51
|
Chapuis AF, Ballou ER, MacCallum DM. A Bright Future for Fluorescence Imaging of Fungi in Living Hosts. J Fungi (Basel) 2019; 5:jof5020029. [PMID: 30987114 PMCID: PMC6616859 DOI: 10.3390/jof5020029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional in vivo investigation of fungal infection and new antifungal therapies in mouse models is usually carried out using post mortem methodologies. However, biomedical imaging techniques focusing on non-invasive techniques using bioluminescent and fluorescent proteins have become valuable tools. These new techniques address ethical concerns as they allow reduction in the number of animals required to evaluate new antifungal therapies. They also allow better understanding of the growth and spread of the pathogen during infection. In this review, we concentrate on imaging technologies using different fungal reporter proteins. We discuss the advantages and limitations of these different reporters and compare the efficacy of bioluminescent and fluorescent proteins for fungal research.
Collapse
Affiliation(s)
- Ambre F Chapuis
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Donna M MacCallum
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
52
|
Lin CJ, Zeininger L, Savagatrup S, Swager TM. Morphology-Dependent Luminescence in Complex Liquid Colloids. J Am Chem Soc 2019; 141:3802-3806. [PMID: 30785273 DOI: 10.1021/jacs.8b13215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex liquid colloids hold great promise as transducers in sensing applications as a result of their tunable morphology and intrinsic optical properties. Herein, we introduce meta-amino substituted green fluorescence protein chromophore (GFPc) surfactants that localize at the organic-water interface of complex multiphase liquid colloids. The meta-amino GFPc exhibits hydrogen-bonding (HB) mediated fluorescence quenching, and are nearly nonemissive in the presence of protic solvents. We demonstrate morphology-dependent fluorescence of complex liquid colloids and investigate the interplay between GFPc surfactants and other simple surfactants. This environmentally responsive surfactant allows us to observe morphological changes of complex emulsions in randomized orientations. We demonstrate utility with an enzyme activity based fluorescence "turn-ON" scheme. The latter employs an oligopeptide-linked GFPc that functions as both a surfactant and trypsin target. The cleavage of hydrophilic peptide results in a morphology change and ultimately a fluorescence turn-on. Fluorescent complex colloids represent a new approach for biosensing in liquid environments.
Collapse
Affiliation(s)
- Che-Jen Lin
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lukas Zeininger
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
53
|
Diupotex M, Martínez-Salazar MB, Escalona-Montaño AR, Zamora-Chimal J, Salaiza-Suazo N, Ruiz-Remigio A, Roldán-Salgado A, Aguirre-García MM, Martínez-Calvillo S, Gaytán P, Becker I. The mKate fluorescent protein expressed by Leishmania mexicana modifies the parasite immunopathogenicity in BALB/c mice. Parasite Immunol 2019; 41:e12608. [PMID: 30500992 DOI: 10.1111/pim.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/27/2022]
Abstract
Parasites have been engineered to express fluorescent reporter proteins, yet the impact of red fluorescent proteins on Leishmania infections remains largely unknown. We analysed the infection outcome of Leishmania mexicana parasites engineered for the constitutive expression of mKate protein and evaluated their immunogenicity in BALB/c mice. Infection of BALB/c mice with mKate transfected L. mexicana (LmexmKate ) parasites caused enlarged lesion sizes, leading to ulceration, and containing more parasites, as compared to LmexWT . The mKate protein showed immunogenic properties inducing antibody production against the mKate protein, as well as enhancing antibody production against the parasite. The augmented lesion sizes and ulcers, together with the more elevated antibody production, were related to an enhanced number of TNF-α and IL-1β producing cells in the infected tissues. We conclude that mKate red fluorescent protein is an immunogenic protein, capable of modifying disease evolution of L. mexicana.
Collapse
Affiliation(s)
- Mariana Diupotex
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - María Berenice Martínez-Salazar
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Alma Reyna Escalona-Montaño
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Norma Salaiza-Suazo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Adriana Ruiz-Remigio
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | | | - María Magdalena Aguirre-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Paul Gaytán
- Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| |
Collapse
|
54
|
Mohammadi Z, Karamzadeh A, Tabatabaiefar MA, Khanahmad H, Shariati L. Evidence for expression of promoterless GFP cassette: Is GFP an ideal reporter gene in biotechnology science? Res Pharm Sci 2019; 14:351-358. [PMID: 31516512 PMCID: PMC6714119 DOI: 10.4103/1735-5362.263559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Green fluorescent protein (GFP) has played an important role in biochemistry and cell biology as a reporter gene. It has been used to assess the potency of promoters for recombinant protein production. This investigation reveals evidences suggesting that the gfp GFP gene (EGFP) could be expressed without the promoter. In a study, a pLenti-F/GFP vector was constructed with the purpose to allow GFP expression in transduced cells but not in packaging cells; however, after transfecting the HEK293T cell line, GFP gene was expressed, compared to pLOX/CWgfp-transfected cells showed expression lag, lower levels and reduced percentage of GFP expression in the cells. This unexpected result could be due to auto transduction in packaging cell, possible retrotransposon activity in the cell line, possible contamination of pLenti-F/GFP with the pLOX/CWgfp and possible presence of a promoter within backbone of the vector. All the possibilities were ruled out. To exclude the possibility that a sequence within the region might act as a promoter, the fragment to be transfected was minimized to a region containing “from the start of the GFP gene to 5’LTR R”. The GFP gene was again expressed. Therefore, our findings suggest the EGFP does not need promoter for expression. This should appeal to the researchers designing GFP based assays to evaluate the potency of promoters, since possible aberrant expression may have a potential to influence on the results of a planned experiment.
Collapse
Affiliation(s)
- Zahra Mohammadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Arezou Karamzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Laleh Shariati
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
55
|
Samrat SK, Gu H. Temporal Analysis of the Nuclear-to-cytoplasmic Translocation of a Herpes Simplex Virus 1 Protein by Immunofluorescent Confocal Microscopy. J Vis Exp 2018. [PMID: 30451237 DOI: 10.3791/58504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It is responsible for the proteasomal degradation of host restrictive factors and the subsequent viral gene activation. ICP0 contains a canonical nuclear localization sequence (NLS). It enters the nucleus immediately after de novo synthesis and executes its anti-host defense functions mainly in the nucleus. However, later in infection, ICP0 is found solely in the cytoplasm, suggesting the occurrence of a nuclear-to-cytoplasmic translocation during HSV-1 infection. Presumably ICP0 translocation enables ICP0 to modulate its functions according to its subcellular locations at different infection phases. In order to delineate the biological function and regulatory mechanism of ICP0 nuclear-to-cytoplasmic translocation, we modified an immunofluorescent microscopy method to monitor ICP0 trafficking during HSV-1 infection. This protocol involves immunofluorescent staining, confocal microscope imaging, and nuclear vs. cytoplasmic distribution analysis. The goal of this protocol is to adapt the steady state confocal images taken in a time course into a quantitative documentation of ICP0 movement throughout the lytic infection. We propose that this method can be generalized to quantitatively analyze nuclear vs. cytoplasmic localization of other viral or cellular proteins without involving live imaging technology.
Collapse
Affiliation(s)
| | - Haidong Gu
- Department of Biological Sciences, Wayne State University;
| |
Collapse
|
56
|
Chee RKW, Li Y, Zhang W, Campbell RE, Zemp RJ. In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 30334395 DOI: 10.1117/1.jbo.23.10.106006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Photoacoustic (PA) imaging offers great promise for deep molecular imaging of optical reporters but has difficulties in imaging multiple molecular probes simultaneously in a strong blood background. Photoswitchable chromoproteins like BphP1 have recently allowed for sensitive PA detection by reducing high-blood background signals but lack multiplexing capabilities. We propose a method known as difference-spectra demixing for multiplexing multiple photoswitchable chromoproteins and introduce a second photoswitchable chromoprotein, sGPC2. sGPC2 has a far-red and orange state with peaks at 700 and 630 nm, respectively. It is roughly one-tenth the size of BphP1 and photoswitches four times as fast (2.4% per mJ / cm2). We simultaneously image Escherichia coli expressing sGPC2 and BphP1 injected in mice in vivo. Difference-spectra demixing obtained successful multiplexed images of photoswitchable molecular probes, resulting in a 21.6-fold increase in contrast-to-noise ratio in vivo over traditional PA imaging and an 8% to 40% reduction in erroneously demixed signals in comparison with traditional spectral demixing. PA imaging and characterization were conducted using a custom-built photoswitching PA imaging system.
Collapse
Affiliation(s)
- Ryan K W Chee
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Canada
| | - Yan Li
- University of Alberta, Department of Chemistry, Edmonton, Canada
| | - Wei Zhang
- University of Alberta, Department of Chemistry, Edmonton, Canada
| | | | - Roger J Zemp
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Canada
| |
Collapse
|
57
|
Lolli G, Raboni S, Pasqualetto E, Benoni R, Campanini B, Ronda L, Mozzarelli A, Bettati S, Battistutta R. Insight into GFPmut2 pH Dependence by Single Crystal Microspectrophotometry and X-ray Crystallography. J Phys Chem B 2018; 122:11326-11337. [PMID: 30179482 DOI: 10.1021/acs.jpcb.8b07260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fluorescence of Green Fluorescent Protein (wtGFP) and variants has been exploited in distinct applications in cellular and analytical biology. GFPs emission depends on the population of the protonated (A-state) and deprotonated (B-state) forms of the chromophore. Whereas wtGFP is pH-independent, mutants in which Ser65 is replaced by either threonine or alanine (as in GFPmut2) are pH-dependent, with a p Ka around 6. Given the wtGFP pH-independence, only the structure of the protonated form was determined. The deprotonated form was deduced on the basis of the crystal structure of the Ser65Thr mutant at basic pH, assuming that it corresponds to the conformation populated in solution. Here, we present an investigation where structures of the protonated and deprotonated forms of GFPmut2 were determined from crystals grown in either MPD at pH 6 or PEG at pH 8.5, and moved to either higher or lower pH. Both crystal forms of GFPmut2 were titrated monitoring the process via polarized absorption microspectrophotometry in order to precisely correlate the protonation process with the structures. We found that (i) in solution, chromophore titration is not thermodynamically coupled with any residue and Glu222 is always protonated independent of the protonation state of the chromophore; (ii) the lack of coupling is reflected in the structural behavior of the chromophore and Glu222 environments, with only the former showing variations with pH; (iii) titrations of low-pH and high-pH grown crystals exhibit a Hill coefficient of about 0.75, indicating an anticooperative behavior not observed in solution; (iv) structures where pH was changed in the crystal point to Glu222 as the ionizable group responsible for the outset of the anticooperative behavior; and (v) in GFPmut2 the canonical GFP proton wire involving the chromophore is not interrupted at the level of Ser205 and Glu222 at basic pH as in the Ser65Thr mutant. This allows proposing the structure of the deprotonated state of GFPmut2 as an alternative model for the analogous state of wtGFP.
Collapse
Affiliation(s)
- Graziano Lolli
- Centro di Biologia Integrata - CIBIO , Università di Trento , 38123 Povo , Trento , Italy
| | - Samanta Raboni
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy
| | - Elisa Pasqualetto
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova and Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , 35131 Padua , Italy
| | - Roberto Benoni
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy
| | - Luca Ronda
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy.,Istituto di Biofisica , Consiglio Nazionale delle Ricerche , 56124 Pisa , Italy.,Istituto Nazionale Biostrutture e Biosistemi , 00136 Rome , Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy.,Istituto Nazionale Biostrutture e Biosistemi , 00136 Rome , Italy
| | - Roberto Battistutta
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova and Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , 35131 Padua , Italy
| |
Collapse
|
58
|
Storti B, Margheritis E, Abbandonato G, Domenichini G, Dreier J, Testa I, Garau G, Nifosì R, Bizzarri R. Role of Gln222 in Photoswitching of Aequorea Fluorescent Proteins: A Twisting and H-Bonding Affair? ACS Chem Biol 2018; 13:2082-2093. [PMID: 29878744 DOI: 10.1021/acschembio.8b00267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reversibly photoswitchable fluorescent proteins (RSFPs) admirably combine the genetic encoding of fluorescence with the ability to repeatedly toggle between a bright and dark state, adding a new temporal dimension to the fluorescence signal. Accordingly, in recent years RSFPs have paved the way to novel applications in cell imaging that rely on their reversible photoswitching, including many super-resolution techniques such as F-PALM, RESOLFT, and SOFI that provide nanoscale pictures of the living matter. Yet many RSFPs have been engineered by a rational approach only to a limited extent, in the absence of clear structure-property relationships that in most cases make anecdotic the emergence of the photoswitching. We reported [ Bizzarri et al. J. Am Chem Soc. 2010 , 102 , 85 ] how the E222Q replacement is a single photoswitching mutation, since it restores the intrinsic cis-trans photoisomerization properties of the chromophore in otherwise nonswitchable Aequorea proteins of different color and mutation pattern (Q-RSFPs). We here investigate the subtle role of Q222 on the excited-state photophysics of the two simplest Q-RSFPs by a combined experimental and theoretical approach, using their nonswitchable anacestor EGFP as benchmark. Our findings link indissolubly photoswitching and Q222 presence, by a simple yet elegant scenario: largely twisted chromophore structures around the double bond (including hula-twist configurations) are uniquely stabilized by Q222 via H-bonds. Likely, these H-bonds subtly modulate the electronic properties of the chromophore, enabling the conical intersection that connects the excited cis to ground trans chromophore. Thus, Q222 belongs to a restricted family of single mutations that change dramatically the functional phenotype of a protein. The capability to distinguish quantitatively T65S/E222Q EGFP ("WildQ", wQ) from the spectrally identical EGFP by quantitative Optical Lock-In Detection (qOLID) witnesses the relevance of this mutation for cell imaging.
Collapse
Affiliation(s)
- Barbara Storti
- NEST, Scuola Normale Superiore and NANO-CNR, 56127 Pisa, Italy
| | - Eleonora Margheritis
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | | | | | - Jes Dreier
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Gianpiero Garau
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Riccardo Nifosì
- NEST, Scuola Normale Superiore and NANO-CNR, 56127 Pisa, Italy
| | | |
Collapse
|
59
|
Pinilla-Redondo R, Cyriaque V, Jacquiod S, Sørensen SJ, Riber L. Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 2018; 99:56-67. [PMID: 30086339 DOI: 10.1016/j.plasmid.2018.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
The emergence of antimicrobial resistant bacteria constitutes an increasing global health concern. Although it is well recognized that the cornerstone underlying this phenomenon is the dissemination of antimicrobial resistance via plasmids and other mobile genetic elements, the antimicrobial resistance transfer routes remain largely uncharted. In this review, we describe different methods for assessing the transfer frequency and host ranges of plasmids within complex microbiomes. The discussion is centered around the critical evaluation of recent advances for monitoring the fate of fluorescently tagged plasmids in bacterial communities through the coupling of fluorescence activated cell sorting and next generation sequencing techniques. We argue that this approach constitutes an exceptional tool for obtaining quantitative data regarding the extent of plasmid transfer, key disseminating taxa, and possible propagation routes. The integration of this information will provide valuable insights on how to develop alternative avenues for fighting the rise of antimicrobial resistant pathogens, as well as the means for constructing more comprehensive risk assessment models.
Collapse
Affiliation(s)
| | - Valentine Cyriaque
- Proteomics and Microbiology Lab, Research Institute for Biosciences, UMONS, Mons, Belgium
| | | | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Leise Riber
- Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
60
|
Bulbul G, Chaves G, Olivier J, Ozel RE, Pourmand N. Nanopipettes as Monitoring Probes for the Single Living Cell: State of the Art and Future Directions in Molecular Biology. Cells 2018; 7:E55. [PMID: 29882813 PMCID: PMC6024992 DOI: 10.3390/cells7060055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Examining the behavior of a single cell within its natural environment is valuable for understanding both the biological processes that control the function of cells and how injury or disease lead to pathological change of their function. Single-cell analysis can reveal information regarding the causes of genetic changes, and it can contribute to studies on the molecular basis of cell transformation and proliferation. By contrast, whole tissue biopsies can only yield information on a statistical average of several processes occurring in a population of different cells. Electrowetting within a nanopipette provides a nanobiopsy platform for the extraction of cellular material from single living cells. Additionally, functionalized nanopipette sensing probes can differentiate analytes based on their size, shape or charge density, making the technology uniquely suited to sensing changes in single-cell dynamics. In this review, we highlight the potential of nanopipette technology as a non-destructive analytical tool to monitor single living cells, with particular attention to integration into applications in molecular biology.
Collapse
Affiliation(s)
- Gonca Bulbul
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Gepoliano Chaves
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Joseph Olivier
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Rifat Emrah Ozel
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
61
|
Burroughs AF, Eluhu S, Whalen D, Goodwin JS, Sakwe AM, Arinze IJ. PML-Nuclear Bodies Regulate the Stability of the Fusion Protein Dendra2-Nrf2 in the Nucleus. Cell Physiol Biochem 2018; 47:800-816. [PMID: 29807365 PMCID: PMC6503657 DOI: 10.1159/000490033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/11/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Nuclear factor erythroid 2-related factor 2 (Nrf2) is a basic leucine-zipper transcription factor essential for cellular responses to oxidative stress. Degradation of Nrf2 in the cytoplasm, mediated by Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase and the proteasome, is considered the primary pathway controlling the cellular abundance of Nrf2. Although the nucleus has been implicated in the degradation of Nrf2, little information is available on how this compartment participates in degrading Nrf2. METHODS Here, we fused the photoconvertible fluorescent protein Dendra2 to Nrf2 and capitalized on the irreversible change in color (green to red) that occurs when Dendra2 undergoes photoconversion to study degradation of Dendra2-Nrf2 in single live cells. RESULTS Using this approach, we show that the half-life (t1/2) of Dendra2-Nrf2 in the whole cell, under homeostatic conditions, is 35 min. Inhibition of the proteasome with MG-132 or induction of oxidative stress with tert-butylhydroquinone (tBHQ) extended the half-life of Dendra2-Nrf2 by 6- and 28-fold, respectively. By inhibiting nuclear export using Leptomycin B, we provide direct evidence that degradation of Nrf2 also occurs in the nucleus and involves PML-NBs (Promyelocytic Leukemia-nuclear bodies). We further demonstrate that co-expression of Dendra2-Nrf2 and Crimson-PML-I lacking two PML-I sumoylation sites (K65R and K490R) changed the decay rate of Dendra2-Nrf2 in the nucleus and stabilized the nuclear derived Nrf2 levels in whole cells. CONCLUSION Altogether, our findings provide direct evidence for degradation of Nrf2 in the nucleus and suggest that modification of Nrf2 in PML nuclear bodies contributes to its degradation in intact cells.
Collapse
Affiliation(s)
| | - Sylvia Eluhu
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Diva Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - J. Shawn Goodwin
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Ifeanyi J. Arinze
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
62
|
Bartkiewicz M, Kazazić S, Krasowska J, Clark PL, Wielgus-Kutrowska B, Bzowska A. Non-fluorescent mutant of green fluorescent protein sheds light on the mechanism of chromophore formation. FEBS Lett 2018; 592:1516-1523. [PMID: 29637558 DOI: 10.1002/1873-3468.13051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 11/10/2022]
Abstract
The mechanism of green fluorescent protein (GFP) chromophore formation is still not clearly defined. Two mechanisms have been proposed: cyclisation-dehydration-oxidation (Mechanism A) and cyclisation-oxidation-dehydration (Mechanism B). To distinguish between these mechanisms, we generated a non-fluorescent mutant of GFP, S65T/G67A-GFP. This mutant folds to a stable, native-like structure but lacks fluorescence due to interruption of the chromophore maturation process. Mass spectrometric analysis of peptides derived from this mutant reveal that chromophore formation follows only mechanism A, but that the final oxidation reaction is suppressed. This result is unexpected within the pool of examined GFP mutants, since for the wild-type GFP, there is strong support for mechanism B.
Collapse
Affiliation(s)
- Małgorzata Bartkiewicz
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Poland
| | | | - Joanna Krasowska
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Poland
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, IN, USA
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Poland
| |
Collapse
|
63
|
Li Y, Liu TM. Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Front Immunol 2018; 9:502. [PMID: 29599778 PMCID: PMC5863475 DOI: 10.3389/fimmu.2018.00502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022] Open
Abstract
Macrophages are an important component of host defense and inflammation and play a pivotal role in immune regulation, tissue remodeling, and metabolic regulation. Since macrophages are ubiquitous in human bodies and have versatile physiological functions, they are involved in virtually every disease, including cancer, diabetes, multiple sclerosis, and atherosclerosis. Molecular biological and histological methods have provided critical information on macrophage biology. However, many in vivo dynamic behaviors of macrophages are poorly understood and yet to be discovered. A better understanding of macrophage functions and dynamics in pathogenesis will open new opportunities for better diagnosis, prognostic assessment, and therapeutic intervention. In this article, we will review the advances in macrophage tracking and analysis with in vivo optical imaging in the context of different diseases. Moreover, this review will cover the challenges and solutions for optical imaging techniques during macrophage intravital imaging.
Collapse
Affiliation(s)
- Yue Li
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Tzu-Ming Liu
- Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
64
|
Zhao W, Pferdehirt L, Segatori L. Quantitatively Predictable Control of Cellular Protein Levels through Proteasomal Degradation. ACS Synth Biol 2018; 7:540-552. [PMID: 29061039 DOI: 10.1021/acssynbio.7b00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein function is typically studied and engineered by modulating protein levels within the complex cellular environment. To achieve fast, targeted, and predictable control of cellular protein levels without genetic manipulation of the target, we developed a technology for post-translational depletion based on a bifunctional molecule (NanoDeg) consisting of the antigen-binding fragment from the Camelidae species heavy-chain antibody (nanobody) fused to a degron signal that mediates degradation through the proteasome. We provide proof-of-principle demonstration of targeted degradation using a nanobody against the green fluorescent protein (GFP). Guided by predictive modeling, we show that customizing the NanoDeg rate of synthesis, rate of degradation, and mode of degradation enables quantitative and predictable control over the target's levels. Integrating the GFP-specific NanoDeg within a genetic circuit based on stimulus-dependent GFP output results in enhanced dynamic range and resolution of the output signal. By providing predictable control over cellular proteins' levels, the NanoDeg system could be readily used for a variety of systems-level analyses of cellular protein function.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Lara Pferdehirt
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
65
|
Moghaddam-Taaheri P, Karlsson AJ. Protein Labeling in Live Cells for Immunological Applications. Bioconjug Chem 2018; 29:680-685. [DOI: 10.1021/acs.bioconjchem.7b00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
66
|
Dhadve A, Thakur B, Ray P. Dual Modality Imaging of Promoter Activity as a Surrogate for Gene Expression and Function. Methods Mol Biol 2018; 1790:1-12. [PMID: 29858779 DOI: 10.1007/978-1-4939-7860-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular functional imaging with optical reporter genes (both bioluminescence and fluorescence) is a rapidly evolving method that allows noninvasive, sensitive, real-time monitoring of many cellular events in live cells and whole organisms. These reporter genes with optical signatures when expressed from gene-specific promoters or Cis/Trans elements mimic the endogenous expression pattern without perturbing cellular physiology. With advanced recombinant molecular biology techniques, several strategies for optimal expression from constitutive or inducible, tissue-specific and weak promoters have been developed and used for dynamic and functional imaging. In this chapter, we provide an overview of the applications of this powerful technology for imaging gene expression in living cells and rodent models.
Collapse
Affiliation(s)
- Ajit Dhadve
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Bhushan Thakur
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India. .,Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
67
|
Hartmann C, Patil R, Lin CP, Niedre M. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects. Phys Med Biol 2017; 63:01TR01. [PMID: 29240559 DOI: 10.1088/1361-6560/aa98f9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Collapse
Affiliation(s)
- Carolin Hartmann
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of America. Institute of Hydrochemistry, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
68
|
Hassanane MS, El Makawy AI, Helalia SM, Abdoon AS, Khalil KM, Ghanem TA, Tohamy AM, Sun XF, Shen W. First study of sperm mediated gene transfer in Egyptian river buffalo. J Genet Eng Biotechnol 2017; 15:475-482. [PMID: 30647689 PMCID: PMC6296624 DOI: 10.1016/j.jgeb.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/08/2017] [Accepted: 06/06/2017] [Indexed: 01/13/2023]
Abstract
The present study was carried out to find the best treatments for enhancing the ration of insertion of a desired gene construct (pEGFP-N1) onto the sperm of buffalo as the first step for the production of transgenic buffalo using sperm mediated gene transfer (SMGT). The tested conditions were plasmid DNA concentration, sperm concentration, transfecting agent concentration: Dimethyle sulphoxide (DMSO) and time of transfection. The study proved that the best conditions for producing transgenic embryos were incubation sperm solution its concentration is 107/ml sperm with 3% DMSO: with 20 µg/ml from the linarized DNA, for 15 min at 4 °C are the best conditions to produce transgenic buffalo embryo using sperm mediated gene transfer.
Collapse
Key Words
- ANOVA, analysis of variance
- Buffalo embryos
- CCC, covalently closed circular
- COCs, Cumulus oocyte complexes
- DMSO
- DMSO, Dimethyle sulphoxide
- EGFP
- EGFP, enhanced green fluorescent protein
- IVF, in vitro fertilization
- MII, second meiotic division
- OD, optical density
- PBS, Phosphate buffer saline
- SMGT
- SMGT, sperm mediated gene transfer
- TCM199, tissue culture medium
- Transgenic
Collapse
Affiliation(s)
- Mohamed S. Hassanane
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | - Aida I. El Makawy
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | - Sahar M. Helalia
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | - Ahmed S. Abdoon
- Animal Reproduction and Artificial Insemination Department, Veterinary Research Division, National Research Centre, Egypt
| | - Kamal M.A. Khalil
- Genetics and Cytology Dept., Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | | | - Amany M. Tohamy
- Zoology Department, Faculty of Science, Helwan University, Egypt
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
69
|
Abstract
The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.
Collapse
Affiliation(s)
- Fred Schaufele
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143-0540, USA.
| |
Collapse
|
70
|
Fernandes DD, Bamrah J, Kailasam S, Gomes GNW, Li Y, Wieden HJ, Gradinaru CC. Characterization of Fluorescein Arsenical Hairpin (FlAsH) as a Probe for Single-Molecule Fluorescence Spectroscopy. Sci Rep 2017; 7:13063. [PMID: 29026195 PMCID: PMC5638890 DOI: 10.1038/s41598-017-13427-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/21/2017] [Indexed: 01/27/2023] Open
Abstract
In recent years, new labelling strategies have been developed that involve the genetic insertion of small amino-acid sequences for specific attachment of small organic fluorophores. Here, we focus on the tetracysteine FCM motif (FLNCCPGCCMEP), which binds to fluorescein arsenical hairpin (FlAsH), and the ybbR motif (TVLDSLEFIASKLA) which binds fluorophores conjugated to Coenzyme A (CoA) via a phosphoryl transfer reaction. We designed a peptide containing both motifs for orthogonal labelling with FlAsH and Alexa647 (AF647). Molecular dynamics simulations showed that both motifs remain solvent-accessible for labelling reactions. Fluorescence spectra, correlation spectroscopy and anisotropy decay were used to characterize labelling and to obtain photophysical parameters of free and peptide-bound FlAsH. The data demonstrates that FlAsH is a viable probe for single-molecule studies. Single-molecule imaging confirmed dual labeling of the peptide with FlAsH and AF647. Multiparameter single-molecule Förster Resonance Energy Transfer (smFRET) measurements were performed on freely diffusing peptides in solution. The smFRET histogram showed different peaks corresponding to different backbone and dye orientations, in agreement with the molecular dynamics simulations. The tandem of fluorophores and the labelling strategy described here are a promising alternative to bulky fusion fluorescent proteins for smFRET and single-molecule tracking studies of membrane proteins.
Collapse
Affiliation(s)
- Dennis D Fernandes
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada.
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| | - Jasbir Bamrah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Senthilkumar Kailasam
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Yuchong Li
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada.
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
71
|
Mastop M, Bindels DS, Shaner NC, Postma M, Gadella TWJ, Goedhart J. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Sci Rep 2017; 7:11999. [PMID: 28931898 PMCID: PMC5607329 DOI: 10.1038/s41598-017-12212-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching and pH changes. In this study, we evaluated the properties of a diverse set of acceptor fluorescent proteins in combination with the optimized CFP variant mTurquoise2 as the donor. To determine the theoretical performance of acceptors, the Förster radius was determined. The practical performance was determined by measuring FRET efficiency and photostability of tandem fusion proteins in mammalian cells. Our results show that mNeonGreen is the most efficient acceptor for mTurquoise2 and that the photostability is better than SYFP2. The non-fluorescent YFP variant sREACh is an efficient acceptor, which is useful in lifetime-based FRET experiments. Among the orange and red fluorescent proteins, mCherry and mScarlet-I are the best performing acceptors. Several new pairs were applied in a multimolecular FRET based sensor for detecting activation of a heterotrimeric G-protein by G-protein coupled receptors. Overall, the sensor with mNeonGreen as acceptor and mTurquoise2 as donor showed the highest dynamic range in ratiometric FRET imaging experiments with the G-protein sensor.
Collapse
Affiliation(s)
- Marieke Mastop
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Daphne S Bindels
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, California, United States of America
| | - Marten Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
72
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
73
|
Landete JM, Arqués JL. Fluorescent Lactic Acid Bacteria and Bifidobacteria as Vehicles of DNA Microbial Biosensors. Int J Mol Sci 2017; 18:ijms18081728. [PMID: 32962311 PMCID: PMC5578118 DOI: 10.3390/ijms18081728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 02/01/2023] Open
Abstract
Control and quantification of effector molecules such as heavy metals, toxins or other target molecules is of great biotechnological, social and economic interest. Microorganisms have regulatory proteins that recognize and modify the gene expression in the presence or absence of these compounds (effector molecules) by means of binding to gene sequences. The association of these recognizing gene sequences to reporter genes will allow the detection of effector molecules of interest with high sensitivity. Once investigators have these two elements-recognizing gene sequences and reporter genes that emit signals-we need a suitable vehicle to introduce both elements. Here, we suggest lactic acid bacteria (LAB) and bifidobacteria as promising carrier microorganisms for these molecular biosensors. The use of fluorescent proteins as well as food-grade vectors and clustered regularly interspaced short palindromic repeats (CRISPR) are indispensable tools for introducing biosensors into these microorganisms. The use of these LAB and bifidobacteria would be of special interest for studying the intestinal environment or other complex ecosystems. The great variety of species adapted to many environments, as well as the possibility of applying several protocols for their transformation with recognizing gene sequences and reporter genes are considerable advantages. Finally, an effort must be made to find recognizable gene sequences.
Collapse
|
74
|
Dube S, Dube H, Green NB, Larsen EM, White A, Johnson RJ, Kowalski JR. In Vivo Delivery and Activation of Masked Fluorogenic Hydrolase Substrates by Endogenous Hydrolases in C. elegans. Chembiochem 2017; 18:1807-1813. [PMID: 28703362 DOI: 10.1002/cbic.201700278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 01/01/2023]
Abstract
Protein expression and localization are often studied in vivo by tagging molecules with green fluorescent protein (GFP), yet subtle changes in protein levels are not easily detected. To develop a sensitive in vivo method to amplify fluorescence signals and allow cell-specific quantification of protein abundance changes, we sought to apply an enzyme-activated cellular fluorescence system in vivo by delivering ester-masked fluorophores to Caenorhabditis elegans neurons expressing porcine liver esterase (PLE). To aid uptake into sensory neuron membranes, we synthesized two novel fluorogenic hydrolase substrates with long hydrocarbon tails. Recombinant PLE activated these fluorophores in vitro. In vivo activation occurred in sensory neurons, along with potent activation in intestinal lysosomes quantifiable by imaging and microplate and partially attributable to gut esterase 1 (GES-1) activity. These data demonstrate the promise of biorthogonal hydrolases and their fluorogenic substrates as in vivo neuronal imaging tools and for characterizing endogenous C. elegans hydrolase substrate specificities.
Collapse
Affiliation(s)
- Shataakshi Dube
- Department of Biological Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | - Hitesh Dube
- Department of Biological Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA.,Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | - Nicole B Green
- Department of Biological Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA.,Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | - Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | - Alex White
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | - Jennifer R Kowalski
- Department of Biological Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| |
Collapse
|
75
|
Merabti KE, Azizi S, Ridard J, Lévy B, Demachy I. π-Stacking interactions in YFP, quantum mechanics and force field evaluations in the S 0 and S 1 states. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Park GK, Hoseok, Kim GS, Hwang NS, Choi HS. Optical spectroscopic imaging for cell therapy and tissue engineering. APPLIED SPECTROSCOPY REVIEWS 2017; 53:360-375. [PMID: 29563664 PMCID: PMC5858719 DOI: 10.1080/05704928.2017.1328428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Cell-based therapies hold great potential to treat a wide range of human diseases, yet the mechanisms responsible for cell migration and homing are not fully understood. Emerging molecular imaging technology enables in vivo tracking of transplanted cells and their therapeutic efficacy, which together will improve the clinical outcome of cell-based therapy. Particularly, optical imaging provides highly sensitive, safe (non-radioactive), cost-effective, and fast solutions for real-time cellular trafficking compared to other conventional molecular imaging modalities. This review provides a comprehensive overview of current advances in optical imaging for cell-based therapy and tissue engineering. We discuss different types of fluorescent probes and their labeling methods with a special focus on cardiovascular disease, cancer immunotherapy, and tissue regeneration. In addition, advantages and limitations of optical imaging-based cell tracking strategies along with the future perspectives to translate this imaging technique for a clinical realm are discussed.
Collapse
Affiliation(s)
- G. Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hoseok
- Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Gaon Sandy Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathaniel S. Hwang
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
77
|
A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants. Biochem Biophys Res Commun 2017; 486:1-5. [DOI: 10.1016/j.bbrc.2016.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023]
|
78
|
Dwight JG, Tkaczyk TS. Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:1950-1964. [PMID: 28663875 PMCID: PMC5480590 DOI: 10.1364/boe.8.001950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 05/29/2023]
Abstract
Snapshot hyperspectral imaging augments pixel dwell time and acquisition speeds over existing scanning systems, making it a powerful tool for fluorescence microscopy. While most snapshot systems contain fixed datacube parameters (x,y,λ), our novel snapshot system, called the lenslet array tunable snapshot imaging spectrometer (LATIS), demonstrates tuning its average spectral resolution from 22.66 nm (80x80x22) to 13.94 nm (88x88x46) over 485 to 660 nm. We also describe a fixed LATIS with a datacube of 200x200x27 for larger field-of-view (FOV) imaging. We report <1 sec exposure times and high resolution fluorescence imaging with minimal artifacts.
Collapse
Affiliation(s)
- Jason G. Dwight
- Rice University, Department of Bioengineering, 6500 Main St., Houston, TX 77030, USA
| | - Tomasz S. Tkaczyk
- Rice University, Department of Bioengineering, 6500 Main St., Houston, TX 77030, USA
- Rice University, Department of Electrical and Computer Engineering, 6100 Main St., Houston, TX 77005, USA
| |
Collapse
|
79
|
Feng C, Xu Z, Wang X, Yang H, Zheng L, Fu H. Organic-Nanowire-SiO 2 Core-Shell Microlasers with Highly Polarized and Narrow Emissions for Biological Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7385-7391. [PMID: 28185452 DOI: 10.1021/acsami.6b13387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Development of luminescence probes with polarized and narrow emissions simultaneously is helpful for removing multiply scattered light and enables multiplexing detection, but it remains challenging to use conventional organic dyes, fluorescence proteins, and quantum dots. Here, we demonstrated smart one-dimensional microlaser probes (MLPs) by coating a thin layer of silica shell on the surface of organic nanowires (ONWs) of 1,4-dimethoxy-2,5-di[4'-(methylthio)styryl]benzene (TDSB), namely, ONW@SiO2 core-shell structures. Different from the Fabry-Pérot (FP) cavity formed between two end-faces of semiconductor nanowires, whispering gallery mode (WGM) microresonators are built within the rectangular cross section of ONW@SiO2 MLPs. This enables a lasing threshold as low as 1.54 μJ/cm2, above which lasing emissions are obtained with a full width at half-maximum (fwhm) < 5 nm and a degree of polarization (DOP) > 83%. Meanwhile, small dimensions of ONW@SiO2 MLPs with a side-length of ca. 500 nm and a length of 3-8 μm help to reduce their perturbations in living cells. With the help of mesoporous silica shells, which provide both high biocompatibility and good photostability, ONW@SiO2 MLPs can be easily introduced into the cell cytoplasm through natural endocytosis. Using their narrow and highly polarized lasing emissions in vitro, we demonstrate that it is possible to tag individual cells using ONW@SiO2 MLPs with high stability.
Collapse
Affiliation(s)
- Changfu Feng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University , Beijing 100048, P.R. China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University , Beijing 100048, P.R. China
| | - Xu Wang
- School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Cardiovascular Sciences, and Institute of Systems Biomedicine, Peking University Health Science Center , Beijing 100191, P.R. China
| | - Hongjuan Yang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University , Beijing 100048, P.R. China
| | - Lemin Zheng
- School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Cardiovascular Sciences, and Institute of Systems Biomedicine, Peking University Health Science Center , Beijing 100191, P.R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University , Beijing 100048, P.R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, P.R. China
| |
Collapse
|
80
|
Abstract
Encapsulation of proteins in nanoparticles (NPs) can greatly improve the properties of proteins such as their stability against denaturation and degradation by proteases, and branches out the applications of natural proteins from their intrinsic localizations and functions in living organisms for biomedical and industrial applications. We recently developed several methods to armor proteins in NPs with sizes from nanometers up to >100nm, batch by batch or one by one, covalently or noncovalently, for a wide range of applications from biocatalysis to bioimaging and drug delivery. In this chapter, we provide detailed protocols on these methods. Key steps of specific protocols are explained with particular examples to help other laboratories to adopt and modify these methods for their own purposes. The advantages and disadvantages of each method are summarized, and guidelines for choosing the right method for a given application, as well as the current challenges and future directions of this field, are discussed.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China.
| |
Collapse
|
81
|
Łukasik B, Milczarek J, Pawlowska R, Żurawiński R, Chworos A. Facile synthesis of fluorescent distyrylnaphthalene derivatives for bioapplications. NEW J CHEM 2017. [DOI: 10.1039/c7nj00004a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthesis of a novel type of distyrylnaphthalene derivative and their application as molecular fluorescent probes for bioimaging.
Collapse
Affiliation(s)
- Beata Łukasik
- Department of Heteroorganic Chemistry
- The Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| | - Justyna Milczarek
- Department of Bioorganic Chemistry
- The Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry
- The Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| | - Remigiusz Żurawiński
- Department of Heteroorganic Chemistry
- The Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry
- The Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| |
Collapse
|
82
|
Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1035:49-67. [DOI: 10.1007/978-3-319-67358-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
83
|
Landete JM, Peirotén Á, Medina M, Arqués JL. Short communication: Labeling Listeria with anaerobic fluorescent protein for food safety studies. J Dairy Sci 2017; 100:113-117. [DOI: 10.3168/jds.2016-11226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022]
|
84
|
Costa CRM, Feitosa MLT, Bezerra DO, Carvalho YKP, Olivindo RFG, Fernando PB, Silva GC, Silva MLG, Ambrósio CE, Conde Júnior AM, Argolo Neto NM, Costa Silva LM, Carvalho MAM. Labeling of adipose-derived stem cells with quantum dots provides stable and long-term fluorescent signal for ex vivo cell tracking. In Vitro Cell Dev Biol Anim 2016; 53:363-370. [DOI: 10.1007/s11626-016-0121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
|
85
|
Ladner T, Beckers M, Hitzmann B, Büchs J. Parallel online multi-wavelength (2D) fluorescence spectroscopy in each well of a continuously shaken microtiter plate. Biotechnol J 2016; 11:1605-1616. [DOI: 10.1002/biot.201600515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Tobias Ladner
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering; RWTH Aachen University; Aachen Germany
| | - Mario Beckers
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering; RWTH Aachen University; Aachen Germany
| | - Bernd Hitzmann
- Universität Hohenheim; Fachgebiet Prozessanalytik & Getreidetechnologie; Stuttgart Germany
| | - Jochen Büchs
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering; RWTH Aachen University; Aachen Germany
| |
Collapse
|
86
|
Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity. Sci Rep 2016; 6:35932. [PMID: 27782154 PMCID: PMC5080575 DOI: 10.1038/srep35932] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
Green fluorescent protein (GFP), which was originally isolated from jellyfish, is a widely used tool in biological research, and homologs from other organisms are available. However, researchers must determine which GFP is the most suitable for a specific host. Here, we expressed GFPs from several sources in codon-optimized and non-codon-optimized forms in the yeast Saccharomyces cerevisiae, which represents an ideal eukaryotic model. Surprisingly, codon-optimized mWasabi and mNeonGreen, which are typically the brightest GFPs, emitted less green fluorescence than did the other five codon-optimized GFPs tested in S. cerevisiae. Further, commercially available GFPs that have been optimized for mammalian codon usage (e.g., EGFP, AcGFP1 and TagGFP2) unexpectedly exhibited extremely low expression levels in S. cerevisiae. In contrast, codon-optimization of the GFPs for S. cerevisiae markedly increased their expression levels, and the fluorescence intensity of the cells increased by a maximum of 101-fold. Among the tested GFPs, the codon-optimized monomeric mUkG1 from soft coral showed the highest levels of both expression and fluorescence. Finally, the expression of this protein as a fusion-tagged protein successfully improved the reporting system's ability to sense signal transduction and protein-protein interactions in S. cerevisiae and increased the detection rates of target cells using flow cytometry.
Collapse
|
87
|
Generalova AN, Zubov VP. Dispersions of polyacrolein-based multifunctional microspheres for the creation of bioanalytical and visualizing reagents. POLYMER SCIENCE SERIES B 2016. [DOI: 10.1134/s1560090416040023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
88
|
Laptenok SP, Conyard J, Page PCB, Chan Y, You M, Jaffrey SR, Meech SR. Photoacid Behaviour in a Fluorinated Green Fluorescent Protein Chromophore: Ultrafast Formation of Anion and Zwitterion States. †. Chem Sci 2016; 7:5747-5752. [PMID: 28066538 PMCID: PMC5207226 DOI: 10.1039/c6sc02031c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022] Open
Abstract
The photophysics of the chromophore of the green fluorescent protein in Aequorea victoria (avGFP) are dominated by an excited state proton transfer reaction. In contrast the photophysics of the same chromophore in solution are dominated by radiationless decay, and photoacid behaviour is not observed. Here we show that modification of the pKa of the chromophore by fluorination leads to an excited state proton transfer on an extremely fast (50 fs) time scale. Such a fast rate suggests a barrierless proton transfer and the existence of a pre-formed acceptor site in the aqueous solution, which is supported by solvent and deuterium isotope effects. In addition, at lower pH, photochemical formation of the elusive zwitterion of the GFP chromophore is observed by means of an equally fast excited state proton transfer from the cation. The significance of these results for understanding and modifying the properties of fluorescent proteins are discussed.
Collapse
Affiliation(s)
- S. P. Laptenok
- School of Chemistry
, University of East Anglia
,
Norwich NR4 7TJ
, UK
.
| | - J. Conyard
- School of Chemistry
, University of East Anglia
,
Norwich NR4 7TJ
, UK
.
| | - P. C. Bulman Page
- School of Chemistry
, University of East Anglia
,
Norwich NR4 7TJ
, UK
.
| | - Y. Chan
- School of Chemistry
, University of East Anglia
,
Norwich NR4 7TJ
, UK
.
| | - M. You
- Department of Pharmacology Weill Medical College
, Cornell University
,
1300 York Avenue, Box 70
, New York
, NY 10065
, USA
| | - S. R. Jaffrey
- Department of Pharmacology Weill Medical College
, Cornell University
,
1300 York Avenue, Box 70
, New York
, NY 10065
, USA
| | - S. R. Meech
- School of Chemistry
, University of East Anglia
,
Norwich NR4 7TJ
, UK
.
| |
Collapse
|
89
|
Landete JM, Medina M, Arqués JL. Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria. World J Microbiol Biotechnol 2016; 32:119. [PMID: 27263014 DOI: 10.1007/s11274-016-2077-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
In the last two decades, there has been increasing evidence supporting the role of the intestinal microbiota in health and disease, as well as the use of probiotics to modulate its activity and composition. Probiotic bacteria selected for commercial use in foods, mostly lactic acid bacteria and bifidobacteria, must survive in sufficient numbers during the manufacturing process, storage, and passage through the gastro-intestinal tract. They have several modes of action and it is crucial to unravel the mechanisms underlying their postulated beneficial effects. To track their survival and persistence, and to analyse their interaction with the gastro-intestinal epithelia it is essential to discriminate probiotic strains from endogenous microbiota. Fluorescent reporter proteins are relevant tools that can be exploited as a non-invasive marker system for in vivo real-time imaging in complex ecosystems as well as in vitro fluorescence labelling. Oxygen is required for many of these reporter proteins to fluoresce, which is a major drawback in anoxic environments. However, some new fluorescent proteins are able to overcome the potential problems caused by oxygen limitations. The current available approaches and the benefits/disadvantages of using reporter vectors containing fluorescent proteins for labelling of bacterial probiotic species commonly used in food are addressed.
Collapse
Affiliation(s)
- José M Landete
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Margarita Medina
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Juan L Arqués
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
90
|
Dave K, Gelman H, Thu CTH, Guin D, Gruebele M. The Effect of Fluorescent Protein Tags on Phosphoglycerate Kinase Stability Is Nonadditive. J Phys Chem B 2016; 120:2878-85. [PMID: 26923443 DOI: 10.1021/acs.jpcb.5b11915] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is frequently assumed that fluorescent protein tags used in biological imaging experiments are minimally perturbing to their host protein. As in-cell experiments become more quantitative and measure rates and equilibrium constants, rather than just "on-off" activity or the presence of a protein, it becomes more important to understand such perturbations. One criterion for a protein modification to be a perturbation is additivity of two perturbations (a linear effect on the protein free energy). Here we show that adding fluorescent protein tags to a host protein in vitro has a large nonadditive effect on its folding free energy. We compare an unlabeled, three singly labeled, and a doubly labeled enzyme (phosphoglycerate kinase). We propose two mechanisms for nonadditivity. In the "quinary interaction" mechanism, two tags interact transiently with one another, relieving the host protein from unfavorable tag-protein interactions. In the "crowding" mechanism, adding two tags provides the minimal crowding necessary to overcome destabilizing interactions of individual tags with the host protein. Both of these mechanisms affect protein stability in cells; we show here that they must also be considered for tagged proteins used for reference in vitro.
Collapse
Affiliation(s)
| | | | - Chu Thi Hien Thu
- Department of Chemistry, Hanoi University of Science, Vietnam National University , Hanoi, Vietnam
| | | | - Martin Gruebele
- Department of Chemistry, Hanoi University of Science, Vietnam National University , Hanoi, Vietnam
| |
Collapse
|
91
|
Kumar M, Kovalski L, Broyles D, Hunt EA, Daftarian P, Dikici E, Daunert S, Deo SK. Design and development of high bioluminescent resonance energy transfer efficiency hybrid-imaging constructs. Anal Biochem 2016; 498:1-7. [PMID: 26772160 DOI: 10.1016/j.ab.2015.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
Here we describe the design and construction of an imaging construct with high bioluminescent resonance energy transfer (BRET) efficiency that is composed of multiple quantum dots (QDs; λem = 655 nm) self-assembled onto a bioluminescent protein, Renilla luciferase (Rluc). This is facilitated by the streptavidin-biotin interaction, allowing the facile formation of a hybrid-imaging construct (HIC) comprising up to six QDs (acceptor) grafted onto a light-emitting Rluc (donor) core. The resulting assembly of multiple acceptors surrounding a donor permits this construct to exhibit high resonance energy transfer efficiency (∼64.8%). The HIC was characterized using fluorescence excitation anisotropy measurements and high-resolution transmission electron microscopy. To demonstrate the application of our construct, a generation-5 (G5) polyamidoamine dendrimer (PAMAM) nanocarrier was loaded with our HIC for in vitro and in vivo imaging. We envision that this design of multiple acceptors and bioluminescent donor will lead to the development of new BRET-based systems useful in sensing, imaging, and other bioanalytical applications.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Indian Institute of Technology (BHU), Department of Chemical Engineering and School of Biomedical Engineering, Varanasi, UP 221005, India
| | - Letícia Kovalski
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eric A Hunt
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
92
|
van Zyl WF, Deane SM, Dicks LMT. Reporter systems for in vivo tracking of lactic acid bacteria in animal model studies. Gut Microbes 2015; 6:291-9. [PMID: 26516656 PMCID: PMC4826117 DOI: 10.1080/19490976.2015.1086058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bioluminescence (BLI) and fluorescence imaging (FI) allow for non-invasive detection of viable microorganisms from within living tissue and are thus ideally suited for in vivo probiotic studies. Highly sensitive optical imaging techniques detect signals from the excitation of fluorescent proteins, or luciferase-catalyzed oxidation reactions. The excellent relation between microbial numbers and photon emission allow for quantification of tagged bacteria in vivo with extreme accuracy. More information is gained over a shorter period compared to traditional pre-clinical animal studies. The review summarizes the latest advances in in vivo bioluminescence and fluorescence imaging and points out the advantages and limitations of different techniques. The practical application of BLI and FI in the tracking of lactic acid bacteria in animal models is addressed.
Collapse
Affiliation(s)
- Winschau F van Zyl
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa
| | - Shelly M Deane
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa,Correspondence to: Leon M T Dicks;
| |
Collapse
|
93
|
Rowland CE, Brown CW, Medintz IL, Delehanty JB. Intracellular FRET-based probes: a review. Methods Appl Fluoresc 2015; 3:042006. [PMID: 29148511 DOI: 10.1088/2050-6120/3/4/042006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probes that exploit Förster resonance energy transfer (FRET) in their feedback mechanism are touted for their sensitivity, robustness, and low background, and thanks to the exceptional distance dependence of the energy transfer process, they provide a means of probing lengthscales well below the resolution of light. These attributes make FRET-based probes superbly suited to an intracellular environment, and recent developments in biofunctionalization and expansion of imaging capabilities have put them at the forefront of intracellular studies. Here, we present an overview of the engineering and execution of a variety of recent intracellular FRET probes, highlighting the diversity of this class of materials and the breadth of application they have found in the intracellular environment.
Collapse
Affiliation(s)
- Clare E Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA. National Research Council, Washington, DC 20036, USA
| | | | | | | |
Collapse
|
94
|
Zhang F, Wang S, Yin L, Yang Y, Guan Y, Wang W, Xu H, Tao N. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging. Anal Chem 2015; 87:9960-5. [PMID: 26368334 PMCID: PMC4836855 DOI: 10.1021/acs.analchem.5b02572] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) is a membrane bound protein that has been associated with a variety of solid tumors and the control of cell survival, proliferation, and metabolism. Quantification of the EGFR expression level in cell membranes and the interaction kinetics with drugs are thus important for cancer diagnosis and treatment. Here we report mapping of the distribution and interaction kinetics of EGFR in their native environment with the surface plasmon resonance imaging (SPRi) technique. The monoclonal anti-EGFR antibody was used as a model drug in this study. The binding of the antibody to EGFR overexpressed A431 cells was monitored in real time, which was found to follow the first-order kinetics with an association rate constant (ka) and dissociation rate constant (kd) of (2.7 ± 0.6) × 10(5) M(-1) s(-1) and (1.4 ± 0.5) × 10(-4) s(-1), respectively. The dissociation constant (KD) was determined to be 0.53 ± 0.26 nM with up to seven-fold variation among different individual A431 cells. In addition, the averaged A431 cell surface EGFR density was found to be 636/μm(2) with an estimation of 5 × 10(5) EGFR per cell. Additional measurement also revealed that different EGFR positive cell lines (A431, HeLa, and A549) show receptor density dependent anti-EGFR binding kinetics. The results demonstrate that SPRi is a valuable tool for direct quantification of membrane protein expression level and ligand binding kinetics at single cell resolution. Our findings show that the local environment affects the drug-receptor interactions, and in situ measurement of membrane protein binding kinetics is important.
Collapse
Affiliation(s)
- Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Linliang Yin
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunze Yang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yan Guan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093. China
| | - Han Xu
- Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093. China
| |
Collapse
|
95
|
van Zyl WF, Deane SM, Dicks LMT. Use of the mCherry Fluorescent Protein To Study Intestinal Colonization by Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in Mice. Appl Environ Microbiol 2015; 81:5993-6002. [PMID: 26116681 PMCID: PMC4551250 DOI: 10.1128/aem.01247-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are natural inhabitants of the gastrointestinal tract (GIT) of humans and animals, and some LAB species receive considerable attention due to their health benefits. Although many papers have been published on probiotic LAB, only a few reports have been published on the migration and colonization of the cells in the GIT. This is due mostly to the lack of efficient reporter systems. In this study, we report on the application of the fluorescent mCherry protein in the in vivo tagging of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423. The mCherry gene, encoding a red fluorescent protein (RFP), was integrated into a nonfunctional region on the genome of L. plantarum 423 by homologous recombination. In the case of E. mundtii ST4SA, the mCherry gene was cloned into the pGKV223D LAB/Escherichia coli expression vector. Expression of the mCherry gene did not alter the growth rate of the two strains and had no effect on bacteriocin production. Both strains colonized the cecum and colon of mice.
Collapse
Affiliation(s)
- Winschau F van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Shelly M Deane
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
96
|
A Modified Shuttle Plasmid Facilitates Expression of a Flavin Mononucleotide-Based Fluorescent Protein in Treponema denticola ATCC 35405. Appl Environ Microbiol 2015; 81:6496-504. [PMID: 26162875 DOI: 10.1128/aem.01541-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022] Open
Abstract
Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism.
Collapse
|
97
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
98
|
Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 2015; 99:6865-77. [DOI: 10.1007/s00253-015-6770-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 01/09/2023]
|
99
|
Patwa A, Thiéry A, Lombard F, Lilley MKS, Boisset C, Bramard JF, Bottero JY, Barthélémy P. Accumulation of nanoparticles in "jellyfish" mucus: a bio-inspired route to decontamination of nano-waste. Sci Rep 2015; 5:11387. [PMID: 26096459 PMCID: PMC4476112 DOI: 10.1038/srep11387] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/23/2015] [Indexed: 02/08/2023] Open
Abstract
The economic and societal impacts of nano-materials are enormous. However, releasing such materials in the environment could be detrimental to human health and the ecological biosphere. Here we demonstrate that gold and quantum dots nanoparticles bio-accumulate into mucus materials coming from natural species such as jellyfish. One strategy that emerges from this finding would be to take advantage of these trapping properties to remove nanoparticles from contaminated water.
Collapse
Affiliation(s)
- Amit Patwa
- 1] INSERM U869, Bordeaux, F-33076, France [2] Université de Bordeaux, Bordeaux, F-33076, France
| | - Alain Thiéry
- IMBE UMR CNRS 7263, Aix-Marseille Université, Aix en Provence F-13545, France
| | - Fabien Lombard
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanologique, 06230, Villefranche sur mer, France
| | - Martin K S Lilley
- 1] IMBE UMR CNRS 7263, Aix-Marseille Université, Aix en Provence F-13545, France [2] Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanologique, 06230, Villefranche sur mer, France
| | | | | | | | - Philippe Barthélémy
- 1] INSERM U869, Bordeaux, F-33076, France [2] Université de Bordeaux, Bordeaux, F-33076, France
| |
Collapse
|
100
|
Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Angel Pardo M, López P, Spano G. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 2015; 99:3479-90. [PMID: 25586576 DOI: 10.1007/s00253-014-6351-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
A critical feature of probiotic microorganisms is their ability to colonize the intestine of the host. Although the microbial potential to adhere to the human gut lumen has been investigated in in vitro models, there is still much to discover about their in vivo behaviour. Zebrafish is a vertebrate model that is being widely used to investigate various biological processes shared with humans. In this work, we report on the use of the zebrafish model to investigate the in vivo colonization ability of previously characterized probiotic lactic acid bacteria. Lactobacillus plantarum Lp90, L. plantarum B2 and Lactobacillus fermentum PBCC11.5 were fluorescently tagged by transfer of the pRCR12 plasmid, which encodes the mCherry protein and which was constructed in this work. The recombinant bacteria were used to infect germ-free zebrafish larvae. After removal of bacteria, the colonization ability of the strains was monitored until 3 days post-infection by using a fluorescence stereomicroscope. The results indicated differential adhesion capabilities among the strains. Interestingly, a displacement of bacteria from the medium to the posterior intestinal tract was observed as a function of time that suggested a transient colonization by probiotics. Based on fluorescence observation, L. plantarum strains exhibited a more robust adhesion capability. In conclusion, the use of pRCR12 plasmid for labelling Lactobacillus strains provides a powerful and very efficient tool to monitor the in vivo colonization in zebrafish larvae and to investigate the adhesion ability of probiotic microorganisms.
Collapse
|