51
|
Du Y, Liu Z, Yang Q, Zhen D, Liu Y, Feng G. Fluoride-activated photothermal system for promoting bacteria-infected wound healing. J Nanobiotechnology 2023; 21:331. [PMID: 37715178 PMCID: PMC10504784 DOI: 10.1186/s12951-023-02091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Although photothermal therapy (PTT) employing nanozymes has shown excellent antibacterial potential, excessive heating generally harms host cells and hinders recovery. Herein, we report an innovative technique for acquiring the programmed temperature by managing the catalytic activity of nanozymes. The photothermal system of CeO2 + F- + TMB can obtain precise photothermal temperature by adjusting the concentration of fluoride ions under near-infrared irradiation. At the optimized photothermal temperature, the photothermal system affords fine photothermal antibacterial treatment with high-efficiency antibacterial effects against Staphylococcus aureus and Escherichia coli in vitro. In vivo wound healing experiments confirm that the system can effectively promote fibroblast proliferation, angiogenesis and collagen deposition with remarkable wound healing efficiency. This strategy offers a novel design concept for creating a new generation of PTT and opens the way for the creation of alternative antibiotics.
Collapse
Affiliation(s)
- Yuanchun Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Zekai Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Qingxin Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Deshuai Zhen
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
52
|
Goncheva MI, Heinrichs DE. Protocol for studying co-infection between SARS-CoV-2 and Staphylococcus aureus in vitro. STAR Protoc 2023; 4:102411. [PMID: 37393614 PMCID: PMC10258577 DOI: 10.1016/j.xpro.2023.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Bacterial co-infection is one of the most common complications of SARS CoV-2 infection. Here, we present a protocol for the in vitro study of co-infection between SARS CoV-2 and Staphylococcus aureus. We describe steps for quantifying viral and bacterial replication kinetics in the same sample, with the optional extraction of host RNA and proteins. This protocol is applicable to many viral and bacterial strains and can be performed in different cell types. For complete details on the use and execution of this protocol, please refer to Goncheva et al.1.
Collapse
Affiliation(s)
- Mariya I Goncheva
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
53
|
Barman S, Buzoglu Kurnaz L, Yang X, Nagarkatti M, Nagarkatti P, Decho AW, Tang C. Facially Amphiphilic Bile Acid-Functionalized Antimicrobials: Combating Pathogenic Bacteria, Fungi, and Their Biofilms. ACS Infect Dis 2023; 9:1769-1782. [PMID: 37535907 PMCID: PMC10529379 DOI: 10.1021/acsinfecdis.3c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report facially amphiphilic bile acid-based antimicrobials with a broad spectrum of activity against both bacterial and fungal pathogens and negligible detrimental effects on mammalian cells. Two lead compounds eliminated dormant subpopulations of various bacterial species, unlike conventional antibiotics. The lead compounds were also effective in eradicating biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Additionally, these compounds substantially inhibited the formation of fungal biofilms (C. albicans). Mechanistic investigations revealed the membrane-active nature and endogenous reactive oxygen species (ROS) induction ability of these compounds. Finally, no detectable resistance was developed by the bacterial strains against this class of membrane-targeting antimicrobials.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
54
|
Ma J, Wei J, Chen G, Yan X, Sun H, Li N. Extracts of Thesium chinense inhibit SARS-CoV-2 and inflammation in vitro. PHARMACEUTICAL BIOLOGY 2023; 61:1446-1453. [PMID: 37675874 PMCID: PMC10486283 DOI: 10.1080/13880209.2023.2253841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
CONTEXT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading rapidly. Relevant research based on the antiviral effects of Thesium chinense Turcz (Santalaceae) was not found. OBJECTIVE To investigate the antiviral and anti-inflammatory effects of extracts of T. chinense. MATERIALS AND METHODS To investigate the anti-entry and replication effect of the ethanol extract of T. chinense (drug concentration 80, 160, 320, 640, 960 μg/mL) against the SARS-CoV-2. Remdesivir (20.74 μM) was used as positive control, and Vero cells were used as host cells to detect the expression level of nucleocapsid protein (NP) in the virus by real-time quantitative polymerase chain reaction (RT-PCR) and Western blotting. RAW264.7 cells were used as an anti-inflammatory experimental model under lipopolysaccharide (LPS) induction, and the expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS The ethanol extract of T. chinense significantly inhibited the replication (half maximal effective concentration, EC50: 259.3 μg/mL) and entry (EC50: 359.1 μg/mL) of SARS-CoV-2 into Vero cells, and significantly reduced the levels of IL-6 and TNF-α produced by LPS-stimulated RAW264.7 cells. Petroleum ether (EC50: 163.6 μg/mL), ethyl acetate (EC50: 22.92 μg/mL) and n-butanol (EC50: 56.8 μg/mL) extracts showed weak inhibition of SARS-CoV-2 replication in Vero cells, and reduced the levels of IL-6 and TNF-α produced by LPS-stimulated RAW264.7 cells. CONCLUSION T. chinense can be a potential candidate to fight SARS-CoV-2, and is becoming a traditional Chinese medicine candidate for treating COVID-19.
Collapse
Affiliation(s)
- Juncheng Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juanru Wei
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Gang Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaowei Yan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hechun Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
55
|
Jeican II, Gheban D, Mariș A, Albu S, Aluaș M, Siserman CV, Gheban BA. Flurona: The First Autopsied Case. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1616. [PMID: 37763736 PMCID: PMC10537609 DOI: 10.3390/medicina59091616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
COVID-19-associated coinfections increase the patient's risk of developing a severe form of the disease and, consequently, the risk of death. The term "flurona" was proposed to describe the coinfection of the influenza virus and SARS-CoV-2. This report is about a case of a 7-month-old female infant who died due to flurona coinfection. A histopathological exam showed activation of microglia (becoming CD45 positive), bronchial inflammation, diffuse alveolar damage in proliferative phase with vasculitis, a peribronchial infiltrate that was predominantly CD20-positive, and a vascular wall infiltrate that was predominantly CD3-positive. The aggressiveness of the two respiratory viruses added up and they caused extensive lung inflammation, which led to respiratory failure, multiple organ failure, and death. Tissues injuries caused by both the influenza virus and SARS-CoV-2 could be observed, without the ability to certify the dominance of the aggression of one of the two viruses.
Collapse
Affiliation(s)
- Ionuț Isaia Jeican
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Pathology, Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Alexandra Mariș
- Intensive Care Unit, Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania;
| | - Silviu Albu
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Maria Aluaș
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Costel Vasile Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Bogdan Alexandru Gheban
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Pathology, Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| |
Collapse
|
56
|
Viret C, Lavedrine A, Lamiral G, Rozières A, Faure M. Contextual influence of mammalian macro-autophagy in virus-bacteria coinfected cell phenotypes. PLoS Pathog 2023; 19:e1011625. [PMID: 37733691 PMCID: PMC10513301 DOI: 10.1371/journal.ppat.1011625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Guénaëlle Lamiral
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
57
|
Catalano A, Iacopetta D, Ceramella J, Pellegrino M, Giuzio F, Marra M, Rosano C, Saturnino C, Sinicropi MS, Aquaro S. Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic. Viruses 2023; 15:1843. [PMID: 37766250 PMCID: PMC10537211 DOI: 10.3390/v15091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Antibacterial resistance is a renewed public health plague in modern times, and the COVID-19 pandemic has rekindled this problem. Changes in antibiotic prescribing behavior, misinformation, financial hardship, environmental impact, and governance gaps have generally enhanced the misuse and improper access to antibiotics during the COVID-19 pandemic. These determinants, intersected with antibacterial resistance in the current pandemic, may amplify the potential for a future antibacterial resistance pandemic. The occurrence of infections with multidrug-resistant (MDR), extensively drug-resistant (XDR), difficult-to-treat drug-resistant (DTR), carbapenem-resistant (CR), and pan-drug-resistant (PDR) bacteria is still increasing. The aim of this review is to highlight the state of the art of antibacterial resistance worldwide, focusing on the most important pathogens, namely Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae, and their resistance to the most common antibiotics.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| |
Collapse
|
58
|
Musat O, Sorop VB, Sorop MI, Lazar V, Marti DT, Susan M, Avram CR, Oprisoni A, Vulcanescu DD, Horhat FG, Bagiu IC, Horhat DI, Diaconu MM. COVID-19 and Laboratory Markers from Romanian Patients-A Narrative Review. Life (Basel) 2023; 13:1837. [PMID: 37763241 PMCID: PMC10532991 DOI: 10.3390/life13091837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 has significantly impacted the whole world, and Romania was no exception. Biomarkers play a crucial role in understanding and managing the disease. However, research regarding laboratory analyses for patients with COVID-19 is fairly limited. For detection, PCR testing is still considered the golden standard, while antibodies are still useful for monitoring both patients and their vaccination status. In our country, biomarkers such as CRP, LDH, transaminases, cardiac, and iron markers have been used to assess the status of patients and even predict illness outcome. CRP, IL-6, LDH, FER, fibrinogen, creatinine, and vitamin D levels have been associated with increased severity, risk of ICU admission, and death. Cardiac markers and D-dimers are also good predictors, but their role seems more important in patients with complications. HDL cholesterol and BUN levels were also suggested as potential biomarkers. Hematological issues in SARS-CoV-2 infections include neutrophilia, lymphopenia and their ratio, while PCT, which is a marker of bacterial infections, is better to be used in patients with co- or supra-infections. The current research is a narrative review that focuses on the laboratory results of Romanian COVID-19 patients. The goal of this article is to provide an update on the research on biomarkers and other laboratory tests conducted inside the borders of Romania and identify gaps in this regard. Secondly, options for further research are discussed and encouraged.
Collapse
Affiliation(s)
- Ovidiu Musat
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
- Department of Ophthalmology, “Dr Carol Davila” Central Military Emergency University Hospital, Mircea Vulcanescu Street, No. 88, 010825 Bucharest, Romania
| | - Virgiliu Bogdan Sorop
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| | - Madalina Ioana Sorop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
| | - Viorica Lazar
- Department of General Medicine, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Pediatric Clinic II, Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Daniela Teodora Marti
- Department of Biology and Life Sciences, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Clinical Analysis Laboratory Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Monica Susan
- Department of Internal Medicine, Centre for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, “Vasile Goldis” Western University, Liviu Rebreanu Street 86, 310414 Arad, Romania;
| | - Andrada Oprisoni
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Dan Dumitru Vulcanescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Florin George Horhat
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Iulia Cristina Bagiu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Delia Ioana Horhat
- Department of ENT, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Mircea Mihai Diaconu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| |
Collapse
|
59
|
Di Lorenzo A, Campogiani L, Iannetta M, Iannazzo R, Imeneo A, Alessio G, D’Aquila V, Massa B, Fato I, Rindi LV, Malagnino V, Teti E, Andreoni M, Sarmati L. The Impact of Viral and Bacterial Co-Infections and Home Antibiotic Treatment in SARS-CoV-2 Hospitalized Patients at the Policlinico Tor Vergata Hospital, Rome, Italy. Antibiotics (Basel) 2023; 12:1348. [PMID: 37760645 PMCID: PMC10525365 DOI: 10.3390/antibiotics12091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Co-infections during COVID-19 may worsen patients' outcomes. This study reports the results of a screening assessing the presence of co-infections among patients hospitalized for SARS-CoV-2 infection in the Infectious Diseases-Ward of the Policlinico Tor Vergata Hospital, Rome, Italy, from 1 January to 31 December 2021. Data on hepatitis B and C virus, urinary antigens for legionella pneumophila and streptococcus pneumoniae, pharyngeal swab for respiratory viruses, QuantiFERON®-TB Gold Plus assay (QFT-P), blood cultures and pre-hospitalization antibiotic prescription were recorded. A total of 482 patients were included, 61% males, median age of 65 years (IQR 52-77), median Charlson comorbidity index of 4 (IQR 2-5). The mortality rate was 12.4%; 366 patients needed oxygen supply. In total, 151 patients (31.3%) received home antibiotics without any association with the outcome. No significant association between mortality and the positivity of viral hepatitis markers was found. Out of 442 patients, 125 had an indeterminate QFT-P, associated with increased mortality. SARS-CoV-2 was the only respiratory virus detected among 389 pharyngeal swabs; 15/428 patients were positive for S. pneumoniae; none for L. pneumophila. In total, 237 blood cultures were drawn within 48 h from hospital admission: 28 were positive and associated with increased mortality. In our cohort, bacterial and viral co-infections in COVID-19 hospitalized patients were rare and not associated with higher mortality.
Collapse
Affiliation(s)
- Andrea Di Lorenzo
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Laura Campogiani
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Marco Iannetta
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Roberta Iannazzo
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
| | - Alessandra Imeneo
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
| | - Grazia Alessio
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
| | - Veronica D’Aquila
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
| | - Barbara Massa
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
| | - Ilenia Fato
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
| | - Lorenzo Vittorio Rindi
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
| | - Vincenzo Malagnino
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Elisabetta Teti
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Massimo Andreoni
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Loredana Sarmati
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy; (A.D.L.); (L.C.); (M.I.); (R.I.); (A.I.); (G.A.); (V.D.); (B.M.); (I.F.); (L.V.R.); (V.M.); (E.T.); (M.A.)
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
60
|
Zhou S, Liu MH, Deng XP. Critical respiratory failure due to pregnancy complicated by COVID-19 and bacterial coinfection: A case report. World J Clin Cases 2023; 11:5559-5566. [PMID: 37637702 PMCID: PMC10450368 DOI: 10.12998/wjcc.v11.i23.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND In the past 3 years, the global pandemic of coronavirus disease 2019 (COVID-19) has posed a great threat to human life and safety. Among the causes of death in COVID-19 patients, combined or secondary bacterial infection is an important factor. As a special group, pregnant women experience varying degrees of change in their immune status, cardiopulmonary function, and anatomical structure during pregnancy, which puts them at higher risk of contracting COVID-19. COVID-19 infection during pregnancy is associated with increased adverse events such as hospitalisation, admission to the intensive care unit, and mechanical ventilation. Therefore, pregnancy combined with coinfection of COVID-19 and bacteria often leads to critical respiratory failure, posing severe challenges in the diagnosis and treatment process. CASE SUMMARY We report a case of COVID-19 complicated with Staphylococcus aureus (S. aureus) coinfection in a pregnant woman at 34 wk of gestation. Her rapid progression of pulmonary lesions caused severe respiratory failure, and she received non-invasive ventilator-assisted respiratory treatment. Subsequently, we delivered a foetus via emergency caesarean section after accelerating the maturity of the foetal pulmonary system, and the respiratory condition of the puerperant woman significantly improved after the delivery of the foetus. Lavage fluid was taken under tracheoscopy to quickly search for pathogens by the metagenomic next-generation sequencing (mNGS), and both COVID-19 and S. aureus were detected. After targeted anti-infective treatment, the maternal condition gradually improved, and the patient was discharged from the hospital. CONCLUSION The coinfection of pregnancy with COVID-19 and bacteria often leads to critical respiratory failure, which is a great challenge in the process of diagnosis and treatment. It is crucial to choose the right time to deliver the foetus and to quickly find pathogens by mNGS.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Mei-Hong Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Xiao-Peng Deng
- Department of Gynaecology and Obstetrics, Dalian Women and Children’s Medical Group, Dalian 116011, Liaoning Province, China
| |
Collapse
|
61
|
Galli F, Bindo F, Motos A, Fernández-Barat L, Barbeta E, Gabarrús A, Ceccato A, Bermejo-Martin JF, Ferrer R, Riera J, Peñuelas O, Lorente JÁ, de Gonzalo-Calvo D, Menéndez R, Gonzalez J, Misuraca S, Palomeque A, Amaya-Villar R, Añón JM, Balan Mariño A, Barberà C, Barberán J, Blandino Ortiz A, Bustamante-Munguira E, Caballero J, Cantón-Bulnes ML, Carbajales Pérez C, Carbonell N, Catalán-González M, de Frutos R, Franco N, Galbán C, Lopez Lago A, Gumucio-Sanguino VD, de la Torre MDC, Díaz E, Estella Á, Gallego Curto E, García-Garmendia JL, Gómez JM, Huerta A, Jorge García RN, Loza-Vázquez A, Marin-Corral J, Martin Delgado MC, Martínez de la Gándara A, Martínez Varela I, Lopez Messa J, M Albaiceta G, Nieto MT, Novo MA, Peñasco Y, Pérez-García F, Pozo-Laderas JC, Ricart P, Sagredo V, Sánchez-Miralles A, Sancho Chinesta S, Roche-Campo F, Socias L, Solé-Violan J, Suarez-Sipmann F, Tamayo Lomas L, Trenado J, Úbeda A, Valdivia LJ, Vidal P, Boado MV, Rodríguez A, Antonelli M, Blasi F, Barbé F, Torres A. Procalcitonin and C-reactive protein to rule out early bacterial coinfection in COVID-19 critically ill patients. Intensive Care Med 2023; 49:934-945. [PMID: 37507573 PMCID: PMC10425511 DOI: 10.1007/s00134-023-07161-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Although the prevalence of community-acquired respiratory bacterial coinfection upon hospital admission in patients with coronavirus disease 2019 (COVID-19) has been reported to be < 5%, almost three-quarters of patients received antibiotics. We aim to investigate whether procalcitonin (PCT) or C-reactive protein (CRP) upon admission could be helpful biomarkers to identify bacterial coinfection among patients with COVID-19 pneumonia. METHODS We carried out a multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish intensive care units (ICUs). The primary outcome was to explore whether PCT or CRP serum levels upon hospital admission could predict bacterial coinfection among patients with COVID-19 pneumonia. The secondary outcome was the evaluation of their association with mortality. We also conducted subgroups analyses in higher risk profile populations. RESULTS Between 5 February 2020 and 21 December 2021, 4076 patients were included, 133 (3%) of whom presented bacterial coinfection. PCT and CRP had low area under curve (AUC) scores at the receiver operating characteristic (ROC) curve analysis [0.57 (95% confidence interval (CI) 0.51-0.61) and 0.6 (95% CI, 0.55-0.64), respectively], but high negative predictive values (NPV) [97.5% (95% CI 96.5-98.5) and 98.2% (95% CI 97.5-98.9) for PCT and CRP, respectively]. CRP alone was associated with bacterial coinfection (OR 2, 95% CI 1.25-3.19; p = 0.004). The overall 15, 30 and 90 days mortality had a higher trend in the bacterial coinfection group, but without significant difference. PCT ≥ 0.12 ng/mL was associated with higher 90 days mortality. CONCLUSION Our study suggests that measurements of PCT and CRP, alone and at a single time point, are not useful for ruling in or out bacterial coinfection in viral pneumonia by COVID-19.
Collapse
Affiliation(s)
- Flavia Galli
- Department of Intensive Care, Emergency Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Bindo
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli studi di Milano, Milan, Italy
| | - Anna Motos
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pneumology, Hospital Clinic of Barcelona; August Pi i Sunyer Biomedical Research Institute-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Pneumology, Hospital Clinic of Barcelona; August Pi i Sunyer Biomedical Research Institute-IDIBAPS, University of Barcelona, Barcelona, Spain.
| | - Enric Barbeta
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pneumology, Hospital Clinic of Barcelona; August Pi i Sunyer Biomedical Research Institute-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Albert Gabarrús
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pneumology, Hospital Clinic of Barcelona; August Pi i Sunyer Biomedical Research Institute-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Adrián Ceccato
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Center, Institut d'Investigació i Innovació Parc Taulí I3PT, Parc Taulí Hospital Universitari, Sabadell, Spain
- Intensive Care Unit, Grupo Quironsalud, Hospital Universitari Sagrat Cor, Barcelona, Spain
| | - Jesús F Bermejo-Martin
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente, Salamanca, Spain
- Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Jordi Riera
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario de Getafe, Universidad Europea, Madrid, Spain
| | - José Ángel Lorente
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario de Getafe, Universidad Europea, Madrid, Spain
- Dept. of Bioengineering, Universidad Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Translational Research in Respiratory Medicine, Respiratory Department, Hospital Universitari Aranu de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Rosario Menéndez
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Pulmonary Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jessica Gonzalez
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Translational Research in Respiratory Medicine, Respiratory Department, Hospital Universitari Aranu de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Sofia Misuraca
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli studi di Milano, Milan, Italy
| | - Andrea Palomeque
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pneumology, Hospital Clinic of Barcelona; August Pi i Sunyer Biomedical Research Institute-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Rosario Amaya-Villar
- Intensive Care Clinical Unit, Hospital Universitario Virgen de Rocío, Seville, Spain
| | - José Manuel Añón
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Medicina Intensiva, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | | | | | - José Barberán
- Hospital Universitario HM Montepríncipe, Facultad HM Hospitales de Ciencias de la Salud, Universidad Camilo Jose Cela, Madrid, Spain
| | - Aaron Blandino Ortiz
- Servicio de Medicina Intensiva, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Intensive Care Unit, and Emergency Medicine, Universidad de Alcalá, Madrid, Spain
| | - Elena Bustamante-Munguira
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Intensive Care Medicine, Hospital Clínico Universitario Valladolid, Valladolid, Spain
| | - Jesús Caballero
- Critical Intensive Medicine Department, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida, Lleida, Spain
| | | | | | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico Universitario, Valencia, Spain
| | | | - Raul de Frutos
- Servicio de Anestesiología y Reanimación, Hospital Universitario Basurto, Bilbao, Spain
| | | | - Cristóbal Galbán
- Department of Critical Care Medicine, CHUS, Complejo Hospitalario Universitario de Santiago, Santiago, Spain
| | - Ana Lopez Lago
- Department of Critical Care Medicine, CHUS, Complejo Hospitalario Universitario de Santiago, Santiago, Spain
| | - Víctor D Gumucio-Sanguino
- Department of Intensive Care, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Emilio Díaz
- Department of Medicine, Critical Care Department, Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona (UAB), Sabadell, Barcelona, Spain
| | - Ángel Estella
- Department of Medicine, Intensive Care Unit University Hospital of Jerez, University of Cádiz, INIBiCA, Cádiz, Spain
| | - Elena Gallego Curto
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Cuidados Intensivos, Hospital Universitario San Pedro de Alcántara, Cáceres, Spain
| | | | | | - Arturo Huerta
- Pulmonary and Critical Care Division, Emergency Department, Clínica Sagrada Família, Barcelona, Spain
| | | | - Ana Loza-Vázquez
- Unidad de Medicina Intensiva, Hospital Universitario Virgen de Valme, Seville, Spain
| | | | | | | | | | | | - Guillermo M Albaiceta
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | | | - Mariana Andrea Novo
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Illes Balears, Palma, Spain
| | - Yhivian Peñasco
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Felipe Pérez-García
- Servicio de Microbiología Clínica, Facultad de Medicina, Departamento de Biomedicina y Biotecnología, Hospital Universitario Príncipe de Asturias - Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Pozo-Laderas
- UGC-Medicina Intensiva, Hospital Universitario Reina Sofia, Instituto Maimonides IMIBIC, Córdoba, Spain
| | - Pilar Ricart
- Servei de Medicina Intensiva, Hospital Universitari Germans Trias, Badalona, Spain
| | | | - Angel Sánchez-Miralles
- Intensive Care Unit, Hospital Universitario Sant Joan d'Alacant, Sant Joan d'Alacant, Alicante, Spain
| | - Susana Sancho Chinesta
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Ferran Roche-Campo
- Hospital Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tortosa, Tarragona, Spain
| | - Lorenzo Socias
- Intensive Care Unit, Hospital Son Llàtzer, Illes Balears, Palma, Spain
| | - Jordi Solé-Violan
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Department, Hospital Universitario de GC Dr. Negrín, Universidad Fernando Pessoa Canarias, Las Palmas, Gran Canaria, Spain
| | | | - Luis Tamayo Lomas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Department, Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | - José Trenado
- Servicio de Medicina Intensiva, Hospital Universitario Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Alejandro Úbeda
- Servicio de Medicina Intensiva, Hospital Punta de Europa, Algeciras, Spain
| | | | - Pablo Vidal
- Complexo Hospitalario Universitario de Ourense, Orense, Spain
| | | | - Alejandro Rodríguez
- Critical Care Department, Hospital Universitario Joan XXIII, CIBERES, Rovira & Virgili University, IISPV, Tarragona, Spain
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli studi di Milano, Milan, Italy
| | - Ferran Barbé
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Translational Research in Respiratory Medicine, Respiratory Department, Hospital Universitari Aranu de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Antoni Torres
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Pneumology, Hospital Clinic of Barcelona; August Pi i Sunyer Biomedical Research Institute-IDIBAPS, University of Barcelona, Barcelona, Spain.
- Department of Pulmonary Medicine, Hospital Clinic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
62
|
Fan H, Zhou L, Lv J, Yang S, Chen G, Liu X, Han C, Tan X, Qian S, Wu Z, Yu S, Guo M, Zhu C, Chen Y, Lan K. Bacterial coinfections contribute to severe COVID-19 in winter. Cell Res 2023; 33:562-564. [PMID: 37221267 PMCID: PMC10204009 DOI: 10.1038/s41422-023-00821-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Affiliation(s)
- Hui Fan
- State Key Laboratory of Virology, Department of Respiratory and Critical Care Medicine, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Li Zhou
- Animal Biosafety Level 3 Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, Hubei, China
| | - Jingjun Lv
- Department of Emergency, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shimin Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guozhong Chen
- State Key Laboratory of Virology, Department of Respiratory and Critical Care Medicine, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xinjin Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xue Tan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shengnan Qian
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zegang Wu
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shan Yu
- State Key Laboratory of Virology, Department of Respiratory and Critical Care Medicine, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, Wuhan, Hubei, China.
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Ke Lan
- Animal Biosafety Level 3 Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, Hubei, China.
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
63
|
Aslam S, Asrat H, Liang R, Qiu W, Sunny S, Maro A, Abdallah M, Fornek M, Episcopia B, Quale J. Methicillin-resistant Staphylococcus aureus bacteremia during the coronavirus disease 2019 (COVID-19) pandemic: Trends and distinguishing characteristics among patients in a healthcare system in New York City. Infect Control Hosp Epidemiol 2023; 44:1177-1179. [PMID: 36082528 DOI: 10.1017/ice.2022.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the pandemic, the rate of healthcare facility-onset methicillin-resistant Staphylococcus aureus (MRSA) bacteremia was 5 times greater in patients admitted with coronavirus disease 2019 (COVID-19). The presence of central lines and mechanical ventilation likely contribute to this increased rate. The number of central-line-associated bacteremia cases may be underestimated in patients with COVID-19.
Collapse
Affiliation(s)
- Saif Aslam
- Division of Infectious Diseases, NYC Health+Hospitals/Kings County, Brooklyn, New York
| | - Habtamu Asrat
- Division of Infectious Diseases, NYC Health+Hospitals/Kings County, Brooklyn, New York
| | - Rina Liang
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York
| | - Wenqi Qiu
- School of Public Health, SUNY Downstate Medical Center, Brooklyn, New York
| | - Subin Sunny
- Department of Pharmacy Services, NYC Health+Hospitals/Kings County, Brooklyn, New York
| | - Anna Maro
- Division of Infectious Diseases, NYC Health+Hospitals/Kings County, Brooklyn, New York
| | - Marie Abdallah
- Division of Infectious Diseases, NYC Health+Hospitals/Kings County, Brooklyn, New York
| | - Mary Fornek
- Department of Infection Control and Prevention, NYC Health+Hospitals/Central Office, New York, New York
| | - Briana Episcopia
- Department of Infection Control and Prevention, NYC Health+Hospitals/Kings County, Brooklyn, New York
| | - John Quale
- Division of Infectious Diseases, NYC Health+Hospitals/Kings County, Brooklyn, New York
| |
Collapse
|
64
|
Choi Y, Kang M, Shin DH, Jung J, Choi SJ, Kim NH, Moon SM, Song KH, Kim ES, Jung J, Kim HB. Antibiotic Prescription in Patients With Coronavirus Disease 2019: Analysis of National Health Insurance System Data in the Republic of Korea. J Korean Med Sci 2023; 38:e189. [PMID: 37365725 DOI: 10.3346/jkms.2023.38.e189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Although coronavirus disease 2019 (COVID-19) is a viral infection, antibiotics are often prescribed due to concerns about accompanying bacterial infection. Therefore, we aimed to analyze the number of patients with COVID-19 who received antibiotic prescriptions, as well as factors that influenced antibiotics prescription, using the National Health Insurance System database. METHODS We retrospectively reviewed claims data for adults aged ≥ 19 years hospitalized for COVID-19 from December 1, 2019 to December 31, 2020. According to the National Institutes of Health guidelines for severity classification, we calculated the proportion of patients who received antibiotics and the number of days of therapy per 1,000 patient-days. Factors contributing to antibiotic use were determined using linear regression analysis. In addition, antibiotic prescription data for patients with influenza hospitalized from 2018 to 2021 were compared with those for patients with COVID-19, using an integrated database from Korea Disease Control and Prevention Agency-COVID19-National Health Insurance Service cohort (K-COV-N cohort), which was partially adjusted and obtained from October 2020 to December 2021. RESULTS Of the 55,228 patients, 46.6% were males, 55.9% were aged ≥ 50 years, and most patients (88.7%) had no underlying diseases. The majority (84.3%; n = 46,576) were classified as having mild-to-moderate illness, with 11.2% (n = 6,168) and 4.5% (n = 2,484) having severe and critical illness, respectively. Antibiotics were prescribed to 27.3% (n = 15,081) of the total study population, and to 73.8%, 87.6%, and 17.9% of patients with severe, critical, and mild-to-moderate illness, respectively. Fluoroquinolones were the most commonly prescribed antibiotics (15.1%; n = 8,348), followed by third-generation cephalosporins (10.4%; n = 5,729) and beta-lactam/beta-lactamase inhibitors (6.9%; n = 3,822). Older age, COVID-19 severity, and underlying medical conditions contributed significantly to antibiotic prescription requirement. The antibiotic use rate was higher in the influenza group (57.1%) than in the total COVID-19 patient group (21.2%), and higher in severe-to-critical COVID-19 cases (66.6%) than in influenza cases. CONCLUSION Although most patients with COVID-19 had mild to moderate illness, more than a quarter were prescribed antibiotics. Judicious use of antibiotics is necessary for patients with COVID-19, considering the severity of disease and risk of bacterial co-infection.
Collapse
Affiliation(s)
- Yunsang Choi
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Minsun Kang
- Artificial Intelligence and Big-Data Convergence Centre, Gil Medical Centre, Gachon University College of Medicine, Incheon, Korea
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Dong Hoon Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jongtak Jung
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Seong Jin Choi
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nak-Hyun Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Song Mi Moon
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyoung-Ho Song
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eu Suk Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jaehun Jung
- Artificial Intelligence and Big-Data Convergence Centre, Gil Medical Centre, Gachon University College of Medicine, Incheon, Korea
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Hong Bin Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
65
|
Biondo C, Ponzo E, Midiri A, Ostone GB, Mancuso G. The Dark Side of Nosocomial Infections in Critically Ill COVID-19 Patients. Life (Basel) 2023; 13:1408. [PMID: 37374189 DOI: 10.3390/life13061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially serious acute respiratory infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the World Health Organization (WHO) declared COVID-19 a global pandemic, the virus has spread to more than 200 countries with more than 500 million cases and more than 6 million deaths reported globally. It has long been known that viral respiratory tract infections predispose patients to bacterial infections and that these co-infections often have an unfavourable clinical outcome. Moreover, nosocomial infections, also known as healthcare-associated infections (HAIs), are those infections that are absent at the time of admission and acquired after hospitalization. However, the impact of coinfections or secondary infections on the progression of COVID-19 disease and its lethal outcome is still debated. The aim of this review was to assess the literature on the incidence of bacterial co-infections and superinfections in patients with COVID-19. The review also highlights the importance of the rational use of antibiotics in patients with COVID-19 and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, alternative antimicrobial agents to counter the emergence of multidrug-resistant bacteria causing healthcare-associated infections in COVID-19 patients will also be discussed.
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Elena Ponzo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
66
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
67
|
Bavaro DF, Diella L, Belati A, Metrangolo G, De Santis L, Spada V, Camporeale M, Dargenio A, Brindicci G, Balena F, Fiordelisi D, Signorile F, Loseto G, Pasciolla C, Minoia C, Attolico I, Perrone T, Simone S, Rendina M, Giovine N, Di Gennaro F, Musto P, Guarini A, Di Leo A, Gesualdo L, Dell'Aera M, Saracino A. Efficacy of Remdesivir and Neutralizing Monoclonal Antibodies in Monotherapy or Combination Therapy in Reducing the Risk of Disease Progression in Elderly or Immunocompromised Hosts Hospitalized for COVID-19: A Single Center Retrospective Study. Viruses 2023; 15:v15051199. [PMID: 37243285 DOI: 10.3390/v15051199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Remdesivir (REM) and monoclonal antibodies (mAbs) could alleviate severe COVID-19 in at-risk outpatients. However, data on their use in hospitalized patients, particularly in elderly or immunocompromised hosts, are lacking. METHODS All consecutive patients hospitalized with COVID-19 at our unit from 1 July 2021 to 15 March 2022 were retrospectively enrolled. The primary outcome was the progression to severe COVID-19 (P/F < 200). Descriptive statistics, a Cox univariate-multivariate model, and an inverse probability treatment-weighted (IPTW) analysis were performed. RESULTS Overall, 331 subjects were included; their median (q1-q3) age was 71 (51-80) years, and they were males in 52% of the cases. Of them, 78 (23%) developed severe COVID-19. All-cause in-hospital mortality was 14%; it was higher in those with disease progression (36% vs. 7%, p < 0.001). REM and mAbs resulted in a 7% (95%CI = 3-11%) and 14% (95%CI = 3-25%) reduction in the risk of severe COVID-19, respectively, after adjusting the analysis with the IPTW. In addition, by evaluating only immunocompromised hosts, the combination of REM and mAbs was associated with a significantly lower incidence of severe COVID-19 (aHR = 0.06, 95%CI = 0.02-0.77) when compared with monotherapy. CONCLUSIONS REM and mAbs may reduce the risk of COVID-19 progression in hospitalized patients. Importantly, in immunocompromised hosts, the combination of mAbs and REM may be beneficial.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucia Diella
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Alessandra Belati
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Giuliana Metrangolo
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Laura De Santis
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Vito Spada
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Michele Camporeale
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Angelo Dargenio
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Gaetano Brindicci
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Flavia Balena
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Deborah Fiordelisi
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Fabio Signorile
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Giacomo Loseto
- Hematology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Crescenza Pasciolla
- Hematology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Carla Minoia
- Hematology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Immacolata Attolico
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinic, 70124 Bari, Italy
| | - Tommasina Perrone
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinic, 70124 Bari, Italy
| | - Simona Simone
- Nephrology Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Maria Rendina
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Nicoletta Giovine
- Hospital Pharmacy Department, University Hospital of Bari, 70124 Bari, Italy
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinic, 70124 Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area University of Bari and Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy
| | - Attilio Guarini
- Hematology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Maria Dell'Aera
- Hospital Pharmacy Department, University Hospital of Bari, 70124 Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
68
|
Ricketson LJ, Kellner JD. Changes in the Incidence of Invasive Pneumococcal Disease in Calgary, Canada, during the SARS-CoV-2 Pandemic 2020-2022. Microorganisms 2023; 11:1333. [PMID: 37317307 PMCID: PMC10222282 DOI: 10.3390/microorganisms11051333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
We describe the impact of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic on invasive pneumococcal disease (IPD) in Calgary. IPD declined significantly worldwide during 2020 and 2021. This may be due to the reduced transmission of and decrease in circulating viruses that often co-infect with the opportunistic pneumococcus. Pneumococcus has not been shown to frequently co-infect or cause secondary infection with SARS-CoV-2. We examined and compared incidence rates in Calgary per quarter in the pre-vaccine, post-vaccine, 2020 and 2021 (pandemic) and 2022 (late pandemic) eras. We also conducted a time series analysis from 2000-2022 allowing for change in trend at introduction of vaccines and for initiation of NPIs during the COVID-19 pandemic. Incidence declined in 2020/2021 but by the end of 2022 had begun to rapidly recover to near pre-vaccine rates. This recovery may be related to the high rates of viral activity in the winter of 2022 along with childhood vaccines being delayed during the pandemic. However, a large proportion of the IPD caused in the last quarter of 2022 was serotype 4, which has caused outbreaks in the homeless population of Calgary in the past. Further surveillance will be important to understand IPD incidence trends in the post-pandemic landscape.
Collapse
Affiliation(s)
- Leah J. Ricketson
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - James D. Kellner
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada
| |
Collapse
|
69
|
Maraia Z, Mazzoni T, Turtora MP, Tempera A, Spinosi M, Vagnoni A, Mazzoni I. Epidemiological Impact on Use of Antibiotics in Patients Hospitalized for COVID-19: A Retrospective Cohort Study in Italy. Antibiotics (Basel) 2023; 12:antibiotics12050912. [PMID: 37237815 DOI: 10.3390/antibiotics12050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/28/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The increased incidence of antimicrobial resistance during coronavirus disease 2019 (COVID-19) is a very important collateral damage of global concern. The cause is multifactorial and is particularly related to the high rates of antibiotic use in COVID-19 patients with a relatively low rate of secondary co-infection. To this end, we conducted a retrospective observational study of 1269 COVID-19 patients admitted during the years 2020, 2021 and 2022 in two Italian hospitals, with a focus on bacterial co-infections and antimicrobial therapy. Multivariate logistic regression was used to analyze the association between bacterial co-infection, antibiotic use and hospital death after adjustment for age and comorbidity. Bacterial co-infection was detected in 185 patients. The overall mortality rate was 25% (n = 317). Concomitant bacterial infections were associated with increased hospital mortality (β = 1.002, p < 0.001). A total of 83.7% (n = 1062) of patients received antibiotic therapy, but only 14.6% of these patients had an obvious source of bacterial infection. There was a significantly higher rate of hospital mortality in patients who received antibiotics than in those who did not (χ2 = 6.22, p = 0.012). Appropriate prescribing and the rational use of antimicrobials according to the principles of antimicrobial stewardship can help prevent the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Zaira Maraia
- School of Specialization in Clinical Pharmacology and Toxicology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Tony Mazzoni
- School of Specialization in Hospital Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Miriana Pia Turtora
- School of Specialization in Hospital Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Alessandra Tempera
- School of Specialization in Hospital Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Marco Spinosi
- Ascoli Piceno Hospital Pharmacy, 63100 Ascoli Piceno, Italy
| | - Anita Vagnoni
- Ascoli Piceno Hospital Pharmacy, 63100 Ascoli Piceno, Italy
| | | |
Collapse
|
70
|
Kim CG, Lee S, Kim M, Cao VA, Kim SY, Nah J. Synergistic Enhancement of Filtering Efficiency and Antibacterial Performance of a Nanofiber Air Filter Decorated with Electropolarized Lithium-Doped ZnO Nanorods. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20977-20986. [PMID: 37070411 DOI: 10.1021/acsami.3c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
According to clinical case reports, bacterial co-infection with COVID-19 can significantly increase mortality, with Staphylococcus aureus (S. aureus) being one of the most common pathogens causing complications such as pneumonia. Thus, during the pandemic, research on imparting air filters with antibacterial properties was actively initiated, and several antibacterial agents were investigated. However, air filters with inorganic nanostructures on organic nanofibers (NFs) have not been investigated extensively. This study aimed to demonstrate the efficiency of electropolarized poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) NFs decorated with Li-doped ZnO nanorods (NRs) to improve the filtering ability and antibacterial activity of the ultrathin air filter. The surfactant was loaded onto the ZnO─known for its biocompatibility and low toxicity─nanoparticles (NPs) and transferred to the outer surface of the NFs, where Li-doped ZnO NRs were grown. The Li-doped ZnO NR-decorated NF effectively enhanced the physical filtration efficiency and antibacterial properties. Additionally, by exploiting the ferroelectric properties of Li-doped ZnO NRs and PVDF-TrFE NFs, the filter was electropolarized to increase its Coulombic interaction with PMs and S. aureus. As a result, the filter exhibited a 90% PM1.0 removal efficiency and a 99.5% sterilization rate against S. aureus. The method proposed in this study provides an effective route for simultaneously improving the air filter performance and antibacterial activity.
Collapse
Affiliation(s)
- Chang Geun Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Sol Lee
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Minje Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Viet Anh Cao
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Junghyo Nah
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
71
|
Habib G, Mahmood K, Ahmad L, Gul H, Hayat A, Ur Rehman M. Clinical manifestations of active tuberculosis patients coinfected with severe acute respiratory syndrome coronavirus-2. J Clin Tuberc Other Mycobact Dis 2023; 31:100359. [PMID: 36945658 PMCID: PMC9985913 DOI: 10.1016/j.jctube.2023.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Summary background The coronavirus 2019 pandemic was caused by a new single-strand RNA virus that originated from Wuhan, China, and infected more than 190 countries. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) coinfection with tuberculosis posed a serious public health concern and complicated the prognosis and treatment of patients. Since both are respiratory diseases, the sign and symptoms may overlap and could have synergistic effects on the host that can increase mortality during coinfection. The present investigation reported the clinical characteristics of patients having coinfection of COVID-19 and tuberculosis (COVID-TB). Methods We performed a retrospective investigation on COVID-19 infection in tuberculosis patients between the years 2020 and 2021. The SARS-CoV-2 was confirmed by PCR and the COVID-TB epidemiological and clinical findings were recorded on the day of admission and followed up for 25 days. Results The mean age of the COVID-19 patients was 50 ± 15 years, 76.36% were male and 23.64% were female. Weight loss, sore throat, whooping cough, chest pain, and vomiting were common symptoms, and asthma, diabetes, arthritis, and hypertension were found as co-morbidities in COVID-TB. The D-dimer, lactate dehydrogenase, C-reactive protein, erythrocyte sedimentation rate, and creatine kinase levels increased 14-fold, 12.5-fold, 11-fold, 10-fold, and 7-fold respectively during COVID-TB. The patients suffered from hyperferritinemia and lymphocytopenia which increased the likelihood of death. The levels of D-dimer, lactate dehydrogenase, C-reactive protein, erythrocyte sedimentation rate, and creatinine kinase were positively correlated with patient age. The chest radiograph showed the infectious agents have consolidated opacity and peripheral dissemination in the lungs. Conclusion Tuberculosis coinfection augmented the severity of COVID-19 and the likelihood of death, and high vigilance is recommended for respiratory pathogens in COVID-19.
Collapse
Affiliation(s)
- Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian Abbottabad, Pakistan
| | - Khalid Mahmood
- National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Latif Ahmad
- Department of Biology, Women University, Swabi, Pakistan
| | - Haji Gul
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, 29220, Pakistan
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian Abbottabad, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian Abbottabad, Pakistan
| |
Collapse
|
72
|
García-García A, Pérez de Diego R, Flores C, Rinchai D, Solé-Violán J, Deyà-Martínez À, García-Solis B, Lorenzo-Salazar JM, Hernández-Brito E, Lanz AL, Moens L, Bucciol G, Almuqamam M, Domachowske JB, Colino E, Santos-Perez JL, Marco FM, Pignata C, Bousfiha A, Turvey SE, Bauer S, Haerynck F, Ocejo-Vinyals JG, Lendinez F, Prader S, Naumann-Bartsch N, Pachlopnik Schmid J, Biggs CM, Hildebrand K, Dreesman A, Cárdenes MÁ, Ailal F, Benhsaien I, Giardino G, Molina-Fuentes A, Fortuny C, Madhavarapu S, Conway DH, Prando C, Schidlowski L, Martínez de Saavedra Álvarez MT, Alfaro R, Rodríguez de Castro F, Meyts I, Hauck F, Puel A, Bastard P, Boisson B, Jouanguy E, Abel L, Cobat A, Zhang Q, Casanova JL, Alsina L, Rodríguez-Gallego C. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J Exp Med 2023; 220:e20220170. [PMID: 36880831 PMCID: PMC9998661 DOI: 10.1084/jem.20220170] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ana García-García
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández-Brito
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Mohamed Almuqamam
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | | | - Elena Colino
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Juan Luis Santos-Perez
- Unidad de Gestión Clínica de Pediatría y Cirugía Pediátrica, Hospital Virgen de las Nieves-IBS, Granada, Spain
| | - Francisco M. Marco
- Dept. of Immunology, Alicante University General Hospital Doctor Balmis, Alicante, Spain
- Alicante Institute for Health and Biomedical Research, Alicante, Spain
| | - Claudio Pignata
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Aziz Bousfiha
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Stuart E. Turvey
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Stefanie Bauer
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immune Deficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Dept. of Internal Medicine and Pediatrics, PID Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Francisco Lendinez
- Dept. of Pediatric Oncohematology, Hospital Materno Infantil Torrecárdenas, Almería, Spain
| | - Seraina Prader
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Nora Naumann-Bartsch
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Catherine M. Biggs
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kyla Hildebrand
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | | | - Miguel Ángel Cárdenes
- Dept. of Internal Medicine, Unit of Infectious Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Fatima Ailal
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Giuliana Giardino
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Claudia Fortuny
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain; Translational Research Network in Pediatric Infectious Diseases, Madrid, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Swetha Madhavarapu
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Daniel H. Conway
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | | | - Rafael Alfaro
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Fabian Hauck
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Carlos Rodríguez-Gallego
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
73
|
Reyes LF, Rodriguez A, Fuentes YV, Duque S, García-Gallo E, Bastidas A, Serrano-Mayorga CC, Ibáñez-Prada ED, Moreno G, Ramirez-Valbuena PC, Ospina-Tascon G, Hernandez G, Silva E, Díaz AM, Jibaja M, Vera-Alarcon M, Díaz E, Bodí M, Solé-Violán J, Ferrer R, Albaya-Moreno A, Socias L, Figueroa W, Lozano-Villanueva JL, Varón-Vega F, Estella Á, Loza-Vazquez A, Jorge-García R, Sancho I, Shankar-Hari M, Martin-Loeches I. Risk factors for developing ventilator-associated lower respiratory tract infection in patients with severe COVID-19: a multinational, multicentre study, prospective, observational study. Sci Rep 2023; 13:6553. [PMID: 37085552 PMCID: PMC10119842 DOI: 10.1038/s41598-023-32265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Around one-third of patients diagnosed with COVID-19 develop a severe illness that requires admission to the Intensive Care Unit (ICU). In clinical practice, clinicians have learned that patients admitted to the ICU due to severe COVID-19 frequently develop ventilator-associated lower respiratory tract infections (VA-LRTI). This study aims to describe the clinical characteristics, the factors associated with VA-LRTI, and its impact on clinical outcomes in patients with severe COVID-19. This was a multicentre, observational cohort study conducted in ten countries in Latin America and Europe. We included patients with confirmed rtPCR for SARS-CoV-2 requiring ICU admission and endotracheal intubation. Only patients with a microbiological and clinical diagnosis of VA-LRTI were included. Multivariate Logistic regression analyses and Random Forest were conducted to determine the risk factors for VA-LRTI and its clinical impact in patients with severe COVID-19. In our study cohort of 3287 patients, VA-LRTI was diagnosed in 28.8% [948/3287]. The cumulative incidence of ventilator-associated pneumonia (VAP) was 18.6% [610/3287], followed by ventilator-associated tracheobronchitis (VAT) 10.3% [338/3287]. A total of 1252 bacteria species were isolated. The most frequently isolated pathogens were Pseudomonas aeruginosa (21.2% [266/1252]), followed by Klebsiella pneumoniae (19.1% [239/1252]) and Staphylococcus aureus (15.5% [194/1,252]). The factors independently associated with the development of VA-LRTI were prolonged stay under invasive mechanical ventilation, AKI during ICU stay, and the number of comorbidities. Regarding the clinical impact of VA-LRTI, patients with VAP had an increased risk of hospital mortality (OR [95% CI] of 1.81 [1.40-2.34]), while VAT was not associated with increased hospital mortality (OR [95% CI] of 1.34 [0.98-1.83]). VA-LRTI, often with difficult-to-treat bacteria, is frequent in patients admitted to the ICU due to severe COVID-19 and is associated with worse clinical outcomes, including higher mortality. Identifying risk factors for VA-LRTI might allow the early patient diagnosis to improve clinical outcomes.Trial registration: This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.
Collapse
Affiliation(s)
- Luis Felipe Reyes
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- Clinica Universidad de La Sabana, Chía, Colombia.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| | - Alejandro Rodriguez
- Critical Care Department, URV/IISPV/CIBERES, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Yuli V Fuentes
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Sara Duque
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Esteban García-Gallo
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Alirio Bastidas
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Cristian C Serrano-Mayorga
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Elsa D Ibáñez-Prada
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Gerard Moreno
- Critical Care Department, URV/IISPV/CIBERES, Hospital Universitari Joan XXIII, Tarragona, Spain
| | | | | | - Glenn Hernandez
- Critical Care Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Ana Maria Díaz
- Eugenio Espejo Hospital of Specialties, Quito, Pichincha, Ecuador
| | - Manuel Jibaja
- Eugenio Espejo Hospital of Specialties, Quito, Pichincha, Ecuador
| | | | - Emili Díaz
- Critical Care Department, Hospital Universitari Parc Taulí, Universitat Autonoma Barcelona, Sabadell, Spain
| | - María Bodí
- Critical Care Department, URV/IISPV/CIBERES, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Jordi Solé-Violán
- Hospital Universitario Dr Negrín, Las Palmas de Gran Canaria, Spain
- Universidad Fernando Pessoa, Canarias, Spain
| | - Ricard Ferrer
- Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | | | - Lorenzo Socias
- Son Llatzer University Hospital, Palma de Mallorca, Spain
| | - William Figueroa
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | | | | | - Ángel Estella
- Jerez University Hospital, Jerez de la Frontera, Spain
| | - Ana Loza-Vazquez
- Critical Care Department, Hospital Universitario Virgen del Valme, Sevilla, Spain
| | | | - Isabel Sancho
- Critical Care Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Manu Shankar-Hari
- Intensive Care Unit, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, UK
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, UK
| |
Collapse
|
74
|
Recommendations and guidelines for the diagnosis and management of Coronavirus Disease-19 (COVID-19) associated bacterial and fungal infections in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:207-235. [PMID: 36586743 PMCID: PMC9767873 DOI: 10.1016/j.jmii.2022.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.
Collapse
|
75
|
Nortey RA, Kretchy IA, Koduah A, Buabeng KO. Biopsychosocial analysis of antibiotic use for the prevention or management of COVID-19 infections: A scoping review. Res Social Adm Pharm 2023; 19:573-581. [PMID: 36496334 PMCID: PMC9715464 DOI: 10.1016/j.sapharm.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The novelty and complexity of the COVID-19 pandemic has resulted in various coping mechanisms adopted by individuals as a means of averting the perceived fatalities of the pandemic. The use of antibiotics in the management of COVID-19 is clinically recommended under specific conditions. However, there are increasing trends of non-adherence to the recommended criteria resulting in the unwarranted use of antibiotics as an adaptative approach to the ongoing pandemic. OBJECTIVE The objective was to identify and classify factors associated with the unwarranted use of antibiotics in the management of COVID-19 from published literature and the perspectives of key stakeholders along a Biopsychosocial model. METHODS Literature was searched in the following databases: PubMed/MEDLINE, Scopus, Embase and Google Scholar for studies published between 31st December 2019 and 31st January 2022. The Arskey and O'Malley framework modified by Levac in the six-stage methodological process was adopted for this review and included: a) identification of research questions, b) identification of relevant research articles, c) selection of studies, d) data charting and synthesis, e) summary, discussion and analysis, and f) stakeholder consultations. RESULTS Out of 10,252 records identified from all sources, 12 studies were selected for inclusion in this scoping review. The selected articles reflected both antibiotic use and COVID-19 whilst capturing the biological (medical) and psychosocial perspectives. Most of the studies reported the overuse or abuse of Azithromycin especially in hospital settings. Common themes across the review and stakeholder consultations included fear, anxiety, media influences and deficits in public knowledge. CONCLUSION The findings of the study highlight the complexity of antibiotic control especially in the context of a pandemic. The identified determinants of antibiotic use provide the necessary framework to simulate health emergencies and be better positioned in the future through the development of targeted and comprehensive policies on antibiotic stewardship.
Collapse
Affiliation(s)
- Radolf Ansbert Nortey
- Department of Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Private Mail Bag, University Post Office, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Irene Akwo Kretchy
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, PO Box LG 43, Legon, Accra, Ghana.
| | - Augustina Koduah
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, PO Box LG 43, Legon, Accra, Ghana.
| | - Kwame Ohene Buabeng
- Department of Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Private Mail Bag, University Post Office, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
76
|
Alcántar-Curiel MD, Huerta-Cedeño M, Jarillo-Quijada MD, Gayosso-Vázquez C, Fernández-Vázquez JL, Hernández-Medel ML, Zavala-Pineda M, Morales-Gil MÁ, Hernández-Guzmán VA, Bolaños-Hernández MI, Giono-Cerezo S, Santos-Preciado JI. Gram-negative ESKAPE bacteria bloodstream infections in patients during the COVID-19 pandemic. PeerJ 2023; 11:e15007. [PMID: 37013147 PMCID: PMC10066687 DOI: 10.7717/peerj.15007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 03/31/2023] Open
Abstract
Bloodstream infections due to bacteria are a highly consequential nosocomial occurrences and the organisms responsible for them are usually multidrug-resistant. The aims of this study were to describe the incidence of bacteremia caused by Gram-negative ESKAPE bacilli during the COVID-19 pandemic and characterize the clinical and microbiological findings including antimicrobial resistance. A total of 115 Gram-negative ESKAPE isolates were collected from patients with nosocomial bacteremia (18% of the total bacteremias) in a tertiary care center in Mexico City from February 2020 to January 2021. These isolates were more frequently derived from the Respiratory Diseases Ward (27), followed by the Neurosurgery (12), Intensive Care Unit (11), Internal Medicine (11), and Infectious Diseases Unit (7). The most frequently isolated bacteria were Acinetobacter baumannii (34%), followed by Klebsiella pneumoniae (28%), Pseudomonas aeruginosa (23%) and Enterobacter spp (16%). A. baumannii showed the highest levels of multidrug-resistance (100%), followed by K. pneumoniae (87%), Enterobacter spp (34%) and P. aeruginosa (20%). The blaCTX-M-15 and blaTEM-1 genes were identified in all beta-lactam-resistant K. pneumoniae (27), while blaTEM-1 was found in 84.6% (33/39) of A. baumannii isolates. The carbapenemase gene blaOXA-398 was predominant among carbapenem-resistant A. baumannii (74%, 29/39) and blaOXA-24was detected in four isolates. One P. aeruginosa isolate was blaVIM-2 gene carrier, while two K. pneumoniae and one Enterobacter spp were blaNDM gene carriers. Among colistin-resistant isolates mcr-1 gene was not detected. Clonal diversity was observed in K. pneumoniae, P. aeruginosa and Enterobacter spp. Two outbreaks caused by A. baumannii ST208 and ST369 were detected, both belonging to the clonal complex CC92 and IC2. A. baumannii was associated with a death rate of 72% (28/32), most of them (86%, 24/28) extensively drug-resistant or pandrug-resistant isolates, mainly in patients with COVID-19 (86%, 24/28) in the Respiratory Diseases Ward. A. baumannii isolates had a higher mortality rate (72%), which was higher in patients with COVID-19. There was no statistically significant association between the multidrug-resistant profile in Gram-negative ESKAPE bacilli and COVID-19 disease. The results point to the important role of multidrug-resistant Gram-negative ESKAPE bacteria causing bacteremia in nosocomial settings before and during the COVID-19 epidemic. Additionally, we were unable to identify a local impact of the COVID-19 pandemic on antimicrobial resistance rates, at least in the short term.
Collapse
Affiliation(s)
- María Dolores Alcántar-Curiel
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - Manuel Huerta-Cedeño
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
- Laboratorio de Bacteriología Médica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Ciudad de México, Mexico.
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - Catalina Gayosso-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - José Luis Fernández-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - María Luisa Hernández-Medel
- Unidad de Infectología y Laboratorio Central de Microbiología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, Ciudad de México, Mexico
| | - Manuelita Zavala-Pineda
- Unidad de Infectología y Laboratorio Central de Microbiología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, Ciudad de México, Mexico
| | - Miguel Ángel Morales-Gil
- Unidad de Infectología y Laboratorio Central de Microbiología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, Ciudad de México, Mexico
| | - Verónica Alejandra Hernández-Guzmán
- Unidad de Infectología y Laboratorio Central de Microbiología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, Ciudad de México, Mexico
| | - Manuel Ismael Bolaños-Hernández
- Unidad de Infectología y Laboratorio Central de Microbiología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, Ciudad de México, Mexico
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología Médica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Ciudad de México, Mexico.
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| |
Collapse
|
77
|
Gomez AC, Ortiz T, Valenzuela A, Egoávil-Espejo R, Huerto-Huanuco R, Pinto JA, Lagos J, Ruiz J. Super-infection by multiple microorganisms in COVID-19 patients. Front Mol Biosci 2023; 10:1113969. [PMID: 36994427 PMCID: PMC10040592 DOI: 10.3389/fmolb.2023.1113969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: This study aimed to describe the clinical characteristics of patients with COVID-19 co-infected with multiple multidrug-resistant bacteria. Methods: Patients hospitalized in the AUNA network between January and May 2021, diagnosed with COVID-19 and at least two other infecting microorganisms, were retrospectively included in the analysis. Clinical and epidemiological data were extracted from clinical records. The susceptibility levels of the microorganisms were determined using automated methods. Antibiotic resistance was established among infecting bacteria accounting for ≥5 isolates. Results: A total of 27 patients (21 male and 6 female patients) met the inclusion criteria, with a maximum of eight co-infecting bacteria or fungi during admission time. Seven patients (25.9%) died, with a higher but not significant lethality among women (50% vs. 19.0%). A total of 15 patients presented at least one established comorbidity, with hypertension being the most frequent. The time elapsed between COVID-19 diagnosis and hospital attendance was 7.0 days, with that of patients with a fatal outcome being longer than that of living patients (10.6 vs. 5.4). Up to 20 different microorganisms were isolated, with Pseudomonas aeruginosa being the most common (34 isolates). In general, antibiotic resistance levels were high, especially in Acinetobacter baumannii isolates, with resistance levels of 88.9% to all antimicrobial agents tested, except colistin (0%). Conclusion: In conclusion, the present results show the presence of multiple microorganisms that co-infect COVID-19 patients. When fatal outcome rates are in the range of other reports, the presence of a series of multidrug-resistant microorganisms is of concern, showing the need to reinforce control measures to limit the expansion of almost untreatable microorganisms.
Collapse
Affiliation(s)
- Andrea C. Gomez
- Centro de Investigación Básica y Translacional, AUNA IDEAS, Lima, Peru
| | - Tamin Ortiz
- Servicio de Microbiología y Biología Molecular, Laboratorios AUNA, Lima, Peru
| | - Angélica Valenzuela
- Servicio de Microbiología y Biología Molecular, Laboratorios AUNA, Lima, Peru
| | - Rocío Egoávil-Espejo
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos—“One Health”, Universidad Científica del Sur, Lima, Peru
| | - Rosario Huerto-Huanuco
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos—“One Health”, Universidad Científica del Sur, Lima, Peru
| | - Joseph A. Pinto
- Centro de Investigación Básica y Translacional, AUNA IDEAS, Lima, Peru
| | - Jose Lagos
- Servicio de Microbiología y Biología Molecular, Laboratorios AUNA, Lima, Peru
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos—“One Health”, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
78
|
Beliavsky A, Johnston B, Li Q, Tomlinson G, Kaul R, Granton J. Secondary infections in critically ill patients with viral pneumonia due to COVID-19 and influenza: a historical cohort study. Can J Anaesth 2023; 70:374-383. [PMID: 36918454 PMCID: PMC10013978 DOI: 10.1007/s12630-022-02376-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 03/15/2023] Open
Abstract
PURPOSE To compare the incidence and nature of secondary infections (SI) between critically ill patients with viral pneumonia due to COVID-19 and seasonal influenza and explore the association between SI and clinical outcomes. METHODS We conducted a historical cohort study of patients admitted to the intensive care unit (ICU) at two tertiary care centers during the first wave of the COVID-19 pandemic and patients admitted with influenza during the 2018-2019 season. The primary outcome was the rate of SI. Secondary outcomes included rates of ICU and in-hospital mortality, organ-support-dependent disease, and length of ICU and hospital stay. RESULTS Secondary infections developed in 55% of 95 COVID-19 patients and 51% of 47 influenza patients (unadjusted odds ratio [OR], 1.16; 95% confidence interval [CI], 0.57 to 2.33). After adjusting for baseline differences between cohorts, there were no significant differences between the COVID-19 cohort and the influenza cohort (adjusted OR, 1.00; 95% CI, 0.41 to 2.44). COVID-19 patients with SI had longer ICU and hospital stays and duration of mechanical ventilation. The SI incidence was higher in COVID-19 patients treated with steroids than in those not treated with steroids (15/20, 75% vs 37/75, 49%). CONCLUSION Secondary infections were common among critically ill patients with viral pneumonia including COVID-19. We found no difference in the incidence of SI between COVID-19 and influenza in our cohort study, but SI in patients with COVID-19 were associated with worse clinical outcomes and increased healthcare resource use. The small cohort size precludes any causal inferences but may provide a basis for future research.
Collapse
Affiliation(s)
- Alina Beliavsky
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.
| | - Barry Johnston
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Qixuan Li
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
| | - George Tomlinson
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
- Department of Medicine, University Health Network, Toronto, ON, Canada
- Sinai Health System, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - John Granton
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Division of Respirology, University of Toronto, University Health Network, Toronto, ON, Canada
| |
Collapse
|
79
|
Goncheva MI, Gibson RM, Shouldice AC, Dikeakos JD, Heinrichs DE. The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. iScience 2023; 26:105975. [PMID: 36687318 PMCID: PMC9838083 DOI: 10.1016/j.isci.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (CoV-2) pandemic has affected millions globally. A significant complication of CoV-2 infection is secondary bacterial co-infection, as seen in approximately 25% of severe cases. The most common organism isolated during co-infection is Staphylococcus aureus. Here, we describe the development of an in vitro co-infection model where both viral and bacterial replication kinetics may be examined. We demonstrate CoV-2 infection does not alter bacterial interactions with host epithelial cells. In contrast, S. aureus enhances CoV-2 replication by 10- to 15-fold. We identify this pro-viral activity is due to the S. aureus iron-regulated surface determinant A (IsdA) protein and demonstrate IsdA modifies host transcription. We find that IsdA alters Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling, by affecting JAK2-STAT3 levels, ultimately leading to increased viral replication. These findings provide key insight into the molecular interactions between host cells, CoV-2 and S. aureus during co-infection.
Collapse
Affiliation(s)
- Mariya I. Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| | - Richard M. Gibson
- ImPaKT Laboratory, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ainslie C. Shouldice
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| |
Collapse
|
80
|
Amarsy R, Robert J, Jarlier V. [Impact of the first year of the COVID-19 pandemic on the epidemiology of invasive infections (bacteremia) in the hospitals of the Assistance Publique-Hôpitaux de Paris]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2023; 207:131-135. [PMID: 36532694 PMCID: PMC9745959 DOI: 10.1016/j.banm.2022.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Introduction The COVID-19 pandemic has led to a massive influx of patients suffering from severe forms of the disease into hospitals, often requiring intensive care (vascular catheters, ventilation, etc.) which exposes them to high risks of nosocomial infections, particularly invasive infections (bacteremia). Method The impact of the COVID-19 pandemic on the epidemiology of bacteremia in 2020 was analysed in 25 hospitals of the Assistance Publique-Hôpitaux de Paris (AP-HP, approximately 14,000 beds, covering the Île-de-France region). Up to a quarter of patients admitted to AP-HP during the March-April period (peak of the 1st wave) were infected with COVID-19. The incidence over 100 admissions of bacteraemia increased overall compared to previous years: by 24% in March 2020 and by 115% in April. Results The evolution of the incidence of bacteremia was not the same for 2 groups of microorganisms with very different ecologies. For the "hospital" type microorganisms classically responsible for nosocomial infections, the incidence increased significantly in March-April 2020: Klebsiella pneumoniae (×2.3), Pseudomonas aeruginosa (×2.4), Staphylococcus aureus (×2.4), enterococci (×3.4), yeasts (×2.7). Two thirds of the bacteremias caused by these microorganisms were considered as acquired during hospitalization. Importantly, there was also a sharp increase in the incidence of bacteremia caused by antibiotic-resistant strains. The antibiotics used as indicators were the 3rd generation cephalosporins (3GCs), major antibiotics in the treatment of serious infections used for monitoring bacterial resistance in Europe. For example, the incidence of bacteremia with 3GC-resistant strains increased threefold in April 2020 for K. pneumoniae. During the same period, the consumption of 3GC increased sharply in the same hospitals (+131% in March and +148% in April). For Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A hemolytic streptococcus), two pathogens responsible for mainly community and respiratory-transmitted infections, the pandemic had the opposite effect. There was a decrease in incidence in 2020 by 34% and 28% respectively for these two species, particularly in the spring when strict containment, physical distancing and mask-wearing measures were in place. A slight re-emergence of infections with these two species occurred in the summer of 2020 after the relaxation of prevention measures. In contrast to what was seen above, 4/5 of the bacteremias caused by these two species were considered as community-acquired. Conclusion The COVID-19 pandemic which had a strong impact on hospital management and social organization in the general population, had opposite impacts on the incidence of bacteremia depending on the pathogens and their mode of transmission.
Collapse
Affiliation(s)
- R. Amarsy
- Groupe hospitalo-universitaire AP–HP Nord-Université de Paris, Site Lariboisière et Fernand Widal, équipe Infection-Prévention-Contrôle et CIMI-Paris, Inserm U1135, Sorbonne Université, Paris, France
| | - J. Robert
- Groupe hospitalo-universitaire AP–HP, Sorbonne Université, Site Pitié-Salpêtrière, Laboratoire de Bactériologie-Hygiène et CIMI-Paris, Inserm U1135, Sorbonne Université, Paris, France
| | - V. Jarlier
- Membre correspondant de l’Académie Nationale de Médecine, Service de Bactériologie-Hygiène et CIMI-Paris, Inserm U1135, Sorbonne Université, Paris, France,Auteur correspondant
| |
Collapse
|
81
|
Patton MJ, Orihuela CJ, Harrod KS, Bhuiyan MAN, Dominic P, Kevil CG, Fort D, Liu VX, Farhat M, Koff JL, Lal CV, Gaggar A, Richter RP, Erdmann N, Might M, Gaggar A. COVID-19 bacteremic co-infection is a major risk factor for mortality, ICU admission, and mechanical ventilation. Crit Care 2023; 27:34. [PMID: 36691080 PMCID: PMC9868503 DOI: 10.1186/s13054-023-04312-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Michael John Patton
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Mohammad A. N. Bhuiyan
- Department of Internal Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA USA
| | - Paari Dominic
- Department of Medicine, Division of Cardiovascular Sciences, University of Iowa, Iowa City, IA USA
| | - Christopher G. Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA USA
| | | | | | - Maha Farhat
- Harvard University Medical School, Boston, MA USA
| | - Jonathan L. Koff
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, USA
| | - Charitharth V. Lal
- Department of Pediatrics, Neonatology Division, University of Alabama at Birmingham, Birmingham, AL USA
| | | | - Robert P. Richter
- Department of Pediatrics, Division of Pediatric Critical Care, University of Alabama at Birmingham, Birmingham, AL USA
| | - Nathaniel Erdmann
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | - Amit Gaggar
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine Division, University of Alabama at Birmingham, Birmingham, AL USA
- Birmingham VA Medical Center, Pulmonary Section, Birmingham, AL USA
| |
Collapse
|
82
|
Manna S, Weinberger DM, Satzke C. Editorial: Thematic issue on bacterial-viral co-infections. FEMS MICROBES 2023; 4:xtac031. [PMID: 37333434 PMCID: PMC10117831 DOI: 10.1093/femsmc/xtac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/15/2023] [Indexed: 09/06/2024] Open
Affiliation(s)
- Sam Manna
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven 06510, United States
| | - Catherine Satzke
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
83
|
Sturza F, Guță ȘD, Popescu GA. Antibiotics Used for COVID-19 In-Patients from an Infectious Disease Ward. Antibiotics (Basel) 2023; 12:150. [PMID: 36671351 PMCID: PMC9854891 DOI: 10.3390/antibiotics12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Background: although the prevalence of bacterial co-infections for COVID-19 patients is very low, most patients receive empirical antimicrobial therapy. Furthermore, broad spectrum antibiotics are preferred to narrow spectrum antibiotics. Methods: in order to estimate the excess of antibiotic prescriptions for patients with COVID-19, and to identify the factors that were correlated with the unjustified antibiotic usage, we conducted an observational (cohort) prospective study in patients hospitalized with COVID-19 at the National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, on an infectious disease ward, from November 2021 to January 2022. To evaluate the prevalence of bacterial co-infection in these patients, all positive microbiology results and concomitant suspected or confirmed bacterial co-infections, as documented by the treating doctor, were recorded. The patients were grouped in two categories: patients who received antibiotics and those who did not receive antibiotics, justified or not. Results: from the 205 patients enrolled in the study, 83 (40.4%) received antibiotics prior to being admitted to the hospital. 84 patients (41.0%) received antibiotics during their hospitalization; however, only 32 patients (15.6%) had signs and symptoms suggestive of an infection, 19 (9.3%) presented pulmonary consolidation on the computed tomography (CT) scan, 20 (9.7%) patients had leukocytosis, 29 (14.1%) had an increased procalcitonin level and only 22 (10.7%) patients had positive microbiological tests. It was observed that patients treated with antibiotics were older [70 (54−76) vs. 65 (52.5−71.5), p = 0.023, r = 0.159], had a higher Charlson index [4 (2−5) vs. 2 (1−4), p = 0.007, r = 0.189], had a severe/critical COVID-19 disease more frequently [61 (72.6%) vs. 38 (31.4%), p < 0.001, df = 3, X2 = 39.563] and required more oxygen [3 (0−6) vs. 0 (0−2), p < 0.001, r = 0.328]. Conclusion: empirical antibiotic treatment recommendation should be reserved for COVID-19 patients that also had other clinical or paraclinical changes, which suggest a bacterial infection. Further research is needed to better identify patients with bacterial co-infection that should receive antibiotic treatment.
Collapse
Affiliation(s)
- Felicia Sturza
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania
| | - Ștefan-Decebal Guță
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Gabriel-Adrian Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania
| |
Collapse
|
84
|
Ragab A, Fouad SA, Ammar YA, Aboul-Magd DS, Abusaif MS. Antibiofilm and Anti-Quorum-Sensing Activities of Novel Pyrazole and Pyrazolo[1,5- a]pyrimidine Derivatives as Carbonic Anhydrase I and II Inhibitors: Design, Synthesis, Radiosterilization, and Molecular Docking Studies. Antibiotics (Basel) 2023; 12:128. [PMID: 36671329 PMCID: PMC9854762 DOI: 10.3390/antibiotics12010128] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, searching for new anti-infective agents with diverse mechanisms of action has become necessary. In this study, 16 pyrazole and pyrazolo[1,5-a]pyrimidine derivatives were synthesized and assessed for their preliminary antibacterial and antibiofilm activities. All these derivatives were initially screened for their antibacterial activity against six clinically isolated multidrug resistance by agar well-diffusion and broth microdilution methods. The initial screening presented significant antibacterial activity with a bactericidal effect for five compounds, namely 3a, 5a, 6, 9a, and 10a, compared with Erythromycin and Amikacin. These five derivatives were further evaluated for their antibiofilm activity against both S. aureus and P. aeruginosa, which showed strong biofilm-forming activity at their MICs by >60%. The SEM analysis confirmed the biofilm disruption in the presence of these derivatives. Furthermore, anti-QS activity was observed for the five hybrids at their sub-MICs, as indicated by the visible halo zone. In addition, the presence of the most active derivatives reduces the violacein production by CV026, confirming that these compounds yielded anti-QS activity. Furthermore, these compounds showed strong inhibitory action against human carbonic anhydrase (hCA-I and hCA-II) isoforms with IC50 values ranging between 92.34 and 168.84 nM and between 73.2 and 161.22 nM, respectively. Finally, radiosterilization, ADMET, and a docking simulation were performed.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Dina S. Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Moustafa S. Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
85
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
86
|
Chan L, Gupta S, Sacco AJ, Kasule SN, Chaffin H, Feller FF, Mi L, Lim ES, Seville MT. Infections and antimicrobial prescribing in patients hospitalized with coronavirus disease 2019 (COVID-19) during the first pandemic wave. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e75. [PMID: 37113207 PMCID: PMC10127243 DOI: 10.1017/ash.2023.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/29/2023]
Abstract
Objective To evaluate the rate of coinfections and secondary infections seen in hospitalized patients with COVID-19 and antimicrobial prescribing patterns. Methods This single-center, retrospective study included all patients aged ≥18 years admitted with COVID-19 for at least 24 hours to a 280-bed, academic, tertiary-care hospital between March 1, 2020, and August 31, 2020. Coinfections, secondary infections, and antimicrobials prescribed for these patients were collected. Results In total, 331 patients with a confirmed diagnosis of COVID-19 were evaluated. No additional cases were identified in 281 (84.9%) patients, whereas 50 (15.1%) had at least 1 infection. In total, of 50 patients (15.1%) who were diagnosed with coinfection or secondary infection had bacteremia, pneumonia, and/or urinary tract infections. Patients who had positive cultures, who were admitted to the ICU, who required supplemental oxygen, or who were transferred from another hospital for higher level of care were more likely to have infections. The most commonly used antimicrobials were azithromycin (75.2%) and ceftriaxone (64.9%). Antimicrobials were prescribed appropriately for 55% of patients. Conclusions Coinfection and secondary infections are common in patients who are critically ill with COVID-19 at hospital admission. Clinicians should consider starting antimicrobial therapy in critically ill patients while limiting antimicrobial use in patients who are not critically ill.
Collapse
Affiliation(s)
- Lynn Chan
- Department of Pharmacy, Ronald Reagan UCLA Medical Center, Los Angeles, California
- Author for correspondence: Lynn Chan, Department of Pharmacy, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Ste B140. Los Angeles, CA90095. E-mail:
| | - Simran Gupta
- Department of Internal Medicine, Mayo Clinic Hospital, Phoenix, Arizona
| | - Alicia J. Sacco
- Department of Pharmacy, Mayo Clinic Hospital, Phoenix, Arizona
| | - Sabirah N. Kasule
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Hally Chaffin
- Department of Internal Medicine, Mayo Clinic Hospital, Phoenix, Arizona
| | - Fionna F. Feller
- Division of Infectious Diseases, Yale New Haven Hospital, New Haven, Connecticut
| | - Lanyu Mi
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Elisabeth S. Lim
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic Arizona, Scottsdale, Arizona
| | | |
Collapse
|
87
|
Arjmand B, Alavi-Moghadam S, Sarvari M, Rezaei-Tavirani M, Rezazadeh- Mafi A, Arjmand R, Nikandish M, Nasli‐Esfahani E, Larijani B. Critical roles of cytokine storm and bacterial infection in patients with COVID-19: therapeutic potential of mesenchymal stem cells. Inflammopharmacology 2023; 31:171-206. [PMID: 36600055 PMCID: PMC9812357 DOI: 10.1007/s10787-022-01132-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 has been a shocking disaster for healthcare systems worldwide since December 2019. This virus can affect all systems of the body and its symptoms vary from a simple upper respiratory infection to fatal complications including end-organ damage. On the other hand, the normal immune system plays a pivotal role in the recovery of infectious diseases such as COVID-19. However, occasionally, exaggerated immune system inflammation and an excessive synthesis of cytokines, known as a "cytokine storm," can deteriorate the patient's clinical condition. Secondary bacterial co-infection is another problem in COVID-19 which affects the prognosis of patients. Although there are a few studies about this complication, they suggest not using antibiotics commonly, especially broad-spectrum ones. During this pandemic, various approaches and therapeutics were introduced for treating COVID-19 patients. However, available treatments are not helpful enough, especially for complicated cases. Hence, in this era, cell therapy and regenerative medicine will create new opportunities. Therefore, the therapeutic benefits of mesenchymal stem cells, especially their antimicrobial activity, will help us understand how to treat COVID-19. Herein, mesenchymal stem cells may stop the immune system from becoming overactive in COVID-19 patients. On the other side, the stem cells' capacity for repair could encourage natural healing processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmad Rezazadeh- Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli‐Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
88
|
Che Yusof R, Norhayati MN, Mohd Azman Y. Bacterial coinfection and antibiotic resistance in hospitalized COVID-19 patients: a systematic review and meta-analysis. PeerJ 2023; 11:e15265. [PMID: 37128208 PMCID: PMC10148641 DOI: 10.7717/peerj.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
Background There were a few studies on bacterial coinfection in hospitalized COVID-19 patients worldwide. This systematic review aimed to provide the pooled prevalence of bacterial coinfection from published studies from 2020 to 2022. Methods Three databases were used to search the studies, and 49 studies from 2,451 identified studies involving 212,605 COVID-19 patients were included in this review. Results The random-effects inverse-variance model determined that the pooled prevalence of bacterial coinfection in hospitalized COVID-19 patients was 26.84% (95% CI [23.85-29.83]). The pooled prevalence of isolated bacteria for Acinetobacter baumannii was 23.25% (95% CI [19.27-27.24]), Escherichia coli was 10.51% (95% CI [8.90-12.12]), Klebsiella pneumoniae was 15.24% (95% CI [7.84-22.64]), Pseudomonas aeruginosa was 11.09% (95% CI [8.92-13.27]) and Staphylococcus aureus (11.59% (95% CI [9.71-13.46])). Meanwhile, the pooled prevalence of antibiotic-resistant bacteria for extended-spectrum beta-lactamases producing Enterobacteriaceae was 15.24% (95% CI [7.84-22.64]) followed by carbapenem-resistant Acinetobacter baumannii (14.55% (95% CI [9.59-19.52%])), carbapenem-resistant Pseudomonas aeruginosa (6.95% (95% CI [2.61-11.29])), methicillin-resistant Staphylococcus aureus (5.05% (95% CI [3.49-6.60])), carbapenem-resistant Enterobacteriaceae (4.95% (95% CI [3.10-6.79])), and vancomycin-resistant Enterococcus (1.26% (95% CI [0.46-2.05])). Conclusion All the prevalences were considered as low. However, effective management and prevention of the infection should be considered since these coinfections have a bad impact on the morbidity and mortality of patients.
Collapse
Affiliation(s)
- Ruhana Che Yusof
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohd Noor Norhayati
- Department of Family Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Yacob Mohd Azman
- Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| |
Collapse
|
89
|
Risk stratification for selecting empiric antibiotherapy during and after COVID-19. Curr Opin Infect Dis 2022; 35:605-613. [PMID: 36165454 DOI: 10.1097/qco.0000000000000881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW SARS-CoV-2 deeply modified the risk of bacterial infection, bacterial resistance, and antibiotic strategies. This review summarized what we have learned. RECENT FINDINGS During the COVID-19 pandemic, we observed an increase in healthcare-acquired infection and multidrug-resistant organism-related infection, triggered by several factors: structural factors, such as increased workload and ongoing outbreaks, underlying illnesses, invasive procedures, and treatment-induced immunosuppression. The two most frequently healthcare-acquired infections described in patients hospitalized with COVID-19 were bloodstream infection, related or not to catheters, health-acquired pneumonia (in ventilated or nonventilated patients). The most frequent species involved in bacteremia were Gram-positive cocci and Gram-negative bacilli in health-acquired pneumonia. The rate of Gram-negative bacilli is particularly high in late-onset ventilator-associated pneumonia, and the specific risk of Pseudomonas aeruginosa- related pneumonia increased when the duration of ventilation was longer than 7 days. A specificity that remains unexplained so far is the increase in enterococci bacteremia. SUMMARY The choice of empiric antibiotimicrobials depends on several factors such as the site of the infection, time of onset and previous length of stay, previous antibiotic therapy, and known multidrug-resistant organism colonization. Pharmacokinetics of antimicrobials could be markedly altered during SARS-CoV-2 acute respiratory failure, which should encourage to perform therapeutic drug monitoring.
Collapse
|
90
|
Lee WC, Ho MC, Leu SW, Chang CC, Lin CK, Lin CM, Fang YH, Huang SY, Lin YC, Chuang MC, Yang TM, Hung MS, Chou YL, Tsai YH, Hsieh MJ. The impacts of bacterial co-infections and secondary bacterial infections on patients with severe influenza pneumonitis admitted to the intensive care units. J Crit Care 2022; 72:154164. [PMID: 36209697 DOI: 10.1016/j.jcrc.2022.154164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
PURPOSES This study investigated the prevalence and clinical outcomes of pulmonary bacterial co-infections and secondary bacterial infections in patients with severe influenza pneumonitis. METHODS We retrospectively analyzed the data of adult patients with severe influenza pneumonitis admitted to medical ICUs. Bacterial co-infections and secondary bacterial infections were identified. The risk factors of bacterial infection were evaluated. The outcomes of patients regarding co-infection or secondary bacterial infection were analyzed. RESULTS We identified 117 critically ill patients with laboratory-confirmed influenza pneumonitis admitted to the medical ICUs. Klebsiella pneumoniae (31.4%) and Staphylococcus aureus (22.8%) were the most identified bacteria in patients with bacterial co-infection. A high proportion of methicillin-resistant Staphylococcus aureus (17.1%) was noted. Liver cirrhosis and diabetes mellitus were the independent risk factors for bacterial co-infection. Acinetobacter baumannii (30.7%) and S. aureus (23.1%) were the most often identified bacteria in patients with secondary bacterial pneumonia. Patients with secondary bacterial infections had a longer duration of mechanical ventilation, and longer ICU and hospital stay. CONCLUSIONS High rates of drug-resistant bacterial co-infections and secondary bacterial infections were identified in patients with severe influenza pneumonitis requiring ICU care and were associated with more morbidity in these patients.
Collapse
Affiliation(s)
- Wei-Chun Lee
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Meng-Chin Ho
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Shaw-Woei Leu
- Department of Pulmonary and Critical Care Medicine, Linkou Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Taoyuan, Taiwan
| | - Che-Chia Chang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Chin-Kuo Lin
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Chieh-Mo Lin
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Yu-Hung Fang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Shu-Yi Huang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Yu-Ching Lin
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan; Department of Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Min-Chun Chuang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Tsung-Ming Yang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Ming-Szu Hung
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan; Department of Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Yen-Li Chou
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chiayi, Taiwan
| | - Ying-Huang Tsai
- Department of Pulmonary and Critical Care Medicine, Linkou Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Taoyuan, Taiwan; Department of Respiratory Therapy, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Meng-Jer Hsieh
- Department of Pulmonary and Critical Care Medicine, Linkou Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Taoyuan, Taiwan; Department of Respiratory Therapy, School of Medicine, Chang-Gung University, Taoyuan, Taiwan.
| |
Collapse
|
91
|
Ciptaningtyas VR, Hapsari R, Lestari ES, Farida H, de Mast Q, de Jonge MI. Bacterial colonization of the upper airways of children positive and negative for SARS-CoV-2 during the COVID-19 pandemic. BMC Infect Dis 2022; 22:860. [PMID: 36396997 PMCID: PMC9670079 DOI: 10.1186/s12879-022-07851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Our understanding of the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bacterial colonization in the children’s upper nasopharyngeal tract during the coronavirus infectious disease (COVID-19) pandemic is limited. This study aimed to determine whether there were any differences in bacterial colonization between asymptomatic children with or without a positive SARS-CoV-2 quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results in the community setting. Methods A cross-sectional community-based exploratory study was conducted from March to May 2021 in Semarang, Central Java Province, Indonesia. Using stored nasopharyngeal swabs collected from children under 18 years as a contact tracing program, we performed a real-time quantitative (qPCR) for the most important bacterial colonizing pathogens: Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and Klebsiella pneumoniae. Results Swabs from a total of 440 children were included in this study, of which 228 (51.8%) were RT-qPCR-confirmed SARS-CoV-2 positive. In the 440 children, colonization rates were highest for H. influenzae (61.4%), followed by S. pneumoniae (17.5%), S. aureus (12.0%), and K. pneumoniae (1.8%). The co-occurrence of both S. pneumoniae and H. influenzae in the upper respiratory tract was significantly associated with a SARS-CoV-2 negative RT-qPCR. In contrast, colonization with only S. aureus was more common in SARS-CoV-2-positive children. Conclusion Overall, this exploratory study concludes that there is a significant difference in the bacterial nasopharyngeal colonization pattern between SARS-CoV-2 positive and negative in asymptomatic children in the community in Indonesia. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07851-z.
Collapse
|
92
|
Zhu J, Chen Y, Wu Y, Wang Y, Zhu K. Commensal bacteria contribute to the growth of multidrug-resistant Avibacterium paragallinarum in chickens. Front Microbiol 2022; 13:1010584. [PMID: 36406434 PMCID: PMC9672371 DOI: 10.3389/fmicb.2022.1010584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2024] Open
Abstract
Avibacterium paragallinarum-associated infectious coryza (IC) is an important threat in commercial poultry. Previous studies about the characteristics of A. paragallinarum are succeeded in revealing the course of IC disease, but whether and how resident microbes contribute to the infection remains unclear. To understand the role of commensal bacteria, we isolated 467 commensal bacteria, including 38 A. paragallinarum, from the respiratory tract of IC chicken. The predominant commensal isolates were Gram-positive bacteria belonging to Staphylococcus spp. [33.19%, 95% confidence interval (CI): 28.93-37.66%], Enterococcus spp. (16.49%, 95% CI: 13.23-20.17%), and Bacillus spp. (16.27%, 95% CI: 13.04-19.94%). These isolates were closely correlated with the survival of A. paragallinarum. We examined and found that commensal bacteria aggravate A. paragallinarum-associated infections because certain commensal species (28.57%, 95% CI: 15.72-44.58%) induced hemolysis and promoted the growth of A. paragallinarum in vitro. Notably, A. paragallinarum showed high resistance to routine antibiotics such as erythromycin (84.21%, 95% CI: 68.75-93.98%), tetracycline (73.68%, 95% CI: 56.90-86.60%) and carried diverse mobile resistance gene clusters. Overall, we found commensal bacteria especially Gram-positive bacteria facilitate the survival of multidrug-resistant A. paragallinarum to exacerbate infections, suggesting that novel strategies may diminish A. paragallinarum-associated infections by modulating the population dynamics of commensal bacteria.
Collapse
Affiliation(s)
- Jiajia Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunsheng Chen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yifan Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
93
|
Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, Hussey GA, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat Commun 2022; 13:5926. [PMID: 36319618 PMCID: PMC9626559 DOI: 10.1038/s41467-022-33395-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mericien Venzon
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jordan E Axelrad
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Chenzhen Zhang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexis P Sullivan
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Grant A Hussey
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ana M Valero-Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Juan Gago
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Evan Wilder
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Lorna E Thorpe
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Dan R Littman
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA.
| | - Jonas Schluter
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
94
|
Chambers HF, Fowler VG. Confronting antimicrobial resistance together. Am J Physiol Lung Cell Mol Physiol 2022; 323:L643-L645. [PMID: 36193938 PMCID: PMC9662793 DOI: 10.1152/ajplung.00327.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Henry F Chambers
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|
95
|
Antimicrobial Stewardship during COVID-19 Outbreak: A Retrospective Analysis of Antibiotic Prescriptions in the ICU across COVID-19 Waves. Antibiotics (Basel) 2022; 11:antibiotics11111517. [PMID: 36358172 PMCID: PMC9686868 DOI: 10.3390/antibiotics11111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022] Open
Abstract
The demographics and outcomes of ICU patients admitted for a COVID-19 infection have been characterized in extensive reports, but little is known about antimicrobial stewardship for these patients. We designed this retrospective, observational study to investigate our hypothesis that the COVID-19 pandemic has disrupted antimicrobial stewardship practices and likely affected the rate of antibiotic de-escalation (ADE), patient outcomes, infection recurrence, and multidrug-resistant bacteria acquisition. We reviewed the prescription of antibiotics in three ICUs during the pandemic from March 2020 to December 2021. All COVID-19 patients with suspected or proven bacterial superinfections who received antibiotic treatment were included. The primary outcome was the rate of ADE, and secondary outcomes included the rate of appropriate empirical treatment, mortality rates and a comparison with a control group of infected patients before the COVID-19 pandemic. We included 170 COVID-19 patients who received antibiotic treatment for a suspected or proven superinfection, of whom 141 received an empirical treatment. For the latter, antibiotic treatment was de-escalated in 47 (33.3%) patients, escalated in 5 (3.5%) patients, and continued in 89 (63.1%) patients. The empirical antibiotic treatment was appropriate for 87.2% of cases. ICU, hospital, and day 28 and day 90 mortality rates were not associated with the antibiotic treatment strategy. The ADE rate was 52.2% in the control group and 27.6% in the COVID-19 group (p < 0.001). Our data suggest that empirical antibiotic treatment was appropriate in most cases. The ADE rates were lower in the COVID-19 group than in the control group, suggesting that the stress associated with COVID-19 affected our practices.
Collapse
|
96
|
Szewczyk AK, Mitosek-Szewczyk K. COVID-19 Co-Infection May Promote Development of Sinusitis Complication in Children. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9111636. [PMID: 36360364 PMCID: PMC9688522 DOI: 10.3390/children9111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The olfactory dysfunction that occurs during a COVID-19 infection has sparked much debate about its similarity to sinusitis. Up to 65% of COVID-19 pediatric patients may be asymptomatic; however, when symptoms are observed, fever and cough are the most common. Nasal congestion and discharge as well as headaches can also be seen, which makes both entities, i.e., COVID-19 and sinusitis, similar to each other. METHODS In this review, we present the clinical case of a teenager with a history of acute sinusitis and COVID-19 co-infection followed by purulent meningoencephalitis. We aim to summarize available findings on the association between COVID-19, sinusitis, and possible common complications of both diseases. RESULTS Differentiating between COVID-19 and sinusitis can be confusing because presented symptoms may overlap or mimic each other. Increased risk of complications, especially in patients with bacterial sinusitis co-infected with SARS-CoV-2, should prompt physicians to monitor young patients and inform parents about disturbing symptoms and possible complications. CONCLUSIONS Acute sinusitis and COVID-19 co-infection may lead to numerous complications and should be included among the factors predisposing to worse prognosis. It is especially related to patients with high risk factors and even more important in children as they often pass the infection asymptomatically and its complications can lead to loss of health or life.
Collapse
Affiliation(s)
- Anna K. Szewczyk
- Doctoral School, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland
- Department of Neurology, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland
- Correspondence:
| | - Krystyna Mitosek-Szewczyk
- Department of Child Neurology, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
97
|
Delhommeau G, Buetti N, Neuville M, Siami S, Cohen Y, Laurent V, Mourvillier B, Reignier J, Goldgran-Toledano D, Schwebel C, Ruckly S, de Montmollin E, Souweine B, Timsit JF, Dupuis C. Bacterial Pulmonary Co-Infections on ICU Admission: Comparison in Patients with SARS-CoV-2 and Influenza Acute Respiratory Failure: A Multicentre Cohort Study. Biomedicines 2022; 10:biomedicines10102646. [PMID: 36289906 PMCID: PMC9599916 DOI: 10.3390/biomedicines10102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Few data are available on the impact of bacterial pulmonary co-infection (RespCoBact) during COVID-19 (CovRespCoBact). The aim of this study was to compare the prognosis of patients admitted to an ICU for influenza pneumonia and for SARS-CoV-2 pneumonia with and without RespCoBact. Methods: This was a multicentre (n = 11) observational study using the Outcomerea© database. Since 2008, all patients admitted with influenza pneumonia or SARS-CoV-2 pneumonia and discharged before 30 June 2021 were included. Risk factors for day-60 death and for ventilator-associated-pneumonia (VAP) in patients with influenza pneumonia or SARS-CoV-2 pneumonia with or without RespCoBact were determined. Results: Of the 1349 patients included, 157 were admitted for influenza and 1192 for SARS-CoV-2. Compared with the influenza patients, those with SARS-CoV-2 had lower severity scores, were more often under high-flow nasal cannula, were less often under invasive mechanical ventilation, and had less RespCoBact (8.2% for SARS-CoV-2 versus 24.8% for influenza). Day-60 death was significantly higher in patients with SARS-CoV-2 pneumonia with no increased risk of mortality with RespCoBact. Patients with influenza pneumonia and those with SARS-CoV-2 pneumonia had no increased risk of VAP with RespCoBact. Conclusions: SARS-CoV-2 pneumonia was associated with an increased risk of mortality compared with Influenza pneumonia. Bacterial pulmonary co-infections on admission were not associated with patient survival rates nor with an increased risk of VAP.
Collapse
Affiliation(s)
- Grégoire Delhommeau
- Service de Pneumologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Niccolò Buetti
- Unité Mixte de Recherche (UMR) 1137, IAME, Université Paris Cité, 75018 Paris, France
- Infection Control Program and WHO Collaborating Centre on Patient Safety, Faculty of Medicine, University of Geneva Hospitals, 1205 Geneva, Switzerland
| | - Mathilde Neuville
- Polyvalent Intensive Care Unit, Hôpital Foch, 92150 Suresnes, France
| | - Shidasp Siami
- General Intensive Care Unit, Sud Essonne Hospital, 91150 Etampes, France
| | - Yves Cohen
- Intensive Care Unit, University Hospital Avicenne, AP-HP, 93000 Bobigny, France
| | - Virginie Laurent
- Polyvalent Intensive Care Unit, André Mignot Hospital, 78150 Le Chesnay, France
| | - Bruno Mourvillier
- Medical Intensive Care Unit, University Hospital of Reims, 51100 Reims, France
| | - Jean Reignier
- Medical Intensive Care Unit, University Hospital of Nantes, 44000 Nantes, France
| | | | - Carole Schwebel
- Medical Intensive Care Unit, University Hospital Grenoble-Alpes, 38000 Grenoble, France
| | - Stéphane Ruckly
- Unité Mixte de Recherche (UMR) 1137, IAME, Université Paris Cité, 75018 Paris, France
| | - Etienne de Montmollin
- Unité Mixte de Recherche (UMR) 1137, IAME, Université Paris Cité, 75018 Paris, France
- Medical and Infectious Diseases Intensive Care Unit, Bichat Hospital, AP-HP, 75018 Paris, France
| | - Bertrand Souweine
- Medical Intensive Care Unit, University Hospital Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Jean-François Timsit
- Unité Mixte de Recherche (UMR) 1137, IAME, Université Paris Cité, 75018 Paris, France
- Medical and Infectious Diseases Intensive Care Unit, Bichat Hospital, AP-HP, 75018 Paris, France
| | - Claire Dupuis
- Medical Intensive Care Unit, University Hospital Gabriel Montpied, 63000 Clermont-Ferrand, France
- Unité de Nutrition Humaine, INRAe, CRNH Auvergne, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-754-492
| |
Collapse
|
98
|
Yun M, Park SH, Kang DH, Kim JW, Kim JD, Ryu S, Lee J, Jeong HM, Hwang HR, Song KS. Inhibition of Pseudomonas aeruginosa LPS-Induced airway inflammation by RIPK3 in human airway. J Cell Mol Med 2022; 26:5506-5516. [PMID: 36226560 DOI: 10.1111/jcmm.17579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Although the physiological function of receptor-interacting protein kinase (RIPK) 3 has emerged as a critical mediator of programmed necrosis/necroptosis, the intracellular role it plays as an attenuator in human lungs and human bronchial epithelia remains unclear. Here, we show that the expression of RIPK3 dramatically decreased in the inflamed tissues of human lungs, and moved from the nucleus to the cytoplasm. The overexpression of RIPK3 dramatically increased F-actin formation and decreased the expression of genes for pro-inflammatory cytokines (IL-6 and IL-1β), but not siRNA-RIPK3. Interestingly, whereas RIPK3 was bound to histone 1b without LPS stimulation, the interaction between them was disrupted after 15 min of LPS treatment. Histone methylation could not maintain the binding of RIPK3 and activated movement towards the cytoplasm. In the cytoplasm, overexpressed RIPK3 continuously attenuated pro-inflammatory cytokine gene expression by inhibiting NF-κB activation, preventing the progression of inflammation during Pseudomonas aeruginosa infection. Our data indicated that RIPK3 is critical for the regulation of the LPS-induced inflammatory microenvironment. Therefore, we suggest that RIPK3 is a potential therapeutic candidate for bacterial infection-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Minsu Yun
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Sun-Hee Park
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Dong Hee Kang
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ji Wook Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Siejeong Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Jeongyeob Lee
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Hye Min Jeong
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Hye Ran Hwang
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
99
|
Prevalence and Antimicrobial Susceptibility Pattern of Secondary Gram-negative Bacteria Isolated from Severe Acute Respiratory Syndrome Coronavirus Disease 2 Patients in A Tertiary Care Hospital. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Prior to the Severe Acute Respiratory Syndrome Coronavirus Disease 2 (SARS-CoV-2) pandemic, the rise in antimicrobial resistance was a major source of concern in public health. However, due to the novelty of SARS-CoV-2 infection during the pandemic, antibiotics were administered prior to laboratory testing for secondary gram-negative bacteria (SGNB) in order to avoid or reduce the occurrence of SGNB infection. The purpose of this study was to investigate the etiology, prevalence, and antimicrobial susceptibility pattern of gram-negative bacteria (GNB) isolated from SARS-CoV-2 positive patients. Respiratory and blood samples were collected from confirmed SARS-CoV-2 positive patients. They were subsequently cultured and bacterial isolates identified according to standard microbiological protocols. Antimicrobial susceptibility testing (AST) was performed and interpreted according to Clinical & Laboratory Standards Institute (CLSI) 2021 guidelines. A total of sixty-four non-repetitive GNB were isolated from respiratory samples and twenty-two GNB from blood samples. K. pneumoniae was the major cause of SGNB, followed by Acinetobacter species. K. pneumoniae had over 60% resistance to β-Lactam combination agents, cephalosporin, and the carbapenem group of antibiotics. In the current study, we observed that K. pneumoniae was the major cause of SGNB and had high resistance to the antimicrobial agents. Hence, it is important that the epidemiology and susceptibility patterns of circulating organisms causing SGNB infection are always monitored to inform clinical treatment and decrease the occurrence of antibiotic-resistant bacteria.
Collapse
|
100
|
Samal J, Agarwal R, Soni A, Pandey A, Thapar S, Gupta E. Co-infection of SARS-CoV-2 with other respiratory pathogens in patients with liver disease. Access Microbiol 2022; 4:acmi000456. [PMID: 36415739 PMCID: PMC9675177 DOI: 10.1099/acmi.0.000456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/01/2022] [Indexed: 03/22/2024] Open
Abstract
Respiratory illness caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was first documented in Wuhan, China, in December 2019, followed by its rapid spread across the globe. Accumulating evidence has demonstrated viral/bacterial co-infection in the respiratory tract could modulate disease severity and its outcome in COVID-19 infection. In this retrospective study, 300 chronic liver disease patients with radiologically confirmed lower respiratory tract infection were enrolled from September 2020 to December 2021. In all of them, along with SARS-CoV-2, other respiratory viral/bacterial pathogens were studied. In total, 23.7 % (n=71) patients were positive for SARS-CoV-2. Among the positive patients, 23.9 % (n=17) had co-infection with other respiratory pathogens, bacterial co-infections being dominant. The SARS-CoV-2 negative cohort had 39.7 % positivity (n=91) for other respiratory pathogens, the most common being those of the rhinovirus/enterovirus family. Ground glass opacity (GGO) with consolidation was found to be the most common radiological finding among SARS-CoV-2 positive co-infected patients, as compared to only GGO among SARS-CoV-2 mono-infected patients. Accurate diagnosis of co-infections, especially during pandemics including COVID-19, can ameliorate the treatment and management of suspected cases.
Collapse
Affiliation(s)
- Jasmine Samal
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Reshu Agarwal
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anushka Soni
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Amit Pandey
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shalini Thapar
- Department of Radiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|