51
|
Towards the development of a human in vitro model of the blood-brain barrier for virus-associated acute encephalopathy: assessment of the time- and concentration-dependent effects of TNF-α on paracellular tightness. Exp Brain Res 2020; 239:451-461. [PMID: 33219841 DOI: 10.1007/s00221-020-05985-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
The pathogenesis of virus-associated acute encephalopathy (VAE) involves brain edema caused by disruption of the blood-brain barrier (BBB). We aimed to develop an in vitro VAE model using an in vitro BBB model, to evaluate the dynamics of vascular dysfunction caused by tumor necrosis factor (TNF)-α. A co-culture model, consisting of Transwell®-grown human brain microvascular endothelial cells and pericytes, was treated with serially diluted TNF-α. Transendothelial electrical resistance (TER) was measured using cellZscope®. A permeability assay, using fluorescein isothiocyanate-conjugated sodium or dextran, was performed. Changes in claudin-5 localization and expression after TNF-α treatment were observed using immunofluorescence staining and western blot analysis. The TER decreased and permeability increased after TNF-α treatment; recovery time was dependent on TNF-α concentration. Claudin-5 was delocalized after TNF-α treatment and recovered in a TNF-α concentration-dependent manner. The expression of claudin-5 decreased 24 h after the TNF-α treatment and completely recovered 48 h after TNF-α treatment. Claudin-5 delocalization was likely associated with vascular hyperpermeability. To conclude, we evaluated vascular endothelial cell permeability and injury in VAE using an in vitro BBB model treated with TNF-α. This system can be useful for developing novel therapeutic strategies for VAE and designing treatments that target vascular permeability.
Collapse
|
52
|
Iannucci J, Rao HV, Grammas P. High Glucose and Hypoxia-Mediated Damage to Human Brain Microvessel Endothelial Cells Induces an Altered, Pro-Inflammatory Phenotype in BV-2 Microglia In Vitro. Cell Mol Neurobiol 2020; 42:985-996. [PMID: 33136275 PMCID: PMC8942976 DOI: 10.1007/s10571-020-00987-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
Diabetes is strongly linked to the development of Alzheimer’s disease (AD), though the mechanisms for this enhanced risk are unclear. Because vascular inflammation is a consistent feature of both diabetes and AD, the cerebral microcirculation could be a key target for the effects of diabetes in the brain. The goal of this study is to explore whether brain endothelial cells, injured by diabetes-related insults, glucose and hypoxia, can affect inflammatory and activation processes in microglia in vitro. Human brain microvascular endothelial cells (HBMVECs) were either treated with 5 mM glucose (control), 30 mM glucose (high glucose), exposed to hypoxia, or exposed to hypoxia plus high glucose. HBMVEC-conditioned medium was then used to treat BV-2 microglia. Alterations in microglia phenotype were assessed through measurement of nitric oxide (NO), cytokine production, microglial activation state markers, and microglial phagocytosis. HBMVECs were injured by exposure to glucose and/or hypoxia, as assessed by release of LDH, interleukin (IL)-1β, and reactive oxygen species (ROS). HBMVECs injured by glucose and hypoxia induced increases in microglial production of NO, tumor necrosis factor-α (TNFα) and matrix metalloproteinase (MMP)-9. Injured HBMVECs significantly increased microglial expression of CD11c and CLEC7A, and decreased expression of the homeostatic marker P2RY12. Finally, bead uptake by BV-2 cells, an index of phagocytic ability, was elevated by conditioned media from injured HBMVECs. The demonstration that injury to brain endothelial cells by diabetic-associated insults, glucose and hypoxia, promotes microglial inflammation supports the idea that the cerebral microcirculation is a critical locus for the deleterious effects of diabetes in the AD brain.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States. .,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Haripriya Vittal Rao
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Wake Forest Baptist Medical Center, Winston-Salem, Wake Forest, NC, 27101, USA
| | - Paula Grammas
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
53
|
Keymoradzadeh A, Hedayati Ch M, Abedinzade M, Gazor R, Rostampour M, Taleghani BK. Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats. Behav Brain Res 2020; 394:112814. [PMID: 32707137 DOI: 10.1016/j.bbr.2020.112814] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022]
Abstract
Neuro-inflammation is responsible for cognitive impairments and neurodegenerative diseases such as Alzheimer's disease. In this study, we aimed to investigate the enriched environment (EE) effect on learning and memory impairment as well as on pro-inflammatory cytokines changes induced by lipopolysaccharide (LPS). LPS injection (1 mg/kg/i.p, days 1, 3, 5, and 7) was used to develop the animal model of neuro-inflammation. Twenty-eight male Wistar rats were used in the experiment and randomly divided into 4 groups: 1) sham (S), 2) sham + enriched environment (SE), 3) LPS (L), and 4) LPS + EE (LE). Two different housing conditions, including standard environment (SE) and enriched environment, were used. The Morris Water Maze (MWM) test was used to examine animals learning and memory. IL-1β, IL-10, and TNF-α levels were measured in the brain using ELISA. We found that LPS significantly impaired learning and memory (p < 0.05) in the MWM task, but EE could significantly improve learning and memory impairment (p < 0.05). IL-1 and IL-10 levels dramatically increased in the LPS group (P < 0.05), whereas EE could decrease and increase IL-1β and IL-10 values in the LPS + EE group (P < 0.05), respectively. TNF-α levels were traced but had not detectable values in the hippocampus. Thus, we can conclude that EE has healing effects on LPS induced neuro-inflammation and can improve learning and memory deficit; however, further studies are needed to support the findings of our study.
Collapse
Affiliation(s)
- Arman Keymoradzadeh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmood Abedinzade
- Medical Biotechnology Research Center, School of Nursing, Midwifery and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rohollah Gazor
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behrooz Khakpour Taleghani
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
54
|
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 2020; 35:851-868. [PMID: 32297170 PMCID: PMC7988906 DOI: 10.1007/s11011-020-00573-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Faezeh Moakedi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Emily Hone
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Xuefang Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
55
|
Abstract
To date, there have been no detailed reports of patients developing persistent psychotic symptoms following Coronavirus disease 2019 (COVID-19) infection. There have been reports of patients developing transient delirium (with and without hypoxia) after COVID-19 infection as well as other neurological manifestations. We report on a female patient who, post-COVID-19 infection, developed an initial delirium followed by persistent and florid psychotic symptoms consisting of persecutory delusion, complex visual and auditory hallucinations and Capgras phenomenon in the absence of hypoxia but elevated tumour necrosis factor (TNF)-α. The psychotic symptoms persisted for about 40 days. Her magnetic resonance imaging brain scan, electroencephalogram, cerebrospinal fluid examination and extensive autoimmune panel did not show any abnormalities. The cause of the psychotic symptoms in this patient were not ascertained but we propose either an inflammatory state, characterised by the patient's elevated TNF-alpha levels as a possible contributing mechanism for her psychosis in line with the proinflammatory changes observed in some cases of psychosis. Or, an alternative, but unproven, hypothesis is one of an antibody-mediated encephalitic event induced by viral infection.
Collapse
Affiliation(s)
- Soon Tjin Lim
- Department of Neurology, University College Hospital, UCLH, UK
| | - Benjamin Janaway
- Department of Neuropsychiatry, National Hospital for Neurology and Neurosurgery, UCLH, UK
| | - Harry Costello
- Department of Neuropsychiatry, National Hospital for Neurology and Neurosurgery, UCLH, UK
| | - Anand Trip
- Queen Square Multiple Sclerosis Centre, National Hospital for Neurology and Neurosurgery, UCLH, UK
| | - Gary Price
- Department of Neuropsychiatry, National Hospital for Neurology and Neurosurgery, UCLH, UK
| |
Collapse
|
56
|
Panov J, Simchi L, Feuermann Y, Kaphzan H. Bioinformatics Analyses of the Transcriptome Reveal Ube3a-Dependent Effects on Mitochondrial-Related Pathways. Int J Mol Sci 2020; 21:ijms21114156. [PMID: 32532103 PMCID: PMC7312912 DOI: 10.3390/ijms21114156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The UBE3A gene encodes the ubiquitin E3-ligase protein, UBE3A, which is implicated in severe neurodevelopmental disorders. Lack of UBE3A expression results in Angelman syndrome, while UBE3A overexpression, due to genomic 15q duplication, results in autism. The cellular roles of UBE3A are not fully understood, yet a growing body of evidence indicates that these disorders involve mitochondrial dysfunction and increased oxidative stress. We utilized bioinformatics approaches to delineate the effects of murine Ube3a deletion on the expression of mitochondrial-related genes and pathways. For this, we generated an mRNA sequencing dataset from mouse embryonic fibroblasts (MEFs) in which both alleles of Ube3a gene were deleted and their wild-type controls. Since oxidative stress and mitochondrial dysregulation might not be exhibited in the resting baseline state, we also activated mitochondrial functioning in the cells of these two genotypes using TNFα application. Transcriptomes of the four groups of MEFs, Ube3a+/+ and Ube3a-/-, with or without the application of TNFα, were analyzed using various bioinformatics tools and machine learning approaches. Our results indicate that Ube3a deletion affects the gene expression profiles of mitochondrial-associated pathways. We further confirmed these results by analyzing other publicly available human transcriptome datasets of Angelman syndrome and 15q duplication syndrome.
Collapse
|
57
|
Clark IA. Randomized controlled trial validating the use of perispinal etanercept to reduce post-stroke disability has wide-ranging implications. Expert Rev Neurother 2020; 20:203-205. [PMID: 32028804 DOI: 10.1080/14737175.2020.1727742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing effective drug treatments for neurodegenerative disorders has always been hamstrung by the accepted inability of large molecules (roughly those with a molecular weight greater than 600 Daltons) to cross the blood-brain barrier (BBB) in therapeutic quantities when administered systemically. The dogma has been that a simple, noninvasive way to accomplish this goal is not possible with many agents, including biologicals, because they are too large. Various novel technologies to breach the BBB have been attempted, but with little success. A randomized double-blind, placebo-controlled clinical trial (RCT) administering a widely used anti-tumor necrosis factor (TNF) biological, etanercept, given via perispinal injection, which bypasses the BBB, turns this dogma on its head. This new trial holds much promise for stroke survivors, as well as having implications for developing treatments based on other large molecules for this and other brain disorders.
Collapse
Affiliation(s)
- Ian A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
58
|
Tobinick E. Immediate Resolution of Hemispatial Neglect and Central Post-Stroke Pain After Perispinal Etanercept: Case Report. Clin Drug Investig 2020; 40:93-97. [PMID: 31642048 PMCID: PMC6962280 DOI: 10.1007/s40261-019-00864-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Edward Tobinick
- Institute of Neurological Recovery, 1877 S. Federal Highway, Suite 110, Boca Raton, FL, 33432, USA.
| |
Collapse
|
59
|
Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a Factor of Neurodegenerative Disease: Thalidomide Analogs as Treatments. Front Cell Dev Biol 2019; 7:313. [PMID: 31867326 PMCID: PMC6904283 DOI: 10.3389/fcell.2019.00313] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is initiated when glial cells, mainly microglia, are activated by threats to the neural environment, such as pathogen infiltration or neuronal injury. Although neuroinflammation serves to combat these threats and reinstate brain homeostasis, chronic inflammation can result in excessive cytokine production and cell death if the cause of inflammation remains. Overexpression of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine with a central role in microglial activation, has been associated with neuronal excitotoxicity, synapse loss, and propagation of the inflammatory state. Thalidomide and its derivatives, termed immunomodulatory imide drugs (IMiDs), are a class of drugs that target the 3'-untranslated region (3'-UTR) of TNF-α mRNA, inhibiting TNF-α production. Due to their multi-potent effects, several IMiDs, including thalidomide, lenalidomide, and pomalidomide, have been repurposed as drug treatments for diseases such as multiple myeloma and psoriatic arthritis. Preclinical studies of currently marketed IMiDs, as well as novel IMiDs such as 3,6'-dithiothalidomide and adamantyl thalidomide derivatives, support the development of IMiDs as therapeutics for neurological disease. IMiDs have a competitive edge compared to similar anti-inflammatory drugs due to their blood-brain barrier permeability and high bioavailability, with the potential to alleviate symptoms of neurodegenerative disease and slow disease progression. In this review, we evaluate the role of neuroinflammation in neurodegenerative diseases, focusing specifically on the role of TNF-α in neuroinflammation, as well as appraise current research on the potential of IMiDs as treatments for neurological disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | | | | | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
60
|
DOLOR CRÓNICO Y DEPRESIÓN. REVISTA MÉDICA CLÍNICA LAS CONDES 2019. [DOI: 10.1016/j.rmclc.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
61
|
Biringer RG. The Role of Eicosanoids in Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142560. [PMID: 31323750 PMCID: PMC6678666 DOI: 10.3390/ijerph16142560] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders known. Estimates from the Alzheimer's Association suggest that there are currently 5.8 million Americans living with the disease and that this will rise to 14 million by 2050. Research over the decades has revealed that AD pathology is complex and involves a number of cellular processes. In addition to the well-studied amyloid-β and tau pathology, oxidative damage to lipids and inflammation are also intimately involved. One aspect all these processes share is eicosanoid signaling. Eicosanoids are derived from polyunsaturated fatty acids by enzymatic or non-enzymatic means and serve as short-lived autocrine or paracrine agents. Some of these eicosanoids serve to exacerbate AD pathology while others serve to remediate AD pathology. A thorough understanding of eicosanoid signaling is paramount for understanding the underlying mechanisms and developing potential treatments for AD. In this review, eicosanoid metabolism is examined in terms of in vivo production, sites of production, receptor signaling, non-AD biological functions, and known participation in AD pathology.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd., Bradenton, FL 34211, USA.
| |
Collapse
|
62
|
Wang X, Ma C, Liu CY, Li GJ, Zhao D, Han DF. Neuronal NMDAR Currents of the Hippocampus and Learning Performance in Autoimmune Anti-NMDAR Encephalitis and Involvement of TNF-α and IL-6. Front Neurol 2019; 10:684. [PMID: 31297084 PMCID: PMC6607466 DOI: 10.3389/fneur.2019.00684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Among autoimmune encephalitis, patients with anti-N-methyl D- aspartate receptor (NMDAR) encephalitis typically present epileptic seizures, memory deficits and psychiatric symptoms. However, the signal mechanisms leading to the functional disorders of autoantibodies are largely unclear. In this study, anti-NMDAR antibody was administered into dentate gyri against the NR1 subunit of the NMDAR. The purpose of the study examined the effects of pro-inflammatory tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) on neuronal NMDAR currents of the hippocampus in rats with anti-NMDAR encephalitis and we further determined the role played by TNF-α and IL-6 in modulating learning performance. In results, we observed a decrease in amplitude of the NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs) in the hippocampal neurons of animals treated with anti-NMDAR. In those rats with anti-NMDAR, we also observed impaired learning performance in the Morris water maze and spatial working memory test. Of note, cerebral infusion of TNF-α and IL-6 worsened NMDAR-EPSCs and this was accompanied with exaggeration of impaired learning performance. In conclusion, our findings suggest that the role played by neuroinflammation in exacerbating the memory impairment found in animals treated with anti-NMDAR. Anti-inflammation is a potential target in improving the memory impairment induced by anti-NMDA encephalitis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Chi Ma
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Cai-Yun Liu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Guang-Jian Li
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Ding Zhao
- Department of Orthopedics, First Hospital of Jilin University, Changchun, China
| | - Dong-Feng Han
- Department of Emergency, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
63
|
Clark IA, Vissel B. Neurodegenerative disease treatments by direct TNF reduction, SB623 cells, maraviroc and irisin and MCC950, from an inflammatory perspective – a Commentary. Expert Rev Neurother 2019; 19:535-543. [DOI: 10.1080/14737175.2019.1618710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
64
|
Ehsanifar M, Tameh AA, Farzadkia M, Kalantari RR, Zavareh MS, Nikzaad H, Jafari AJ. Exposure to nanoscale diesel exhaust particles: Oxidative stress, neuroinflammation, anxiety and depression on adult male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:338-347. [PMID: 30391838 DOI: 10.1016/j.ecoenv.2018.10.090] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 05/28/2023]
Abstract
Exposure to nanoscale diesel engines exhausted particles (DEPs) is a well-recognized risk factor for respiratory and cardiovascular diseases. Rodents as commonly used models for urban air pollution in health effect studies demonstrate constant stimulation of inflammatory responses in the main areas of the brain. Nevertheless, the primary effect of diesel exhaust particulate matter on some of the brain regions and relation by behavioral alterations still remains untouched. We evaluated the brain regional inflammatory responses to a nanosized subfraction of diesel engines exhaust particulate matter (DEPs < 200 nm) in an adult male mice brain. Adult male mice were exposed to DEPs for 3, 6, and 8 h per day, 12 weeks and five days per week. Degree of anxiety and the depression by elevated plus maze and Forced Swimming Test respectively (FST) did measurement. After behavior tests, the plasma and some of the brain regions such as olfactory bulb (OB) and hippocampus (HI) were analyzed for oxidative stress and inflammatory responses. The inflammation and oxidative stress changes in OB and HI, markedly coincides with the results of behavioral alterations. These responses corresponded with rapid induction of MDA and nitrite oxide (NO) in brain regions and neuronal nitric oxide synthase (nNOS) mRNA followed by IL6, IL1α, and TNFα in OB and HI. The different times of DEPs exposure, leads to oxidative stress and inflammatory in plasma and brain regions. That this cumulative transport of inhaled nanoscale DEPs into the brain and creating to inflammation responses of brain regions may cause problems of brain function and anxiety and depression.
Collapse
Affiliation(s)
- Mojtaba Ehsanifar
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantari
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Nikzaad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
65
|
Romano S, Salustri E, Ruscitti P, Carubbi F, Penco M, Giacomelli R. Cardiovascular and Metabolic Comorbidities in Rheumatoid Arthritis. Curr Rheumatol Rep 2018; 20:81. [DOI: 10.1007/s11926-018-0790-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
66
|
Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer's disease. Acta Neuropathol 2018; 136:663-689. [PMID: 30349969 PMCID: PMC6208728 DOI: 10.1007/s00401-018-1918-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
The dominant hypothesis of Alzheimer’s disease (AD) aetiology, the neuropathological guidelines for diagnosing AD and the majority of high-profile therapeutic efforts, in both research and in clinical practice, have been built around one possible causal factor, amyloid-β (Aβ). However, the causal link between Aβ and AD remains unproven. Here, in the context of a detailed assessment of historical and contemporary studies, we raise critical questions regarding the role of Aβ in the definition, diagnosis and aetiology of AD. We illustrate that a holistic view of the available data does not support an unequivocal conclusion that Aβ has a central or unique role in AD. Instead, the data suggest alternative views of AD aetiology are potentially valid, at this time. We propose that an unbiased way forward for the field, beyond the current Aβ-centric approach, without excluding a role for Aβ, is required to come to an accurate understanding of AD dementia and, ultimately, an effective treatment.
Collapse
|
67
|
Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol 2018; 175:3859-3875. [PMID: 30097997 PMCID: PMC6151331 DOI: 10.1111/bph.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
While cytokines such as TNF have long been recognized as essential to normal cerebral physiology, the implications of their chronic excessive production within the brain are now also increasingly appreciated. Syndromes as diverse as malaria and lead poisoning, as well as non‐infectious neurodegenerative diseases, illustrate this. These cytokines also orchestrate changes in tau, α‐synuclein, amyloid‐β levels and degree of insulin resistance in most neurodegenerative states. New data on the effects of salbutamol, an indirect anti‐TNF agent, on α‐synuclein and Parkinson's disease, APOE4 and tau add considerably to the rationale of the anti‐TNF approach to understanding, and treating, these diseases. Therapeutic advances being tested, and arguably useful for a number of the neurodegenerative diseases, include a reduction of excess cerebral TNF, whether directly, with a specific anti‐TNF biological agent such as etanercept via Batson's plexus, or indirectly via surgically implanting stem cells. Inhaled salbutamol also warrants investigating further across the neurodegenerative disease spectrum. It is now timely to integrate this range of new information across the neurodegenerative disease spectrum, rather than keep seeing it through the lens of individual disease states.
Collapse
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
68
|
Shoffstall AJ, Paiz J, Miller D, Rial G, Willis M, Menendez D, Hostler S, Capadona JR. Potential for thermal damage to the blood-brain barrier during craniotomy: implications for intracortical recording microelectrodes. J Neural Eng 2018; 15:034001. [PMID: 29205169 PMCID: PMC6482047 DOI: 10.1088/1741-2552/aa9f32] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Our objective was to determine how readily disruption of the blood-brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. APPROACH We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. MAIN RESULTS Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from +3 °C to +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. SIGNIFICANCE Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during 'off' periods. While saline alone was ineffective at preventing overheating, its use is still recommended to remove bone dust from the surgical site and to augment other cooling methods.
Collapse
Affiliation(s)
- Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44016
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151 W/APT, Cleveland, OH 44106-1702, USA
| | - Jen Paiz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44016
| | - David Miller
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44016
| | - Griffin Rial
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44016
| | - Mitchell Willis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44016
| | - Dhariyat Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44016
| | - Stephen Hostler
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44016
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151 W/APT, Cleveland, OH 44106-1702, USA
| |
Collapse
|
69
|
Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
70
|
Affiliation(s)
- Edward Tobinick
- a Institute of Neurological Recovery , Boca Raton , FL , USA
| |
Collapse
|
71
|
Clark IA, Vissel B. The Inflammatory Nature of Post-surgical Delirium Predicts Benefit of Agents With Anti-TNF Effects, Such as Dexmedetomidine. Front Neurosci 2018; 12:257. [PMID: 29725287 PMCID: PMC5917006 DOI: 10.3389/fnins.2018.00257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research (AMR), Sydney, NSW, Australia
| |
Collapse
|
72
|
Rahimi F. Aptamers Selected for Recognizing Amyloid β-Protein-A Case for Cautious Optimism. Int J Mol Sci 2018; 19:ijms19030668. [PMID: 29495486 PMCID: PMC5877529 DOI: 10.3390/ijms19030668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are versatile oligonucleotide ligands used for molecular recognition of diverse targets. However, application of aptamers to the field of amyloid β-protein (Aβ) has been limited so far. Aβ is an intrinsically disordered protein that exists in a dynamic conformational equilibrium, presenting time-dependent ensembles of short-lived, metastable structures and assemblies that have been generally difficult to isolate and characterize. Moreover, despite understanding of potential physiological roles of Aβ, this peptide has been linked to the pathogenesis of Alzheimer disease, and its pathogenic roles remain controversial. Accumulated scientific evidence thus far highlights undesirable or nonspecific interactions between selected aptamers and different Aβ assemblies likely due to the metastable nature of Aβ or inherent affinity of RNA oligonucleotides to β-sheet-rich fibrillar structures of amyloidogenic proteins. Accordingly, lessons drawn from Aβ–aptamer studies emphasize that purity and uniformity of the protein target and rigorous characterization of aptamers’ specificity are important for realizing and garnering the full potential of aptamers selected for recognizing Aβ or other intrinsically disordered proteins. This review summarizes studies of aptamers selected for recognizing different Aβ assemblies and highlights controversies, difficulties, and limitations of such studies.
Collapse
Affiliation(s)
- Farid Rahimi
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
73
|
Jia Z, Wei Y, Li X, Yang L, Liu H, Guo C, Zhang L, Li N, Guo S, Qian Y, Li Z. Exposure to Ambient Air Particles Increases the Risk of Mental Disorder: Findings from a Natural Experiment in Beijing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010160. [PMID: 29351245 PMCID: PMC5800259 DOI: 10.3390/ijerph15010160] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
Abstract
Epidemiology studies indicated that air pollution has been associated with adverse neurological effects in human. Moreover, the secretion of glucocorticoid (GC) affects the mood regulation, and the negative feedback of hippocampal glucocorticoid receptors (GR) inhibits the GC secretion. Meanwhile, the over secretion of GC can interfere the immune system and induce neurotoxicity. In the present study, the human test showed that the secretion of the cortisol in plasma was elevated after exposure in heavy air pollution. In the mouse model, we found that breathing the highly polluted air resulted in the negative responses of the mood-related behavioral tests and morphology of hippocampus, as well as the over secretion of GC in plasma, down regulation of GR, and up-regulation of cytokine and chemokine in the hippocampus. When considering the interrelated trends between the hippocampal GR, inflammatory factors, and plasmatic GC, we speculated that PM2.5 exposure could lead to the increased secretion of GC in plasma by decreasing the expression of GR in hippocampus, which activated the inflammation response, and finally induced neurotoxicity, suggesting that PM2.5 exposure negatively affects mood regulation. When combined with the results of the human test, it indicated that exposure to ambient air particles increased the risk of mental disorder.
Collapse
Affiliation(s)
- Zhen Jia
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100000, China.
| | - Yongjie Wei
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Xiaoqian Li
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Lixin Yang
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Huijie Liu
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Chen Guo
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Lulu Zhang
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Nannan Li
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Shaojuan Guo
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Yan Qian
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Zhigang Li
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| |
Collapse
|
74
|
Hasturk AE, Gokce EC, Yilmaz ER, Horasanli B, Evirgen O, Hayirli N, Gokturk H, Erguder I, Can B. Therapeutic Evaluation of Tumor Necrosis Factor-alpha Antagonist Etanercept against Traumatic Brain Injury in Rats: Ultrastructural, Pathological, and Biochemical Analyses. Asian J Neurosurg 2018; 13:1018-1025. [PMID: 30459860 PMCID: PMC6208262 DOI: 10.4103/ajns.ajns_29_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose The aim of the present study was to investigate the effect of etanercept (ETA) on histopathological and biochemical changes after traumatic brain injury (TBI) in rats. Materials and Methods Thirty-six male Wistar albino rats were distributed into three groups (n = 12 each). Control group rats were not subjected to trauma. Trauma group rats were subjected to TBI only. ETA group rats were subjected to TBI plus ETA (5 mg/kg intraperitoneal [i.p.]). The groups were further subdivided into those sacrificed in the hyperacute stage (1 h after TBI) (control-1, trauma-1, and ETA-1 groups) and the acute stage (6 h after TBI) (control-6, trauma-6, and ETA-6 groups). Tissue levels of tumour necrosis factor-alpha, interleukin-1 beta, malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase were analyzed. Histopathological and ultrastructural evaluations were also performed. Results i.p. administration of ETA at 1 and 6 h significantly reduced inflammatory cytokine expression, attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in comparison to trauma group. Histopathological and ultrastructural abnormalities were significantly reduced in ETA-treated rats compared to closed head injury trauma groups. Conclusions ETA significantly improves neural function and prevents post-TBI histopathological damage in rats.
Collapse
Affiliation(s)
- Askin Esen Hasturk
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Emre Cemal Gokce
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Department of Neurosurgery, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Bahriye Horasanli
- Department of Neurology, Baskent University Faculty of Medicine, Konya, Turkey
| | - Oya Evirgen
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nazli Hayirli
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hilal Gokturk
- Department of Histology and Embryology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Imge Erguder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Belgin Can
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
75
|
Alessenko AV, Bachurin SO, Karatasso YO, Korotaeva AA, Shevzova EF, Shingarova LN. Dimebon correction of changes in phospholipid composition induced by tumor necrosis factor-alpha in experement. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:91-97. [DOI: 10.17116/jnevro201811808191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
76
|
Prospects for a Robust Cortical Recording Interface. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
77
|
Infliximab ameliorating depression-like behavior through inhibiting the activation of the IDO-HAAO pathway mediated by tumor necrosis factor-α in a rat model. Neuroreport 2017; 27:953-9. [PMID: 27366867 DOI: 10.1097/wnr.0000000000000637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, some studies have suggested that the activation of inflammatory system plays a role in the occurrence of depression. Tumor necrosis factor-α (TNF-α), as one of the preinflammatory cytokines, has been reported to be involved in the occurrence of various diseases including depression. Infliximab, an antagonist of TNF-α, is usually used to treat some autoimmune diseases such as Crohn's disease and can perhaps be used to treat other diseases. In this study, the antidepressant effect and a possible mechanism of infliximab were investigated by studying the depression-like behavior and expression of TNF-α, indoleamine 2, 3-dioxygenase (IDO), and 3-hydroxyl amino acid oxygenase (HAAO) from the cortex and hippocampus in rat exposed to chronic unpredicted stress. Forty male Sprague-Dawley rats were divided into a control group (CG), an infliximab-treated control group, a model group (MG), and an infliximab-treated model group (IFXM). Infliximab (5 mg/kg once week) was administered to the infliximab-treated control group and IFXM rats by an intraperitoneal injection, whereas an equivalent volume of vehicle was administered to CG and MG rats. Rat behaviors and the expression of TNF-α, IDO, and HAAO in the cortex and hippocampus were determined. It was found that a significant relief in depression-like behaviors was observed with a downregulation of TNF-α, IDO, and HAAO expression in the IFXM rats compared with MG rats. The results show the antidepressant effect of infliximab and suggest that its mechanism is partly related to inhibition of IDO-HAAO pathway activation mediated by TNF-α in rat brain.
Collapse
|
78
|
Decourt B, Lahiri DK, Sabbagh MN. Targeting Tumor Necrosis Factor Alpha for Alzheimer's Disease. Curr Alzheimer Res 2017; 14:412-425. [PMID: 27697064 DOI: 10.2174/1567205013666160930110551] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/10/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) affects an estimated 44 million individuals worldwide, yet no therapeutic intervention is available to stop the progression of the dementia. Neuropathological hallmarks of AD are extracellular deposits of amyloid beta (Aβ) peptides assembled in plaques, intraneuronal accumulation of hyperphosphorylated tau protein forming tangles, and chronic inflammation. A pivotal molecule in inflammation is the pro-inflammatory cytokine TNF-α. Several lines of evidence using genetic and pharmacological manipulations indicate that TNF-α signaling exacerbates both Aβ and tau pathologies in vivo. Interestingly, preventive and intervention anti-inflammatory strategies demonstrated a reduction in brain pathology and an amelioration of cognitive function in rodent models of AD. Phase I and IIa clinical trials suggest that TNF-α inhibitors might slow down cognitive decline and improve daily activities in AD patients. In the present review, we summarize the evidence pointing towards a beneficial role of anti-TNF-α therapies to prevent or slow the progression of AD. We also present possible physical and pharmacological interventions to modulate TNF-α signaling in AD subjects along with their limitations.
Collapse
Affiliation(s)
- Boris Decourt
- Banner Sun Health Research Institute, 10515 W. Santa Fe Dr., Sun City AZ 85351, United States
| | - Debomoy K Lahiri
- Institute of Psychiatry Research, Department of Psychiatry, School of Medicine, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, 240 West Thomas, Ste 301, Phoenix, AZ 85013, United States
| |
Collapse
|
79
|
Zhang S, Xie H, Wang Y, Li D, Du L, Wu Y, Yang GY. Enriched environment improves behavioral performance and attenuates inflammatory response induced by TNF-α in healthy adult mice. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17730471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Several studies have demonstrated the neuroprotective effect of enriched environment (EE) and its positive effect on cognitive performance in pathological conditions, such as neurodegenerative diseases, epilepsy, and traumatic brain injury. However, the immunomodulatory effect of EE in normal rodents is not well characterized. To assess the immunomodulatory effect of EE, we randomly assigned normal mice to EE housing or standard environmental (SE) housing for 3 weeks. Behavioral alterations were evaluated by open field, fear conditioning, and Morris water maze tests. Immunohistochemical staining was performed to assess the expression of behavioral-related proteins, and enzyme-linked immunosorbent assay (ELISA) for brain-derived neurotrophic factor (BDNF), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) was also performed. We also measured the levels of RIP1 and RIP3 proteins using western blotting. EE significantly improved the cognitive performance which was associated with the increased expressions of BDNF, ionized calcium-binding adapter molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP); EE did not influence any morphological changes in the brain tissue in adult mice; however, increased resistance to inflammation induced by TNF-α was observed. These findings indicate that EE can positively influence cognitive and behavioral performance in healthy adult mice by exerting environ-immuno effect on neural function.
Collapse
Affiliation(s)
- Shehong Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dake Li
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
80
|
Kelley MH, Wu WW, Lei J, McLane M, Xie H, Hart KD, Pereira L, Burd I, Maylie J. Functional changes in hippocampal synaptic signaling in offspring survivors of a mouse model of intrauterine inflammation. J Neuroinflammation 2017; 14:180. [PMID: 28874190 PMCID: PMC5583754 DOI: 10.1186/s12974-017-0951-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/27/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent evidence suggests that exposure to intrauterine inflammation causes acute fetal brain injury and is linked to a spectrum of neurobehavioral disorders. In a rodent model of intrauterine inflammation induced by lipopolysaccharide (LPS) exposure in utero, activated microglia can be detected in the hippocampus of offspring survivors, as late as 60 days postnatal (DPN). Given that the hippocampus is important for learning and memory, these results suggest that in utero inflammation underlies long-term cognitive deficits observed in children/survivors. METHODS An established mouse model of LPS-induced intrauterine inflammation was used to study hippocampal function from offspring at 44-59 DPN. Microgliosis was examined at 45 DPN. Extracellular field recordings of synaptic transmission were performed on acute hippocampal slices. RESULTS LPS offspring mice displayed persistent microglial activation and increased CA3-CA1 excitatory synaptic strength, which can be explained in part by an increase in the probability of glutamate release, and reduced long-term synaptic potentiation compared to control mice. CONCLUSIONS These results offer a mechanistic explanation for the cognitive and behavioral deficits observed in survivors of preterm birth caused by intrauterine inflammation.
Collapse
Affiliation(s)
- Melissa H Kelley
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wendy W Wu
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Present address: US Food and Drug Administration, Silver Spring, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Michael McLane
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kyle D Hart
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Leonardo Pereira
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA.
| | - James Maylie
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
81
|
Clark IA, Vissel B. The meteorology of cytokine storms, and the clinical usefulness of this knowledge. Semin Immunopathol 2017; 39:505-516. [PMID: 28451786 PMCID: PMC5495849 DOI: 10.1007/s00281-017-0628-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
The term cytokine storm has become a popular descriptor of the dramatic harmful consequences of the rapid release of polypeptide mediators, or cytokines, that generate inflammatory responses. This occurs throughout the body in both non-infectious and infectious disease states, including the central nervous system. In infectious disease it has become a useful concept through which to appreciate that most infectious disease is not caused directly by a pathogen, but by an overexuberant innate immune response by the host to its presence. It is less widely known that in addition to these roles in disease pathogenesis these same cytokines are also the basis of innate immunity, and in lower concentrations have many essential physiological roles. Here we update this field, including what can be learned through the history of how these interlinking three aspects of biology and disease came to be appreciated. We argue that understanding cytokine storms in their various degrees of acuteness, severity and persistence is essential in order to grasp the pathophysiology of many diseases, and thus the basis of newer therapeutic approaches to treating them. This particularly applies to the neurodegenerative diseases.
Collapse
Affiliation(s)
- Ian A Clark
- Research School of Biology, Australian National University, Canberra, Australia.
| | - Bryce Vissel
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
82
|
Delgado-Alvarado M, Gago B, Gorostidi A, Jiménez-Urbieta H, Dacosta-Aguayo R, Navalpotro-Gómez I, Ruiz-Martínez J, Bergareche A, Martí-Massó JF, Martínez-Lage P, Izagirre A, Rodríguez-Oroz MC. Tau/α-synuclein ratio and inflammatory proteins in Parkinson's disease: An exploratory study. Mov Disord 2017; 32:1066-1073. [DOI: 10.1002/mds.27001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Manuel Delgado-Alvarado
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Belén Gago
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Ana Gorostidi
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
- Genomics Platform, Biodonostia Research Institute; San Sebastián Spain
| | - Haritz Jiménez-Urbieta
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Rosalía Dacosta-Aguayo
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Irene Navalpotro-Gómez
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Javier Ruiz-Martínez
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
- Movement Disorders Unit, Department of Neurology, University Hospital Donostia; San Sebastián Spain
| | - Alberto Bergareche
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
- Movement Disorders Unit, Department of Neurology, University Hospital Donostia; San Sebastián Spain
| | - José F. Martí-Massó
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
- Movement Disorders Unit, Department of Neurology, University Hospital Donostia; San Sebastián Spain
| | | | - Andrea Izagirre
- Department of Neurology, CITA-Alzheimer Foundation; San Sebastián Spain
| | - María C. Rodríguez-Oroz
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute; San Sebastián Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
- Movement Disorders Unit, Department of Neurology, University Hospital Donostia; San Sebastián Spain
- Ikerbasque (Basque Foundation for Science); Bilbao Spain
- Basque Center on Cognition Brain and Language (BCBL); San Sebastián Spain
| |
Collapse
|
83
|
Kicinski M, Saenen ND, Viaene MK, Den Hond E, Schoeters G, Plusquin M, Nelen V, Bruckers L, Sioen I, Loots I, Baeyens W, Roels HA, Nawrot TS. Urinary t,t-muconic acid as a proxy-biomarker of car exhaust and neurobehavioral performance in 15-year olds. ENVIRONMENTAL RESEARCH 2016; 151:521-527. [PMID: 27569194 DOI: 10.1016/j.envres.2016.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Traffic-related air pollution has been shown to induce neurotoxicity in rodents. Several recent epidemiological studies reported negative associations between residential outdoor air pollution and neurobehavioral performance. We investigated in a population of non-smoker adolescents the associations between the urinary concentration of trans, trans-muconic acid (t,t-MA-U), a metabolite of benzene and used as proxy-biomarker of traffic exposure, and two neurobehavioral domains, i.e. sustained attention and short-term memory. METHODS In the framework of an environmental health surveillance study in Flanders (Belgium), we examined between 2008 and 2014 grade nine high school students (n=895). We used reaction time, number of omission errors, and number of commission errors in the Continuous Performance Test to evaluate sustained attention, and for the evaluation of short-term memory we used maximum digit span forward and backward of the Digit Span Test. We measured blood lead (PbB) to assess the independent effect of t,t-MA-U on neurobehavioral outcomes. RESULTS This neurobehavioral examination study showed that a ten-fold increase in t,t-MA-U was associated with a 0.14 SD lower sustained attention (95% Confidence Interval: -0.26 to -0.019; p=0.02) and a 0.17 SD diminished short-term memory (95% CI: -0.31 to -0.030; p=0.02). For the same increment in t,t-MA-U, the Continuous Performance Test showed a 12.2ms higher mean reaction time (95% CI: 4.86-19.5; p=0.001) and 0.51 more numbers of errors of omission (95% CI: 0.057-0.97; p=0.028), while no significant association was found with errors of commission. For the Digit Span Tests, the maximum digit span forward was associated with a 0.20 lower number of digits (95% CI: -0.38 to -0.026; p=0.025) and maximum digit span backward with -0.15 digits (95% CI: -0.32 to 0.022; p=0.088). These associations were independent of PbB, parental education and other important covariates including gender, age, passive smoking, ethnicity, urinary creatinine, time of the day, and examination day of the week. For PbB, an independent association was only found with mean reaction time of the Continuous Performance Test (19.1ms, 95% CI: 2.43-35.8; p=0.025). CONCLUSIONS In adolescents, a ten-fold increase in the concentration of t,t-MA-U, used as a proxy-biomarker for traffic-related exposure, was associated with a significant deficit in sustained attention and short-term memory. The public health implications of this finding cannot be overlooked as the effect-size for these neurobehavioral domains was about 40% of the effect-size of parental education.
Collapse
Affiliation(s)
- Michal Kicinski
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Mineke K Viaene
- Department of Neurology, Sint Dimphna Hospital, Geel, Belgium
| | - Elly Den Hond
- Department of Health, Provincial Institute for Hygiene, Antwerp, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research, Environmental Risk and Health, Mol, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Vera Nelen
- Department of Health, Provincial Institute for Hygiene, Antwerp, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Isabelle Sioen
- Department of Public Health, Ghent University, Ghent, Belgium
| | - Ilse Loots
- Department of Sociology, University of Antwerp, Antwerp, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health and Primary Care, Environment & Health Unit, Leuven University, Leuven, Belgium.
| |
Collapse
|
84
|
Chen B, Deng X, Wang B, Liu H. Etanercept, an inhibitor of TNF-a, prevents propofol-induced neurotoxicity in the developing brain. Int J Dev Neurosci 2016; 55:91-100. [PMID: 27756568 DOI: 10.1016/j.ijdevneu.2016.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/18/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Propofol can induce acute neuronal apoptosis, neuronal loss or long-term cognitive impairment when exposed in neonatal rodents, but the mechanisms by which propofol induces developmental neurotoxicity are unclear. Recent studies have demonstrated that propofol can increase the TNF-α level in the developing brain, but there is a lack of direct evidence to show whether TNF-α is partially or fully involved in propofol-induced neurotoxicity. The present study shows that propofol exposure in neonatal rats induces an increase of TNF-α in the cerebral spinal fluid, hippocampus and prefrontal cortex (PFC). Etanercept, a TNF-α inhibitor, prevents propofol-induced short- or long-term neuronal apoptosis, neuronal loss, synaptic loss and long-term cognitive impairment. Furthermore, mTNF-α (precursor of TNF-α) expression in microglia cells is increased after propofol anaesthesia in either the hippocampus or PFC, but mTNF-α expression in neurons is only increased in the PFC. These findings suggest that TNF-α may mediate propofol-induced developmental neurotoxicity, and etanercept can provide neural protection. Microglia are the main cellular source of TNF-α after propofol exposure, while the synthesis of TNF-α in neurons is brain-region selective.
Collapse
Affiliation(s)
- Bo Chen
- Department of Anesthesiology, Chongqing Cancer Institute, Chongqing 40030, PR China; Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Xiaoyuan Deng
- Department of Anesthesiology, Chongqing Cancer Institute, Chongqing 40030, PR China
| | - Bin Wang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing Cancer Institute, Chongqing 40030, PR China.
| |
Collapse
|
85
|
Saenen ND, Provost EB, Viaene MK, Vanpoucke C, Lefebvre W, Vrijens K, Roels HA, Nawrot TS. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren. ENVIRONMENT INTERNATIONAL 2016; 95:112-9. [PMID: 27575366 DOI: 10.1016/j.envint.2016.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 05/23/2023]
Abstract
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤2.5 or 10μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2days before) and chronic (365days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n=894) of the children (n=310) reflected slower Stroop Test (p=0.05) and Digit-Symbol Test (p=0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087s (SE: ±0.034; p=0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45±3.47msec; p=0.007) and Stroop Tests (59.9±26.5msec; p=0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.
Collapse
Affiliation(s)
- Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eline B Provost
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Mineke K Viaene
- Department of Neurology, Sint Dimphna Hospital, Geel, Belgium
| | | | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium.
| |
Collapse
|
86
|
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 2016; 13:236. [PMID: 27596607 PMCID: PMC5011997 DOI: 10.1186/s12974-016-0708-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, 0200, Australia.
| | - Bryce Vissel
- Neurodegeneration Research Group, Garvan Institute, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
87
|
Turhan L, Batmaz S, Kocbiyik S, Soygur AH. The role of tumour necrosis factor alpha and soluble tumour necrosis factor alpha receptors in the symptomatology of schizophrenia. Nord J Psychiatry 2016; 70:342-350. [PMID: 26754110 DOI: 10.3109/08039488.2015.1122079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Immunological mechanisms may be responsible for the development and maintenance of schizophrenia symptoms. Aim The aim of this study is to measure tumour necrosis factor-alpha (TNF-α), soluble tumour necrosis factor-alpha receptor I (sTNF-αRI), and soluble tumour necrosis factor-alpha receptor II (sTNF-αRII) levels in patients with schizophrenia and healthy individuals, and to determine their relationship with the symptoms of schizophrenia. Methods Serum TNF-α, sTNF-αRI and sTNF-αRII levels were measured. The Positive and Negative Syndrome Scale (PANSS) was administered for patients with schizophrenia (n = 35), and the results were compared with healthy controls (n = 30). Hierarchical regression analyses were undertaken to predict the levels of TNF-α, sTNF-αRI and sTNF-αRII. Results No significant difference was observed in TNF-α levels, but sTNF-αRI and sTNF-αRII levels were lower in patients with schizophrenia. Serum sTNF-αRI and sTNF-αRII levels were found to be negatively correlated with the negative subscale score of the PANSS, and sTNF-αRI levels were also negatively correlated with the total score of the PANSS. Smoking, gender, body mass index were not correlated with TNF-α and sTNF-α receptor levels. Conclusions These results suggest that there may be a change in anti-inflammatory response in patients with schizophrenia due to sTNF-αRI and sTNF-αRII levels. The study also supports low levels of TNF activity in schizophrenia patients with negative symptoms.
Collapse
Affiliation(s)
- Levent Turhan
- a Kartal Lutfi Kirdar Training and Research Hospital, Psychiatry Clinic , Istanbul , Turkey
| | - Sedat Batmaz
- b School of Medicine, Department of Psychiatry , Gaziosmanpasa University , Tokat , Turkey
| | - Sibel Kocbiyik
- c Ataturk Training and Research Hospital, Psychiatry Clinic , Ankara , Turkey
| | | |
Collapse
|
88
|
Rizavi HS, Ren X, Zhang H, Bhaumik R, Pandey GN. Abnormal gene expression of proinflammatory cytokines and their membrane-bound receptors in the lymphocytes of depressed patients. Psychiatry Res 2016; 240:314-320. [PMID: 27138824 PMCID: PMC4885757 DOI: 10.1016/j.psychres.2016.04.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/19/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in plasma of depressed patients. In this study, we examined the role of cytokines and their membrane-bound receptors in major depressive disorder (MDD). We determined the protein and mRNA expression of proinflammatory cytokines, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and mRNA expression of their membrane-bound receptors in the lymphocytes from 31 hospitalized MDD patients and 30 non-hospitalized normal control (NC) subjects. The subjects were diagnosed according to DSM-IV criteria. Protein levels of cytokines were determined by ELISA, and mRNA levels in lymphocytes were determined by the qPCR method. We found that the mean mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNF-α, their receptors, TNFR1, TNFR2, IL-1R1 and the antagonist IL-1RA were significantly increased in the lymphocytes of MDD patients compared with NC. No significant differences in the lymphocyte mRNA levels of IL-1R2, IL-6R, and Gp130 were observed between MDD patients and NC. These studies suggest abnormal gene expression of these cytokines and their membrane-bound receptors in the lymphocytes of MDD patients, and that their mRNA expression levels in the lymphocytes could be a useful biomarker for depression.
Collapse
MESH Headings
- Adult
- Case-Control Studies
- Cytokines/blood
- Cytokines/genetics
- Cytokines/metabolism
- Depressive Disorder, Major/blood
- Depressive Disorder, Major/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Expression
- Humans
- Interleukin 1 Receptor Antagonist Protein/blood
- Interleukin-1/blood
- Interleukin-1beta/blood
- Interleukin-1beta/metabolism
- Interleukin-6/blood
- Lymphocytes/metabolism
- Male
- Middle Aged
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Interleukin-1/blood
- Receptors, Interleukin-6/blood
- Receptors, Tumor Necrosis Factor, Type I/blood
- Receptors, Tumor Necrosis Factor, Type II/blood
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Hooriyah S Rizavi
- University of Illinois at Chicago, Department of Psychiatry, Chicago IL 60612, USA
| | - Xinguo Ren
- University of Illinois at Chicago, Department of Psychiatry, Chicago IL 60612, USA
| | - Hui Zhang
- University of Illinois at Chicago, Department of Psychiatry, Chicago IL 60612, USA
| | - Runa Bhaumik
- University of Illinois at Chicago, Department of Psychiatry, Chicago IL 60612, USA
| | - Ghanshyam N Pandey
- University of Illinois at Chicago, Department of Psychiatry, Chicago IL 60612, USA.
| |
Collapse
|
89
|
Sheen JM, Chen YC, Hsu MH, Tain YL, Yu HR, Huang LT. Combined Intraperitoneal and Intrathecal Etanercept Reduce Increased Brain Tumor Necrosis Factor-Alpha and Asymmetric Dimethylarginine Levels and Rescues Spatial Deficits in Young Rats after Bile Duct Ligation. Front Cell Neurosci 2016; 10:167. [PMID: 27445694 PMCID: PMC4917524 DOI: 10.3389/fncel.2016.00167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Rats subjected to bile duct ligation (BDL) exhibit increased systemic oxidative stress and brain dysfunction characteristic of hepatic encephalopathy (HE), including fatigue, neurotransmitter alterations, cognitive and motor impairment, and brain inflammation. The levels of tumor necrosis factor-alpha (TNF-α) and asymmetric dimethylarginine (ADMA) are both increased in plasma and brain in encephalopathy induced by chronic liver failure. This study first determined the temporal profiles of TNF-α and ADMA in the plasma, brain cortex, and hippocampus in young BDL rats. Next, we examined whether etanercept was beneficial in preventing brain damage. METHODS Young rats underwent sham ligation or BDL at day 17 ± 1 for 4 weeks. Treatment group rats were administered etanercept (10 mg/kg) intraperitoneally (IP) three times per week with or without etanercept (100 μg) intrathecally (IT) three times in total. RESULTS We found increased plasma TNF-α, soluble tumor necrosis factor receptor 1 (sTNFR1), soluble tumor necrosis factor receptor 2 (sTNFR2), and ADMA levels, increased cortical TNF-α mRNA and protein and ADMA, and hippocampal TNF-α mRNA and protein, and spatial defects in young BDL rats. The increase in cortex TNF-α mRNA and ADMA were reduced by IP etanercept or combined IP and IT etanercept. Dually IP/IT etanercept administration reduced the increased cortical and hippocampal TNF-α mRNA and protein level as well as spatial deficits. CONCLUSIONS We conclude that combined intraperitoneal and intrathecal etanercept reduce increased brain TNF-α and ADMA levels and rescues spatial deficits in young rats after BDL.
Collapse
Affiliation(s)
- Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| |
Collapse
|
90
|
Gronseth GS, Messé SR. Practice advisory: Etanercept for poststroke disability: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2016; 86:2208-11. [PMID: 27272034 DOI: 10.1212/wnl.0000000000002735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To review evidence regarding the effectiveness, safety, and tolerability of etanercept used to treat patients with poststroke disability. METHODS We searched MEDLINE and the Cochrane Central Register of Controlled Trials for studies of adult patients with poststroke disability treated with etanercept in order to improve their functional status. We rated each study for risk of bias (Class I-IV) using the American Academy of Neurology therapeutic classification of evidence scheme. Practice recommendations were formulated on the basis of the strength of the evidence and assessments of potential benefits, potential harms, and patient preferences. RESULTS Two case series were identified, and both reported clinical improvements 3 weeks following treatment across a wide range of functional domains. However, both studies were rated Class IV because of poor methodologic quality (i.e., high risk of bias). CONCLUSIONS For patients with poststroke disability, the evidence is insufficient to support or refute a benefit of etanercept for the treatment of poststroke disability. RECOMMENDATIONS Clinicians should counsel patients considering etanercept for treatment of poststroke disability that the evidence is insufficient to determine the treatment's effectiveness and that it may be associated with adverse outcomes and high cost (Level U).
Collapse
Affiliation(s)
- Gary S Gronseth
- From the Department of Neurology (G.S.G.), University of Kansas Medical Center, Kansas City; and the Department of Neurology (S.R.M.), University of Pennsylvania School of Medicine, Philadelphia
| | - Steven R Messé
- From the Department of Neurology (G.S.G.), University of Kansas Medical Center, Kansas City; and the Department of Neurology (S.R.M.), University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
91
|
Abstract
Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.
Collapse
Affiliation(s)
- Edward Lewis Tobinick
- Institute of Neurological Recovery, 2300 Glades Road, Suite 305E, Boca Raton, FL, 33431, USA.
| |
Collapse
|
92
|
Torika N, Asraf K, Danon A, Apte RN, Fleisher-Berkovich S. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies. PLoS One 2016; 11:e0155823. [PMID: 27187688 PMCID: PMC4871324 DOI: 10.1371/journal.pone.0155823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of glial activation and AD by using AT1R blockers.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Ron N. Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
- * E-mail:
| |
Collapse
|
93
|
Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, Zhuang C, Wang X, Li Y. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. CHEMOSPHERE 2016; 151:289-95. [PMID: 26946116 DOI: 10.1016/j.chemosphere.2016.02.092] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 05/25/2023]
Abstract
Aluminum (Al) is present in the daily life of humans, and the incidence of Al contamination increased in recent years. Long-term excessive Al intake induces neuroinflammation and cognition impairment. Neuroinflammation alter density of dendritic spine, which, in turn, influence cognition function. However, it is unknown whether increased neuroinflammation is associated with altered density of dendritic spine in Al-treated rats. In the present study, AlCl3 was orally administrated to rat at 50, 150 and 450 mg/kg for 90d. We examined the effects of AlCl3 on the cognition function, density of dendritic spine in hippocampus of CA1 and DG region and the mRNA levels of IL-1β, IL-6, TNF-α, MHC II, CX3CL1 and BNDF in developing rat. These results showed exposure to AlCl3 lead to increased mRNA levels of IL-1β, IL-6, TNF-α and MCH II, decreased mRNA levels of CX3CL1 and BDNF, decreased density of dendritic spine and impaired learning and memory in developing rat. Our results suggest AlCl3 can induce neuroinflammation that may result in loss of spine, and thereby leads to learning and memory deficits.
Collapse
Affiliation(s)
- Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoguang Wang
- Suihua Food and Drug Administration, Suihua, 152000, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
94
|
Aldasoro M, Guerra-Ojeda S, Aguirre-Rueda D, Mauricio MD, Vila JM, Marchio P, Iradi A, Aldasoro C, Jorda A, Obrador E, Valles SL. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture. PLoS One 2016; 11:e0150619. [PMID: 26950436 PMCID: PMC4780741 DOI: 10.1371/journal.pone.0150619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/17/2016] [Indexed: 12/15/2022] Open
Abstract
Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents.
Collapse
Affiliation(s)
- Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | | | | | - Jose Mª Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Patricia Marchio
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Elena Obrador
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Soraya L. Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
- * E-mail:
| |
Collapse
|
95
|
Zou J, Cai PS, Xiong CM, Ruan JL. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice. ACTA ACUST UNITED AC 2016; 36:21-30. [PMID: 26838735 DOI: 10.1007/s11596-016-1536-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/13/2015] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptide in human brains. Oxidative stress and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides (200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase (SOD), glutathione (GSH), acetylcholine esterase (AChE), and the content of malondialdehyde (MDA) as well as the level of nitric oxide (NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides (400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.
Collapse
Affiliation(s)
- Juan Zou
- Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Shan Cai
- Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao-Mei Xiong
- Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-Lan Ruan
- Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
96
|
Postal M, Lapa AT, Sinicato NA, de Oliveira Peliçari K, Peres FA, Costallat LTL, Fernandes PT, Marini R, Appenzeller S. Depressive symptoms are associated with tumor necrosis factor alpha in systemic lupus erythematosus. J Neuroinflammation 2016; 13:5. [PMID: 26732584 PMCID: PMC4702302 DOI: 10.1186/s12974-015-0471-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor necrosis factor alpha (TNF-α) is deeply related to pathogenesis of neurodevelopmental disorders, especially depression. The aim of this study was to explore potential relationships between sera TNF-α levels and mood and anxiety disorders in systemic lupus erythematosus (SLE) patients. METHODS We included 153 consecutive SLE patients (women 148; median age 30; range 10-62) and 40 (women 37; mean age 28.5; range 12-59) age- and sex-matched healthy controls. Mood and anxiety disorders were determined through Beck Depression and Beck Anxiety Inventory. SLE patients were further assessed for clinical and laboratory SLE manifestations. TNF-α levels were measured by enzyme-linked immunosorbent assay using commercial kits. RESULTS Depressive symptoms were identified in 70 (45.7 %) SLE patients and in 10 (25 %) healthy controls (p < 0.001). Anxiety symptoms were identified in 93 (60.7 %) SLE patients and in 16 controls (40 %) (p < 0.001). Sera TNF-α levels were increased in SLE patients with depressive symptoms (p < 0.001) and with anxiety symptoms (p = 0.014). A direct correlation between the severity of depressive symptoms and sera TNF-α levels (r = 0.22; p = 0.003) was observed. TNF-α levels were significantly increased in patients with active disease (p = 0.012). In addition, we observed a correlation between sera TNF-α levels and disease activity (r = 0.28; p = 0.008). In the multivariate analysis, sera TNF-α levels were independently associated with depressive symptoms (t = 3.28; 95 % CI 1.08-2.2; p = 0.002). CONCLUSIONS Sera TNF-α levels are increased in SLE patients with mood and anxiety disorders. In SLE, sera TNF-α levels are independently associated with mood disorders. The etiology of mood disorders is still debated in SLE, but our findings suggest the presence of immunological basis for depression in SLE.
Collapse
Affiliation(s)
- Mariana Postal
- Department of Medicine, Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Aline Tamires Lapa
- Department of Pediatrics, Pediatric Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Nailú Angélica Sinicato
- Department of Pediatrics, Pediatric Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Karina de Oliveira Peliçari
- Department of Medicine, Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Fernando Augusto Peres
- Department of Medicine, Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Lilian Tereza Lavras Costallat
- Department of Medicine, Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Paula Teixeira Fernandes
- Department of Sport Sciences, Faculty of Physical Education State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil
| | - Roberto Marini
- Department of Pediatrics, Pediatric Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Simone Appenzeller
- Department of Medicine, Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil. .,Department of Pediatrics, Pediatric Rheumatology Unit, Faculty of Medical Science State University of Campinas, Campinas, São Paulo, CEP 13083-970, Brazil.
| |
Collapse
|
97
|
Alessenko A, Bachurin S, Gurianova S, Karatasso Y, Shevtsova E, Shingarova L. Tumor necrosis factor-alpha - potential target for neuroprotector dimebon. ACTA ACUST UNITED AC 2016; 62:418-25. [DOI: 10.18097/pbmc20166204418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dimebon (Dimebolin) is an antihistamine drug which has been used in Russia since 1983. Recently Dimebolin has attracted renewed interest after being shown to have positive effects on persons suffering from Alzheimer's disease. Animal studies have shown that dimebon acts through multiple mechanisms, both blocking the action of neurotoxic beta-amyloid peptides and inhibiting L-type calcium channels, modulating the action of AMPA and NMDA glutamate receptors. Our experiments with cell culture L929 and mice have shown that dimebon may exert its neuroprotective effect by blocking cytotoxic signals induced by proinflammatory cytokines such as TNF-a which are believed to play a central role in Alzheimer's disease. Dimebon (10 mg/ml) protected mouse fibroblasts L929 against the toxic action of TNF-a. Our study included 65 male mice. TNF-a (10 mg per mouse), dimebon (0,2 mg/kg) and their combination were injected intraperitonealy. Changes in the level of molecular species of sphingomyelin and galactosyl ceramide in hippocampus, cerebellum and cerebral cortex within 30 min, 2 h, 4 h, and 24 h after injection were detected by chromato-mass-spectrometry. Maximal changes in sphingomyelin and galactosyl ceramides contents of different molecular species after single TNF-a administration were found in the hippocampus, and were less expressed in the cerebral cortex and cerebellum after 24 h. Dimebon itself did not induce changes in the sphingolipid spectrum in brain sections, but protected them against disorders induced by TNF-a in the brain. Modern strategies in the search of new therapeutic approaches are based on the multitarget properties of new drugs. According to our results TNF-a may serve as a new target for dimebon.
Collapse
Affiliation(s)
- A.V. Alessenko
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - S.O. Bachurin
- Institute of Physiologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - S.V. Gurianova
- Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Y.O. Karatasso
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - E.F. Shevtsova
- Institute of Physiologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - L.N. Shingarova
- Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
98
|
Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, Klaus FR, Kollias G, Fontana A, Pryce CR, Suter T, Volterra A. Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling. Cell 2015; 163:1730-41. [PMID: 26686654 DOI: 10.1016/j.cell.2015.11.023] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/25/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.
Collapse
Affiliation(s)
- Samia Habbas
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Mirko Santello
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Denise Becker
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Hiltrud Stubbe
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Giovanna Zappia
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Nicolas Liaudet
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Federica R Klaus
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, and Neuroscience Center Zurich, University of Zurich and ETH Zurich, August Forel-Str. 7, 8008 Zurich, Switzerland
| | - George Kollias
- B.S.R.C. "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Adriano Fontana
- Institute of Experimental Immunology Inflammation and Sickness Behaviour, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Christopher R Pryce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, and Neuroscience Center Zurich, University of Zurich and ETH Zurich, August Forel-Str. 7, 8008 Zurich, Switzerland
| | - Tobias Suter
- Neuroimmunology and MS Research, University Hospital Zurich, Sternwartestr. 14, 8091 Zurich, Switzerland
| | - Andrea Volterra
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| |
Collapse
|
99
|
Yang J, Wang C, Nie X, Shi S, Xiao J, Ma X, Dong X, Zhang Y, Han J, Li T, Mao J, Liu X, Zhao J, Wu Q. Perfluorooctane sulfonate mediates microglial activation and secretion of TNF-α through Ca2+-dependent PKC-NF-кB signaling. Int Immunopharmacol 2015; 28:52-60. [DOI: 10.1016/j.intimp.2015.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 01/06/2023]
|
100
|
The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 2015; 43:702-6. [PMID: 26551716 DOI: 10.1042/bst20140319] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/17/2022]
Abstract
An intact functioning blood-brain barrier (BBB) is fundamental to proper homoeostatic maintenance and perfusion of the central nervous system (CNS). Inflammatory damage to the unique microvascular endothelial cell monolayer that constitutes the luminal BBB surface, leading to elevated capillary permeability, has been linked to various neurological disorders ranging from ischaemic stroke and traumatic brain injury, to neurodegenerative disease and CNS infections. Moreover, the neuroinflammatory cascade that typically accompanies BBB failure in these circumstances has been strongly linked to elevated levels of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). This mini review will examine our current knowledge of how cytokines may dysregulate the interendothelial paracellular pathway leading to elevated BBB permeability. The mechanistic role of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase)-induced oxidative stress in these events will also be addressed.
Collapse
|