51
|
Gehling VS, McGrath JP, Duplessis M, Khanna A, Brucelle F, Vaswani RG, Côté A, Stuckey J, Watson V, Cummings RT, Balasubramanian S, Iyer P, Sawant P, Good AC, Albrecht BK, Harmange JC, Audia JE, Bellon SF, Trojer P, Levell JR. Design and Synthesis of Styrenylcyclopropylamine LSD1 Inhibitors. ACS Med Chem Lett 2020; 11:1213-1220. [PMID: 32551003 PMCID: PMC7294731 DOI: 10.1021/acsmedchemlett.0c00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 02/03/2023] Open
Abstract
Leveraging the catalytic machinery of LSD1 (KDM1A), a series of covalent styrenylcyclopropane LSD1 inhibitors were identified. These inhibitors represent a new class of mechanism-based inhibitors that target and covalently label the FAD cofactor of LSD1. The series was rapidly progressed to potent biochemical and cellular LSD1 inhibitors with good physical properties. This effort resulted in the identification of 34, a highly potent (<4 nM biochemical, 2 nM cell, and 1 nM GI50), and selective LSD1 inhibitor. In-depth kinetic profiling of 34 confirmed its covalent mechanism of action, validated the styrenylcyclopropane as an FAD-directed warhead, and demonstrated that the potency of this inhibitor is driven by improved non-covalent binding (K I). 34 demonstrated robust cell-killing activity in a panel of AML cell lines and robust antitumor activity in a Kasumi-1 xenograft model of AML when dosed orally at 1.5 mg/kg once daily.
Collapse
Affiliation(s)
- Victor S. Gehling
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - John P. McGrath
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | | | - Avinash Khanna
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | | | - Rishi G. Vaswani
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | | | - Jacob Stuckey
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | | | - Richard T. Cummings
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | | | | | | | | | | | | | | | | | - Patrick Trojer
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Julian R. Levell
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
52
|
Khan H, Belwal T, Efferth T, Farooqi AA, Sanches-Silva A, Vacca RA, Nabavi SF, Khan F, Prasad Devkota H, Barreca D, Sureda A, Tejada S, Dacrema M, Daglia M, Suntar İ, Xu S, Ullah H, Battino M, Giampieri F, Nabavi SM. Targeting epigenetics in cancer: therapeutic potential of flavonoids. Crit Rev Food Sci Nutr 2020; 61:1616-1639. [PMID: 32478608 DOI: 10.1080/10408398.2020.1763910] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irrespective of sex and age, cancer is the leading cause of mortality around the globe. Therapeutic incompliance, unwanted effects, and economic burdens imparted by cancer treatments, are primary health challenges. The heritable features in gene expression that are propagated through cell division and contribute to cellular identity without a change in DNA sequence are considered epigenetic characteristics and agents that could interfere with these features and are regarded as potential therapeutic targets. The genetic modification accounts for the recurrence and uncontrolled changes in the physiology of cancer cells. This review focuses on plant-derived flavonoids as a therapeutic tool for cancer, attributed to their ability for epigenetic regulation of cancer pathogenesis. The epigenetic mechanisms of various classes of flavonoids including flavonols, flavones, isoflavones, flavanones, flavan-3-ols, and anthocyanidins, such as cyanidin, delphinidin, and pelargonidin, are discussed. The outstanding results of preclinical studies encourage researchers to design several clinical trials on various flavonoids to ascertain their clinical strength in the treatment of different cancers. The results of such studies will define the clinical fate of these agents in future.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Porto, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Toxicology and Pharmacology, The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department, Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - İpek Suntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
53
|
Zhang Z, Huang X, Wang E, Huang Y, Yang R. Suppression of Mll1-Complex by Stat3/Cebpβ–Induced miR-21a/21b/181b Maintains the Accumulation, Homeostasis, and Immunosuppressive Function of Polymorphonuclear Myeloid-Derived Suppressor Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3400-3415. [DOI: 10.4049/jimmunol.2000230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
|
54
|
Jin B, Zhang P, Zou H, Ye H, Wang Y, Zhang J, Yang H, Pan J. Verification of EZH2 as a druggable target in metastatic uveal melanoma. Mol Cancer 2020; 19:52. [PMID: 32127003 PMCID: PMC7055080 DOI: 10.1186/s12943-020-01173-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatic metastasis develops in ~ 50% of uveal melanoma (UM) patients with no effective treatments. Although GNAQ/GNA11 mutations are believed to confer pathogenesis of UM, the underlying mechanism of liver metastasis remains poorly understood. Given that profound epigenetic evolution may occur in the long journey of circulating tumor cells (CTCs) to distant organs, we hypothesized that EZH2 endowed tumor cells with enhanced malignant features (e.g., stemness and motility) during hepatic metastasis in UM. We aimed to test this hypothesis and explore whether EZH2 was a therapeutic target for hepatic metastatic UM patients. METHODS Expression of EZH2 in UM was detected by qRT-PCR, Western blotting and immunohistochemistry staining. Proliferation, apoptosis, cancer stem-like cells (CSCs) properties, migration and invasion were evaluated under circumstances of treatment with either EZH2 shRNA or EZH2 inhibitor GSK126. Antitumor activity and frequency of CSCs were determined by xenografted and PDX models with NOD/SCID mice. Hepatic metastasis was evaluated with NOG mice. RESULTS We found that EZH2 overexpressed in UM promoted the growth of UM; EZH2 increased the percentage and self-renewal of CSCs by miR-29c-DVL2-β-catenin signaling; EZH2 facilitates migration and invasion of UM cells via RhoGDIγ-Rac1 axis. Targeting EZH2 either by genetics or small molecule inhibitor GSK126 decreased CSCs and motility and abrogated the liver metastasis of UM. CONCLUSIONS These findings validate EZH2 as a druggable target in metastatic UM patients, and may shed light on the understanding and interfering the complicated metastatic process.
Collapse
Affiliation(s)
- Bei Jin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Hailin Zou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
55
|
Isoform-Specific Lysine Methylation of RORα2 by SETD7 Is Required for Association of the TIP60 Coactivator Complex in Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21051622. [PMID: 32120841 PMCID: PMC7084544 DOI: 10.3390/ijms21051622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The retinoid acid-related orphan receptor α (RORα), a member of the orphan nuclear receptor superfamily, functions as an unknown ligand-dependent transcription factor. RORα was shown to regulate a broad array of physiological processes such as Purkinje cell development in the cerebellum, circadian rhythm, lipid and bone metabolism, inhibition of inflammation, and anti-apoptosis. The human RORα gene encodes at least four distinct isoforms (RORα1, -2, -3, -4), which differ only in their N-terminal domain (NTD). Two isoforms, RORα2 and 3, are not expressed in mice, whereas RORα1 and 4 are expressed both in mice and humans. In the present study, we identified the specific NTD of RORα2 that enhances prostate tumor progression and proliferation via lysine methylation-mediated recruitment of coactivator complex pontin/Tip60. Upregulation of the RORα2 isoform in prostate cancers putatively promotes tumor formation and progression. Furthermore, binding between coactivator complex and RORα2 is increased by lysine methylation of RORα2 because methylation permits subsequent interaction with binding partners. This methylation-dependent activation is performed by SET domain containing 7 (SETD7) methyltransferase, inducing the oncogenic potential of RORα2. Thus, post-translational lysine methylation of RORα2 modulates oncogenic function of RORα2 in prostate cancer. Exploration of the post-translational modifications of RORα2 provides new avenues for the development of tumor-suppressive therapeutic agents through modulating the human isoform-specific tumorigenic role of RORα2.
Collapse
|
56
|
Global characterization of proteome and lysine methylome features in EZH2 wild-type and mutant lymphoma cell lines. J Proteomics 2020; 213:103614. [DOI: 10.1016/j.jprot.2019.103614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Accepted: 12/13/2019] [Indexed: 01/14/2023]
|
57
|
Byun WS, Kim WK, Han HJ, Chung HJ, Jang K, Kim HS, Kim S, Kim D, Bae ES, Park S, Lee J, Park HG, Lee SK. Targeting Histone Methyltransferase DOT1L by a Novel Psammaplin A Analog Inhibits Growth and Metastasis of Triple-Negative Breast Cancer. Mol Ther Oncolytics 2019; 15:140-152. [PMID: 31720371 PMCID: PMC6838941 DOI: 10.1016/j.omto.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 01/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most intractable cancer in women with a high risk of metastasis. While hyper-methylation of histone H3 catalyzed by disruptor of telomeric silencing 1-like (DOT1L), a specific methyltransferase for histone H3 at lysine residue 79 (H3K79), is reported as a potential target for TNBCs, early developed nucleoside-type DOT1L inhibitors are not sufficient for effective inhibition of growth and metastasis of TNBC cells. We found that TNBC cells had a high expression level of DOT1L and a low expression level of E-cadherin compared to normal breast epithelial cells and non-TNBC cells. Here, a novel psammaplin A analog (PsA-3091) exhibited a potent inhibitory effect of DOT1L-mediated H3K79 methylation. Consistently, PsA-3091 also significantly inhibited the proliferation, migration, and invasion of TNBC cells along with the augmented expression of E-cadherin and the suppression of N-cadherin, ZEB1, and vimentin expression. In an orthotopic mouse model, PsA-3091 effectively inhibited lung metastasis and tumor growth by the regulation of DOT1L activity and EMT biomarkers. Together, we report here a new template of DOT1L inhibitor and suggest that targeting DOT1L-mediated H3K79 methylation by a novel PsA analog may be a promising strategy for the treatment of metastatic breast cancer patients.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae Ju Han
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Jin Chung
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungkuk Jang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Sun Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeung-geun Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
58
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
59
|
Małecki PH, Rüger N, Roatsch M, Krylova O, Link A, Jung M, Heinemann U, Weiss MS. Structure-Based Screening of Tetrazolylhydrazide Inhibitors versus KDM4 Histone Demethylases. ChemMedChem 2019; 14:1828-1839. [PMID: 31475772 PMCID: PMC6899576 DOI: 10.1002/cmdc.201900441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Human histone demethylases are known to play an important role in the development of several tumor types. Consequently, they have emerged as important medical targets for the treatment of human cancer. Herein, structural studies on tetrazolylhydrazide inhibitors as a new scaffold for a certain class of histone demethylases, the JmjC proteins, are reported. A series of compounds are structurally described and their respective binding modes to the KDM4D protein, which serves as a high-resolution model to represent the KDM4 subfamily in crystallographic studies, are examined. Similar to previously reported inhibitors, the compounds described herein are competitors for the natural KDM4 cofactor, 2-oxoglutarate. The tetrazolylhydrazide scaffold fills an important gap in KDM4 inhibition and newly described, detailed interactions of inhibitor moieties pave the way to the development of compounds with high target-binding affinity and increased membrane permeability, at the same time.
Collapse
Affiliation(s)
- Piotr H Małecki
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.,Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Current address: International Institute of Molecular and Cell Biology, Ks. Trojdena Street 4, 02-109, Warsaw, Poland
| | - Nicole Rüger
- Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Martin Roatsch
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.,Current address: Københavns Universitet, Center for Biopharmaceuticals, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Oxana Krylova
- Department of Molecular Biophysics, Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Andreas Link
- Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
60
|
Ferioli M, Zauli G, Maiorano P, Milani D, Mirandola P, Neri LM. Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. J Cell Physiol 2019; 234:14852-14864. [PMID: 30767204 DOI: 10.1002/jcp.28304] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The genetic heritage for decades has been considered to respond only to gene promoters or suppressors, with specific roles for oncogenes or tumor-suppressor genes. Epigenetics is progressively attracting increasing interest because it has demonstrated the capacity of these regulatory processes to regulate the gene expression without modifying gene sequence. Several factors may influence epigenetics, such as lifestyles including food selection. A role for physical exercise is emerging in the epigenetic regulation of gene expression. In this review, we resume physiological and pathological implications of epigenetic modification induced by the physical activity (PA). Inflammation and cancer mechanisms, immune system, central nervous system, and the aging process receive benefits due to PA through epigenetic mechanisms. Thus, the modulation of epigenetic processes by physical exercise positively influences prevention, development, and the course of inflammatory and cancer diseases, as well as neurodegenerative illnesses. This growing field of studies gives rise to a new role for PA as an option in prevention strategies and to integrate pharmacological therapeutic treatments.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Maiorano
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
61
|
Roatsch M, Hoffmann I, Abboud MI, Hancock RL, Tarhonskaya H, Hsu KF, Wilkins SE, Yeh TL, Lippl K, Serrer K, Moneke I, Ahrens TD, Robaa D, Wenzler S, Barthes NPF, Franz H, Sippl W, Lassmann S, Diederichs S, Schleicher E, Schofield CJ, Kawamura A, Schüle R, Jung M. The Clinically Used Iron Chelator Deferasirox Is an Inhibitor of Epigenetic JumonjiC Domain-Containing Histone Demethylases. ACS Chem Biol 2019; 14:1737-1750. [PMID: 31287655 DOI: 10.1021/acschembio.9b00289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fe(II)- and 2-oxoglutarate (2OG)-dependent JumonjiC domain-containing histone demethylases (JmjC KDMs) are "epigenetic eraser" enzymes involved in the regulation of gene expression and are emerging drug targets in oncology. We screened a set of clinically used iron chelators and report that they potently inhibit JMJD2A (KDM4A) in vitro. Mode of action investigations revealed that one compound, deferasirox, is a bona fide active site-binding inhibitor as shown by kinetic and spectroscopic studies. Synthesis of derivatives with improved cell permeability resulted in significant upregulation of histone trimethylation and potent cancer cell growth inhibition. Deferasirox was also found to inhibit human 2OG-dependent hypoxia inducible factor prolyl hydroxylase activity. Therapeutic effects of clinically used deferasirox may thus involve transcriptional regulation through 2OG oxygenase inhibition. Deferasirox might provide a useful starting point for the development of novel anticancer drugs targeting 2OG oxygenases and a valuable tool compound for investigations of KDM function.
Collapse
Affiliation(s)
- Martin Roatsch
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Inga Hoffmann
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Martine I Abboud
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Rebecca L Hancock
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Hanna Tarhonskaya
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Kuo-Feng Hsu
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Sarah E Wilkins
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Tzu-Lan Yeh
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Kerstin Serrer
- Institute of Physical Chemistry , Albert-Ludwigs-Universität Freiburg , Albertstraße 21 , 79104 Freiburg i.Br. , Germany
| | - Isabelle Moneke
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine , University of Freiburg , German Cancer Consortium (DKTK)-Partner Site Freiburg, Breisacher Straße 115 , 79106 Freiburg i.Br. , Germany
| | - Theresa D Ahrens
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 115a , 79106 Freiburg i.Br. , Germany
| | - Dina Robaa
- Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle (Saale) , Germany
| | - Sandra Wenzler
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Nicolas P F Barthes
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Henriette Franz
- Central Clinical Research, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 66 , 79106 Freiburg i.Br. , Germany
| | - Wolfgang Sippl
- Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle (Saale) , Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 115a , 79106 Freiburg i.Br. , Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine , University of Freiburg , German Cancer Consortium (DKTK)-Partner Site Freiburg, Breisacher Straße 115 , 79106 Freiburg i.Br. , Germany
- Division of RNA Biology & Cancer , German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280 , 69120 Heidelberg , Germany
| | - Erik Schleicher
- Institute of Physical Chemistry , Albert-Ludwigs-Universität Freiburg , Albertstraße 21 , 79104 Freiburg i.Br. , Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Akane Kawamura
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Roland Schüle
- Central Clinical Research, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 66 , 79106 Freiburg i.Br. , Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| |
Collapse
|
62
|
Jones D, Wilson L, Thomas H, Gaughan L, Wade MA. The Histone Demethylase Enzymes KDM3A and KDM4B Co-Operatively Regulate Chromatin Transactions of the Estrogen Receptor in Breast Cancer. Cancers (Basel) 2019; 11:cancers11081122. [PMID: 31390833 PMCID: PMC6721541 DOI: 10.3390/cancers11081122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Many estrogen receptor (ER)-positive breast cancers develop resistance to endocrine therapy but retain canonical receptor signalling in the presence of selective ER antagonists. Numerous co-regulatory proteins, including enzymes that modulate the chromatin environment, control the transcriptional activity of the ER. Targeting ER co-regulators has therefore been proposed as a novel therapeutic approach. By assessing DNA-binding dynamics in ER-positive breast cancer cells, we have identified that the histone H3 lysine 9 demethylase enzymes, KDM3A and KDM4B, co-operate to regulate ER activity via an auto-regulatory loop that facilitates the recruitment of each co-activating enzyme to chromatin. We also provide evidence that suggests that KDM3A primes chromatin for deposition of the ER pioneer factor FOXA1 and recruitment of the ER-transcriptional complex, all prior to ER recruitment, therefore establishing an important mechanism of chromatin regulation involving histone demethylases and pioneer factors, which controls ER functionality. Importantly, we show via global gene-expression analysis that a KDM3A/KDM4B/FOXA1 co-regulated gene signature is enriched for pro-proliferative and ER-target gene sets, suggesting that abrogation of this network could be an efficacious therapeutic strategy. Finally, we show that depletion of both KDM3A and KDM4B has a greater inhibitory effect on ER activity and cell growth than knockdown of each individual enzyme, suggesting that targeting both enzymes represents a potentially efficacious therapeutic option for ER-driven breast cancer.
Collapse
Affiliation(s)
- Dominic Jones
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Wilson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Huw Thomas
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mark A Wade
- Biomedical Sciences, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
63
|
Kumar A, Kumari N, Sharma U, Ram S, Singh SK, Kakkar N, Kaushal K, Prasad R. Reduction in H3K4me patterns due to aberrant expression of methyltransferases and demethylases in renal cell carcinoma: prognostic and therapeutic implications. Sci Rep 2019; 9:8189. [PMID: 31160694 PMCID: PMC6546756 DOI: 10.1038/s41598-019-44733-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the leading cause among cancer-related deaths due to urological cancers, which results in response to combination of genetic and epigenetic factors. Histone methylations have been implicated in renal tumorigenesis but their clinical significance and underlying pathology are unexplored. Here, we elucidated the histone 3 lysine 4 (H3K4) methylation patterns in clear cell RCC and its underlying pathology. Lower cellular levels of H3K4 mono-methylation, -dimethylation and -tri-methylation were fraternized with higher TNM staging and Fuhrman grading as well as tumor metastasis. Further, the expression profile of 20 H3K4 modifiers revealed the significant over-expression of histone demethylases compared to methyltransferases, indicating their role in the reduction of H3K4 methylation levels. In view of above facts, the role of LSD2 and KDM5A demethylases in RCC pathogenesis were explored using respective siRNAs. The RCC cells exhibited reduced cell viability after knockdown of LSD2 and KDM5A genes with concomitant induction of apoptosis. In addition, propidium iodide staining demonstrated an arrest of RCC cells at S-phase and sub-G1 phase of the cell cycle. Taken together, these observations provide new pathological insights behind the alterations of H3K4 methylation patterns in ccRCC with their prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Biochemistry, Post Graduate Institute of Medical Educational and Research, Chandigarh, India
| | - Niti Kumari
- Department of Biochemistry, Post Graduate Institute of Medical Educational and Research, Chandigarh, India
| | - Ujjawal Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Educational and Research, Chandigarh, India
| | - Sant Ram
- Department of Biochemistry, Post Graduate Institute of Medical Educational and Research, Chandigarh, India
| | - Shrawan Kumar Singh
- Department of Urology, Post Graduate Institute of Medical Educational and Research, Chandigarh, India
| | - Nandita Kakkar
- Department of Histopathology, Post Graduate Institute of Medical Educational and Research, Chandigarh, India
| | - Karanvir Kaushal
- Department of Biochemistry, Post Graduate Institute of Medical Educational and Research, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Post Graduate Institute of Medical Educational and Research, Chandigarh, India.
| |
Collapse
|
64
|
Abstract
The epigenetic control of gene expression could be affected by addition and/or removal of post-translational modifications such as phosphorylation, acetylation and methylation of histone proteins, as well as methylation of DNA (5-methylation on cytosines). Misregulation of these modifications is associated with altered gene expression, resulting in various disease conditions. G9a belongs to the protein lysine methyltransferases that specifically methylates the K9 residue of histone H3, leading to suppression of several tumor suppressor genes. In this review, G9a functions, role in various diseases, structural biology aspects for inhibitor design, structure-activity relationship among the reported inhibitors are discussed which could aid in the design and development of potent G9a inhibitors for cancer treatment in the future.
Collapse
|
65
|
Chen X, Zhang G, Chen B, Wang Y, Guo L, Cao L, Ren C, Wen L, Liao N. Association between histone lysine methyltransferase KMT2C mutation and clinicopathological factors in breast cancer. Biomed Pharmacother 2019; 116:108997. [PMID: 31146111 DOI: 10.1016/j.biopha.2019.108997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
As an important regulator of epigenetics, histone lysine methyltransferase 2C (KMT2C), is frequently mutated in multiple human cancers and is considered to be crucial for the occurrence and development of numerous cancers. However, the relationship between KMT2C mutation and clinicopathological characteristics in patients with breast cancer is unclear. In the present study, we performed next-generation sequencing to investigate the mutation status of KMT2C in 411 treatment-naive Chinese patients with breast cancer at Guangdong Provincial People's Hospital (GDPH), and further compared the results to those of patients with breast cancer from The Cancer Genome Atlas (TCGA, n = 981) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1454) cohorts. The KMT2C mutation rate was 8.0% (33/411) in the GDPH cohort, whereas that in the TCGA and the METABRIC cohorts was 7.0% (69/981) and 14.5% (211/1454), respectively. Nineteen novel mutations were observed in the GDPH cohort. KMT2C mutations were found to be significantly associated with patients older than 50 years (GDPH: p = 0.007; TCGA: p = 0.005; METABRIC: p = 0.015). The KMT2C mutation rate in HR+/HER2- breast cancer patients was higher than that in the other subtypes (GDPH: p = 0.047; TCGA: p = 0.032; METABRIC: p = 0.046). In addition, KMT2C mutations in the GDPH cohort were observed in invasive lobular breast cancer (ILC) at 30.8% (4/13). Further, KMT2C mutation was not found to be an independent risk factor in the prognosis of patients with breast cancer [TCGA: hazard ratio (HR), 1.71; 95% confidence interval (CI), 0.88-3.31; p = 0.111; METABRIC: HR, 2.03; 95% CI, 0.45-3.08; p = 0.419]. This is the first study to preliminarily elucidate the role of KMT2C mutations in Chinese patients with breast cancer and further identified significant KMT2C mutation differences according to race and ethnicity. KMT2C might be a susceptibility gene of Chinese patients with ILC that would help define high-risk groups that could benefit from adapted, personalized screening strategies.
Collapse
Affiliation(s)
- Xiaoqing Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Yulei Wang
- Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Liping Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Li Cao
- Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Lingzhu Wen
- Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Ning Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Breast Cancer, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
66
|
Lan L, Xu B, Chen Q, Jiang J, Shen Y. Weighted correlation network analysis of triple-negative breast cancer progression: Identifying specific modules and hub genes based on the GEO and TCGA database. Oncol Lett 2019; 18:1207-1217. [PMID: 31423181 PMCID: PMC6607224 DOI: 10.3892/ol.2019.10407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive malignancy of frequent high histologic grade with no effective specific targeted therapies. The present study aimed to identify specific modules and hub genes that may influence the progression of TNBC. The key words ‘breast cancer’ were used to search microarray datasets in the Gene Expression Omnibus and The Cancer Genome Atlas databases that included 5 datasets. A total of 11 co-expression modules were constructed based on the expression levels of 5,782 genes obtained from 456 patients with TNBC using the weighted correlation network analysis (WGCNA). The results demonstrated that the red module was significantly associated with relapse-free survival (RFS) in patients with TNBC [hazard ratio (HR)=0.381, 95% confidence interval (CI), 0.183–0.793; P=0.010]. The functional enrichment analysis revealed that the biological processes corresponding to the red module were ‘mRNA processing’, ‘histone lysine methylation’ and ‘regulation of TOR signaling’. In addition, Hedgehog signaling pathways were considered to serve a critical role in the development of this disease (P<0.001). A total of 12 hub genes were identified, of which α-thalassemia/mental retardation syndrome X-linked (ATRX) was significantly associated with RFS in patients with TNBC (HR=0.601; 95%CI, 0.376–0.960; P=0.033). The receiver operating characteristic curve indicated that ATRX could distinguish relapse from non-relapse in patients with TNBC (area under the curve=0.570; P=0.023). In conclusion, the present study demonstrated that ATRX was associated with TNBC progression, which suggested that ATRX may be involved in a recombination-mediated telomere maintenance mechanism.
Collapse
Affiliation(s)
- Lei Lan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Qu Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yueping Shen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
67
|
H3K18Ac as a Marker of Cancer Progression and Potential Target of Anti-Cancer Therapy. Cells 2019; 8:cells8050485. [PMID: 31121824 PMCID: PMC6562857 DOI: 10.3390/cells8050485] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation and deacetylation are posttranslational modifications (PTMs) which affect the regulation of chromatin structure and its remodeling. Acetylation of histone 3 at lysine placed on position 18 (H3K18Ac) plays an important role in driving progression of many types of cancer, including breast, colon, lung, hepatocellular, pancreatic, prostate, and thyroid cancer. The aim of this review is to analyze and discuss the newest findings regarding the role of H3K18Ac and acetylation of other histones in carcinogenesis. We summarize the level of H3K18Ac in different cancer cell lines and analyze its association with patients’ outcomes, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS). Finally, we describe future perspectives of cancer therapeutic strategies based on H3K18 modifications.
Collapse
|
68
|
Hoshino I, Takahashi M, Akutsu Y, Murakami K, Matsumoto Y, Suito H, Sekino N, Komatsu A, Iida K, Suzuki T, Inoue I, Ishige F, Iwatate Y, Matsubara H. Genome-wide ChIP-seq data with a transcriptome analysis reveals the groups of genes regulated by histone demethylase LSD1 inhibition in esophageal squamous cell carcinoma cells. Oncol Lett 2019; 18:872-881. [PMID: 31289565 PMCID: PMC6539443 DOI: 10.3892/ol.2019.10350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Expression of genes is controlled by histone modification, histone acetylation and methylation, but abnormalities of these modifications have been observed in carcinogenesis and cancer development. The effect of the lysine-specific histone demethylase 1 (LSD1) inhibitor, a demethylating enzyme of histones, is thought to be caused by controlling the expression of genes. The aim of the present study is to elucidate the efficacies of the LSD1 inhibitor on the gene expression of esophageal cancer cell lines using chromatin immunoprecipitation (ChIP)-Seq. A comprehensive analysis of gene expression changes in esophageal squamous cell carcinoma (ESCC) cell lines induced by the LSD1 inhibitor NCL1 was clarified via analysis using microarray. In addition, ChIP-seq analysis was conducted using a SimpleChIP plus Enzymatic Chromatin IP kit. NCL1 strongly suppressed the proliferation of T.Tn and TE2 cells, which are ESCC cell lines, and further induced apoptosis. According to the combinatory analysis of ChIP-seq and microarray, 17 genes were upregulated, and 16 genes were downregulated in both cell lines. The comprehensive gene expression study performed in the present study is considered to be useful for analyzing the mechanism of the antitumor effect of the LSD1 inhibitor in patients with ESCC.
Collapse
Affiliation(s)
- Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.,Division of Gastroenterological Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Aki Komatsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Keiko Iida
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kita-ku, Kyoto 403-8334, Japan
| | - Itsuro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Fumitaka Ishige
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Yosuke Iwatate
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
69
|
Pippa S, Mannironi C, Licursi V, Bombardi L, Colotti G, Cundari E, Mollica A, Coluccia A, Naccarato V, La Regina G, Silvestri R, Negri R. Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B. Molecules 2019; 24:molecules24091739. [PMID: 31060229 PMCID: PMC6540222 DOI: 10.3390/molecules24091739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background: KDM5 enzymes are H3K4 specific histone demethylases involved in transcriptional regulation and DNA repair. These proteins are overexpressed in different kinds of cancer, including breast, prostate and bladder carcinomas, with positive effects on cancer proliferation and chemoresistance. For these reasons, these enzymes are potential therapeutic targets. Methods: In the present study, we analyzed the effects of three different inhibitors of KDM5 enzymes in MCF-7 breast cancer cells over-expressing one of them, namely KDM5B/JARID1B. In particular we tested H3K4 demethylation (western blot); radio-sensitivity (cytoxicity and clonogenic assays) and damage accumulation (COMET assay and kinetics of H2AX phosphorylation). Results: we show that all three compounds with completely different chemical structures can selectively inhibit KDM5 enzymes and are capable of increasing sensitivity of breast cancer cells to ionizing radiation and radiation-induced damage. Conclusions: These findings confirm the involvement of H3K4 specific demethylases in the response to DNA damage, show a requirement of the catalytic function and suggest new strategies for the therapeutic use of their inhibitors.
Collapse
Affiliation(s)
- Simone Pippa
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Cecilia Mannironi
- Institute of Molecular Biology and Pathology, Italian National Research Council, 00185 Rome, Italy.
| | - Valerio Licursi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", Italian National Research Council, 00185 Rome, Italy.
| | - Luca Bombardi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, 00185 Rome, Italy.
| | - Enrico Cundari
- Institute of Molecular Biology and Pathology, Italian National Research Council, 00185 Rome, Italy.
| | - Adriano Mollica
- Department of Pharmacy, University "G. d' Annunzio" of Chieti, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valentina Naccarato
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy.
| | - Giuseppe La Regina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy.
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy.
| | - Rodolfo Negri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy.
- Institute of Molecular Biology and Pathology, Italian National Research Council, 00185 Rome, Italy.
| |
Collapse
|
70
|
Jaikhan P, Buranrat B, Itoh Y, Chotitumnavee J, Kurohara T, Suzuki T. Identification of ortho-hydroxy anilide as a novel scaffold for lysine demethylase 5 inhibitors. Bioorg Med Chem Lett 2019; 29:1173-1176. [DOI: 10.1016/j.bmcl.2019.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023]
|
71
|
Liu T, Wang X, Hu W, Fang Z, Jin Y, Fang X, Miao QR. Epigenetically Down-Regulated Acetyltransferase PCAF Increases the Resistance of Colorectal Cancer to 5-Fluorouracil. Neoplasia 2019; 21:557-570. [PMID: 31042625 PMCID: PMC6488821 DOI: 10.1016/j.neo.2019.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Only 10%–20% of colorectal cancer (CRC) patients observe effective responses to 5-fluorouracil (5-FU) based chemo-treatment. We used real-time PCR array and Western blot analysis to examine the expression alteration of acetyltransferases and deacetylases in 5-FU resistant CRC cell lines as compared to their respective parental CRC cell lines. Unlike other acetyltransferases and deacetylases, we found that the expression of acetyltransferase P300/CBP-associated factor (PCAF) is consistently decreased in three 5-FU resistant CRC cell lines. Similarly, knockdown of PCAF in HCT116 CRC parental cell line also increases the resistance to 5-FU and attenuates 5-FU-induced apoptosis. Mechanistically, we demonstrated that increased binding of trimethylated histone H3K27 in the promoter region of PCAF attenuated its transcription in 5-FU resistant HCT116/5-FU cells. Decreased PCAF impairs the acetylation of p53 and attenuates the p53-dependent transcription of p21, which results in the increased cyclin D1 and phosphorylation of Retinoblastoma 1. Conversely, overexpression of PCAF in CRC cell lines increases p21 and their susceptibility to 5-FU in vitro and in vivo. However, knockdown of p21 abolishes the beneficial effects of PCAF overexpression on increasing the sensitivity of HCT116/5-FU cells to 5-FU. Also, the reduced intensity of PCAF immunostaining was observed in the precancerous lesion, and microarray data from the public database further demonstrated the association between PCAF down-regulation and poor survival outcome. Our data suggest that PCAF-mediated p53 acetylation is an essential regulatory mechanism for increasing the susceptibility of CRC to 5-FU.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, China; Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Xiang Wang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501
| | - Zhi Fang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501
| | - Ying Jin
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, China.
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501.
| |
Collapse
|
72
|
Metwally NH, Mohamed MS, Ragb EA. Design, synthesis, anticancer evaluation, molecular docking and cell cycle analysis of 3-methyl-4,7-dihydropyrazolo[1,5-a]pyrimidine derivatives as potent histone lysine demethylases (KDM) inhibitors and apoptosis inducers. Bioorg Chem 2019; 88:102929. [PMID: 31015179 DOI: 10.1016/j.bioorg.2019.102929] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
A novel series of pyrazolo[1,5-a]pyrimidines were synthesized and proved by their spectral and elemental analysis, some elected of the newly synthesized compounds were examined for their cytotoxic activity employing MTT assay on two cancer cell lines (Breast and Hela cancers). Compounds 5, 7e and 7i showed the higher cytotoxicity against two cancer cell lines with (IC50 = 13.91 ± 1.4 and 22.37 ± 1.8 μM/L), (IC50 = 6.56 ± 0.5 and 8.72 ± 0.9 μM/L) and (IC50 = 4.17 ± 0.2 and 5.57 ± 0.4 μM/L) for two cancer cell lines breast and hela respectively, using doxorubicin as a reference drug. The most potent cytotoxic active compounds 5, 7e and 7i presented inhibitory activity against KDM (histone lysine demethylases) with IC50 = 4.05, 1.91 and 2.31 μM, respectively. The most potent KDM inhibitor 7e (IC50 = 1.91 μM) showed to cause cell cycle arrest at G2/M phase by 4 folds than control and induce total apoptotic effect by 10 folds more than control. In silico studies performed on the more potent cytotoxic active compounds 5, 7e and 7i included lipinisk's rule of five. Moreover, molecular docking study was utilized to explore the binding mode of the most active compounds to the target enzyme (PDB-ID: 5IVE). Also, some bioinformatics studies were carried out for compounds 7e and 7i using Swiss ADME (Swiss Institute of bioinformatics 2018).
Collapse
Affiliation(s)
| | - Mona Said Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Eman Ali Ragb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
73
|
Kumar A, Kumari N, Nallabelli N, Prasad R. Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers. Indian J Clin Biochem 2019; 34:123-132. [PMID: 31092985 DOI: 10.1007/s12291-019-00828-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Histone modifications occupy an essential position in the epigenetic landscape of the cell, and their alterations have been linked to cancers. Histone 3 lysine 4 (H3K4) methylation has emerged as a critical epigenetic cue for the regulation of gene transcription through dynamic modulation by several H3K4 methyltransferases (writers) and demethylases (erasers). Any disturbance in the delicate balance of writers and erasers can result in the mis-regulation of H3K4 methylation, which has been demonstrated in several human cancers. Therefore, H3K4 methylation has been recognized as a putative therapeutic or prognostic tool and drug trials of different inhibitors of this process have demonstrated promising results. Henceforth, more detailed knowledge of H3K4 methylation is utmost important for elucidating the complex cellular processes, which might help in improving the disease outcome. The primary focus of this review will be directed on deciphering the role of H3K4 methylation along with its writers/erasers in different cancers.
Collapse
Affiliation(s)
- Aman Kumar
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Niti Kumari
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Nayudu Nallabelli
- 2Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Rajendra Prasad
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| |
Collapse
|
74
|
Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends. Future Med Chem 2019; 11:901-921. [DOI: 10.4155/fmc-2018-0380] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysine methyltransferases SMYD2 and SMYD3 are involved in the epigenetic regulation of cell differentiation and functioning. Overexpression and deregulation of these enzymes have been correlated to the insurgence and progression of different tumors, making them promising molecular targets in cancer therapy even if their role in tumors is not yet fully understood. In this light, selective small-molecule inhibitors are required to fully understand and validate these enzymes, as this is a prerequisite for the development of successful targeted therapeutic strategies. The present review gives a systematic overview of the chemical probes developed to selectively target SMYD2 and SMYD3, with particular focus on the structural features important for high inhibitory activity, on the mode of inhibition and on the efficacy in cell-based and in in vivo models.
Collapse
|
75
|
Mu H, Xiang L, Li S, Rao D, Wang S, Yu K. MiR-10a functions as a tumor suppressor in prostate cancer via targeting KDM4A. J Cell Biochem 2019; 120:4987-4997. [PMID: 30302800 DOI: 10.1002/jcb.27774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023]
Abstract
Deregulation of microRNAs contributes to the abnormal cell growth which is frequently observed in cancer. In the current study, we detected the expression and regulatory relationship between miR-10a and Lysine-specific demethylase 4A (KDM4A) to reveal their function in prostate cancer (PCa) progression. We found that miR-10a levels were significantly decreased in PCa cell lines in comparison with the normal epithelial cell line RWPE-1. Downregulation of miR-10a levels was also observed in tumor tissues from PCa patients compared with the adjacent normal tissues. Enhanced expression of miR-10a inhibited cell proliferation and colony forming capability of PCa cells. In addition, quantitative real-time polymerase chain reaction and Western blot analysis showed a significant decrease of KDM4A in response to miR-10a elevation in PCa cells. Using dual luciferase assay, we confirmed that KDM4A was a target gene for miR-10a. Furthermore, Western blot analysis indicated that miR-10a overexpression inactivated YAP signaling and suppressed transcription of YAP target genes. Additionally, cell growth arrest and colony forming capacity inhibition induced by miR-10a overexpression could be reversed by YAP overexpression in PCa cells. More importantly, miR-10a mimics inhibited PC-3 tumor growth in nude mice accompanied with a remarkable reduction of KDM4A and YAP expression. In conclusion, our results uncovered a tumor suppressor role of miR-10a in PCa via negative regulation of KDM4A and its downstream Hippo-YAP pathway.
Collapse
Affiliation(s)
- Haiqi Mu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luxia Xiang
- Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shaoxun Li
- Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuaibin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiyuan Yu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
76
|
Comprehensive profiling of JMJD3 in gastric cancer and its influence on patient survival. Sci Rep 2019; 9:868. [PMID: 30696880 PMCID: PMC6351656 DOI: 10.1038/s41598-018-37340-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/04/2018] [Indexed: 01/19/2023] Open
Abstract
Histone methylation is thought to control the regulation of genetic program and the dysregulation of it has been found to be closely associated with cancer. JMJD3 has been identified as an H3K27 demethylase and its role in cancer development is context specific. The role of JMJD3 in gastric cancer (GC) has not been examined. In this study, JMJD3 expression was determined. The prognostic significance of JMJD3 and its association with clinical parameters were evaluated. JMJD3 dysregulation mechanism and targets were analyzed. The effect of JMJD3 mutation was determined by functional study. Results showed that JMJD3 was overexpressed in different patient cohorts and also by bioinformatics analysis. High JMJD3 expression was correlated with shortened overall survival in patients with GC and was an independent prognosis predictor. Genetic aberration and DNA methylation might be involved in the deregulation of JMJD3 in GC. Downstream network of JMJD3 was analyzed and several novel potential targets were identified. Furthermore, functional study discovered that both demethylase-dependent and demethylase-independent mechanisms were involved in the oncogenic role of JMJD3 in GC. Importantly, histone demethylase inhibitor GSK-J4 could reverse the oncogenic effect of JMJD3 overexpression. In conclusion, our study report the oncogenic role of JMJD3 in GC for the first time. JMJD3 might serve as an important epigenetic therapeutic target and/or prognostic predictor in GC.
Collapse
|
77
|
Yang GJ, Ko CN, Zhong HJ, Leung CH, Ma DL. Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:E92. [PMID: 30650517 PMCID: PMC6360022 DOI: 10.3390/cancers11010092] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the one of the most frequent causes of female cancer mortality. KDM5A, a histone demethylase, can increase the proliferation, metastasis, and drug resistance of cancers, including breast cancer, and is thus an important therapeutic target. In the present work, we performed hierarchical virtual screening towards the KDM5A catalytic pocket from a chemical library containing 90,000 compounds. Using multiple biochemical methods, the cyclopenta[c]chromen derivative 1 was identified as the top candidate for KDM5A demethylase inhibitory activity. Compared with the well-known KDM5 inhibitor CPI-455 (18), 1 exhibited higher potency against KDM5A and much higher selectivity for KDM5A over both KDM4A and other KDM5 family members (KDM5B and KDM5C). Additionally, compound 1 repressed the proliferation of various KDM5A-overexpressing breast cancer cell lines. Mechanistically, 1 promoted accumulation of p16 and p27 by blocking KDM5A-mediated H3K4me3 demethylation, leading to cell cycle arrest and senescence. To date, compound 1 is the first cyclopenta[c]chromen-based KDM5A inhibitor reported, and may serve as a novel motif for developing more selective and efficacious pharmacological molecules targeting KDM5A. In addition, our research provides a possible anti-cancer mechanism of KDM5A inhibitors and highlights the feasibility and significance of KDM5A as a therapeutic target for KDM5A-overexpressing breast cancer.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| |
Collapse
|
78
|
Recasens A, Munoz L. Targeting Cancer Cell Dormancy. Trends Pharmacol Sci 2019; 40:128-141. [PMID: 30612715 DOI: 10.1016/j.tips.2018.12.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Cancer cell dormancy is a process whereby cells enter reversible cell cycle arrest, termed quiescence. Quiescence is essential for cancer cells to acquire additional mutations, to survive in a new environment and initiate metastasis, to become resistant to cancer therapy, and to evade immune destruction. Thus, dormant cancer cells are considered to be responsible for cancer progression. As we start to understand the mechanisms that enable quiescence, we can begin to develop pharmacological strategies to target dormant cancer cells. Herein, we summarize the major molecular mechanisms underlying the dormancy of disseminated tumor cells and drug-tolerant persister cells. We then analyze the current pharmacological strategies aimed (i) to keep cancer cells in the harmless dormant state, (ii) to reactivate dormant cells to increase their susceptibility to anti-proliferative drugs, and (iii) to eradicate dormant cancer cells.
Collapse
Affiliation(s)
- Ariadna Recasens
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
79
|
Li L, Li R, Wang Y. Identification of selective and reversible LSD1 inhibitors with anti-metastasis activity by high-throughput docking. Bioorg Med Chem Lett 2019; 29:544-548. [PMID: 30611617 DOI: 10.1016/j.bmcl.2018.12.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
The overexpression of lysine specific demethylase 1 (LSD1) has been reported in various human tumors. There is increasing interest in targeting LSD1 with small molecules for cancer treatment. A released structure of an LSD1 kinase domain in complex with FAD was used to set up a low-cost high-throughput docking protocol for quick identification of LSD1 inhibitors. The most promising hit L05 was confirmed to be a potent, selective and reversible LSD1 inhibitor and displayed marked inhibition of colorectal cells migration without significant cytotoxicity.
Collapse
Affiliation(s)
- Lijun Li
- Department of General Surgery, Taizhou People's Hospital, Taizhou 225300, PR China.
| | - Ruizhe Li
- Department of Sport and Health Science, Nanjing Sport Institute, Nanjing 210000, PR China
| | - Yumei Wang
- Department of Emergency Internal Medicine, Taizhou People's Hospital, Taizhou 225300, PR China
| |
Collapse
|
80
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
81
|
Li J, Tao X, Shen J, Liu L, Zhao Q, Ma Y, Tao Z, Zhang Y, Ding B, Xiao Z. The molecular landscape of histone lysine methyltransferases and demethylases in non-small cell lung cancer. Int J Med Sci 2019; 16:922-930. [PMID: 31341405 PMCID: PMC6643118 DOI: 10.7150/ijms.34322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Lung cancer is one of the most common malignant tumors. Histone methylation was reported to regulate the expression of a variety of genes in cancer. However, comprehensive understanding of the expression profiles of histone methyltransferases and demethylases in lung cancer is still lacking. Methods: We analyzed the expression profile of methyltransferases and demethylases in non-small cell lung cancer (NSCLC) using TCGA and cBioportal databases. The mutation, expression level, association with survival and clinical parameters of histone methyltransferases and demethylases were determined. Results: We found overall upregulation of histone regulators in NSCLC. Mutation and copy number alteration of histone methylation related genes both exist in NSCLC. The expression of certain histone methylation related genes were significantly associated with overall survival and clinical attributes. Conclusions: Our result suggests that alteration of histone methylation is strongly involved in NSCLC. Some histone methylation related genes might serve as potential prognosis predictor or therapeutic target for NSCLC. The significance of some histone methylation related genes was contrary to the literature and awaits further validation.
Collapse
Affiliation(s)
- Jiaping Li
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Xinlu Tao
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Linling Liu
- The People's Hospital of Weiyuan, Neijiang, Sichuan, PR China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Yongshun Ma
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Zheng Tao
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Yan Zhang
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Boying Ding
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
82
|
The Role of DNA/Histone Modifying Enzymes and Chromatin Remodeling Complexes in Testicular Germ Cell Tumors. Cancers (Basel) 2018; 11:cancers11010006. [PMID: 30577487 PMCID: PMC6357018 DOI: 10.3390/cancers11010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
It is well established that cancer cells exhibit alterations in chromatin structure and accessibility. Indeed, the dysregulation of many protein-coding players with enzymatic activity (DNA and histone-modifying enzymes) and chromatin remodelers have been depicted in various tumor models in recent years. Still, little attention has been directed towards testicular germ cell tumors (TGCTs)-representing the most common neoplasm among young adult Caucasian men-with most studies focusing on exploring the role of DNA methyltransferases (DNMTs) and DNA demethylases (TETs). TGCTs represent a complex tumor model, associated with developmental and embryogenesis-related phenomena, and display seldom (cyto)genetic aberrations, leaving room for Epigenetics to explain such morphological and clinical diversity. Herein, we have summarized the major findings that were reported in literature regarding the dysregulation of DNA/histone-modifying enzymes and chromatin remodelers in TGCTs. Additionally, we performed in silico analysis of The Cancer Genome Atlas database to find the most relevant of those players in TGCTs. We concluded that several DNA/histone-modifying enzymes and chromatin remodelers may serve as biomarkers for subtyping, dictating prognosis and survival, and, possibly, for serving as targets of directed, less toxic therapies.
Collapse
|
83
|
Wang ZZ, Yang J, Sun XD, Ma CY, Gao QB, Ding L, Liu HM. Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2018; 37:3482-3495. [DOI: 10.1080/07391102.2018.1518158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhi-Zheng Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jing Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Xu-Dong Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao-Ya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Qi-Bing Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
84
|
MacFawn I, Wilson H, Selth LA, Leighton I, Serebriiskii I, Bleackley RC, Elzamzamy O, Farris J, Pifer PM, Richer J, Frisch SM. Grainyhead-like-2 confers NK-sensitivity through interactions with epigenetic modifiers. Mol Immunol 2018; 105:137-149. [PMID: 30508726 DOI: 10.1016/j.molimm.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Natural Killer (NK) cells suppress tumor initiation and metastasis. Most carcinomas are heterogeneous mixtures of epithelial, mesenchymal and hybrid tumor cells, but the relationships of these phenotypes to NK susceptibility are understood incompletely. Grainyhead-like-2 (GRHL2) is a master programmer of the epithelial phenotype, that is obligatorily down-regulated during experimentally induced Epithelial-Mesenchymal Transition (EMT). Here, we utilize GRHL2 re-expression to discover unifying molecular mechanisms that link the epithelial phenotype with NK-sensitivity. GRHL2 enhanced the expression of ICAM-1, augmenting NK-target cell synaptogenesis and NK killing of target cells. The expression of multiple interferon response genes, including ICAM1, anti-correlated with EMT. We identified two novel GRHL2-interacting proteins, the histone methyltransferases KMT2C and KMT2D. Mesenchymal-epithelial transition, NK-sensitization and ICAM-1 expression were promoted by GRHL2-KMT2C/D interactions and by GRHL2 inhibition of p300, revealing novel and potentially targetable epigenetic mechanisms connecting the epithelial phenotype with target cell susceptibility to NK killing.
Collapse
Affiliation(s)
- Ian MacFawn
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Hannah Wilson
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, South Australia, Australia
| | - Ian Leighton
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; Washington and Jefferson College, 60 S. Lincoln Street, Washington, PA 15301, United States
| | - Ilya Serebriiskii
- Fox Chase Cancer Center, 333 Cottman Ave. Philadelphia, PA 19111, United States
| | - R Christopher Bleackley
- Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Osama Elzamzamy
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; West Virginia Clinical and Translational Sciences Institute, School of Medicine, West Virginia University PO Box 9102, Morgantown, WV 26506-9102, United States
| | - Joshua Farris
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Phillip M Pifer
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Jennifer Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, 31 Aurora, CO 80045, United States
| | - Steven M Frisch
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; Department of Biochemistry, 1 Medical Center Drive, West Virginia University, Morgantown WV, United States.
| |
Collapse
|
85
|
Kuo KT, Huang WC, Bamodu OA, Lee WH, Wang CH, Hsiao M, Wang LS, Yeh CT. Histone demethylase JARID1B/KDM5B promotes aggressiveness of non-small cell lung cancer and serves as a good prognostic predictor. Clin Epigenetics 2018; 10:107. [PMID: 30092824 PMCID: PMC6085612 DOI: 10.1186/s13148-018-0533-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer death worldwide. Recently, epigenetic dysregulation has been known to promote tumor progression and therefore may be a therapeutic target for anticancer therapy. JARID1B, a member of histone demethylases, has been found to be related to tumorigenesis in certain kinds of cancers. However, its biological roles in non-small cell lung cancer (NSCLC) remain largely unclear. Methods We firstly examined the expression of JARID1B in surgical specimens and six NSCLC cell lines. Then, we evaluated the relationship between JARID1B expression and clinicopathologic parameters in 72 NSCLC patients, thereby established its prognostic importance. We subsequently studied the functional roles of JARID1B in tumorigenesis to verify its clinicopathologic significance. Results Our results showed that JARID1B was overexpressed in NSCLC cells and JARID1B overexpression was associated with tumor size, lymph node metastasis, advanced stages, and poor overall survival in NSCLC patients. JARID1B overexpression resulted in increased cell proliferation and formation of tumorspheres and correlated positively with the expression of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) markers, while the c-Met signaling pathway was actively involved. It also correlated with the strength of resistance to cisplatin and doxorubicin. On the contrary, downregulation of JARID1B expression by applying shRNA or JARID1B inhibitor PBIT reversed these phenomena. Conclusions JARID1B worsens prognosis of NSCLC patients by promotion of tumor aggressiveness through multiple biological facets which were associated with activation of the c-Met signaling, and can be a novel prognostic biomarker and therapeutic target for NSCLC. Electronic supplementary material The online version of this article (10.1186/s13148-018-0533-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chien Huang
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,MacKay Medical College, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Hematology/Oncology, Department of Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chun-Hua Wang
- Department of Dermatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - M Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Liang-Shun Wang
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. .,Division of Hematology/Oncology, Department of Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
86
|
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 2018; 597:1103-1119. [PMID: 29920674 PMCID: PMC6375873 DOI: 10.1113/jp275857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic pulmonary hypertension (PH) is characterized by the accumulation of persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM) remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these activated phenotypes. Furthermore, current approaches to define additional therapeutic targets have focused on determining the initiating signals and their downstream effectors that are important in PH onset and development. Although these approaches have produced a large number of compelling PH treatment targets, many promising human drugs have failed in PH clinical trials. Herein, we propose that one contributing factor to these failures is that processes important in PH development may not be good treatment targets in the established phase of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH cells, resulting in functional differences between the same factor or pathway in normal or early PH cells versus cells in chronic PH. We propose that the high expression of genes involved in the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs, the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus, determining how gene expression is controlled by examining chromatin structure, TFs and epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in chronic PH, may uncover new PH therapeutic targets.
![]()
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
87
|
Silva-Figueroa AM, Perrier ND. Epigenetic processes in sporadic parathyroid neoplasms. Mol Cell Endocrinol 2018; 469:54-59. [PMID: 28400272 DOI: 10.1016/j.mce.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 01/18/2023]
Abstract
Parathyroid tumors (PTs) are highly variable in their genetic background. Increasing evidence demonstrates that endocrine diseases can be caused by epigenetic alterations. The present review is focused on epigenetic aberrations related to PTs. DNA methylation, posttranslational histone modification, and noncoding RNAs are epigenetic mechanisms involved in parathyroid tumorigenesis. The information in this review has the potential to define epigenetic signatures associated with PTs for future use as diagnostic markers and lead to the development of new epigenetic drugs with therapeutic applications for these tumors. However, several epigenetic aspects regarding the biomarkers involved and their interactions in tumorigenesis on PTs are still unknown. Key to future epigenetic research would be a focus on global epigenetic identification of biomarkers in the different types of PTs, especially in parathyroid carcinoma. Better understanding may be useful for diagnostic and therapeutic uncertainty.
Collapse
Affiliation(s)
- Angelica M Silva-Figueroa
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Nancy D Perrier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
88
|
Lu X, He X, Su J, Wang J, Liu X, Xu K, De W, Zhang E, Guo R, Shi YE. EZH2-Mediated Epigenetic Suppression of GDF15 Predicts a Poor Prognosis and Regulates Cell Proliferation in Non-Small-Cell Lung Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:309-318. [PMID: 30195769 PMCID: PMC6031151 DOI: 10.1016/j.omtn.2018.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
Growth differentiation factor 15 (GDF15), a member of the TGF-β superfamily of cytokines, has been reported to exert very heterogeneous functions in various tumors. However, its expression and roles in mediating non-small-cell lung cancer (NSCLC) progression remain unknown. In this study, we found that GDF15 is downregulated in paired NSCLC tissues and correlated with poor clinical outcomes in NSCLC. A functional experiment demonstrated that overexpression of GDF15 significantly repressed NSCLC proliferation both in vitro and in vivo. Mechanistic studies reveal that inhibition of EZH2 expression prevented its binding to the GDF15 promoter region and reduced the trimethylation modification pattern of H3K27. Together, our data uncover that GDF15 is a direct target of EZH2 and, as a regulator of proliferation, might serve as a candidate prognostic biomarker and target for new therapies in human NSCLC.
Collapse
Affiliation(s)
- Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Su
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, China
| | - Jing Wang
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyin Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kun Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Yuenian Eric Shi
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
89
|
Coussens NP, Kales SC, Henderson MJ, Lee OW, Horiuchi KY, Wang Y, Chen Q, Kuznetsova E, Wu J, Chakka S, Cheff DM, Cheng KCC, Shinn P, Brimacombe KR, Shen M, Simeonov A, Lal-Nag M, Ma H, Jadhav A, Hall MD. High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2. J Biol Chem 2018; 293:13750-13765. [PMID: 29945974 DOI: 10.1074/jbc.ra118.004274] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.
Collapse
Affiliation(s)
- Nathan P Coussens
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Stephen C Kales
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Mark J Henderson
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Olivia W Lee
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | | | - Yuren Wang
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | - Qing Chen
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | | | - Jianghong Wu
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | - Sirisha Chakka
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Dorian M Cheff
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Ken Chih-Chien Cheng
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Paul Shinn
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Kyle R Brimacombe
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Min Shen
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Anton Simeonov
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Madhu Lal-Nag
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Haiching Ma
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | - Ajit Jadhav
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Matthew D Hall
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| |
Collapse
|
90
|
Chen Y, Liu X, Li Y, Quan C, Zheng L, Huang K. Lung Cancer Therapy Targeting Histone Methylation: Opportunities and Challenges. Comput Struct Biotechnol J 2018; 16:211-223. [PMID: 30002791 PMCID: PMC6039709 DOI: 10.1016/j.csbj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is one of the most common malignancies. In spite of the progress made in past decades, further studies to improve current therapy for lung cancer are required. Dynamically controlled by methyltransferases and demethylases, methylation of lysine and arginine residues on histone proteins regulates chromatin organization and thereby gene transcription. Aberrant alterations of histone methylation have been demonstrated to be associated with the progress of multiple cancers including lung cancer. Inhibitors of methyltransferases and demethylases have exhibited anti-tumor activities in lung cancer, and multiple lead candidates are under clinical trials. Here, we summarize how histone methylation functions in lung cancer, highlighting most recent progresses in small molecular inhibitors for lung cancer treatment.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- DUSP3, dual-specificity phosphatase 3
- EMT, epithelial-to-mesenchymal transition
- Elk1, ETS-domain containing protein
- HDAC, histone deacetylase
- Histone demethylase
- Histone demethylation
- Histone methylation
- Histone methyltransferase
- IHC, immunohistochemistry
- Inhibitors
- KDMs, lysine demethylases
- KLF2, Kruppel-like factor 2
- KMTs, lysine methyltransferases
- LSDs, lysine specific demethylases
- Lung cancer
- MEP50, methylosome protein 50
- NSCLC, non-small cell lung cancer
- PAD4, peptidylarginine deiminase 4
- PCNA, proliferating cell nuclear antigen
- PDX, patient-derived xenografts
- PRC2, polycomb repressive complex 2
- PRMTs, protein arginine methyltrasferases
- PTMs, posttranslational modifications
- SAH, S-adenosyl-L-homocysteine
- SAM, S-adenosyl-L-methionine
- SCLC, small cell lung cancer
- TIMP3, tissue inhibitor of metalloproteinase 3
Collapse
Affiliation(s)
- Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xinran Liu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chuntao Quan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
91
|
Mottin M, Borba JVVB, Braga RC, Torres PHM, Martini MC, Proenca-Modena JL, Judice CC, Costa FTM, Ekins S, Perryman AL, Horta Andrade C. The A-Z of Zika drug discovery. Drug Discov Today 2018; 23:1833-1847. [PMID: 29935345 PMCID: PMC7108251 DOI: 10.1016/j.drudis.2018.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Despite the recent outbreak of Zika virus (ZIKV), there are still no approved treatments, and early-stage compounds are probably many years away from approval. A comprehensive A-Z review of the recent advances in ZIKV drug discovery efforts is presented, highlighting drug repositioning and computationally guided compounds, including discovered viral and host cell inhibitors. Promising ZIKV molecular targets are also described and discussed, as well as targets belonging to the host cell, as new opportunities for ZIKV drug discovery. All this knowledge is not only crucial to advancing the fight against the Zika virus and other flaviviruses but also helps us prepare for the next emerging virus outbreak to which we will have to respond.
Collapse
Affiliation(s)
- Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Joyce V V B Borba
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Rodolpho C Braga
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Pedro H M Torres
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Matheus C Martini
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Carla C Judice
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Fabio T M Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Alexander L Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil; Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil.
| |
Collapse
|
92
|
Wen KW, Grenert JP, Joseph NM, Shafizadeh N, Huang A, Hosseini M, Kakar S. Genomic profile of appendiceal goblet cell carcinoid is distinct compared to appendiceal neuroendocrine tumor and conventional adenocarcinoma. Hum Pathol 2018; 77:166-174. [PMID: 29634977 DOI: 10.1016/j.humpath.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Goblet cell carcinoid (GCC) is a rare appendiceal tumor with unique morphologic features that shows glandular and neuroendocrine differentiation on immunohistochemistry. An additional component of adenocarcinoma (AC) can be present (GCC-AC). Both GCC and GCC-AC are staged and treated like AC. The histogenesis and genetic alterations underlying GCC and GCC-AC are unclear. Capture-based next-generation DNA sequencing targeting 479 cancer genes was performed on 19 appendiceal tumors: 4 GCC, 9 GCC-AC, 3 neuroendocrine tumors (NET), and 3 AC (2 conventional, 1 mucinous). Somatic coding mutations were not seen in any NET. Pathogenic (P)/likely pathogenic (LP) mutations were present in 1 GCC, 8 GCC-AC and all 3 AC cases. P/LP mutations in chromatin remodeling genes were seen in 4 (44.4%) GCC-AC cases, but not in NET, GCC or AC. In GCC-AC, P/LP mutations in ARID1A and RHOA were each present in 3 cases, and KDM6A and SOX9 mutations were each seen in 2 cases. APC and KRAS mutations were present in 1 conventional AC case, but were not observed in any GCC or GCC-AC. This limited series reveals mutations in SOX9, RHOA, and chromatin-modifier genes in goblet cell tumors, and shows that the mutational profile of GCC/GCC-AC is distinct from NET and conventional appendiceal AC.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | - James P Grenert
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | - Nancy M Joseph
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | | | - Anne Huang
- Vista Pathology, Medford, OR 97504, United States
| | - Mojgan Hosseini
- University of California, San Diego, San Diego, CA 92093, United States
| | - Sanjay Kakar
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States.
| |
Collapse
|
93
|
Michalczyk AA, Janus ED, Judge A, Ebeling PR, Best JD, Ackland MJ, Asproloupos D, Dunbar JA, Ackland ML. Transient epigenomic changes during pregnancy and early postpartum in women with and without type 2 diabetes. Epigenomics 2018; 10:419-431. [PMID: 29561170 DOI: 10.2217/epi-2017-0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIM To investigate epigenomic changes in pregnancy and early postpartum in women with and without type 2 diabetes. METHODS Dimethylation of histones H3K4, H3K9, H3K27, H3K36 and H3K79 was measured in white blood cells of women at 30 weeks pregnancy, at 8-10 and 20 weeks postpartum and in never-pregnant women. RESULTS Dimethylation levels of all five histones were different between women in pregnancy and early postpartum compared with never-pregnant women and were different between women with and without type 2 diabetes. CONCLUSION Histone methylation changes are transient in pregnancy and early postpartum and may represent normal physiological responses to hormones. Different epigenomic profiles in women with type 2 diabetes mellitus may correlate with hormonal responses, leading to high risk pregnancy outcomes.
Collapse
Affiliation(s)
- Agnes A Michalczyk
- Centre for Cellular & Molecular Biology, School of Life & Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Edward D Janus
- University of Melbourne, Western Centre for Health Research & Education, Western Health, St Albans VIC 3021, Australia.,General Internal Medicine Unit, Western Health, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Alisha Judge
- Centre for Cellular & Molecular Biology, School of Life & Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria 3168, Australia
| | - James D Best
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Michael J Ackland
- The Alfred Centre, Monash University, Melbourne, Victoria 3004, Australia
| | - Dino Asproloupos
- Centre for Population Health Research, Faculty of Health, Deakin University, Burwood, Victoria 3125, Australia
| | - James A Dunbar
- Centre for Population Health Research, Faculty of Health, Deakin University, Burwood, Victoria 3125, Australia
| | - M Leigh Ackland
- Centre for Cellular & Molecular Biology, School of Life & Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
94
|
Ardeshir-Larijani F, Bhateja P, Lipka MB, Sharma N, Fu P, Dowlati A. KMT2D Mutation Is Associated With Poor Prognosis in Non-Small-Cell Lung Cancer. Clin Lung Cancer 2018; 19:e489-e501. [PMID: 29627316 DOI: 10.1016/j.cllc.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mixed-lineage leukemia protein 2 (MLL2 or KMT2D) is a histone methyltransferase whose mutation has been associated with a poor prognosis in cancer. We compared the characteristics and significance of KMT2D alterations in non-small-cell lung cancer (NSCLC) with those in small cell lung cancer (SCLC). PATIENTS AND METHODS Tumors from 194 NSCLC patients with locally advanced or advanced disease and 64 SCLC patients underwent targeted-exome sequencing. The association of KMT2D mutation with overall survival (OS) and progression-free survival (PFS) was measured using Kaplan-Meier methods and further evaluated using multivariable Cox proportional hazards regression model adjusting for known clinical prognostic features. RESULTS The KMT2D mutation rate was 17.5% (34 of 194) in NSCLC. Patients with mutant KMT2D had significantly lower median OS (9.97 vs. 30.2 months; P < .0001) and median PFS (8.46 vs. 24.1 months; P = .0004) compared with patients with wild-type KMT2D. The KMT2D mutation was significantly more common in females (P = .017). Using a multivariate Cox regression model, KMT2D mutation was one of the most significant prognostic factors in NSCLC: hazard ratio (HR) for OS, 2.79 (95% confidence interval [CI], 1.8-4.33; P < .0001) and HR for PFS, 1.99 (95% CI, 1.32-3.01; P = .001). In contrast, the KMT2D mutation rate in SCLC was 32.8% (21 of 64) and showed no sex bias (P = .874). No significant change was found in survival in association with the KMT2D mutation in SCLC (OS, P = .952; PFS, P = .744). CONCLUSION The KMT2D mutation was associated with reduced survival in NSCLC but not in SCLC.
Collapse
Affiliation(s)
| | - Priyanka Bhateja
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH
| | - Mary Beth Lipka
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH
| | - Neelesh Sharma
- Division of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, OH
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Afshin Dowlati
- Division of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, OH.
| |
Collapse
|
95
|
Blocking EZH2 methylation transferase activity by GSK126 decreases stem cell-like myeloma cells. Oncotarget 2018; 8:3396-3411. [PMID: 27926488 PMCID: PMC5356890 DOI: 10.18632/oncotarget.13773] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/21/2016] [Indexed: 01/14/2023] Open
Abstract
EZH2 is a critical epigenetic regulator that is deregulated in various types of cancers including multiple myeloma (MM). In the present study, we hypothesized that targeting EZH2 might induce apoptosis in myeloma cells including stem cell-like cells (CSCs). We investigated the effect of EZH2 inhibition on MM cells using a potent inhibitor (GSK126). The results showed that GSK126 effectively abrogated the methylated histone 3 (H3K27me3) level in MM.1S and LP1 cells, and inhibited the number of live cells and colony formation in soft agar of six MM cell lines. GSK126 induced massive apoptosis in MM.1S, LP1 and RPMI8226 cells. Progressive release of mitochondrial cytochrome c and AIF into the cytosol was detected in GSK126-treated MM cells. GSK126 treatment elicited caspase-3-dependent MCL-1 cleavage with accumulation of proapoptotic truncated MCL-1. These results suggested that GSK126 triggers the intrinsic mitochondrial apoptosis pathway. Enhanced apoptosis was observed in the combination of GSK126 with bortezomib. Using ALDH and side population (SP) assays to characterize CSCs, we found that GSK126 eliminated the stem-like myeloma cells by blocking the Wnt/β-catenin pathway. The in vivo anti-tumor effect of GSK126 was confirmed by using RPMI8226 cells in a xenograft mouse model. In conclusion, our findings suggest that EZH2 inactivation by GSK126 is effective in killing MM cells and CSCs as a single agent or in combination with bortezomib. Clinical trial of GSK126 in patients with MM may be warranted.
Collapse
|
96
|
Oncogenic Epstein-Barr virus recruits Nm23-H1 to regulate chromatin modifiers. J Transl Med 2018; 98:258-268. [PMID: 29035376 PMCID: PMC6053075 DOI: 10.1038/labinvest.2017.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022] Open
Abstract
In cancer progression, metastasis is a major cause of poor survival of patients and can be targeted for therapeutic interventions. The first discovered metastatic-suppressor Nm23-H1 possesses nucleoside diphosphate kinase, histidine kinase, and DNase activity as a broad-spectrum enzyme. Recent advances in cancer metastasis have opened new ways for the development of therapeutic molecular approaches. In this review, we provide a summary of the current understanding of Nm23/NDPKs in the context of viral oncogenesis. We also focused on Nm23-H1-mediated cellular events with an emphasis on chromatin modifications. How Nm23-H1 modulates the activities of chromatin modifiers through interaction with Epstein-Barr virus-encoded oncogenic antigens and related crosstalks are discussed in the context of other oncogenic viruses. We also described the current understanding of the cellular and viral interactions of Nm23-H1 and their reference to transcription regulation and metastasis. Further, we summarized the recent therapeutic approaches targeting Nm23 and its potential links to pathways that can be exploited by oncogenic viruses.
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW Despite better knowledge of its genetic basis, pancreatic cancer is still highly lethal with very few therapeutic options. In this review, we discuss the potential impact of epigenetic therapies, focusing on lysine methylation signaling and its implication in pancreatic cancer. RECENT FINDINGS Protein lysine methylation, a key mechanism of posttranslational modifications of histone proteins, has emerged as a major cell signaling mechanism regulating physiologic and pathologic processes including cancer. This finely tuned and dynamic signaling mechanism is regulated by lysine methyltransferases (KMT), lysine demethylases (KDM) and signal transducers harboring methyl-binding domains. Recent evidence demonstrates that overexpression of cytoplasmic KMT and resulting enhanced lysine methylation is a reversible event that enhances oncogenic signaling through the Ras and Mitogen-Activated Protein Kinases pathway in pancreatic cancer, opening perspectives for new anticancer chemotherapeutics aimed at controlling these activities. SUMMARY The development of potent and specific inhibitors of lysine methylation signaling may represent a hitherto largely unexplored avenue for new forms of targeted therapy in cancer, with great potential for yet hard-to-treat cancers such as pancreatic cancer.
Collapse
|
98
|
Baril SA, Koenig AL, Krone MW, Albanese KI, Qixin He C, Lee GY, Houk KN, Waters ML, Brustad EM. Investigation of Trimethyllysine Binding by the HP1 Chromodomain via Unnatural Amino Acid Mutagenesis. J Am Chem Soc 2017; 139:17253-17256. [PMID: 29111699 PMCID: PMC6040664 DOI: 10.1021/jacs.7b09223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trimethyllysine (Kme3) reader proteins are targets for inhibition due to their role in mediating gene expression. Although all such reader proteins bind Kme3 in an aromatic cage, the driving force for binding may differ; some readers exhibit evidence for cation-π interactions whereas others do not. We report a general unnatural amino acid mutagenesis approach to quantify the contribution of individual tyrosines to cation binding using the HP1 chromodomain as a model system. We demonstrate that two tyrosines (Y24 and Y48) bind to a Kme3-histone tail peptide via cation-π interactions, but linear free energy trends suggest they do not contribute equally to binding. X-ray structures and computational analysis suggest that the distance and degree of contact between Tyr residues and Kme3 plays an important role in tuning cation-π-mediated Kme3 recognition. Although cation-π interactions have been studied in a number of proteins, this work is the first to utilize direct binding assays, X-ray crystallography, and modeling, to pinpoint factors that influence the magnitude of the individual cation-π interactions.
Collapse
Affiliation(s)
- Stefanie A. Baril
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Amber L. Koenig
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mackenzie W. Krone
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cyndi Qixin He
- Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M. Brustad
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
99
|
Cho JH, Oezkan F, Koenig M, Otterson GA, Herman JG, He K. Epigenetic Therapeutics and Their Impact in Immunotherapy of Lung Cancer. CURRENT PHARMACOLOGY REPORTS 2017; 3:360-373. [PMID: 29503796 PMCID: PMC5831502 DOI: 10.1007/s40495-017-0110-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in the United States and worldwide. Novel therapeutic developments are critically necessary to improve outcomes for this disease. Aberrant epigenetic change plays an important role in lung cancer development and progression. Therefore, drugs targeting the epigenome are being investigated in the treatment of lung cancer. Monotherapy of epigenetic therapeutics such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have so far not shown any apparent benefit while one of the clinical trials with the combinations of DNMTi and HDACi showed a small positive signal for treating lung cancer. Combinations of DNMTi and HDACi with chemotherapies have some efficacy but are often limited by increased toxicities. Preclinical data and clinical trial results suggest that combining epigenetic therapeutics with targeted therapies might potentially improve outcomes in lung cancer patients. Furthermore, several clinical studies suggest that the HDACi vorinostat could be used as a radiosensitizer in lung cancer patients receiving radiation therapy. Immune checkpoint blockade therapies are revolutionizing lung cancer management. However, only a minority of lung cancer patients experience long-lasting benefits from immunotherapy. The role of epigenetic reprogramming in boosting the effects of immunotherapy is an area of active investigation. Preclinical studies and early clinical trial results support this approach which may improve lung cancer treatment, with potentially prolonged survival and tolerable toxicity. In this review, we discuss the current status of epigenetic therapeutics and their combination with other antineoplastic therapies, including novel immunotherapies, in lung cancer management.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Filiz Oezkan
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
- Department of Interventional Pneumology, Ruhrlandklinik, West German
Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Michael Koenig
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Gregory A. Otterson
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - James Gordon Herman
- Department of Medicine, Division of Hematology/Oncology, University
of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai He
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
100
|
Wang LY, Hung CL, Chen YR, Yang JC, Wang J, Campbell M, Izumiya Y, Chen HW, Wang WC, Ann DK, Kung HJ. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis. Cell Rep 2017; 16:3016-3027. [PMID: 27626669 DOI: 10.1016/j.celrep.2016.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/23/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
The histone lysine demethylase KDM4A/JMJD2A has been implicated in prostate carcinogenesis through its role in transcriptional regulation. Here, we describe KDM4A as a E2F1 coactivator and demonstrate a functional role for the E2F1-KDM4A complex in the control of tumor metabolism. KDM4A associates with E2F1 on target gene promoters and enhances E2F1 chromatin binding and transcriptional activity, thereby modulating the transcriptional profile essential for cancer cell proliferation and survival. The pyruvate dehydrogenase kinases (PDKs) PDK1 and PDK3 are direct targets of KDM4A and E2F1 and modulate the switch between glycolytic metabolism and mitochondrial oxidation. Downregulation of KDM4A leads to elevated activity of pyruvate dehydrogenase and mitochondrial oxidation, resulting in excessive accumulation of reactive oxygen species. The altered metabolic phenotypes can be partially rescued by ectopic expression of PDK1 and PDK3, indicating a KDM4A-dependent tumor metabolic regulation via PDK. Our results suggest that KDM4A is a key regulator of tumor metabolism and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yun-Ru Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Joy C Yang
- Department of Urology, University of California, Davis, Sacramento, CA 95817, USA
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Mel Campbell
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | - Yoshihiro Izumiya
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Wen-Ching Wang
- Department of Life Sciences, National Tsinghua University, Hsinchu 30013, Taiwan
| | - David K Ann
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| |
Collapse
|