51
|
Paz-Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab 2012; 16:S549-S555. [PMID: 23565489 PMCID: PMC3602983 DOI: 10.4103/2230-8210.105571] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insulinemia and insulin resistance. The understanding of the effects of leptin on the glucose-insulin homeostasis will lead to the development of leptin-based therapies against diabetes and other insulin resistance syndromes. In these review, we summarize the interactions between leptin and insulin, and their effects on the glucose metabolism.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Claudio Mastronardi
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ma-Li Wong
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Julio Licinio
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
52
|
Marino JS, Iler J, Dowling AR, Chua S, Bruning JC, Coppari R, Hill JW. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS): evidence of adipocyte hypertrophy and tissue-specific inflammation. PLoS One 2012; 7:e48643. [PMID: 23119079 PMCID: PMC3485364 DOI: 10.1371/journal.pone.0048643] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023] Open
Abstract
Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC) mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC) mice showed reduced or absent ovulation. IR/LepR(POMC) mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC) mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC) mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joseph S. Marino
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Jeffrey Iler
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Abigail R. Dowling
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Streamson Chua
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Jens C. Bruning
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster for Cellular Stress Responses in Aging Associated Diseases, and Center for Molecular Medicine Cologne, 2nd Department for Internal Medicine, University of Cologne, and Max Planck Institute for the Biology of Aging, Cologne, Germany
| | - Roberto Coppari
- Departments of Internal Medicine, Division of Hypothalamic Research, Pharmacology, and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
- Department of Obstetrics-Gynecology, University of Toledo Medical Center, Toledo, Ohio, United States of America
| |
Collapse
|
53
|
Mirrakhimov AE. Chronic obstructive pulmonary disease and glucose metabolism: a bitter sweet symphony. Cardiovasc Diabetol 2012; 11:132. [PMID: 23101436 PMCID: PMC3499352 DOI: 10.1186/1475-2840-11-132] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/04/2012] [Indexed: 01/05/2023] Open
Abstract
Chronic obstructive pulmonary disease, metabolic syndrome and diabetes mellitus are common and underdiagnosed medical conditions. It was predicted that chronic obstructive pulmonary disease will be the third leading cause of death worldwide by 2020. The healthcare burden of this disease is even greater if we consider the significant impact of chronic obstructive pulmonary disease on the cardiovascular morbidity and mortality. Chronic obstructive pulmonary disease may be considered as a novel risk factor for new onset type 2 diabetes mellitus via multiple pathophysiological alterations such as: inflammation and oxidative stress, insulin resistance, weight gain and alterations in metabolism of adipokines. On the other hand, diabetes may act as an independent factor, negatively affecting pulmonary structure and function. Diabetes is associated with an increased risk of pulmonary infections, disease exacerbations and worsened COPD outcomes. On the top of that, coexistent OSA may increase the risk for type 2 DM in some individuals. The current scientific data necessitate a greater outlook on chronic obstructive pulmonary disease and chronic obstructive pulmonary disease may be viewed as a risk factor for the new onset type 2 diabetes mellitus. Conversely, both types of diabetes mellitus should be viewed as strong contributing factors for the development of obstructive lung disease. Such approach can potentially improve the outcomes and medical control for both conditions, and, thus, decrease the healthcare burden of these major medical problems.
Collapse
MESH Headings
- Adipokines/blood
- Adult
- Aged
- Animals
- Blood Glucose/metabolism
- Comorbidity
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Humans
- Inflammation Mediators/blood
- Lung/metabolism
- Lung/physiopathology
- Male
- Middle Aged
- Oxidative Stress
- Prognosis
- Pulmonary Disease, Chronic Obstructive/blood
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/epidemiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/therapy
- Risk Factors
Collapse
Affiliation(s)
- Aibek E Mirrakhimov
- Kyrgyz State Medical Academy named by I,K, Akhunbaev, Akhunbaev street 92, Bishkek 720020, Kyrgyzstan.
| |
Collapse
|
54
|
Burgos-Ramos E, Canelles S, Perianes-Cachero A, Arilla-Ferreiro E, Argente J, Barrios V. Adipose tissue promotes a serum cytokine profile related to lower insulin sensitivity after chronic central leptin infusion. PLoS One 2012; 7:e46893. [PMID: 23056516 PMCID: PMC3462753 DOI: 10.1371/journal.pone.0046893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022] Open
Abstract
Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Arancha Perianes-Cachero
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Eduardo Arilla-Ferreiro
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
55
|
Yoon JA, Han DH, Noh JY, Kim MH, Son GH, Kim K, Kim CJ, Pak YK, Cho S. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice. PLoS One 2012; 7:e44053. [PMID: 22952870 PMCID: PMC3428308 DOI: 10.1371/journal.pone.0044053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s) underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA), body temperature (BT), blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42%) of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR) as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.
Collapse
Affiliation(s)
- Ji-Ae Yoon
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Dong-Hee Han
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Jong-Yun Noh
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Mi-Hee Kim
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Gi Hoon Son
- Department of Legal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyungjin Kim
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Youngmi Kim Pak
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sehyung Cho
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
56
|
Macia L, Tsai VWW, Nguyen AD, Johnen H, Kuffner T, Shi YC, Lin S, Herzog H, Brown DA, Breit SN, Sainsbury A. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One 2012; 7:e34868. [PMID: 22514681 PMCID: PMC3325923 DOI: 10.1371/journal.pone.0034868] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/06/2012] [Indexed: 12/03/2022] Open
Abstract
Food intake and body weight are controlled by a variety of central and peripheral factors, but the exact mechanisms behind these processes are still not fully understood. Here we show that that macrophage inhibitory cytokine-1 (MIC-1/GDF15), known to have anorexigenic effects particularly in cancer, provides protection against the development of obesity. Both under a normal chow diet and an obesogenic diet, the transgenic overexpression of MIC-1/GDF15 in mice leads to decreased body weight and fat mass. This lean phenotype was associated with decreased spontaneous but not fasting-induced food intake, on a background of unaltered energy expenditure and reduced physical activity. Importantly, the overexpression of MIC-1/GDF15 improved glucose tolerance, both under normal and high fat-fed conditions. Altogether, this work shows that the molecule MIC-1/GDF15 might be beneficial for the treatment of obesity as well as perturbations in glucose homeostasis.
Collapse
Affiliation(s)
- Laurence Macia
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Vicky Wang-Wei Tsai
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Heiko Johnen
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Tamara Kuffner
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - David A. Brown
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Samuel N. Breit
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
57
|
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13:225-39. [PMID: 22430016 DOI: 10.1038/nrn3209] [Citation(s) in RCA: 652] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central and peripheral insulin-like peptides (ILPs), which include insulin, insulin-like growth factor 1 (IGF1) and IGF2, exert many effects in the brain. Through their actions on brain growth and differentiation, ILPs contribute to building circuitries that subserve metabolic and behavioural adaptation to internal and external cues of energy availability. In the adult brain each ILP has distinct effects, but together their actions ultimately regulate energy homeostasis - they affect nutrient sensing and regulate neuronal plasticity to modulate adaptive behaviours involved in food seeking, including high-level cognitive operations such as spatial memory. In essence, the multifaceted activity of ILPs in the brain may be viewed as a system organization involved in the control of energy allocation.
Collapse
Affiliation(s)
- Ana M Fernandez
- Cajal Institute, CSIC and Ciberned, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | | |
Collapse
|
58
|
Fukami T, Sun X, Li T, Desai M, Ross MG. Mechanism of programmed obesity in intrauterine fetal growth restricted offspring: paradoxically enhanced appetite stimulation in fed and fasting states. Reprod Sci 2012; 19:423-30. [PMID: 22344733 DOI: 10.1177/1933719111424448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have shown that intrauterine fetal growth restriction (IUGR) newborn rats exhibit hyperphagia, reduced satiety, and adult obesity. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a principal metabolic regulator that specifically regulates appetite in the hypothalamic arcuate nucleus (ARC). In response to fasting, upregulated AMPK activity increases the expression of orexigenic (neuropeptide Y [NPY] and agouti-related protein [AgRP]) and decreases anorexigenic (proopiomelanocortin [POMC]) peptides. We hypothesized that IUGR offspring would exhibit upregulated hypothalamic AMPK, contributing to hyperphagia and obesity. We determined AMPK activity and appetite-modulating peptides (NPY and POMC) during fasting and fed conditions in the ARC of adult IUGR and control females. Pregnant rats were fed ad libitum diet (control) or were 50% food restricted from gestation day 10 to 21 to produce IUGR newborns. At 10 months of age, hypothalamic ARC was dissected from fasted (48 hours) and fed control and IUGR females. Arcuate nucleus messenger RNA ([mRNA] NPY, AgRP, and POMC) and protein expression (total and phosphorylated AMPK, Akt) was determined by quantitative reverse transcriptase-polymerase chain reaction and Western Blot, respectively. In the fed state, IUGR adult females demonstrated evidence of persistent appetite stimulation with significantly upregulated phospho (Thr(172))-AMPKα/AMPK (1.3-fold), NPY/AgRP (2.3/1.8-fold) and decreased pAkt/Akt (0.6-fold) and POMC (0.7-fold) as compared to fed controls. In controls though not IUGR adult females, fasting significantly increased pAMPK/AMPK, NPY, and AgRP and decreased pAkt/Akt and POMC. Despite obesity, fed IUGR adult females exhibit upregulated AMPK activity and appetite stimulatory factors, similar to that exhibited by fasting controls. These results suggest that an enhanced appetite drive in both fed and fasting states contributes to hyperphagia and obesity in IUGR offspring.
Collapse
Affiliation(s)
- Tatsuya Fukami
- Department of Obstetrics & Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | |
Collapse
|
59
|
Begum G, Stevens A, Smith EB, Connor K, Challis JRG, Bloomfield F, White A. Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J 2012; 26:1694-703. [PMID: 22223754 DOI: 10.1096/fj.11-198762] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Undernutrition during pregnancy is implicated in the programming of offspring for the development of obesity and diabetes. We hypothesized that maternal programming causes epigenetic changes in fetal hypothalamic pathways regulating metabolism. This study used sheep to examine the effect of moderate maternal undernutrition (60 d before to 30 d after mating) and twinning to investigate changes in the key metabolic regulators proopiomelanocortin (POMC) and the glucocorticoid receptor (GR) in fetal hypothalami. Methylation of the fetal hypothalamic POMC promoter was reduced in underfed singleton, fed twin, and underfed twin groups (60, 73, and 63% decrease, respectively). This was associated with reduced DNA methyltransferase activity and altered histone methylation and acetylation. Methylation of the hypothalamic GR promoter was decreased in both twin groups and in maternally underfed singleton fetuses (52, 65, and 55% decrease, respectively). This correlated with changes in histone methylation and acetylation and increased GR mRNA expression in the maternally underfed singleton group. Alterations in GR were hypothalamic specific, with no changes in hippocampi. Unaltered levels of OCT4 promoter methylation indicated gene-specific effects. In conclusion, twinning and periconceptional undernutrition are associated with epigenetic changes in fetal hypothalamic POMC and GR genes, potentially resulting in altered energy balance regulation in the offspring.
Collapse
Affiliation(s)
- Ghazala Begum
- Department of Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
60
|
Expanding neurotransmitters in the hypothalamic neurocircuitry for energy balance regulation. Protein Cell 2011; 2:800-13. [PMID: 22058035 DOI: 10.1007/s13238-011-1112-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023] Open
Abstract
The current epidemic of obesity and its associated metabolic syndromes impose unprecedented challenges to our society. Despite intensive research on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of the leptin neural pathway in the hypothalamus in the regulation of body weight homeostasis. Important hypothalamic neuropeptides have been identified as critical neurotransmitters from leptin-sensitive neurons to mediate leptin action. Recent research advance has significantly expanded the list of neurotransmitters involved in body weight-regulating neural pathways, including fast-acting neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate. Given the limited knowledge on the leptin neural pathway for body weight homeostasis, understanding the function of neurotransmitters released from key neurons for energy balance regulation is essential for delineating leptin neural pathway and eventually for designing effective therapeutic drugs against the obesity epidemic.
Collapse
|