51
|
Zioga M, Tsouko E, Maina S, Koutinas A, Mandala I, Evageliou V. Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
52
|
McKay S, Teitsma-Jansen A, Floris E, Dekker T, Smids B, Khurshid R, Calame W, Kardinaal A, Lutter R, Albers R. Effects of Dietary Supplementation with Carrot-Derived Rhamnogalacturonan-I (cRG-I) on Accelerated Protective Immune Responses and Quality of Life in Healthy Volunteers Challenged with Rhinovirus in a Randomized Trial. Nutrients 2022; 14:4258. [PMID: 36296939 PMCID: PMC9607575 DOI: 10.3390/nu14204258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
An adequate and balanced supply of nutrients is essential for maintaining health, and an optimal immune response is fast, contained and properly controlled, curbing infections quickly while minimizing damage. Several micronutrients contribute to normal immune function and certain dietary fibers, for example pectic polysaccharides, can play an important role in educating and regulating immune cell responses. The aim of this paper is to elaborate on our initial findings that dietary supplementation with carrot-derived rhamnogalacturonan-I (cRG-I) accelerates and augments local innate immune and anti-viral interferon response to a rhinovirus-16 (RV16) infection and reduces the severity and duration of symptoms in humans. Dietary intake of cRG-I also enhanced immune responses to this respiratory viral infection as measured by ex vivo stimulation of whole blood with the Toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid and NK cell function. Consumption of cRG-I also reduced the negative effects of this common cold infection on quality of life as assessed by individual symptom scores. RG-I from carrot is a safe, sustainable, and economically viable solution that could easily be integrated into food products and dietary supplements aiming to support immune fitness and wellbeing.
Collapse
Affiliation(s)
- Sue McKay
- NutriLeads B.V., Bronland 12-N, 6708 WH Wageningen, The Netherlands
| | - Annemarie Teitsma-Jansen
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam and Amsterdam Infection & Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | - Tamara Dekker
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam and Amsterdam Infection & Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Smids
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam and Amsterdam Infection & Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ridha Khurshid
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam and Amsterdam Infection & Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Wim Calame
- StatistiCal B.V., Strandwal 148, 2241 MN Wassenaar, The Netherlands
| | | | - René Lutter
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam and Amsterdam Infection & Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ruud Albers
- NutriLeads B.V., Bronland 12-N, 6708 WH Wageningen, The Netherlands
| |
Collapse
|
53
|
Esteban-Lustres R, Torres MD, Piñeiro B, Enjamio C, Domínguez H. Intensification and biorefinery approaches for the valorization of kitchen wastes - A review. BIORESOURCE TECHNOLOGY 2022; 360:127652. [PMID: 35872274 DOI: 10.1016/j.biortech.2022.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Kitchen wastes (KW) are post-consumption residues from household and food service sector, heterogenous in composition and highly variable depending on the particular origin, which are often treated as municipal. There is a need to improve the management of these continuously produced and worldwidely available resources and their valorization into novel and commercially interesting products will aid in the development of bioeconomy. The successful implementation of such approach requires cooperation between academia, industrial stakeholders, public and private institutions, based on the different dimensions, including social, economic, ecologic and technological involved. This review aims at presenting a survey of technological aspects, regarding current and potential management strategies of KW, following either a single or multiproduct processing according to the biorefineries scheme. Emphasis is given to intensification tools, designed to enhance process efficiency.
Collapse
Affiliation(s)
- Rebeca Esteban-Lustres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| | - María Dolores Torres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain.
| | - Beatriz Piñeiro
- Economic Resources, CHOU, SERGAS, Ramon Puga Noguerol, 54, 32005 Ourense, Spain
| | - Cristina Enjamio
- Galaria, SERGAS, Edificio Administrativo San Lázaro s/n, 15701 Santiago de Compostela, A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
54
|
Utilisation of Pectins Extracted from Orange Peels by Non Conventional Methods in the Formation of Edible Films in the Presence of Herbal Infusions. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Edible films of three high methoxy pectins (DE: 70–75%) in the presence of dittany and anise infusions were studied. Apart from a commercial one, two more pectins, selected by their yield and DE from preliminary experiments on pectin extraction from orange peels using ultrasound- and microwave-assisted extraction or a combination of both, were used. Extracted pectins were darker, less surface active and had lower [η] and absolute zeta values. All three pectin solutions were Newtonian. Furthermore, all films had statistically the same thickness (~40 μm) and moisture content (~25.2%). For the same herbal infusion, all pectins resulted in films with the same density (~1.01 and ~1.19 g/cm3 for dittany and anise films, respectively). Values of 2–4.65 N and 76.62–191.80 kPa, for maximum force and modulus, respectively, were reported. The commercial pectin film with anise was the stronger, whereas that with dittany, the stiffer. Total phenolics content (TPC) and antioxidant activity (SA) were also measured for films and film-forming solutions (FFS). TPC values ranged from 0.035 to 0.157 mg GAE/0.5 mL and SA from ~62 to 91%. Films had greater TPC but lower SA than their FFS. The presence of both pectin and herbal infusions were significant for our observations.
Collapse
|
55
|
Niu H, Hou K, Chen H, Fu X. A review of sugar beet pectin-stabilized emulsion: extraction, structure, interfacial self-assembly and emulsion stability. Crit Rev Food Sci Nutr 2022; 64:852-872. [PMID: 35950527 DOI: 10.1080/10408398.2022.2109586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, sugar beet pectin as a natural emulsifier has shown great potential in food and pharmaceutical fields. However, the emulsification performance depends on the molecular structure of sugar beet pectin, and the molecular structure is closely related to the extraction method. This review summarizes the extraction methods of pectin, structure characterization methods and the current research status of sugar beet pectin-stabilized emulsions. The structural characteristics of sugar beet pectin (such as degree of methylation, degree of acetylation, degree of blockiness, molecular weight, ferulic acid content, protein content, neutral sugar side chains, etc.) are of great significance to the emulsifying activity and stability of sugar beet pectin. Compared with traditional hot acid extraction method, ultrasonic-assisted extraction, microwave-assisted extraction, subcritical water-assisted extraction, induced electric field-assisted extraction and enzyme-assisted extraction can improve the yield of sugar beet pectin. At the same time, compared with harsh extraction conditions (too high temperature, too strong acidity, too long extraction time, etc.), mild extraction conditions can better preserve these emulsifying groups in sugar beet pectin molecules, which are beneficial to improve the emulsifying properties of sugar beet pectin. In addition, the interfacial self-assembly behavior of sugar beet pectin induced by the molecular structure is crucial to the long-term stability of the emulsion. This review provides a direction for extracting or modifying sugar beet pectin with specific structure and function, which is instructive for finding alternatives to gum arabic.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- Maritime Academy, Hainan Vocational University of Science and Technology, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
56
|
Hassoun A, Cropotova J, Trif M, Rusu AV, Bobiş O, Nayik GA, Jagdale YD, Saeed F, Afzaal M, Mostashari P, Khaneghah AM, Regenstein JM. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front Nutr 2022; 9:972154. [PMID: 36034919 PMCID: PMC9399420 DOI: 10.3389/fnut.2022.972154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The growing consumer awareness of climate change and the resulting food sustainability issues have led to an increasing adoption of several emerging food trends. Some of these trends have been strengthened by the emergence of the fourth industrial revolution (or Industry 4.0), and its innovations and technologies that have fundamentally reshaped and transformed current strategies and prospects for food production and consumption patterns. In this review a general overview of the industrial revolutions through a food perspective will be provided. Then, the current knowledge base regarding consumer acceptance of eight traditional animal-proteins alternatives (e.g., plant-based foods and insects) and more recent trends (e.g., cell-cultured meat and 3D-printed foods) will be updated. A special focus will be given to the impact of digital technologies and other food Industry 4.0 innovations on the shift toward greener, healthier, and more sustainable diets. Emerging food trends have promising potential to promote nutritious and sustainable alternatives to animal-based products. This literature narrative review showed that plant-based foods are the largest portion of alternative proteins but intensive research is being done with other sources (notably the insects and cell-cultured animal products). Recent technological advances are likely to have significant roles in enhancing sensory and nutritional properties, improving consumer perception of these emerging foods. Thus, consumer acceptance and consumption of new foods are predicted to continue growing, although more effort should be made to make these food products more convenient, nutritious, and affordable, and to market them to consumers positively emphasizing their safety and benefits.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Genetics and Genetic Engineering, Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Bobiş
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, India
| | - Yash D. Jagdale
- MIT School of Food Technology, MIT ADT University, Pune, India
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
57
|
Wu D, Chen S, Ye X, Zheng X, Ahmadi S, Hu W, Yu C, Cheng H, Linhardt RJ, Chen J. Enzyme-extracted raspberry pectin exhibits a high-branched structure and enhanced anti-inflammatory properties than hot acid-extracted pectin. Food Chem 2022; 383:132387. [PMID: 35182862 DOI: 10.1016/j.foodchem.2022.132387] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 01/17/2023]
Abstract
To characterize the structure of purified raspberry pectin and discuss the impact of different extraction methods on the pectin structure, raspberry pectin was extracted by hot-acid and enzyme method and purified by stepwise ethanol precipitation and ion-exchange chromatography isolation. Enzyme-extracted raspberry pectin (RPE50%-3) presented relatively intact structure with molecular weight of 5 × 104 g/mol and the degree of methylation was 39%. The 1D/2D NMR analysis demonstrated RPE50%-3 was a high-branched pectin mainly containing 50% homogalacturonan, 16% branched α-1,5-arabinan and α-1,3-arabinan, 18% β-1,4-galactan and β-1,6-galactan. Acid-extracted raspberry pectin (RPA50%-3) contained less arabinan than RPE50%-3. Moreover, RPE50%-3 inhibited the nitric oxide (NO), TNF-α, IL-6 production of lipopolysaccharide-induced macrophages by 67%, 22% and 46% at the dosage of 200 ug/mL, while the inhibitory rate of RPA50%-3 were 33%, 9%, and 1%, respectively. These results suggested that enzyme-extracted raspberry pectin contained more arabinan sidechains and exhibited better immunomodulatory effect.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou 310013, China
| | - Shokouh Ahmadi
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
58
|
Microwave-assisted extraction of pectin from grape pomace. Sci Rep 2022; 12:12722. [PMID: 35882905 PMCID: PMC9325980 DOI: 10.1038/s41598-022-16858-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
The utilization of microwave technique for the pectin extraction from grape pomace (Fetească Neagră and Rară Neagră), its influence on yield, galacturonic acid content, degree of esterification and molecular weight of pectin were analyzed. The optimal conditions of the extraction process were microwave power of 560 W, pH of 1.8 for 120 s. The pectin samples extracted by MAE in optimal conditions were analyzed by comparing with commercial apple and citrus pectin based on FT-IR analysis, thermal behavior, rheological characteristics and microstructure. The FT-IR analysis established the presence of different functional groups which are attributed to the finger print region of extracted pectin, while the rheological behavior presented a good viscoelasticity of pectin solutions. The obtained data assumes that grape pomace has a great potential to be a valuable source of pectin which can be extracted by simple and quick techniques, while maintaining analogous quality to conventional sources of pectin.
Collapse
|
59
|
Das I, Arora A. One stage hydrothermal treatment: A green strategy for simultaneous extraction of food hydrocolloid and co-products from sweet lime (Citrus Limetta) peels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
A Comparative Assessment on the Recovery of Pectin and Phenolic Fractions from Aqueous and DES Extracts Obtained from Melon Peels. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThis work evaluates the purification of melon peel extracts obtained by two eco-friendly methods: autohydrolysis and sodium acetate/urea/water extraction (1:3:1.6), an alkaline deep eutectic solvent (DES). For that, sequential ethanol precipitation and resin adsorption/desorption stages were proposed for the separate recovery of the pectic and phenolic fractions. In order to screen the optimal purification conditions, in a first step, the effect of ethanol concentrations (from 70 to 85%) on the precipitation of pectic oligosaccharides was assayed. Subsequently, the influence of the selected resin (Amberlite XAD4, XAD16HP and XAD7HP), liquid/resin ratios, and desorption sequences (varying ethanol concentrations and pH) on the phenolic compounds was also studied. The highest pectin yields were achieved with 85% ethanol: 16.11 and 18.05 g pectin/100 g water-insoluble solids (WIS) for autohydrolysis and DES extracts, respectively. All pectins presented a galacturonic acid content of about 45%, while autohydrolysis pectin presented a higher amount of neutral sugar side chains. The presence of low methoxyl GalA and both linear and branched OGalA with DP from 2 to 20 was also confirmed by FTIR and HPAEC-PAD analysis, respectively. Concerning the phenolic fraction, the resin adsorption and desorption steps at the selected conditions (XAD4 resin, liquid/resin ratio of 2 mL/g, eluted with 50% ethanol thrice) resulted in 79.55 and 4.08 mg GAE/g non-volatile content (NVC) for autohydrolysis and DES extracts, respectively, with improved antioxidant capacity. Moreover, some phenolic acids (protocatechuic and ferulic acids) and flavonoids (orientin, vitexin and naringenin) were quantified in the extracts by HPLC–PDA-MS/MS.
Collapse
|
61
|
Hu W, Cheng H, Wu D, Chen J, Ye X, Chen S. Enhanced extraction assisted by pressure and ultrasound for targeting RG-I enriched pectin from citrus peel wastes: A mechanistic study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
62
|
Sharma P, Vishvakarma R, Gautam K, Vimal A, Kumar Gaur V, Farooqui A, Varjani S, Younis K. Valorization of citrus peel waste for the sustainable production of value-added products. BIORESOURCE TECHNOLOGY 2022; 351:127064. [PMID: 35351555 DOI: 10.1016/j.biortech.2022.127064] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Globally the generation and mismanagement of waste from fruit processing and post-harvest impose a severe burden on waste management strategies along with environmental pollution, health hazards. Citrus waste is one of such worrying fruit waste, which is rich in several value-added chemicals, including pectin. Pectin is a prebiotic polysaccharide possessing a multitude of health benefits. Citrus pectin has excellent gelling, thickening, water holding capacity, and encapsulating properties, which pave its functionality in versatile industrial fields including food processing and preservation, drug and therapeutic agents, cosmetics, and personal care products. The utilization of citrus wastes to derive valuable bioproducts can offer an effective approach towards sustainable waste management. With the ever-increasing demand, several strategies have been devised to increase the efficiency of pectin recovery from citrus waste. This review article discusses the sources, effect, and technology-mediated valorization of citrus waste, the functional and nutritive application of pectin along with its socio-economic and environmental perspective.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Krishna Gautam
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Archana Vimal
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India.
| |
Collapse
|
63
|
Hou Z, Hu X, Luan L, Yu C, Wang X, Chen S, Ye X. Prebiotic potential of RG-I pectic polysaccharides from Citrus subcompressa by novel extraction methods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Liu Y, Liu J, Liu G, Duan R, Sun Y, Li J, Yan S, Li B. Sodium bicarbonate reduces the cooked hardness of lotus rhizome via side chain rearrangement and pectin degradation. Food Chem 2022; 370:130962. [PMID: 34555774 DOI: 10.1016/j.foodchem.2021.130962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
In this study, 0.1% (W/V) sodium bicarbonate (SB) solution was used to soften lotus rhizome, and the mechanism was characterized by monoclonal antibodies labeling (mAbs) and atomic force microscopy (AFM). The results showed that the cell wall of lotus rhizome was disintegrated under SB treatment. In addition, the mAbs results revealed that low-esterified homogalacturonan (HG) at the tricellular junction was degraded, the rearrangement of Ara and the interaction between Gal and cellulose may be related to the texture changes. Compared with distilled water treatment, SB treatment reduced the relative content of pectin from 34.1% to 19.1% while increased that of cellulose from 65.9% to 80.9%. AFM results revealed that the height of CSF skeleton decreased from about 32 nm to 1.5 nm. These results clearly demonstrate that cooking with 0.1% SB can soften lotus rhizome through degradation of pectin and arrangement of side chains of rhamnogalacturonan-Ⅰ (RG-Ⅰ).
Collapse
Affiliation(s)
- Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gongji Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ruibing Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yangyang Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Huagui Food Co. Ltd, Honghu, Hubei 433207, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
65
|
Zhao Z, Nian M, Lv H, Yue J, Qiao H, Yang X, Zheng X. Advances in Anti-Osteoporosis Polysaccharides Derived from Medicinal Herbs and Other Edible Substances. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:441-470. [PMID: 35021963 DOI: 10.1142/s0192415x22500173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Osteoporosis is a common metabolic bone disease, and treatment is required for the prevention of low bone mass, deterioration of microstructural bone tissue, and fragility fractures. Osteoporosis therapy includes calcium, vitamin D, and drugs with antiresorptive or anabolic action on the bone. Therapy for osteoporosis does not include taking non-steroidal anti-inflammatory drugs (NSAID), but pain associated with osteoporotic fractures can be treated by taking non-steroidal anti-inflammatory drugs (NSAID). Recently, polysaccharides extracted from medicinal herbs and edible substances (PsMHES) have attracted attention on account of their safety and promising anti-osteoporosis effects, whereas a systematic review about their potential in anti-osteoporosis is vacant to date. Herein, we reviewed the recent progress of PsMHES with anti-osteoporosis activities, looking to introduce the advances in the various pharmacological mechanisms and targets involved in the anti-osteoporosis effects, extraction methods, main mechanism involved in Wnt/[Formula: see text]-catenin pathways and RANKL (Receptor Activator for NF[Formula: see text]B ligand or TNFSF25) pathways, and Structure-Activity Relationships (SAR) analysis of PsMHES. Typical herbs likeAchyranthes bidentate and Morinda officinalis used for the treatment of osteoporosis are introduced; their traditional uses in traditional Chinese medicine (TCM) are discussed in this paper as well. This review will help to the recognition of the value of PsMHES in anti-osteoporosis and provide guidance for the research and development of new anti-osteoporosis agents in clinic.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Hong Lv
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohang Yang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province Northwest University, 229 Taibai Road, Xi'an 710069, P. R. China
| |
Collapse
|
66
|
Cui J, Wang F, Zhao C, Zhou S, Zheng J. Orange Pectin with Compact Conformation Effectively Alleviates Acute Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1704-1714. [PMID: 35080177 DOI: 10.1021/acs.jafc.1c07951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A comprehensive understanding of the relationships between the structure and function is critical for the targeted preparation of functional pectins. In this study, we compared the alleviating effects of five orange pectins (200 mg/kg) extracted using acid (P2), alkali (P10), cellulase (C), acid + cellulase (P2 + C), and alkali + cellulase (P10 + C) on dextran sodium sulfate-induced acute colitis. The physiological and histopathological indicators revealed that the alleviating effects were most significant for P10 + C, followed by P10, P2 + C, P2, and C. P10 + C increased the diversity and relative abundance of Akkermansia, leading to increased generation of colonic short-chain fatty acids as well as mRNA and protein expressions of GPR43, GPR109A, claudin-1, ZO-1, and occludin. Therefore, proinflammatory cytokines were decreased, and anti-inflammatory cytokines were increased. A compact conformation of P10 + C contributed to the alleviation effects on acute colitis. Alkali + cellulase-extracted orange pectin with a compact conformation has potential as adjuvant treatment for intestinal inflammation.
Collapse
Affiliation(s)
- Jiefen Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuaishuai Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
67
|
Zhang F, Zhang L, Chen J, Du X, Lu Z, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Wang X, Lü X. Systematic evaluation of a series of pectic polysaccharides extracted from apple pomace by regulation of subcritical water conditions. Food Chem 2022; 368:130833. [PMID: 34425342 DOI: 10.1016/j.foodchem.2021.130833] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/06/2021] [Accepted: 08/07/2021] [Indexed: 12/28/2022]
Abstract
To investigate the influences of different subcritical water conditions on apple pomace pectic polysaccharides (APP) extraction, 20 samples were successfully prepared and systematically analyzed. At low temperature region (100-120 °C), extraction effect was predominant and extracted APP was high molecular weight, esterification degree and galacturonic acid content as well as light color. At middle temperature region (140 °C), the balance of extraction and degradation effects was reached and led to the highest APP yield (14.89%). At high temperature region (160-180 °C), degradation effect was predominant and led to serious degradation of APP and more extraction of co-extracts, which endowed the APP with low viscosity and good antioxidant activities in vitro. Overall, the relationship between different subcritical water conditions and APP properties are preliminarily illuminated, which not only provides a promising way for directed extraction of specific APP, but also promotes the potential application of subcritical water to commercial pectin.
Collapse
Affiliation(s)
- Fan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zimeng Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
68
|
Chu J, Metcalfe P, Linford HV, Zhao S, Goycoolea FM, Chen S, Ye X, Holmes M, Orfila C. Short-time acoustic and hydrodynamic cavitation improves dispersibility and functionality of pectin-rich biopolymers from citrus waste. JOURNAL OF CLEANER PRODUCTION 2022; 330:129789. [PMID: 35095219 PMCID: PMC8783060 DOI: 10.1016/j.jclepro.2021.129789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/05/2023]
Abstract
Pectin is a valuable biopolymer used as a natural, clean label additive for thickening and gelling. However, industry faces issues with dispersibility and stability of pectin formulations. To address these issues, the effect of short processing time (30-180 s) with hydrodynamic (HC) and acoustic cavitation (AC) on the dispersibility and gelling functionality of mandarin pectin-rich polysaccharide (M-PRP) was investigated. Short-time processing with HC and AC did not affect polymer composition. HC, but not AC, decreased polydispersity index (PDI) from 0.78 to 0.68 compared to the control. Electron and atomic force microscopy showed that HC and AC decreased aggregation of fibrous and matrix polymers. Both treatments increased apparent viscosity significantly from 0.059 Pa s to 0.30 Pa s at 10 -s. The pectin dispersions showed good gelling capacity upon addition of calcium (final conc. 35 mM). HC and AC treatments for 150 s led to gels that were 7 and 4 times stronger (as measured by peak force) than the control with more homogeneous, less porous structures. In conclusion, short-time HC and AC can improve the dispersibility and functionality of citrus pectin without affecting composition, and are promising technologies to facilitate the use of pectin in industry applications.
Collapse
Affiliation(s)
- Jin Chu
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | | - Siying Zhao
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
- Corresponding author.
| |
Collapse
|
69
|
Zheng J, Li H, Wang D, Li R, Wang S, Ling B. Radio frequency assisted extraction of pectin from apple pomace: Process optimization and comparison with microwave and conventional methods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Rincón E, Espinosa E, García-Domínguez MT, Balu AM, Vilaplana F, Serrano L, Jiménez-Quero A. Bioactive pectic polysaccharides from bay tree pruning waste: Sequential subcritical water extraction and application in active food packaging. Carbohydr Polym 2021; 272:118477. [PMID: 34420736 DOI: 10.1016/j.carbpol.2021.118477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
The potential isolation of bio-active polysaccharides from bay tree pruning waste was studied using sequential subcritical water extraction using different time-temperature combinations. The extracted polysaccharides were highly enriched in pectins while preserving their high molecular mass (10-100 kDa), presenting ideal properties for its application as additive in food packaging. Pectin-enriched chitosan films were prepared, improving the optical properties (≥95% UV-light barrier capacity), antioxidant capacity (˃95% radical scavenging activity) and water vapor permeability (≤14 g·Pa-1·s-1·m-1·10-7) in comparison with neat chitosan-based films. Furthermore, the antimicrobial activity of chitosan was maintained in the hybrid films. Addition of 10% of pectins improved mechanical properties, increasing the Young's modulus 12%, and the stress resistance in 51%. The application of pectin-rich fractions from bay tree pruning waste as an additive in active food packaging applications, with triple action as antioxidant, barrier, and antimicrobial has been demonstrated.
Collapse
Affiliation(s)
- E Rincón
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain; Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - E Espinosa
- Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - M T García-Domínguez
- Departamento de Ingeniería Química, Química Física y Ciencia de los Materiales, Universidad de Huelva, Campus "El Carmen", Av. De las Fuerzas Armadas. S/N, 21007 Huelva, Spain
| | - A M Balu
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - F Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Roslagstullsbacken 21, 114 21, Stockholm, Sweden
| | - L Serrano
- Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - A Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Roslagstullsbacken 21, 114 21, Stockholm, Sweden.
| |
Collapse
|
71
|
Rico X, Nuutinen EM, Gullón B, Pihlajaniemi V, Yáñez R. Application of an eco-friendly sodium acetate/urea deep eutectic solvent in the valorization of melon by-products. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
72
|
Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques- a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
73
|
Lucarini M, Durazzo A, Bernini R, Campo M, Vita C, Souto EB, Lombardi-Boccia G, Ramadan MF, Santini A, Romani A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021; 26:6338. [PMID: 34770747 PMCID: PMC8586962 DOI: 10.3390/molecules26216338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
The by-products/wastes from agro-food and in particular the fruit industry represents from one side an issue since they cannot be disposed as such for their impact on the environment but they need to be treated as a waste. However, on the other side, they are a source of bioactive healthy useful compounds which can be recovered and be the starting material for other products in the view of sustainability and a circular economy addressing the global goal of "zero waste" in the environment. An updated view of the state of art of the research on fruit wastes is here given under this perspective. The topic is defined as follows: (i) literature quantitative analysis of fruit waste/by-products, with particular regards to linkage with health; (ii) an updated view of conventional and innovative extraction procedures; (iii) high-value added compounds obtained from fruit waste and associated biological properties; (iv) fruit wastes presence and relevance in updated databases. Nowadays, the investigation of the main components and related bioactivities of fruit wastes is being continuously explored throughout integrated and multidisciplinary approaches towards the exploitation of emerging fields of application which may allow to create economic, environmental, and social value in the design of an eco-friendly approach of the fruit wastes.
Collapse
Affiliation(s)
- Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario “Città di Prato” Servizi didattici e scientifici per l’Università di Firenze, Piazza Giovanni Ciardi, 25-59100 Prato, Italy;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| |
Collapse
|
74
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
75
|
Effects of Breaking Methods on the Viscosity, Rheological Properties and Nutritional Value of Tomato Paste. Foods 2021; 10:foods10102395. [PMID: 34681441 PMCID: PMC8535101 DOI: 10.3390/foods10102395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Ultrasound-assisted processing has potential application advantages as an emerging technology for preparing tomato paste. This work explored the influence of ultrasound break at 22 °C (US-Break-22) and 65 °C (US-Break-65) on the viscosity, rheological properties and nutritional values of newly prepared tomato paste, compared with traditional thermal break at 65 °C (Break-65) and 90 °C (Break-90). Results showed that the US-Break-65 paste had the largest apparent viscosity, yield stress, consistency coefficient, solid-like nature, and large amplitude oscillatory shear behavior, followed by the US-Break-22 paste, Break-90 paste, and Break-65 paste. Based on the results of the pectin-related enzymes, particle size, and serum pectin of the pastes, it was revealed that the above-mentioned properties were mainly determined by the particle size and pectin content in their serum. The level of ascorbic acid followed the order of US-Break-22 paste > US-Break-65 paste > Break-65 paste > Break-90 paste. The level of total carotenoids followed the order of US-Break-22 paste ≈ US-Break-65 paste > Break-90 paste ≈ Break-65 paste. The level of total cis-carotenoids followed the order of US-Break-65 paste > US-Break-22 paste > Break-90 paste > Break-65 paste. The level of phenolics and antioxidant activities followed the same order of US-Break-22 paste > US-Break-65 paste > Break-90 paste > Break-65 paste. Overall, the viscosity, rheological properties and nutritional values of the tomato pastes prepared by US-Break-65 and US-Break-22 were significantly higher than those prepared by Break-65 and Break-90. Therefore, ultrasound assisted processing can prepare high quality tomato paste and can be widely implemented in the tomato paste processing industry.
Collapse
|
76
|
Kaya B, Okur I, Alpas H, Oztop MH. High hydrostatic pressure assisted extraction of pectin from sugar beet pulp. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Burcu Kaya
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| | - Ilhami Okur
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
- Department of Food Engineering Niğde Ömer Halisdemir University Niğde 51240 Turkey
| | - Hami Alpas
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| |
Collapse
|
77
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|
78
|
Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
79
|
Nuzzo D, Scordino M, Scurria A, Giardina C, Giordano F, Meneguzzo F, Mudò G, Pagliaro M, Picone P, Attanzio A, Raimondo S, Ciriminna R, Di Liberto V. Protective, Antioxidant and Antiproliferative Activity of Grapefruit IntegroPectin on SH-SY5Y Cells. Int J Mol Sci 2021; 22:9368. [PMID: 34502276 PMCID: PMC8430642 DOI: 10.3390/ijms22179368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tested in vitro on SH-SY5Y neuroblastoma cells, grapefruit IntegroPectin is a powerful protective, antioxidant and antiproliferative agent. The strong antioxidant properties of this new citrus pectin, and its ability to preserve mitochondrial membrane potential and morphology, severely impaired in neurodegenerative disorders, make it an attractive therapeutic and preventive agent for the treatment of oxidative stress-associated brain disorders. Similarly, the ability of this pectic polymer rich in RG-I regions, as well as in naringin, linalool, linalool oxide and limonene adsorbed at the outer surface, to inhibit cell proliferation or even kill, at high doses, neoplastic cells may have opened up new therapeutic strategies in cancer research. In order to take full advantage of its vast therapeutic and preventive potential, detailed studies of the molecular mechanism involved in the antiproliferative and neuroprotective of this IntegroPectin are urgently needed.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (D.N.); (P.P.)
| | - Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (C.G.); (G.M.)
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (F.G.); (M.P.)
| | - Costanza Giardina
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (C.G.); (G.M.)
| | - Francesco Giordano
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (F.G.); (M.P.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (C.G.); (G.M.)
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (F.G.); (M.P.)
| | - Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (D.N.); (P.P.)
| | - Alessandro Attanzio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Stefania Raimondo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Via Divisi 83, 90133 Palermo, Italy;
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (F.G.); (M.P.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (C.G.); (G.M.)
| |
Collapse
|
80
|
Khubber S, Kazemi M, Amiri Samani S, Lorenzo JM, Simal-Gandara J, Barba FJ. Structural-functional Variability in Pectin and Effect of Innovative Extraction Methods: An Integrated Analysis for Tailored Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sucheta Khubber
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Sara Amiri Samani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jose M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Avd. Parque Tecnológico De Galicia, San Cibrao Das Viñas, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Francisco J. Barba
- Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Universitat De València, Burjassot, València, Spain
| |
Collapse
|
81
|
Extraction, Characterization, and Applications of Pectins from Plant By-Products. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146596] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, pectins are widely used in the cosmetic, pharmaceutical, and food industries, mainly as texturizing, emulsifying, stabilizing, and gelling agents. Pectins are polysaccharides composed of a large linear segment of α-(1,4) linked d-galactopyranosyluronic acids interrupted by β-(1,2)-linked l-rhamnoses and ramified by short chains composed of neutral hexoses and pentoses. The characteristics and applications of pectins are strongly influenced by their structures depending on plant species and tissues but also extraction methods. The aim of this review is therefore to highlight the structures of pectins and the various methods used to extract them, including conventional ones but also microwave heating, ultrasonic treatment, and dielectric barrier discharge techniques, assessing physico-chemical parameters which have significant effects on pectin characteristics and applications as techno-functional and bioactive agents.
Collapse
|
82
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
83
|
Strategies to Increase the Biological and Biotechnological Value of Polysaccharides from Agricultural Waste for Application in Healthy Nutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115937. [PMID: 34205897 PMCID: PMC8198840 DOI: 10.3390/ijerph18115937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, there is a growing interest in the extraction and identification of new high added-value compounds from the agro-food industry that will valorize the great amount of by-products generated. Many of these bioactive compounds have shown beneficial effects for humans in terms of disease prevention, but they are also of great interest in the food industry due to their effect of extending the shelf life of foods by their well-known antioxidant and antimicrobial activity. For this reason, an additional research objective is to establish the best conditions for obtaining these compounds from complex by-product structures without altering their activity or even increasing it. This review highlights recent work on the identification and characterization of bioactive compounds from vegetable by-products, their functional activity, new methodologies for the extraction of bioactive compounds from vegetables, possibly increasing their biological activity, and the future of the global functional food and nutraceuticals market.
Collapse
|
84
|
Zhang S, He Z, Cheng Y, Xu F, Cheng X, Wu P. Physicochemical characterization and emulsifying properties evaluation of RG-I enriched pectic polysaccharides from Cerasus humilis. Carbohydr Polym 2021; 260:117824. [PMID: 33712165 DOI: 10.1016/j.carbpol.2021.117824] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022]
Abstract
Rhamnogalacturonan I (RG-I) enriched pectic polysaccharides were extracted from Cerasus humilis fruits (RPCF, RG-I: 74.46 %). Structural characterization including FTIR, XRD, NMR, HPAEC and SEM demonstrated that RPCF was a high-methoxy acetylated pectin macromolecule with abundant arabinose and galactose side chains (DM: 53.41 %, MW: 1098 kDa, (Ara + Gal)/Rha: 5.37 %). RPCF afforded additional lipid oxidation stability for emulsions, and exhibited significantly better emulsification performance than citrus pectin. In addition, RPCF formed a weak gel network that stabilized the emulsions (G' > G″). Interestingly, RPCF had behaviors that are divergent from those of commercial high-methoxy pectin because it demonstrated potential in forming sugar-free gels systems. Overall, Cerasus humilis is a new source of pectin rich in RG-I. RPCF can be used as a novel emulsifier with gelling and antioxidant effects, providing its alternative application as a natural emulsifier and rheological modifier in a wide range of products, including those with oil-in-water and low sugar.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yue Cheng
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Xinxin Cheng
- College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| |
Collapse
|
85
|
Murayama D, Rankin SA, Ikeda S. Effect of surfactant-induced competitive displacement of whey protein conjugated to acid- or alkali-extracted potato pectin on emulsion stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
86
|
Emulsification of Scutellaria baicalensis Georgi polysaccharide conjugate and its inhibition on epigallocatechin (EGC) oxidation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
87
|
Cui J, Zhao C, Feng L, Han Y, Du H, Xiao H, Zheng J. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.077] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
88
|
Méndez DA, Fabra MJ, Gómez-Mascaraque L, López-Rubio A, Martinez-Abad A. Modelling the Extraction of Pectin towards the Valorisation of Watermelon Rind Waste. Foods 2021; 10:738. [PMID: 33807203 PMCID: PMC8066451 DOI: 10.3390/foods10040738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Watermelon is the second largest fruit crop worldwide, with great potential to valorise its rind waste. An experimental design was used to model how extraction parameters (temperature, pH, and time) impact on the efficiency of the process, purity, esterification degree, monosaccharide composition and molar mass of watermelon rind pectin (WRP), with an insight on changes in their structural properties (linearity, branching degree and extraction severity). The models for all responses were accurately fitted (R2 > 90%, lack of fit p ≥ 0.05) and experimentally validated. At optimum yield conditions, WRP yield (13.4%), purity (540 µg/g galacturonic acid) and molar mass (106.1 kDa) were comparable to traditional pectin sources but showed a higher branching degree with longer galactan side chains and a higher protein interaction. Harsher conditions (pH 1) generated purer homogalacturonan fractions with average molar masses (80 kDa) at the expense of yield, while mild extraction conditions (pH ≥ 2) produced highly branched entangled pectin structures. This study underlines novel compositional features in WRP and the possibility of producing novel customized pectin ingredients with a wider potential application scope depending on the targeted structure.
Collapse
Affiliation(s)
- Daniel Alexander Méndez
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Laura Gómez-Mascaraque
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland;
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Antonio Martinez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| |
Collapse
|
89
|
McKay S, Oranje P, Helin J, Koek JH, Kreijveld E, van den Abbeele P, Pohl U, Bothe G, Tzoumaki M, Aparicio-Vergara M, Mercenier A, Schols H, Albers R. Development of an Affordable, Sustainable and Efficacious Plant-Based Immunomodulatory Food Ingredient Based on Bell Pepper or Carrot RG-I Pectic Polysaccharides. Nutrients 2021; 13:nu13030963. [PMID: 33809720 PMCID: PMC8002328 DOI: 10.3390/nu13030963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022] Open
Abstract
The prevalence of acute respiratory infections and their impact on quality of life underlies the need for efficacious solutions that are safe, sustainable and economically viable. Polysaccharides in several (traditional) plant extracts have been shown to be immunostimulatory, and some studies suggest beneficial effects against respiratory infections. The aim of this study was to (i) identify the active polysaccharide constituents from affordable and renewable crops (bell pepper and carrot) using activity-guided fractionation, (ii) evaluate in vitro effects on innate immune responses (phagocytosis and cytokine secretion), microbiota modulation and production of short chain fatty acids, followed by (iii) the evaluation of effects of a bell pepper extract enriched for the active component in a human proof of concept study. We identified rhamnogalacturonan-I (RG-I) as the nutricophore responsible for the immunostimulatory activity with substantial structural and functional equivalence between bell pepper (bp) and carrot (c). The in vitro studies showed that bpRG-I and cRG-I comprise similar immune- and microbiota modulatory potential and the human study demonstrated that bpRG-I was well tolerated and enhanced innate immune responsiveness in vivo. This is an important step towards testing the efficacy of RG-I from bpRG-I or cRG-I in an infection trial in humans.
Collapse
Affiliation(s)
- Sue McKay
- Suze Consulting, Voorweg 65, 3233 SJ Oostvoorne, The Netherlands;
| | - Paul Oranje
- IMcoMET BV, Marconistraat 16, 3029 AK Rotterdam, The Netherlands;
| | - Jari Helin
- Glykos Finland Oy, Viikinkaari 6, FI-00790 Helsinki, Finland;
| | - Jean H. Koek
- Unilever, Foods Innovation Centre, Bronland 14, 6708 WH Wageningen, The Netherlands;
| | - Ellen Kreijveld
- Rijk Zwaan, Burgemeester Crezéelaan 40, P.O. Box 40, 2678 KX De Lier, The Netherlands;
| | | | - Ute Pohl
- Analyze & Realize GmbH, Waldseeweg 6, 13467 Berlin, Germany; (U.P.); (G.B.)
| | - Gordana Bothe
- Analyze & Realize GmbH, Waldseeweg 6, 13467 Berlin, Germany; (U.P.); (G.B.)
| | - Maria Tzoumaki
- Nutrileads BV, Bronland 12-N, 6708 WH Wageningen, The Netherlands; (M.T.); (M.A.-V.); (A.M.)
| | | | - Annick Mercenier
- Nutrileads BV, Bronland 12-N, 6708 WH Wageningen, The Netherlands; (M.T.); (M.A.-V.); (A.M.)
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands;
| | - Ruud Albers
- Nutrileads BV, Bronland 12-N, 6708 WH Wageningen, The Netherlands; (M.T.); (M.A.-V.); (A.M.)
- Correspondence:
| |
Collapse
|
90
|
Chen J, Cheng H, Zhi Z, Zhang H, Linhardt RJ, Zhang F, Chen S, Ye X. Extraction temperature is a decisive factor for the properties of pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106160] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
91
|
Xiao L, Ye F, Zhou Y, Zhao G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem 2021; 351:129247. [PMID: 33640768 DOI: 10.1016/j.foodchem.2021.129247] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Pomelo peel as a by-product from pomelo consumption is rich in various nutrients and functional compounds, while most of the by-product is disposed as wastes. The utilization of pomelo peels could not only result in valued-added products/ingredients, but also reduce the environmental threats. By mainly reviewing the recent articles, pomelo peels could be directly used to produce candied pomelo peel, tea, jams, etc. Additionally, functional components (essential oils, pectin, polyphenols, etc.) could be extracted from pomelo peels and applied in food, pharmaceutical and chemical fields. The extraction methods exerted important influences on the composition, physicochemical properties, bioactivities and structures of the resultant fractions. Furthermore, pomelo peel was exploited to make adsorbents, bioethanol, etc. For the future investigations, the functionality- or bioactivity-oriented regimes to recovery valuable components from pomelo peel should be developed in an economic, effective and eco-friendly way and their applicability in large-scale production should be addressed.
Collapse
Affiliation(s)
- Li Xiao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Centre for Regional Foods, Chongqing 400715, People's Republic of China.
| |
Collapse
|
92
|
Physicochemical and macromolecule properties of RG-I enriched pectin from citrus wastes by manosonication extraction. Int J Biol Macromol 2021; 176:332-341. [PMID: 33556397 DOI: 10.1016/j.ijbiomac.2021.01.216] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/24/2022]
Abstract
The properties of pectin extracted from mandarin citrus peels by manosonication extraction (MSp) were systematically studied and compared with pectin obtained by the conventional maceration method (CMp). The yield of MSp (25.5%) was significantly higher than that of CMp (18.3%), while MSp exhibited two Mw fraction distributions. Monosaccharide analysis demonstrated that MSp had more branched RG-I regions (78.3 mol%) than CMp (36.6 mol%) with a high content of arabinose and galactose. The branched-chain morphological characteristics of samples were directly imaged by atomic force microscopy. MSp exhibited a significantly lower degree of methoxylation than CMp by FT-IR and NMR analysis, but X-ray diffraction analysis showed little difference in the level of crystallinity. Moreover, MSp and CMp showed non-Newtonian behaviour, and the increasing order of apparent viscosities was 1.0 w/v% MSp < 1.0 w/v% CMp < 2.0 w/v% CMp < 2.0 w/v% MSp. Thermal analysis and weight loss measurements indicated MSp exhibited greater thermal stability. The results also indicated that both MSp and CMp significantly enhanced the emulsion activity at high concentrations; the emulsions containing 1.5 w/v% pectin showed no phase separation over 21 days, suggesting that MSp could be a potential effective stabiliser in the food and beverage industry.
Collapse
|
93
|
Cashew apple pectin as a carrier matrix for mangiferin: Physicochemical characterization, in vitro release and biological evaluation in human neutrophils. Int J Biol Macromol 2021; 171:275-287. [PMID: 33422511 DOI: 10.1016/j.ijbiomac.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/03/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
In this work, cashew apple pectin (CP) of the species Anacardium occidentale L. was used as an encapsulation matrix for hydrophobic drugs. The model drug chosen was mangiferin (Mf), a glycosylated C-xanthone which has antioxidant properties but low solubility in aqueous medium. CP (1-100 μg mL-1) was not toxic to human neutrophils and also did not significantly interfere with the pro-inflammatory mechanism of these cells in the concentration range of 12.5 and 100 μg mL-1. The results are promising because they show that pectin encapsulated mangiferin after spray drying presented an efficiency of 82.02%. The results obtained in the dissolution test, simulating the release of mangiferin in the gastrointestinal tract (pH 1.2, 4.6 and 6.8) and using Franz diffusion cells (pH 7.4), showed that cashew pectin may be a promising vehicle in prolonged drug delivery systems for both oral and dermal applications.
Collapse
|
94
|
Structural features and anti-inflammatory properties of pectic polysaccharides: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
95
|
Cui R, Zhu F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
96
|
Zhang X, Lin J, Pi F, Zhang T, Ai C, Yu S. Rheological characterization of RG-I chicory root pectin extracted by hot alkali and chelators. Int J Biol Macromol 2020; 164:759-770. [PMID: 32650011 DOI: 10.1016/j.ijbiomac.2020.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
This work aimed to extract gelatinous chicory root pectin (CRP) and evaluated the rheological behavior of the dispersions and gels. CRP was extracted by citric acid (CEP), alkaline (AEP), ammonium oxalate (OEP) and sodium citrate (SEP). The yield, molecular weight (Mw) and the degree of esterification (DE) of pectin samples varied from 8.8 to 14.8% (w/w), 204 to 336 k Da and 4.0 to 47.4%, respectively. AFM studies showed self-organize on mica of CEP, revealing a random coil conformation due to the interaction of multiple branching, whereas, AEP exhibited long linear filamentous structures. The flow behavior study verified the pseudoplastic character of CEP and SEP at 25 °C, while OEP and AEP belonged to dilatant fluid, besides, a closed hysteresis loop was observed when the CEP concentration increased to 1.5%. OEP gel was thermo insensitive and stiff, AEP gel presented most sensitive to calcium ion but more brittle, and SEP was observed a weak syneresis in spite of the poor gelation property. The texture analysis indicated OEP gel had a superior firmness and chewiness. These findings demonstrated that CRP may be attractive as a thickener or gelling agent to modulate textures of sugar-free and calcium content food.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Pi
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Zhang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Ai
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujuan Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
97
|
Rico X, Gullón B, Yáñez R. Environmentally Friendly Hydrothermal Processing of Melon by-Products for the Recovery of Bioactive Pectic-Oligosaccharides. Foods 2020; 9:E1702. [PMID: 33233621 PMCID: PMC7699732 DOI: 10.3390/foods9111702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
Melon by-products, that currently lack high value-added applications, could be a sustainable source of bioactive compounds such as polysaccharides and antioxidants. In this work, melon peels were extracted with water to remove free sugars, and the water-insoluble solids (WISs) were subjected to hydrothermal processing. The effect of temperature on the composition of the obtained liquors and their total phenolic content was evaluated. The selected liquors were also characterized by matrix assisted laser desorption/ionization-time of flight mass spectroscopy (MALDI-TOF MS), fourier transform infrared spectroscopy (FTIR) and high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and its phenolic compounds were identified and quantified by high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). In addition, the spent solids from the hydrothermal treatment were characterized and their potential use was assessed. At the optimal conditions of 140 °C (severity 2.03), the total oligosaccharide yield accounted for 15.24 g/100 g WIS, of which 10.07 g/100 g WIS were oligogalacturonides. The structural characterization confirmed the presence of partially methyl esterified oligogalacturonides with a wide range of polymerization degrees. After precipitation, 16.59 g/100 g WIS of pectin were recovered, with a galacturonic acid content of 55.41% and high linearity.
Collapse
Affiliation(s)
| | | | - Remedios Yáñez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (X.R.); (B.G.)
| |
Collapse
|
98
|
The Effect of Different Extraction Conditions on the Physical Properties, Conformation and Branching of Pectins Extracted from Cucumis melo Inodorus. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The extraction of pectin involves the physico-chemical hydrolysis and solubilisation of pectic polymers from plant tissues under the influence of several processing parameters. In this study, an experimental design approach was used to examine the effects of extraction pH, time and temperature on the pectins extracted from Cucumis melo Inodorus. Knowledge of physical properties (intrinsic viscosity and molar mass), dilute solution conformation (persistence length and mass per unit length), together with chemical composition, was then used to propose a new method, which can estimate the length and number of branches on the pectin RG-I region. The results show that physical properties, conformation and the length and number of branches are sensitive to extraction conditions. The fitting of regression equations relating length and number of branches on the pectin RG-I region to extraction conditions can, therefore, lead to tailor-made pectins with specific properties for specific applications.
Collapse
|
99
|
Zhu K, Mao G, Wu D, Yu C, Cheng H, Xiao H, Ye X, Linhardt RJ, Orfila C, Chen S. Highly Branched RG-I Domain Enrichment Is Indispensable for Pectin Mitigating against High-Fat Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8688-8701. [PMID: 32633953 DOI: 10.1021/acs.jafc.0c02654] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Obesity is associated with gut microbiome dysbiosis. Our previous research has shown that highly branched rhamnogalacturonan type I (RG-I)-enriched pectin (WRP, 531.5 kDa, 70.44% RG-I, Rha/(Gal + Ara) = 20) and its oligosaccharide with less branched RG-I [DWRP, 12.1 kDa, 50.29% RG-I, Rha/(Gal + Ara) = 6] are potential prebiotics. The present study is conducted to uncover the impact of the content, molecular size, and branch degrees of RG-I on the inhibiting effect of high-fat diet (HFD)-induced obesity. The commercial pectin (CP, 496.2 kDa, 35.77% RG-I, Rha/(Gal + Ara) = 6), WRP, and DWRP were orally administered to HFD-fed C57BL/6J mice (100 mg kg-1 d-1) to determine their individual effects on obesity. WRP significantly prevented bodyweight gain, insulin resistance, and inflammatory responses in HFD-fed mice. No obvious anti-obesity effect was observed in either CP or DWRP supplementation. A mechanistic study revealed that CP and DWRP could not enhance the diversity of gut microbiota, while WRP treatment positively modulated the gut microbiota of obese mice by increasing the abundance of Butyrivibrio, Roseburia, Barnesiella, Flavonifractor, Acetivibrio, and Clostridium cluster IV. Furthermore, WRP significantly promoted browning of white adipose tissues in HFD-fed mice, while CP and DWRP did not. WRP can attenuate the HFD-induced obesity by modulation of gut microbiota and lipid metabolism. Highly branched RG-I domain enrichment is essential for pectin mitigating against the HFD-induced obesity.
Collapse
Affiliation(s)
- Kai Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
100
|
Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|