51
|
Ahn IS, Lang JM, Olson CA, Diamante G, Zhang G, Ying Z, Byun HR, Cely I, Ding J, Cohn P, Kurtz I, Gomez-Pinilla F, Lusis AJ, Hsiao EY, Yang X. Host Genetic Background and Gut Microbiota Contribute to Differential Metabolic Responses to Fructose Consumption in Mice. J Nutr 2020; 150:2716-2728. [PMID: 32856048 PMCID: PMC7549307 DOI: 10.1093/jn/nxaa239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is unclear how high fructose consumption induces disparate metabolic responses in genetically diverse mouse strains. OBJECTIVE We aimed to investigate whether the gut microbiota contributes to differential metabolic responses to fructose. METHODS Eight-week-old male C57BL/6J (B6), DBA/2J (DBA), and FVB/NJ (FVB) mice were given 8% fructose solution or regular water (control) for 12 wk. The gut microbiota composition in cecum and feces was analyzed using 16S ribosomal DNA sequencing, and permutational multivariate ANOVA (PERMANOVA) was used to compare community across mouse strains, treatments, and time points. Microbiota abundance was correlated with metabolic phenotypes and host gene expression in hypothalamus, liver, and adipose tissues using Biweight midcorrelation. To test the causal role of the gut microbiota in determining fructose response, we conducted fecal transplants from B6 to DBA mice and vice versa for 4 wk, as well as gavaged antibiotic-treated DBA mice with Akkermansia for 9 wk, accompanied with or without fructose treatment. RESULTS Compared with B6 and FVB, DBA mice had significantly higher Firmicutes to Bacteroidetes ratio and lower baseline abundance of Akkermansia and S24-7 (P < 0.05), accompanied by metabolic dysregulation after fructose consumption. Fructose altered specific microbial taxa in individual mouse strains, such as a 7.27-fold increase in Akkermansia in B6 and 0.374-fold change in Rikenellaceae in DBA (false discovery rate <5%), which demonstrated strain-specific correlations with host metabolic and transcriptomic phenotypes. Fecal transplant experiments indicated that B6 microbes conferred resistance to fructose-induced weight gain in DBA mice (F = 43.1, P < 0.001), and Akkermansia colonization abrogated the fructose-induced weight gain (F = 17.8, P < 0.001) and glycemic dysfunctions (F = 11.8, P = 0.004) in DBA mice. CONCLUSIONS Our findings support that differential microbiota composition between mouse strains is partially responsible for host metabolic sensitivity to fructose, and that Akkermansia is a key bacterium that confers resistance to fructose-induced metabolic dysregulation.
Collapse
Affiliation(s)
- In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jennifer M Lang
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christine A Olson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Hyae Ran Byun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Peter Cohn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, University of California, Los Angeles, CA, USA,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA,Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Xia Yang
- Address correspondence to XY (e-mail: )
| |
Collapse
|
52
|
Soriano-Lerma A, Pérez-Carrasco V, Sánchez-Marañón M, Ortiz-González M, Sánchez-Martín V, Gijón J, Navarro-Mari JM, García-Salcedo JA, Soriano M. Influence of 16S rRNA target region on the outcome of microbiome studies in soil and saliva samples. Sci Rep 2020; 10:13637. [PMID: 32788589 PMCID: PMC7423937 DOI: 10.1038/s41598-020-70141-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Next generation sequencing methods are widely used in evaluating the structure and functioning of microbial communities, especially those centered on 16S rRNA subunit. Since Illumina Miseq, the most used sequencing platform, does not allow the full sequencing of 16S rRNA gene, this study aims to evaluate whether the choice of different target regions might affect the outcome of microbiome studies regarding soil and saliva samples. V1V3, V3V4, V4V5 and V6V8 domains were studied, finding that while some regions showed differences in the detection of certain bacterial taxa and in the calculation of alpha diversity, especially in soil samples, the overall effect did not compromise the differentiation of any sample type in terms of taxonomic analysis at the genus level. 16S rRNA target regions did affect the detection of specific bacteria related to soil quality and development, and microbial genera used as health biomarkers in saliva. V1V3 region showed the closest similarity to internal sequencing control mock community B, suggesting it might be the most preferable choice regarding data reliability.
Collapse
Affiliation(s)
- Ana Soriano-Lerma
- Department of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
| | - Virginia Pérez-Carrasco
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Manuel Sánchez-Marañón
- Department of Soil Science and Agricultural Chemistry, University of Granada, 18071, Granada, Spain
| | - Matilde Ortiz-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain
| | - Victoria Sánchez-Martín
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Juan Gijón
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| | - José María Navarro-Mari
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - José Antonio García-Salcedo
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain.
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain.
| | - Miguel Soriano
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain.
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain.
| |
Collapse
|
53
|
Prayogo FA, Budiharjo A, Kusumaningrum HP, Wijanarka W, Suprihadi A, Nurhayati N. Metagenomic applications in exploration and development of novel enzymes from nature: a review. J Genet Eng Biotechnol 2020; 18:39. [PMID: 32749574 PMCID: PMC7403272 DOI: 10.1186/s43141-020-00043-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Microbial community has an essential role in various fields, especially the industrial sector. Microbes produce metabolites in the form of enzymes, which are one of the essential compounds for industrial processes. Unfortunately, there are still numerous microbes that cannot be identified and cultivated because of the limitations of the culture-based method. The metagenomic approach is a solution for researchers to overcome these problems. Metagenomics is a strategy used to analyze the genomes of microbial communities in the environment directly. Metagenomics application used to explore novel enzymes is essential because it allows researchers to obtain data on microbial diversity, reaching of 99% and various types of genes encoding an enzyme that has not yet been identified. Basic methods in metagenomics have been developed and are commonly used in various studies. A basic understanding of metagenomics for researchers is needed, especially young researchers to support the success of the research. SHORT CONCLUSION Therefore, this review was done in order to provide a deep understanding of metagenomics. It also discussed the application and basic methods of metagenomics in the exploration of novel enzymes, especially in the latest research. Several types of enzymes, such as cellulases, proteases, and lipases, which have been explored using metagenomics, were reviewed in this article.
Collapse
Affiliation(s)
- Fitra Adi Prayogo
- Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Semarang City, 50275 Indonesia
| | - Anto Budiharjo
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
- Molecular and Applied Microbiology Laboratory, Center Central Laboratory of Research and Service - Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| | | | - Wijanarka Wijanarka
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| | - Agung Suprihadi
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| | - Nurhayati Nurhayati
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| |
Collapse
|
54
|
Shilei Z, Yue S, Tinglin H, Ya C, Xiao Y, Zizhen Z, Yang L, Zaixing L, Jiansheng C, Xiao L. Reservoir water stratification and mixing affects microbial community structure and functional community composition in a stratified drinking reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110456. [PMID: 32421660 DOI: 10.1016/j.jenvman.2020.110456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
To investigate how the aquatic bacterial community of a stratified reservoir drives the evolution of water parameters, the microbial community structure and network characteristics of bacteria in a stratified reservoir were investigated using Illumina MiSeq sequencing technology. A total of 42 phyla and 689 distinct genera were identified, which showed significant seasonal variation. Additionally, stratified variations in the bacterial community strongly reflected the vertical gradient and seasonal changes in water temperature, dissolved oxygen, and nutrition concentration. Furthermore, principal coordinate analysis indicated that most microorganisms were likely influenced by changes in water stratification conditions, exhibiting significant differences during the stratification period and mixing period based on Adonis, MRPP, and Anosim. Compared to the stratification period, 123 enhanced operational taxonomic units (OTUs; 29%) and 226 depleted OTUs (52%) were identified during the mixing period. Linear discriminant analysis effect size results showed that 15 major genera were enriched in the mixing period and 10 major genera were enriched in the stratification period. Importantly, network analysis revealed that the keystone species belonged to hgcI_clade, CL500-29, Acidibacter, Paucimonas, Flavobacterium, Prochlorothrix, Xanthomonadales, Chloroflexia, Burkholderiales, OPB56, KI89A_clade, Synechococcus, Caulobacter or were unclassified. Redundancy analysis showed that temperature, dissolved oxygen, pH, chlorophyll-α, total phosphorus, nitrate, and ammonia were important factors influencing the water bacterial community and function composition, which were consistent with the results of the Mantel test analysis. Furthermore, random forest analysis showed that temperature, dissolved oxygen, ammonia, and total dissolved phosphorous were the most important variables predicting water bacterial community and function community α- and β-diversity (P < 0.05). Overall, these results provide insight into the interactions between the microbial community and water quality evolution mechanism in Zhoucun reservoir.
Collapse
Affiliation(s)
- Zhou Shilei
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Sun Yue
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Huang Tinglin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Cheng Ya
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yang Xiao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Northwest Engineering Corporation Limited the Power Construction Corporation of China, PR China
| | - Zhou Zizhen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, PR China
| | - Li Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, PR China
| | - Li Zaixing
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Cui Jiansheng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Luo Xiao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| |
Collapse
|
55
|
|
56
|
Toker J, Arora R, Wargo JA. The Microbiome in Immuno-oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:325-334. [PMID: 32301026 DOI: 10.1007/978-3-030-41008-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of cancer therapy has been revolutionized through the use of immunotherapy, and treatment with these therapies now spans from early to late stage, and even into prevention. However, there are still a significant proportion of patients who do not derive long-term benefit from monotherapy and even combined therapy regimens, and novel approaches are needed to enhance therapeutic responses. Additionally, ideal biomarkers of response to immunotherapy are lacking and are critically needed. An emerging area of interest in immuno-oncology (IO) is the microbiome, which refers to the collection of microbes (and their genomes) that inhabit an individual and live in symbiosis. There is now evidence that these microbes (particularly those within the gut) impact host physiology and can impact responses to immunotherapy. The field of microbiome research in immuno-oncology is quickly emerging, with the potential use of the microbiome (in the gut as well as in the tumor) as a biomarker for response to IO as well as a therapeutic target. Notably, the microbiome may even have a role in toxicity to therapy. The state of the science in microbiome and IO are discussed and caveats and future directions are outlined to provide insights as we move forward as a field.
Collapse
Affiliation(s)
- Joseph Toker
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
57
|
F. Escapa I, Huang Y, Chen T, Lin M, Kokaras A, Dewhirst FE, Lemon KP. Construction of habitat-specific training sets to achieve species-level assignment in 16S rRNA gene datasets. MICROBIOME 2020; 8:65. [PMID: 32414415 PMCID: PMC7291764 DOI: 10.1186/s40168-020-00841-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The low cost of 16S rRNA gene sequencing facilitates population-scale molecular epidemiological studies. Existing computational algorithms can resolve 16S rRNA gene sequences into high-resolution amplicon sequence variants (ASVs), which represent consistent labels comparable across studies. Assigning these ASVs to species-level taxonomy strengthens the ecological and/or clinical relevance of 16S rRNA gene-based microbiota studies and further facilitates data comparison across studies. RESULTS To achieve this, we developed a broadly applicable method for constructing high-resolution training sets based on the phylogenic relationships among microbes found in a habitat of interest. When used with the naïve Bayesian Ribosomal Database Project (RDP) Classifier, this training set achieved species/supraspecies-level taxonomic assignment of 16S rRNA gene-derived ASVs. The key steps for generating such a training set are (1) constructing an accurate and comprehensive phylogenetic-based, habitat-specific database; (2) compiling multiple 16S rRNA gene sequences to represent the natural sequence variability of each taxon in the database; (3) trimming the training set to match the sequenced regions, if necessary; and (4) placing species sharing closely related sequences into a training-set-specific supraspecies taxonomic level to preserve subgenus-level resolution. As proof of principle, we developed a V1-V3 region training set for the bacterial microbiota of the human aerodigestive tract using the full-length 16S rRNA gene reference sequences compiled in our expanded Human Oral Microbiome Database (eHOMD). We also overcame technical limitations to successfully use Illumina sequences for the 16S rRNA gene V1-V3 region, the most informative segment for classifying bacteria native to the human aerodigestive tract. Finally, we generated a full-length eHOMD 16S rRNA gene training set, which we used in conjunction with an independent PacBio single molecule, real-time (SMRT)-sequenced sinonasal dataset to validate the representation of species in our training set. This also established the effectiveness of a full-length training set for assigning taxonomy of long-read 16S rRNA gene datasets. CONCLUSION Here, we present a systematic approach for constructing a phylogeny-based, high-resolution, habitat-specific training set that permits species/supraspecies-level taxonomic assignment to short- and long-read 16S rRNA gene-derived ASVs. This advancement enhances the ecological and/or clinical relevance of 16S rRNA gene-based microbiota studies. Video Abstract.
Collapse
Affiliation(s)
- Isabel F. Escapa
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
- Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | - Yanmei Huang
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
| | - Tsute Chen
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
| | - Maoxuan Lin
- Forsyth Institute (Microbiology), Cambridge, MA USA
| | | | - Floyd E. Dewhirst
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
| | - Katherine P. Lemon
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX USA
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
- Section of Infectious Diseases, Department of Pediatrics, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
58
|
Spatial Modelling of Bacterial Diversity over the Selected Regions in Bangladesh by Next-Generation Sequencing: Role of Water Temperature. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, a spatial model has been developed to investigate the role of water temperature to the distribution of bacteria over the selected regions in the Bay of Bengal, located in the southern region of Bangladesh using next-generation sequencing. Bacterial concentration, quantitative polymerase chain reactions, and sequencing were performed on water samples and identified Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The spatial model tessellated the parts of the Bay of Bengal with hexagons and analyzed the relationship between the distribution of bacteria and water temperature. A geographically weighted regression was used to observe whether water temperature contributed strongly or weakly to the distribution of bacteria. The residuals were examined to assess the model’s fitness. The spatial model has the potential to predict the bacterial diversity in the selected regions of Bangladesh.
Collapse
|
59
|
Yi M, Jiao D, Qin S, Chu Q, Li A, Wu K. Manipulating Gut Microbiota Composition to Enhance the Therapeutic Effect of Cancer Immunotherapy. Integr Cancer Ther 2020; 18:1534735419876351. [PMID: 31517538 PMCID: PMC7242797 DOI: 10.1177/1534735419876351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the past decade, a growing set of immunotherapies including immune checkpoint
blockade, chimeric antigen receptor T cells, and bispecific antibodies propelled
the advancement of oncology therapeutics. Accumulating evidence demonstrates
that immunotherapy could eliminate tumors better than traditional chemotherapy
or radiotherapy with lower risk of adverse events in numerous cancer types.
Unfortunately, a substantial proportion of patients eventually acquire
resistance to immunotherapy. By analyzing the differences between
immunotherapy-sensitive and immunotherapy-resistant populations, it was noticed
that the composition of gut microbiota is closely related to treatment effect.
Moreover, in xenograft models, interventional regulation of gut microbiota could
effectively enhance efficacy and relieve resistance during immunotherapy. Thus,
we believe that gut microbiota composition might be helpful to explain the
heterogeneity of treatment effect, and manipulating gut microbiota could be a
promising adjuvant treatment for cancer immunotherapy. In this mini review, we
focus on the latest understanding of the cross-talk between gut microbiota and
host immunity. Moreover, we highlight the role of gut microbiota in cancer
immunotherapy including immune checkpoint inhibitor and adoptive cell
transfer.
Collapse
Affiliation(s)
- Ming Yi
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dechao Jiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Qin
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anping Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kongming Wu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
60
|
Berkelmann D, Schneider D, Meryandini A, Daniel R. Unravelling the effects of tropical land use conversion on the soil microbiome. ENVIRONMENTAL MICROBIOME 2020; 15:5. [PMID: 33902736 PMCID: PMC8067294 DOI: 10.1186/s40793-020-0353-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/18/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The consequences of deforestation and agricultural treatments are complex and affect all trophic levels. Changes of microbial community structure and composition associated with rainforest conversion to managed systems such as rubber and oil palm plantations have been shown by 16S rRNA gene analysis previously, but functional profile shifts have been rarely addressed. In this study, we analysed the effects of rainforest conversion to different converted land use systems, including agroforestry ("jungle rubber") and monoculture plantations comprising rubber and oil palm, on soilborne microbial communities by metagenomic shotgun sequencing in Sumatra, Indonesia. RESULTS The diversity of bacteria and archaea decreased whereas diversity of fungi increased in the converted land use systems. The soil microbiome was dominated by bacteria followed by fungi. We detected negative effects of land use conversion on the abundance of Proteobacteria (especially on Rhizobiales and Burkholderiales) and positive effects on the abundance of Acidobacteria and Actinobacteria. These abundance changes were mainly driven by pH, C:N ratio, and Fe, C and N content. With increasing land use intensity, the functional diversity decreased for bacteria, archaea and fungi. Gene abundances of specific metabolisms such as nitrogen metabolism and carbon fixation were affected by land use management practices. The abundance of genes related to denitrification and nitrogen fixation increased in plantations while abundance of genes involved in nitrification and methane oxidation showed no significant difference. Linking taxonomic and functional assignment per read indicated that nitrogen metabolism-related genes were mostly assigned to members of the Rhizobiales and Burkholderiales. Abundances of carbon fixation genes increased also with increasing land use intensity. Motility- and interaction-related genes, especially genes involved in flagellar assembly and chemotaxis genes, decreased towards managed land use systems. This indicated a shift in mobility and interspecific interactions in bacterial communities within these soils. CONCLUSIONS Rainforest conversion to managed land use systems drastically affects structure and functional potential of soil microbial communities. The decrease in motility- and interaction-related functions from rainforest to converted land use systems indicated not only a shift in nutrient cycling but also in community dynamics. Fertilizer application and correspondingly higher availability of nutrients in intensively managed plantations lead to an environment in which interspecific interactions are not favoured compared to rainforest soils. We could directly link effects of land management, microbial community structure and functional potential for several metabolic processes. As our study is the first study of this size and detail on soil microbial communities in tropical systems, we provide a basis for further analyses.
Collapse
Affiliation(s)
- Dirk Berkelmann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Anja Meryandini
- Department of Biology, Faculty of Mathematics and Natural Sciences IPB, Bogor Agricultural University, Bogor, Indonesia
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
61
|
Doing More with Less: A Comparison of 16S Hypervariable Regions in Search of Defining the Shrimp Microbiota. Microorganisms 2020; 8:microorganisms8010134. [PMID: 31963525 PMCID: PMC7022540 DOI: 10.3390/microorganisms8010134] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The shrimp has become the most valuable traded marine product in the world, and its microbiota plays an essential role in its development and overall health status. Massive high-throughput sequencing techniques using several hypervariable regions of the 16S rRNA gene are broadly applied in shrimp microbiota studies. However, it is essential to consider that the use of different hypervariable regions can influence the obtained data and the interpretation of the results. The present study compares the shrimp microbiota structure and composition obtained by three types of amplicons: one spanning both the V3 and V4 hypervariable regions (V3V4), one for the V3 region only (V3), and one for the V4 region only (V4) using the same experimental and bioinformatics protocols. Twenty-four samples from hepatopancreas and intestine were sequenced and evaluated using the GreenGenes and silva reference databases for clustering and taxonomic classification. In general, the V3V4 regions resulted in higher richness and diversity, followed by V3 and V4. All three regions establish an apparent clustering effect that discriminates between the two analyzed organs and describe a higher richness for the intestine and a higher diversity for the hepatopancreas samples. Proteobacteria was the most abundant phyla overall, and Cyanobacteria was more common in the intestine, whereas Firmicutes and Actinobacteria were more prevalent in hepatopancreas samples. Also, the genus Vibrio was significantly abundant in the intestine, as well as Acinetobacter and Pseudomonas in the hepatopancreas suggesting these taxa as markers for their respective organs independently of the sequenced region. The use of a single hypervariable region such as V3 may be a low-cost alternative that enables an adequate description of the shrimp microbiota, allowing for the development of strategies to continually monitor the microbial communities and detect changes that could indicate susceptibility to pathogens under real aquaculture conditions while the use of the full V3V4 regions can contribute to a more in-depth characterization of the microbial composition.
Collapse
|
62
|
Quan L, Dong R, Yang W, Chen L, Lang J, Liu J, Song Y, Ma S, Yang J, Wang W, Meng B, Tian G. Simultaneous detection and comprehensive analysis of HPV and microbiome status of a cervical liquid-based cytology sample using Nanopore MinION sequencing. Sci Rep 2019; 9:19337. [PMID: 31852945 PMCID: PMC6920169 DOI: 10.1038/s41598-019-55843-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus (HPV) is a major pathogen that causes cervical cancer and many other related diseases. HPV infection related cervical microbiome could be an induce factor of cervical cancer. However, it is uncommon to find a single test on the market that can simultaneously provide information on both HPV and the microbiome. Herein, a novel method was developed in this study to simultaneously detect HPV infection and microbiota composition promptly and accurately. It provides a new and simple way to detect vaginal pathogen situation and also provide valuable information for clinical diagnose. This approach combined multiplex PCR, which targeted both HPV16 E6E7 and full-length 16S rRNA, and Nanopore sequencing to generate enough information to understand the vagina condition of patients. One HPV positive liquid-based cytology (LBC) sample was sequenced and analyzed. After comparing with Illumina sequencing, the results from Nanopore showed a similar microbiome composition. An instant sequencing evaluation showed that 15 min sequencing is enough to identify the top 10 most abundant bacteria. Moreover, two HPV integration sites were identified and verified by Sanger sequencing. This approach has many potential applications in pathogen detection and can potentially aid in providing a more rapid clinical diagnosis.
Collapse
Affiliation(s)
- Lili Quan
- Department of Gynaecology and Obstetrics, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Ruyi Dong
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | | | - Lanyou Chen
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Jidong Lang
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Jia Liu
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Yu Song
- Department of Gynaecology and Obstetrics, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Shuiqing Ma
- Department of Gynaecology and Obstetrics, Peking Union Medical College Hospital, Beijing, 100730, China
| | | | - Weiwei Wang
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Bo Meng
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China.
| | - Geng Tian
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China.
| |
Collapse
|
63
|
Ferrer-Polonio E, Fernández-Navarro J, Alonso-Molina JL, Bes-Piá A, Amorós I, Mendoza-Roca JA. Changes in the process performance and microbial community by addition of the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide in sequencing batch reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133726. [PMID: 31400674 DOI: 10.1016/j.scitotenv.2019.133726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
A complete study about the effects of 3,3',4',5-tetrachlorosalicylanilide (TCS) on organic matter elimination performance, sludge production and on the microbial community of a biological wastewater treatment process has been performed. For this purpose two sequencing batch reactors (SBR) worked in parallel for 43 days with 0.8 mg·L-1 of TCS (SBR-1) and without this metabolic uncoupler (SBR-2). Results indicated that 63.3% of sludge reduction was achieved in SBR-1. However, COD removal efficiency was maintained in similar values in both reactors (89.1% and 92.1% in SBR-1 and SBR-2, respectively). The exhaustive mixed liquor characterization led to know deeply the action mechanism of TCS. In this way, a 69% of adenosine triphosphate (ATP) reduction was observed in SBR-1 in comparison with values measured in SBR-2. On the contrary, an increase in soluble microbial products (SMP) and DNA concentrations occurred as a consequence of TCS addition. Thus, it could be concluded that sludge reduction due to TCS addition was due to both uncoupling effect and cellular lysis. Also, increase in all microbial hydrolytic enzymatic activities measured was observed, which explained the stable performance achieved in SBR-1 despite to the results explained above. It should be highlighted that this uncoupler should not be used in biological treatments that require nitrogen elimination because nitrifying bacteria were affected by its addition (Nitrosomonas and Nitrospira). Finally, the 16S rRNA gene amplicon sequencing informed that an important reduction of bacterial diversity resulted in SBR-1 due to TCS addition.
Collapse
Affiliation(s)
- Eva Ferrer-Polonio
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Julian Fernández-Navarro
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Luis Alonso-Molina
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Amparo Bes-Piá
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Inmaculada Amorós
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Antonio Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
64
|
Esteban‐Blanco C, Gutiérrez‐Gil B, Puente‐Sánchez F, Marina H, Tamames J, Acedo A, Arranz JJ. Microbiota characterization of sheep milk and its association with somatic cell count using 16s rRNA gene sequencing. J Anim Breed Genet 2019; 137:73-83. [DOI: 10.1111/jbg.12446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023]
Affiliation(s)
| | - Beatriz Gutiérrez‐Gil
- Facultad de Veterinaria Departamento de Producción Animal Universidad de León León Spain
| | - Fernando Puente‐Sánchez
- Departamento de Biología de Sistemas Centro Nacional de Biotecnología (CNB-CSIC) Madrid Spain
| | - Héctor Marina
- Facultad de Veterinaria Departamento de Producción Animal Universidad de León León Spain
| | - Javier Tamames
- Departamento de Biología de Sistemas Centro Nacional de Biotecnología (CNB-CSIC) Madrid Spain
| | | | - Juan José Arranz
- Facultad de Veterinaria Departamento de Producción Animal Universidad de León León Spain
| |
Collapse
|
65
|
Yamamoto K, Hackley KC, Kelly WR, Panno SV, Sekiguchi Y, Sanford RA, Liu WT, Kamagata Y, Tamaki H. Diversity and geochemical community assembly processes of the living rare biosphere in a sand-and-gravel aquifer ecosystem in the Midwestern United States. Sci Rep 2019; 9:13484. [PMID: 31530884 PMCID: PMC6748922 DOI: 10.1038/s41598-019-49996-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2019] [Indexed: 01/24/2023] Open
Abstract
Natural microbial communities consist of a limited number of abundant species and an extraordinarily diverse population of rare species referred to as the rare biosphere. Recent studies have revealed that the rare biosphere is not merely an inactive dormant population but may play substantial functional roles in the ecosystem. However, structure, activity and community assembly processes of the rare biosphere are poorly understood. In this study, we evaluated the present and living microbial community structures including rare populations in an aquifer ecosystem, the Mahomet Aquifer, USA, by both 16S rDNA and rRNA amplicon deep sequencing. The 13 groundwater samples formed three distinct groups based on the “entire” community structure, and the same grouping was obtained when focusing on the “rare” subcommunities (<0.1% of total abundance), while the “abundant” subcommunities (>1.0%) gave a different grouping. In the correlation analyses, the observed grouping pattern is associated with several geochemical factors, and structures of not only the entire community but also the rare subcommunity are correlated with geochemical profiles in the aquifer ecosystem. Our findings first indicate that the living rare biosphere in the aquifer system has the metabolic potential to adapt to local geochemical factors which dictate the community assembly processes.
Collapse
Affiliation(s)
- Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Walton R Kelly
- Groundwater Science Section, Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign (UIUC), Champaign, IL, USA
| | - Samuel V Panno
- Illinois State Geological Survey, Prairie Research Institute, UIUC, Champaign, IL, USA
| | - Yuji Sekiguchi
- Biomedical Research Institute, AIST, Tsukuba, Ibaraki, Japan
| | | | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, UIUC, Urbana, IL, USA
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan. .,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. .,Department of Civil and Environmental Engineering, UIUC, Urbana, IL, USA. .,Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
66
|
Comparative evaluation of three archaeal primer pairs for exploring archaeal communities in deep-sea sediments and permafrost soils. Extremophiles 2019; 23:747-757. [PMID: 31489482 DOI: 10.1007/s00792-019-01128-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
16S rRNA gene profiling is a powerful method for characterizing microbial communities; however, no universal primer pair can target all bacteria and archaea, resulting in different primer pairs which may impact the diversity profile obtained. Here, we evaluated three pairs of high-throughput sequencing primers for characterizing archaeal communities from deep-sea sediments and permafrost soils. The results show that primer pair Arch519/Arch915 (V4-V5 regions) produced the highest alpha diversity estimates, followed by Arch349f/Arch806r (V3-V4 regions) and A751f/AU1204r (V5-V7 regions) in both sample types. The archaeal taxonomic compositions and the relative abundance estimates of archaeal communities are influenced by the primer pairs. Beta diversity of the archaeal community detected by the three primer pairs reveals that primer pairs Arch349f/Arch806r and Arch519f/Arch915r are biased toward detection of Halobacteriales, Methanobacteriales and MBG-E/Hydrothermarchaeota, whereas the primer pairs Arch519f/Arch915r and A751f/UA1204r are biased to detect MBG-B/Lokiarchaeota, and the primers pairs Arch349f/Arch806r and A751f/UA1204r are biased to detect Methanomicrobiales and Methanosarcinales. The data suggest that the alpha and beta diversities of archaeal communities as well as the community compositions are influenced by the primer pair choice. This finding provides researchers with valuable experimental insight for selection of appropriate archaeal primer pairs to characterize archaeal communities.
Collapse
|
67
|
Zhang W, Zhou Y, Jeppesen E, Wang L, Tan H, Zhang J. Linking heterotrophic bacterioplankton community composition to the optical dynamics of dissolved organic matter in a large eutrophic Chinese lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:136-147. [PMID: 31082588 DOI: 10.1016/j.scitotenv.2019.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/04/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
Elucidation of the linkages between the bacterial community composition and chromophoric dissolved organic matter (CDOM) in lake ecosystems is critical for the understanding of the inland water carbon cycling. Despite substantial research into the relationship between the bacteria community and the bulk DOM pool, knowledge of the specific relationship between the optical dynamics of DOM and the bacterioplankton community in lake ecosystems is still poor. We investigated the linkages between the optical dynamics of DOM and bacteria composition in shallow eutrophic Lake Taihu, China. Redundancy Analysis (RDA) indicated that besides water temperature and phytoplankton biomass, also CDOM was an important factor determining the composition of the bacterial community. Generalized Additive Models (GAM) showed that terrestrial humic-like C1 and tyrosine-like C4 were the key factors explaining the abundance of the main bacterial clades. C1 was closely correlated with Verrucomicrobia, Actinobacteria, Alphaproteobacteria, Betaproteobacteria and Planctomycetes, and C4 was closely related to the latter two and to Bacteroidetes. At family level, the dominant families - Pelagibacteraceae (Alphaproteobacteria) and Gemmataceae (Planctomycetes) - were related to both allochthonous and autochthonous CDOM fluorophores but responded differently to the various CDOM components. Tryptophan-like C2 was significantly and positively correlated with Gemmataceae and Ellin6075 (Acidobacteria). Additionally, we found that the biomasses of Cyanophyta, terrestrial humic-like C1, tryptophan-like C4 and C5 were significantly related to the richness of heterotrophic bacterioplankton. Our results provide new insight into the relationship between bacteria and DOM optical dynamics although the mechanisms leading to these relationships need further experimental investigations.
Collapse
Affiliation(s)
- Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrition (Ministry of Agriculture, China), Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education, China), National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yongqiang Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg DK-8600, Denmark; Sino-Danish Centre for Education and Research (SDC), Beijing 100049, PR China
| | - Liqing Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (Ministry of Agriculture, China), Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education, China), National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hongxin Tan
- Centre for Research on Environmental Ecology and Fish Nutrition (Ministry of Agriculture, China), Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education, China), National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Junyi Zhang
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210008, PR China; Wuxi Environmental Monitoring Centre, Wuxi 214023, PR China.
| |
Collapse
|
68
|
Gołębiewski M, Tretyn A. Generating amplicon reads for microbial community assessment with next‐generation sequencing. J Appl Microbiol 2019; 128:330-354. [DOI: 10.1111/jam.14380] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- M. Gołębiewski
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| | - A. Tretyn
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| |
Collapse
|
69
|
Nasykhova YA, Barbitoff YA, Serebryakova EA, Katserov DS, Glotov AS. Recent advances and perspectives in next generation sequencing application to the genetic research of type 2 diabetes. World J Diabetes 2019; 10:376-395. [PMID: 31363385 PMCID: PMC6656706 DOI: 10.4239/wjd.v10.i7.376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes (T2D) mellitus is a common complex disease that currently affects more than 400 million people worldwide and has become a global health problem. High-throughput sequencing technologies such as whole-genome and whole-exome sequencing approaches have provided numerous new insights into the molecular bases of T2D. Recent advances in the application of sequencing technologies to T2D research include, but are not limited to: (1) Fine mapping of causal rare and common genetic variants; (2) Identification of confident gene-level associations; (3) Identification of novel candidate genes by specific scoring approaches; (4) Interrogation of disease-relevant genes and pathways by transcriptional profiling and epigenome mapping techniques; and (5) Investigation of microbial community alterations in patients with T2D. In this work we review these advances in application of next-generation sequencing methods for elucidation of T2D pathogenesis, as well as progress and challenges in implementation of this new knowledge about T2D genetics in diagnosis, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Yulia A Nasykhova
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg 199034, Russia
| | - Yury A Barbitoff
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Bioinformatics Institute, St. Petersburg 194021, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena A Serebryakova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg 199034, Russia
- Department of Genetics, City Hospital No. 40, St. Petersburg 197706, Russia
| | - Dmitry S Katserov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russia
| | - Andrey S Glotov
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg 199034, Russia
- Department of Genetics, City Hospital No. 40, St. Petersburg 197706, Russia
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russia
| |
Collapse
|
70
|
Pinna NK, Dutta A, Monzoorul Haque M, Mande SS. Can Targeting Non-Contiguous V-Regions With Paired-End Sequencing Improve 16S rRNA-Based Taxonomic Resolution of Microbiomes?: An In Silico Evaluation. Front Genet 2019; 10:653. [PMID: 31354793 PMCID: PMC6640118 DOI: 10.3389/fgene.2019.00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Next-generation sequencing (NGS) technologies have enabled probing of microbial diversity in different environmental niches with unprecedented sequencing depth. However, due to read-length limitations of popular NGS technologies, 16S amplicon sequencing-based microbiome studies rely on targeting short stretches of the 16S rRNA gene encompassing a selection of variable (V) regions. In most cases, such a short stretch constitutes a single V-region or a couple of V-regions placed adjacent to each other on the 16S rRNA gene. Given that different V-regions have different resolving ability with respect to various taxonomic groups, selecting the optimal V-region (or a combination thereof) remains a challenge. Methods: The accuracy of taxonomic profiles generated from sequences encompassing 1) individual V-regions, 2) adjacent V-regions, and 3) pairs of non-contiguous V-regions were assessed and compared. Subsequently, the discriminating capability of different V-regions with respect to different taxonomic lineages was assessed. The possibility of using paired-end sequencing protocols to target combinations of non-adjacent V-regions was finally evaluated with respect to the utility of such an experimental design in providing improved taxonomic resolution. Results: Extensive validation with simulated microbiome datasets mimicking different environmental and host-associated microbiome samples suggest that targeting certain combinations of non-contiguously placed V-regions might yield better taxonomic classification accuracy compared to conventional 16S amplicon sequencing targets. This work also puts forward a novel in silico combinatorial strategy that enables creation of consensus taxonomic profiles from experiments targeting multiple pair-wise combinations of V-regions to improve accuracy in taxonomic classification. Conclusion: The study suggests that targeting non-contiguous V-regions with paired-end sequencing can improve 16S rRNA–based taxonomic resolution of microbiomes. Furthermore, employing the novel in silico combinatorial strategy can improve taxonomic classification without any significant additional experimental costs and/or efforts. The empirical observations obtained can potentially serve as a guideline for future 16S microbiome studies, and facilitate researchers in choosing the optimal combination of V-regions for a specific experiment/sampled environment.
Collapse
Affiliation(s)
- Nishal Kumar Pinna
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, Maharashtra, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, Maharashtra, India
| | - Mohammed Monzoorul Haque
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, Maharashtra, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, Maharashtra, India
| |
Collapse
|
71
|
Cogdill AP, Gaudreau PO, Arora R, Gopalakrishnan V, Wargo JA. The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends Immunol 2019; 39:900-920. [PMID: 30392721 DOI: 10.1016/j.it.2018.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The human microbiome is a complex aggregate of microorganisms, and their genomes exert a number of influences crucial to the metabolic, immunologic, hormonal, and homeostatic function of the host. Recent work, both in preclinical mouse models and human studies, has shed light on the impact of gut and tumor microbiota on responses to systemic anticancer therapeutics. In light of this, strategies to target the microbiome to improve therapeutic responses are underway, including efforts to target gut and intratumoral microbes. Here, we discuss mechanisms by which microbiota may impact systemic and antitumor immunity, in addition to outstanding questions in the field. A deeper understanding of these is critical as we devise putative strategies to target the microbiome.
Collapse
Affiliation(s)
- Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pierre Olivier Gaudreau
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work.
| |
Collapse
|
72
|
Riiser ES, Haverkamp THA, Varadharajan S, Borgan Ø, Jakobsen KS, Jentoft S, Star B. Switching on the light: using metagenomic shotgun sequencing to characterize the intestinal microbiome of Atlantic cod. Environ Microbiol 2019; 21:2576-2594. [PMID: 31091345 DOI: 10.1111/1462-2920.14652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
Atlantic cod (Gadus morhua) is an ecologically important species with a wide-spread distribution in the North Atlantic Ocean, yet little is known about the diversity of its intestinal microbiome in its natural habitat. No geographical differentiation in this microbiome was observed based on 16S rRNA amplicon analyses, yet such finding may result from an inherent lack of power of this method to resolve fine-scaled biological complexity. Here, we use metagenomic shotgun sequencing to investigate the intestinal microbiome of 19 adult Atlantic cod individuals from two coastal populations in Norway-located 470 km apart. Resolving the species community to unprecedented resolution, we identify two abundant species, Photobacterium iliopiscarium and Photobacterium kishitanii, which comprise over 50% of the classified reads. Interestingly, the intestinal P. kishitanii strains have functionally intact lux genes, and its high abundance suggests that fish intestines form an important part of its ecological niche. These observations support a hypothesis that bioluminescence plays an ecological role in the marine food web. Despite our improved taxonomical resolution, we identify no geographical differences in bacterial community structure, indicating that the intestinal microbiome of these coastal cod is colonized by a limited number of closely related bacterial species with a broad geographical distribution.
Collapse
Affiliation(s)
- Even Sannes Riiser
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| | - Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| | - Srinidhi Varadharajan
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| | - Ørnulf Borgan
- Department of Mathematics, University of Oslo, PO Box 1053, Blindern, N-0316 Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
73
|
Ahmed HI, Herrera M, Liew YJ, Aranda M. Long-Term Temperature Stress in the Coral Model Aiptasia Supports the "Anna Karenina Principle" for Bacterial Microbiomes. Front Microbiol 2019; 10:975. [PMID: 31139158 PMCID: PMC6517863 DOI: 10.3389/fmicb.2019.00975] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
The understanding of host-microbial partnerships has become a hot topic during the last decade as it has been shown that associated microbiota play critical roles in the host physiological functions and susceptibility to diseases. Moreover, the microbiome may contribute to host resilience to environmental stressors. The sea anemone Aiptasia is a good laboratory model system to study corals and their microbial symbiosis. In this regard, studying its bacterial microbiota provides a better understanding of cnidarian metaorganisms as a whole. Here, we investigated the bacterial communities of different Aiptasia host-symbiont combinations under long-term heat stress in laboratory conditions. Following a 16S rRNA gene sequencing approach we were able to detect significant differences in the bacterial composition and structure of Aiptasia reared at different temperatures. A higher number of taxa (i.e., species richness), and consequently increased α-diversity and β-dispersion, were observed in the microbiomes of heat-stressed individuals across all host strains and experimental batches. Our findings are in line with the recently proposed Anna Karenina principle (AKP) for animal microbiomes, which states that dysbiotic or stressed organisms have a more variable and unstable microbiome than healthy ones. Microbial interactions affect the fitness and survival of their hosts, thus exploring the AKP effect on animal microbiomes is important to understand host resilience. Our data contributes to the current knowledge of the Aiptasia holobiont and to the growing field of study of host-associated microbiomes.
Collapse
Affiliation(s)
| | | | | | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
74
|
Pang M, Xie X, Bao H, Sun L, He T, Zhao H, Zhou Y, Zhang L, Zhang H, Wei R, Xie K, Wang R. Insights Into the Bovine Milk Microbiota in Dairy Farms With Different Incidence Rates of Subclinical Mastitis. Front Microbiol 2018; 9:2379. [PMID: 30459717 PMCID: PMC6232673 DOI: 10.3389/fmicb.2018.02379] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis continues to be a complex disease associated with significant economic loss in dairy industries worldwide. The incidence rate of subclinical mastitis (IRSCM) can show substantial variation among different farms; however, the milk microbiota, which have a direct influence on bovine mammary gland health, have never been associated with the IRSCM. Here, we aimed to use high-throughput DNA sequencing to describe the milk microbiota from two dairy farms with different IRSCMs and to identify the predominant mastitis pathogens along with commensal or potential beneficial bacteria. Our study showed that Klebsiella, Escherichia-Shigella, and Streptococcus were the mastitis-causing pathogens in farm A (with a lower IRSCM), while Streptococcus and Corynebacterium were the mastitis-causing pathogens in farm B (with a higher IRSCM). The relative abundance of all pathogens in farm B (22.12%) was higher than that in farm A (9.82%). However, the genus Bacillus was more prevalent in farm A. These results may be helpful for explaining the lower IRSCM in farm A. Additionally, the gut-associated genera Prevotella, Ruminococcus, Bacteroides, Rikenella, and Alistipes were prevalent in all milk samples, suggesting gut bacteria can be one of the predominant microbial contamination in milk. Moreover, Listeria monocytogenes (a foodborne pathogen) was found to be prevalent in farm A, even though it had a lower IRSCM. Overall, our study showed complex diversity between the milk microbiota in dairy farms with different IRSCMs. This suggests that variation in IRSCMs may not only be determined by the heterogeneity and prevalence of mastitis-causing pathogens but also be associated with potential beneficial bacteria. In the future, milk microbiota should be considered in bovine mammary gland health management. This would be helpful for both the establishment of a targeted mastitis control system and the control of the safety and quality of dairy products.
Collapse
Affiliation(s)
- Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongduo Bao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lichang Sun
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hang Zhao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Zhou
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kaizhou Xie
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ran Wang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
75
|
Riiser ES, Haverkamp THA, Borgan Ø, Jakobsen KS, Jentoft S, Star B. A Single Vibrionales 16S rRNA Oligotype Dominates the Intestinal Microbiome in Two Geographically Separated Atlantic cod Populations. Front Microbiol 2018; 9:1561. [PMID: 30057577 PMCID: PMC6053498 DOI: 10.3389/fmicb.2018.01561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Atlantic cod (Gadus morhua) provides an interesting species for the study of host-microbe interactions because it lacks the MHC II complex that is involved in the presentation of extracellular pathogens. Nonetheless, little is known about the diversity of its microbiome in natural populations. Here, we use high-throughput sequencing of the 16S rRNA V4 region, amplified with the primer design of the Earth Microbiome Project (EMP), to investigate the microbial composition in gut content and mucosa of 22 adult individuals from two coastal populations in Norway, located 470 km apart. We identify a core microbiome of 23 OTUs (97% sequence similarity) in all individuals that comprises 93% of the total number of reads. The most abundant orders are classified as Vibrionales, Fusobacteriales, Clostridiales, and Bacteroidales. While mucosal samples show significantly lower diversity than gut content samples, no differences in OTU community composition are observed between the two geographically separated populations. All specimens share a limited number of abundant OTUs. Moreover, the most abundant OTU consists of a single oligotype (order Vibrionales, genus Photobacterium) that represents nearly 50% of the reads in both locations. Our results suggest that these microbiomes comprise a limited number of species or that the EMP V4 primers do not yield sufficient resolution to confidently separate these communities. Our study contributes to a growing body of literature that shows limited spatial differentiation of the intestinal microbiomes in marine fish based on 16S rRNA sequencing, highlighting the need for multi-gene approaches to provide more insight into the diversity of these communities.
Collapse
Affiliation(s)
- Even S Riiser
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ørnulf Borgan
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|