psychiatric disorders, medical therapy, opioid analgesic, and tobacco use. RESULTS Of 542 CD patients (56.6% women), 232 (42.8%) described abdominal pain. Individuals with pain were more likely to undergo surgery and were more frequently prescribed analgesics and/or antidepressants/anxiolytics. Elevated ESR (OR 1.79; 95%CI 1.11-2.87), coexistent anxiety/depression (OR 1.87; 95%CI 1.13-3.09), smoking (OR 2.08; 95%CI 1.27-3.40), and opioid use (OR 2.46; 95%CI 1.33-4.57) were independently associated with abdominal pain. Eighty patients (14.8%) were prescribed opioids, while 31 began taking them at or after the index visit. Patients started on opioids demonstrated no improvement in abdominal pain or quality-of-life scores on follow-up compared to patients not taking opioids. CONCLUSIONS Abdominal pain is common in CD and is associated with significant opioid analgesic utilization and increased incidence of anxiety/depression, smoking, and elevated inflammatory markers. Importantly, opioid use in CD was not associated with improvement in pain or quality-of-life scores. These findings reinforce the limitations of currently available analgesics in IBD and support exploration of alternative therapies.
Collapse
Affiliation(s)
- M. D. Coates
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - N. Seth
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Texas Southwestern, Houston, TX, USA
| | - K. Clarke
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - H. Abdul-Baki
- Division of Gastroenterology and Hepatology, Department of Medicine, Allegheny Health System, Pittsburgh, PA, USA
| | - N. Mahoney
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - V. Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - M. D. Regueiro
- Division of Gastroenterology and Hepatology, Department of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - C. Ramos-Rivers
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - I. E. Koutroubakis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - K. Bielefeldt
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - D. G. Binion
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
90
|
Gotfried J, Naftali T, Schey R. Role of Cannabis and Its Derivatives in Gastrointestinal and Hepatic Disease. Gastroenterology 2020; 159:62-80. [PMID: 32333910 DOI: 10.1053/j.gastro.2020.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
Abstract
Medical and recreational cannabis use has increased dramatically over the last decade, resulting from mainstream cultural acceptance and legalization in several countries worldwide. Cannabis and its derivatives affect many gastrointestinal processes via the endocannabinoid system (ECS). The ECS influences gastrointestinal homeostasis through anti-inflammatory, anti-nociceptive, and anti-secretory effects. Some gastrointestinal disorders might therefore be treated with cannabinoids. Despite numerous studies in cell lines and animals, few human studies have evaluated the therapeutic effects of cannabinoids. Cannabis' schedule 1 drug status has limited its availability in research; cannabis has been legalized only recently, in some states, for medicinal and/or recreational use. Cannabinoids can alleviate chemotherapy-induced nausea and emesis and chronic pain. Studies have demonstrated the important roles of the ECS in metabolism, obesity, and nonalcoholic fatty liver disease and the anti-inflammatory effects of cannabis have been investigated in patients with inflammatory bowel diseases. Despite its potential benefits, undesired or even detrimental effects of cannabis can limit its use. Side effects such as cannabinoid hyperemesis syndrome affect some users. We review the ECS and the effects of cannabis and its derivatives on gastrointestinal and hepatic function in health and disease.
Collapse
Affiliation(s)
- Jonathan Gotfried
- Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Timna Naftali
- Division of Gastroenterology and Hepatology, Meir Medical Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Schey
- Division of Gastroenterology/Hepatology Department of Internal Medicine, University of Florida College of Medicine, Jacksonville, Florida.
| |
Collapse
|
91
|
Xu B, Xiao J, Xu K, Zhang Q, Chen D, Zhang R, Zhang M, Zhu H, Niu J, Zheng T, Li N, Zhang X, Fang Q. VF-13, a chimeric peptide of VD-hemopressin(α) and neuropeptide VF, produces potent antinociception with reduced cannabinoid-related side effects. Neuropharmacology 2020; 175:108178. [PMID: 32544481 DOI: 10.1016/j.neuropharm.2020.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/13/2023]
Abstract
Pharmacological evidence indicated a functional interaction between neuropeptide FF (NPFF) and cannabinoid systems, and the cannabinoids combined with the NPFF receptor agonist neuropeptide VF (NPVF) produced antinociception without tolerance. In the present study, VF-13, a chimeric peptide containing the pharmacophores of the endogenous cannabinoid peptide VD-hemopressin(α) (VD-Hpα) and NPVF, was synthesized and pharmacologically evaluated. In vitro, VF-13 significantly upregulated the phosphorylated level of extracellular signal-regulated kinase 1/2 (ERK1/2) in CHO cells stably expressing CB1 receptors and inhibited forskolin-induced cAMP accumulation in HEK293 cells stably expressing NPFF1 or NPFF2 receptors. Moreover, VF-13 induced neurite outgrowth in Neuro 2A cells via CB1 and NPFF receptors. These results suggest that VF-13 exhibits multifunctional agonism at CB1, NPFF1 and NPFF2 receptors in vitro. Interestingly, intracerebroventricular VF-13 produced dose-dependent antinociception in mouse models of tail-flick and carrageenan-induced inflammatory pain via the TRPV1 receptor. In contrast, the reference compound (m)VD-Hpα-NH2 induced CB1 receptor-mediated supraspinal antinociception. Additionally, subcutaneous injection of (m)VD-Hpα-NH2 and VF-13 produced significant antinociception in carrageenan-induced inflammatory pain model. In the tetrad assay, our data demonstrated that VF-13 elicited hypothermia, but not catalepsy and hypoactivity after intracerebroventricular injection. Notably, VF-13 produced non-tolerance forming antinociception over 6 days treatment in both acute and inflammatory pain models. Furthermore, VF-13 had no apparent effects on gastrointestinal transit, pentobarbitone-induced sedation, food intake, and motor coordination at the supraspinal level. In summary, VF-13, a novel chimeric peptide of VD-Hpα and NPVF, produced non-tolerance forming antinociception in preclinical pain models with reduced cannabinoid-related side effects.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
92
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
93
|
Cannabinoid agonists possibly mediate interaction between cholinergic and cannabinoid systems in regulating intestinal inflammation. Med Hypotheses 2020; 139:109613. [DOI: 10.1016/j.mehy.2020.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
|
94
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
95
|
Brugnatelli V, Turco F, Freo U, Zanette G. Irritable Bowel Syndrome: Manipulating the Endocannabinoid System as First-Line Treatment. Front Neurosci 2020; 14:371. [PMID: 32372912 PMCID: PMC7186328 DOI: 10.3389/fnins.2020.00371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Fabio Turco
- Molecular Biology and Biochemistry Lab, Department of Neurogastroentherology, University of Naples Federico II, Naples, Italy
| | - Ulderico Freo
- Department of Medicine, University of Padua, Padua, Italy
| | - Gastone Zanette
- Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
96
|
Zaidi SR, Khan ZH, Mukhtar K, Ahmed MM, Syed SH. A Case of Intussusception in a Patient with Marijuana Use: Coincidence or Possible Correlation? Cureus 2020; 12:e7493. [PMID: 32368425 PMCID: PMC7193230 DOI: 10.7759/cureus.7493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
'Intussusception' means invaginating or telescoping and is caused by any condition that disrupts the normal physiological mechanism of intestinal peristalsis. Intussusception is rare in adults with an incidence of two to three cases per population of 1,000,000 annually. The most common cause of intussusception in adults is a neoplasm. In this case report, we are describing the case of a 22-year-old female with a past medical history of chronic constipation and a 60-pound unintentional weight loss who presented with the sudden onset of progressively worsening, severe abdominal pain associated with nausea, episodes of non-bloody, non-bilious emesis, and dark-colored loose stools. The patient's social history was significant for extensive marijuana use for more than one year. Upon presentation, vitals were significant for mild bradycardia and examination was remarkable for diffuse abdominal pain. Initial laboratory testing was positive only for lactic acidosis. A computed tomography (CT) scan of the abdomen and pelvis revealed small bowel intussusception in the left hemiabdomen, along with periportal edema, and a small amount of pericholecystic fluid. The patient underwent both upper endoscopy and colonoscopy but no lead points for the intussusception could be identified. The patient responded to conservative management, including bowel rest, which resulted in the resolution of the intussusception on a follow-up small bowel series. Intraluminal irritants as the possible etiology of intussusception should be considered in the absence of a pathological lead point. Marijuana has been shown to act on various bowel segments and disrupts gastrointestinal motility through inhibition of cholinergic mechanisms. We believe the chronic use of marijuana could be the possible etiology of intussusception observed in our patient. Therefore, this case brings attention to the adverse effects of marijuana in light of increasing legalization and the increasing therapeutic use of marijuana and its derivatives.
Collapse
Affiliation(s)
| | - Zarak H Khan
- Internal Medicine, St. Mary Mercy Hospital, Livonia, USA
| | - Kashif Mukhtar
- Internal Medicine, St. Mary Mercy Hospital, Livonia, USA
| | - Munis M Ahmed
- Internal Medicine, St. Mary Mercy Hospital, Livonia, USA.,Internal Medicine, King Edward Medical University, Lahore, PAK
| | | |
Collapse
|
97
|
Win 55,212-2, atenolol and subdiaphragmatic vagotomy prevent acceleration of gastric emptying induced by cachexia via Yoshida-AH-130 cells in rats. Eur J Pharmacol 2020; 877:173087. [PMID: 32234430 DOI: 10.1016/j.ejphar.2020.173087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the effect of cachexia induced by AH-130 cells on gastrointestinal motility in rats. We evaluated food intake, body weight variation, cachexia index, gastric emptying and in vitro gastric responsiveness of control or cachexia rats. In addition, we evaluated the effect of pretreatment with atenolol (20 mg/kg, p.o.), win 55,212-2 (2 mg/kg, s.c.) or subdiaphragmatic vagotomy on the effects found. Atenolol prevented (P < 0.05) the acceleration of gastric emptying (area under the curve, AUC, 20360.17 ± 1970.9 vs. 12579.2 ± 785.4 μg/min/ml), and increased gastric responsiveness to carbachol (CCh) stimulation in cachectic rats compared to control groups (CCh-6M: 63.2 ± 5.5% vs. 46.5 ± 5.7%). Vagotomy prevented (P < 0.05) increase in gastric emptying acceleration (AUC 20360.17 ± 1970.9 vs. 13414.0 ± 1112.9 μg/min/ml) and caused greater in vitro gastric responsiveness of cachectic compared to control rats (CCh-6M: 63.2 ± 5.5% vs. 31.2 ± 4.7%). Win 55,212-2 attenuated the cachexia index (38.5 ± 2.1% vs. 25.8 ± 2.7%), as well as significantly (P < 0.05) preventing increase in gastric emptying (AUC 20360.17 ± 1970.9 vs. 10965.4 ± 1392.3 μg/min/ml) and gastric responsiveness compared to control groups (CCh-6M: 63.2 ± 5.5% vs. 38.2 ± 3.9%). Cachexia accelerated gastric emptying and increased gastric responsiveness in vitro. These phenomena were prevented by subdiaphragmatic vagotomy and by atenolol and win 55,212-2 treatments, showing vagal involvement of β1-adrenergic and cannabinoid CB1/CB2 receptors.
Collapse
|
98
|
Patterns of Marijuana Use Among Patients With Celiac Disease in the United States: A Population-based Analysis of the NHANES Survey. J Clin Gastroenterol 2020; 54:242-248. [PMID: 31339867 DOI: 10.1097/mcg.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Marijuana use has been assessed in patients with chronic gastrointestinal disorders and may contribute to either symptoms or palliation. Use in those with celiac disease (CD) has not been assessed. Our aim was to evaluate patterns of marijuana use in a large population-based survey among patients with CD, people who avoid gluten (PWAG), and controls. STUDY We analyzed data from the National Health and Nutrition Examination Survey from 2009 to 2014. χ tests and multivariable logistic regression were used to compare participants with CD and PWAG to controls regarding the use of marijuana. RESULTS Among respondents who reported ever using marijuana (overall 59.1%), routine (at-least monthly) marijuana use was reported by 46% of controls versus 6% of participants with diagnosed CD (P=0.005) and 66% undiagnosed CD as identified on serology (P=0.098) and 51% of PWAG (P=0.536). Subjects with diagnosed CD had lower odds of routine marijuana use compared with controls (odds ratio, 0.08; 95% confidence interval, 0.01-0.73), whereas participants with undiagnosed CD had increased odds of routine use (odds ratio, 2.26; 95% confidence interval, 0.83-6.13), which remained elevated even after adjusting for age, sex, race/ethnicity, health insurance status, alcohol, tobacco use, educational level, and poverty/income ratio. CONCLUSIONS In all groups, marijuana use was high. Although there were no differences among subjects with CD, PWAG, and controls who ever used marijuana, subjects with diagnosed CD appear to have decreased routine use of marijuana when compared with controls and PWAG. Those with undiagnosed CD have significantly higher rates of regular use. Future research should focus on the utilization of marijuana as it may contribute to further understanding of symptoms and treatments.
Collapse
|
99
|
Lackey AI, Chen T, Zhou YX, Bottasso Arias NM, Doran JM, Zacharisen SM, Gajda AM, Jonsson WO, Córsico B, Anthony TG, Joseph LB, Storch J. Mechanisms underlying reduced weight gain in intestinal fatty acid-binding protein (IFABP) null mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G518-G530. [PMID: 31905021 PMCID: PMC7099495 DOI: 10.1152/ajpgi.00120.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.
Collapse
Affiliation(s)
- Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Tina Chen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Yin X Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Natalia M Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Justine M Doran
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Sophia M Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Laurie B Joseph
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
100
|
Localization of cannabinoid and cannabinoid related receptors in the cat gastrointestinal tract. Histochem Cell Biol 2020; 153:339-356. [PMID: 32095931 DOI: 10.1007/s00418-020-01854-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
A growing body of literature indicates that activation of cannabinoid receptors may exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity. The present study aimed to immunohistochemically investigate the distribution of the canonical cannabinoid receptors CB1 (CB1R) and CB2 (CB2R) and the putative cannabinoid receptors G protein-coupled receptor 55 (GPR55), nuclear peroxisome proliferator-activated receptor alpha (PPARα), transient receptor potential ankyrin 1 (TRPA1), and serotonin receptor 5-HT1a 5-HT1aR) in tissue samples of the gastrointestinal tract of the cat. CB1R-immunoreactivity (CB1R-IR) was observed in gastric epithelial cells, intestinal enteroendocrine cells (EECs) and goblet cells, lamina propria mast cells (MCs), and enteric neurons. CB2R-IR was expressed by EECs, enterocytes, and macrophages. GPR55-IR was expressed by EECs, macrophages, immunocytes, and MP neurons. PPARα-IR was expressed by immunocytes, smooth muscle cells, and enteroglial cells. TRPA1-IR was expressed by enteric neurons and intestinal goblet cells. 5-HT1a receptor-IR was expressed by gastrointestinal epithelial cells and gastric smooth muscle cells. Cannabinoid receptors showed a wide distribution in the feline gastrointestinal tract layers. Although not yet confirmed/supported by functional evidences, the present research might represent an anatomical substrate potentially useful to support, in feline species, the therapeutic use of cannabinoids during gastrointestinal inflammatory diseases.
Collapse
|