51
|
Synergistic Anti-proliferative Effects of Lenalidomide and Dexamethasone on the HT-29 Cell Line Through Apoptotic Genes. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Colorectal cancer (CRC) is the third most common cancer among men and the second most common type of cancer among women worldwide. The resistance of tumor cells to apoptosis is caused by changes in the expression of anti-apoptotic or pro-apoptotic proteins. Histone deacetylase inhibitors (HDACi) are known to cause changes in gene expression. Objectives: The present study aimed at investigating the anti-proliferative effects of lenalidomide (LEN) as HDACi and dexamethasone (DEX) on the human colon cancer HT-29 cell line. Methods: The HT-29 cell line was treated with various concentrations of LEN and DEX individually and in combination for 24, 48, and 72 hours. Cytotoxicity was evaluated by MTT assay. The half-maximal inhibitory concentration (IC50) was measured, and quantitative real-time polymerase chain reaction (qRT-PCR) was also performed to examine the expression of Bcl2, Bax, Fas, and FasL genes. Results: The combination of LEN (1000 µM) with DEX (100 µM) showed potent synergistic anti-proliferative activities in a time- and dose-dependent manner. The combination of these drugs induced cell death by affecting the extrinsic and intrinsic apoptotic gene expression profiles. Conclusions: The combination of LEN with DEX can be proposed as a new therapeutic approach for CRC.
Collapse
|
52
|
Dele-Oni DO, Christianson KE, Egri SB, Vaca Jacome AS, DeRuff KC, Mullahoo J, Sharma V, Davison D, Ko T, Bula M, Blanchard J, Young JZ, Litichevskiy L, Lu X, Lam D, Asiedu JK, Toder C, Officer A, Peckner R, MacCoss MJ, Tsai LH, Carr SA, Papanastasiou M, Jaffe JD. Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds. Sci Data 2021; 8:226. [PMID: 34433823 PMCID: PMC8387426 DOI: 10.1038/s41597-021-01008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
While gene expression profiling has traditionally been the method of choice for large-scale perturbational profiling studies, proteomics has emerged as an effective tool in this context for directly monitoring cellular responses to perturbations. We previously reported a pilot library containing 3400 profiles of multiple perturbations across diverse cellular backgrounds in the reduced-representation phosphoproteome (P100) and chromatin space (Global Chromatin Profiling, GCP). Here, we expand our original dataset to include profiles from a new set of cardiotoxic compounds and from astrocytes, an additional neural cell model, totaling 5300 proteomic signatures. We describe filtering criteria and quality control metrics used to assess and validate the technical quality and reproducibility of our data. To demonstrate the power of the library, we present two case studies where data is queried using the concept of "connectivity" to obtain biological insight. All data presented in this study have been deposited to the ProteomeXchange Consortium with identifiers PXD017458 (P100) and PXD017459 (GCP) and can be queried at https://clue.io/proteomics .
Collapse
Affiliation(s)
| | | | - Shawn B Egri
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | | | | | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Desiree Davison
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Michael Bula
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Joel Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Jennie Z Young
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Lev Litichevskiy
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Xiaodong Lu
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Daniel Lam
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Jacob K Asiedu
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Caidin Toder
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Adam Officer
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Ryan Peckner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | | | - Jacob D Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States.
- Inzen Therapeutics, Cambridge, MA, 02139, United States.
| |
Collapse
|
53
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
54
|
Duarte D, Cardoso A, Vale N. Synergistic Growth Inhibition of HT-29 Colon and MCF-7 Breast Cancer Cells with Simultaneous and Sequential Combinations of Antineoplastics and CNS Drugs. Int J Mol Sci 2021; 22:ijms22147408. [PMID: 34299028 PMCID: PMC8306770 DOI: 10.3390/ijms22147408] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Several central nervous system (CNS) drugs exhibit potent anti-cancer activities. This study aimed to design a novel model of combination that combines different CNS agents and antineoplastic drugs (5-fluorouracil (5-FU) and paclitaxel (PTX)) for colorectal and breast cancer therapy, respectively. Cytotoxic effects of 5-FU and PTX alone and in combination with different CNS agents were evaluated on HT-29 colon and MCF-7 breast cancer cells, respectively. Three antimalarials alone and in combination with 5-FU were also evaluated in HT-29 cells. Different schedules and concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay, Bliss Independence and HSA methods. Our results demonstrate that fluphenazine, fluoxetine and benztropine have enhanced anticancer activity when used alone as compared to being used in combination, making them ideal candidates for drug repurposing in colorectal cancer (CRC). Regarding MCF-7 cells, sertraline was the most promising candidate alone for drug repurposing, with the lowest IC50 value. For HT-29 cells, the CNS drugs sertraline and thioridazine in simultaneous combination with 5-FU demonstrated the strongest synergism among all combinations. In MCF-7 breast cancer cells, the combination of fluoxetine, fluphenazine and benztropine with PTX resulted in synergism for all concentrations below IC50. We also found that the antimalarial artesunate administration prior to 5-FU produces better results in reducing HT-29 cell viability than the inverse drug schedule or the simultaneous combination. These results demonstrate that CNS drugs activity differs between the two selected cell lines, both alone and in combination, and support that some CNS agents may be promising candidates for drug repurposing in these types of cancers. Additionally, these results demonstrate that 5-FU or a combination of PTX with CNS drugs should be further evaluated. These results also demonstrate that antimalarial drugs may also be used as antitumor agents in colorectal cancer, besides breast cancer.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
55
|
Islam S, Wang S, Bowden N, Martin J, Head R. Repurposing existing therapeutics, its importance in oncology drug development: Kinases as a potential target. Br J Clin Pharmacol 2021; 88:64-74. [PMID: 34192364 PMCID: PMC9292808 DOI: 10.1111/bcp.14964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Repurposing the large arsenal of existing non‐cancer drugs is an attractive proposition to expand the clinical pipelines for cancer therapeutics. The earlier successes in repurposing resulted primarily from serendipitous findings, but more recently, drug or target‐centric systematic identification of repurposing opportunities continues to rise. Kinases are one of the most sought‐after anti‐cancer drug targets over the last three decades. There are many non‐cancer approved drugs that can inhibit kinases as “off‐targets” as well as many existing kinase inhibitors that can target new additional kinases in cancer. Identifying cancer‐associated kinase inhibitors through mining commercial drug databases or new kinase targets for existing inhibitors through comprehensive kinome profiling can offer more effective trial‐ready options to rapidly advance drugs for clinical validation. In this review, we argue that drug repurposing is an important approach in modern drug development for cancer therapeutics. We have summarized the advantages of repurposing, the rationale behind this approach together with key barriers and opportunities in cancer drug development. We have also included examples of non‐cancer drugs that inhibit kinases or are associated with kinase signalling as a basis for their anti‐cancer action.
Collapse
Affiliation(s)
- Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Nikola Bowden
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Jennifer Martin
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Richard Head
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| |
Collapse
|
56
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
57
|
Dang S, Kumari P. Anti-cancer potential of some commonly used drugs. Curr Pharm Des 2021; 27:4530-4538. [PMID: 34161206 DOI: 10.2174/1381612827666210622104821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Cancer is a global concern leading to millions of deaths every year. A declining trend in new drug discovery and development is becoming one of the major issues among the pharmaceutical, biotechnology industries, and regulatory agencies. New drug development is proven to be a very lengthy and costly process. The launch of a new drug takes 8-12 years and huge investments. The success rate in oncology therapeutics is also low due to toxicities at the pre-clinical and clinical trial levels. Many oncological drugs get rejected at a very promising stage, showing adverse reactions on healthy cells. Thus, exploring new therapeutic benefits of the existing, shelved drugs for their anti-cancerous action could result in a therapeutic approach preventing the toxicities which occur during clinical trials. Drug repurposing has the potential to overcome the challenges faced via conventional way of drug discovery and is becoming an area of interest for researchers and scientists. However, very few in vivo studies are conducted to prove the anti-cancerous activity of the drugs. Insufficient in vivo animal studies and a lack of human clinical trials are the lacunae in the field of drug repurposing. This review focuses on an aspect of drug repurposing for cancer therapeutics. Various studies that show that drugs approved for clinical indications other than cancer have shown promising anti-cancer activities. Some of the commonly used drugs like Benzodiazepines (Diazepam, Midzolam), Antidepressants (Imipramine, Clomipramine, and Citalopram), Antiepileptic (Valporic acid, Phenytoin), Antidiabetics (metformin), etc. have been reported to show potential activity against the cancerous cells.
Collapse
Affiliation(s)
- Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, NOIDA, U.P, India
| | - Pallavi Kumari
- Department of Biotechnology, Jaypee Institute of Information Technology, NOIDA, U.P, India
| |
Collapse
|
58
|
Kapote DN, Wagner KG. Shellac- a natural carrier for colon targeting of indomethacin using hot melt extrusion. Drug Dev Ind Pharm 2021; 47:748-757. [PMID: 34038307 DOI: 10.1080/03639045.2021.1934863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Indomethacin (IND) is one of the supporting drug candidates for colonic targeting but it belongs to BCS class II category presenting a challenge in optimal targeting at the colonic site. To overcome this challenge, we sought to prepare a pH-dependent soluble ternary solid dispersion (SD) of IND of improved solubility and dissolution rate at the colon without the need for a coating. The current study focuses on the preparation of binary SDs of API (IND) with shellac (SSB 55) and Eudragit FS 100 (EFS) and ternary mixtures of IND, SSB 55 together with a new grade of HPMC (A15). Respective SDs were prepared via HME to achieve gastric protection and improved dissolution performance including maintenance of supersaturation. The SDs were characterized and tested for in-vitro dissolution performance using a pH shift dissolution method from 1.1, 5.5, 6.8, and 7.4. A ternary extrudate of IND, SSB 55, and A15 showed improved protection below pH 5.5 with a complete release of 99.5% at pH 7.4 compared to IND neat and binary extrudates from IND-A15, IND-SSB 55, and IND-EFS. It was attributed to an increased level of intermolecular interaction confirmed by ATR-IR and was studied for stability. It was found that in a ternary mixture containing IND, A15 and SSB 55 an increased hydrogen bonding interaction is present, which resulted in improved dissolution performance compared to binary mixtures. Therefore, ternary SDs proved to be a promising concept for future development of colon targeting of poorly soluble drugs.
Collapse
Affiliation(s)
- Dnyaneshwar N Kapote
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| |
Collapse
|
59
|
Tilija Pun N, Jeong CH. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals (Basel) 2021; 14:ph14050470. [PMID: 34065757 PMCID: PMC8156779 DOI: 10.3390/ph14050470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer is incurable because progressive phenotypic and genotypic changes in cancer cells lead to resistance and recurrence. This indicates the need for the development of new drugs or alternative therapeutic strategies. The impediments associated with new drug discovery have necessitated drug repurposing (i.e., the use of old drugs for new therapeutic indications), which is an economical, safe, and efficacious approach as it is emerged from clinical drug development or may even be marketed with a well-established safety profile and optimal dosing. Statins are inhibitors of HMG-CoA reductase in cholesterol biosynthesis and are used in the treatment of hypercholesterolemia, atherosclerosis, and obesity. As cholesterol is linked to the initiation and progression of cancer, statins have been extensively used in cancer therapy with a concept of drug repurposing. Many studies including in vitro and in vivo have shown that statin has been used as monotherapy to inhibit cancer cell proliferation and induce apoptosis. Moreover, it has been used as a combination therapy to mediate synergistic action to overcome anti-cancer drug resistance as well. In this review, the recent explorations are done in vitro, in vivo, and clinical trials to address the action of statin either single or in combination with anti-cancer drugs to improve the chemotherapy of the cancers were discussed. Here, we discussed the emergence of statin as a lipid-lowering drug; its use to inhibit cancer cell proliferation and induction of apoptosis as a monotherapy; and its use in combination with anti-cancer drugs for its synergistic action to overcome anti-cancer drug resistance. Furthermore, we discuss the clinical trials of statins and the current possibilities and limitations of preclinical and clinical investigations.
Collapse
|
60
|
Verbaanderd C, Rooman I, Huys I. Exploring new uses for existing drugs: innovative mechanisms to fund independent clinical research. Trials 2021; 22:322. [PMID: 33947441 PMCID: PMC8093905 DOI: 10.1186/s13063-021-05273-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Finding new therapeutic uses for existing medicines could lead to safe, affordable and timely new treatment options for patients with high medical needs. However, due to a lack of economic incentives, pharmaceutical developers are rarely interested to invest in research with approved medicines, especially when they are out of basic patent or regulatory protection. Consequently, potential new uses for these medicines are mainly studied in independent clinical trials initiated and led by researchers from academia, research institutes, or collaborative groups. Yet, additional financial support is needed to conduct expensive phase III clinical trials to confirm the results from exploratory research. METHODS In this study, scientific and grey literature was searched to identify and evaluate new mechanisms for funding clinical trials with repurposed medicines. Semi-structured interviews were conducted with 16 European stakeholders with expertise in clinical research, funding mechanisms and/or drug repurposing between November 2018 and February 2019 to consider the future perspectives of applying new funding mechanisms. RESULTS Traditional grant funding awarded by government and philanthropic organisations or companies is well known and widely implemented in all research fields. In contrast, only little research has focused on the application potential of newer mechanisms to fund independent clinical research, such as social impact bonds, crowdfunding or public-private partnerships. Interviewees stated that there is a substantial need for additional financial support in health research, especially in areas where there is limited commercial interest. However, the implementation of new funding mechanisms is facing several practical and financial challenges, such as a lack of expertise and guidelines, high transaction costs and difficulties to measure health outcomes. Furthermore, interviewees highlighted the need for increased collaboration and centralisation at a European and international level to make clinical research more efficient and reduce the need for additional funding. CONCLUSIONS New funding mechanisms to support clinical research may become more important in the future but the unresolved issues identified in the current study warrant further exploration.
Collapse
Affiliation(s)
- Ciska Verbaanderd
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
- Anticancer Fund, Strombeek-Bever, Belgium.
| | - Ilse Rooman
- Anticancer Fund, Strombeek-Bever, Belgium
- Oncology Research Centre, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Huys
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
61
|
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021; 184:1971-1989. [PMID: 33826908 DOI: 10.1016/j.cell.2021.02.034] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
How are individual cell behaviors coordinated toward invariant large-scale anatomical outcomes in development and regeneration despite unpredictable perturbations? Endogenous distributions of membrane potentials, produced by ion channels and gap junctions, are present across all tissues. These bioelectrical networks process morphogenetic information that controls gene expression, enabling cell collectives to make decisions about large-scale growth and form. Recent progress in the analysis and computational modeling of developmental bioelectric circuits and channelopathies reveals how cellular collectives cooperate toward organ-level structural order. These advances suggest a roadmap for exploiting bioelectric signaling for interventions addressing developmental disorders, regenerative medicine, cancer reprogramming, and synthetic bioengineering.
Collapse
|
62
|
Abstract
BACKGROUND Many drugs approved for other indications can control the growth of tumor cells and limit adverse events (AE). DATA SOURCES Literature searches with keywords 'repurposing and cancer' books, websites: https://clinicaltrials.gov/, for drug structures: https://pubchem.ncbi.nlm.nih.gov/. AREAS OF AGREEMENT Introducing approved drugs, such as those developed to treat diabetes (Metformin) or inflammation (Thalidomide), identified to have cytostatic activity, can enhance chemotherapy or even replace more cytotoxic drugs. Also, anti-inflammatory compounds, cytokines and inhibitors of proteolysis can be used to control the side effects of chemo- and immuno-therapies or as second-line treatments for tumors resistant to kinase inhibitors (KI). Drugs specifically developed for cancer therapy, such as interferons (IFN), the tyrosine KI abivertinib TKI (tyrosine kinase inhibitor) and interleukin-6 (IL-6) receptor inhibitors, may help control symptoms of Covid-19. AREAS OF CONTROVERSY Better knowledge of mechanisms of drug activities is essential for repurposing. Chemotherapies induce ER stress and enhance mutation rates and chromosome alterations, leading to resistance that cannot always be related to mutations in the target gene. Metformin, thalidomide and cytokines (IFN, tumor necrosis factor (TNF), interleukin-2 (IL-2) and others) have pleiomorphic activities, some of which can enhance tumorigenesis. The small and fragile patient pools available for clinical trials can cloud the data on the usefulness of cotreatments. GROWING POINTS Better understanding of drug metabolism and mechanisms should aid in repurposing drugs for primary, adjuvant and adjunct treatments. AREAS TIMELY FOR DEVELOPING RESEARCH Optimizing drug combinations, reducing cytotoxicity of chemotherapeutics and controlling associated inflammation.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology Faculty, Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch, Galveston 301 University Boulevard, Galveston, Texas 77555, USA
| |
Collapse
|
63
|
Tanoli Z, Seemab U, Scherer A, Wennerberg K, Tang J, Vähä-Koskela M. Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Brief Bioinform 2021; 22:1656-1678. [PMID: 32055842 PMCID: PMC7986597 DOI: 10.1093/bib/bbaa003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Drug development involves a deep understanding of the mechanisms of action and possible side effects of each drug, and sometimes results in the identification of new and unexpected uses for drugs, termed as drug repurposing. Both in case of serendipitous observations and systematic mechanistic explorations, confirmation of new indications for a drug requires hypothesis building around relevant drug-related data, such as molecular targets involved, and patient and cellular responses. These datasets are available in public repositories, but apart from sifting through the sheer amount of data imposing computational bottleneck, a major challenge is the difficulty in selecting which databases to use from an increasingly large number of available databases. The database selection is made harder by the lack of an overview of the types of data offered in each database. In order to alleviate these problems and to guide the end user through the drug repurposing efforts, we provide here a survey of 102 of the most promising and drug-relevant databases reported to date. We summarize the target coverage and types of data available in each database and provide several examples of how multi-database exploration can facilitate drug repurposing.
Collapse
Affiliation(s)
- Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Umair Seemab
- Haartman Institute, University of Helsinki, Finland
| | - Andreas Scherer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Jing Tang
- Faculty of medicine, University of Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| |
Collapse
|
64
|
Wang P, van der Hoeven D, Ye N, Chen H, Liu Z, Ma X, Montufar-Solis D, Rehl KM, Cho KJ, Thapa S, Chen W, van der Hoeven R, Frost JA, Hancock JF, Zhou J. Scaffold repurposing of fendiline: Identification of potent KRAS plasma membrane localization inhibitors. Eur J Med Chem 2021; 217:113381. [PMID: 33756124 DOI: 10.1016/j.ejmech.2021.113381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dina Montufar-Solis
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Sabita Thapa
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Wei Chen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
65
|
Varmazyad M, Modi MM, Kalen AL, Sarsour EH, Wagner B, Du J, Schultz MK, Buettner GR, Pigge FC, Goswami PC. N-alkyl triphenylvinylpyridinium conjugated dihydroartemisinin perturbs mitochondrial functions resulting in enhanced cancer versus normal cell toxicity. Free Radic Biol Med 2021; 165:421-434. [PMID: 33561488 PMCID: PMC8020572 DOI: 10.1016/j.freeradbiomed.2021.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Dihydroartemisinin (DHA) is an FDA-approved antimalarial drug that has been repurposed for cancer therapy because of its preferential antiproliferative effects on cancer versus normal cells. Mitochondria represent an attractive target for cancer therapy based on their regulatory role in proliferation and cell death. This study investigates whether DHA conjugated to innately fluorescent N-alkyl triphenylvinylpyridinium (TPVP) perturbs mitochondrial functions resulting in a differential toxicity of cancer versus normal cells. TPVP-DHA treatments resulted in a dose-dependent toxicity of human melanoma and pancreatic cancer cells, whereas normal human fibroblasts were resistant to this treatment. TPVP-DHA treatments resulted in a G1-delay of the cancer cell cycle, which was also associated with a significant inhibition of the mTOR-metabolic and ERK1/2-proliferative signaling pathways. TPVP-DHA treatments perturbed mitochondrial functions, which correlated with increases in mitochondrial fission. In summary, TPVP mediated mitochondrial targeting of DHA enhanced cancer cell toxicity by perturbing mitochondrial functions and morphology.
Collapse
Affiliation(s)
| | - Mira M Modi
- Basic Science Department, College of Osteopathic Medicine, Kansas City University, Kansas City, MO, 64106, USA
| | - Amanda L Kalen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ehab H Sarsour
- Basic Science Department, College of Osteopathic Medicine, Kansas City University, Kansas City, MO, 64106, USA
| | - Brett Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Juan Du
- Department of Surgery, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael K Schultz
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Prabhat C Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
66
|
Vanhaelen Q. Web-based Tools for Drug Repurposing: Successful Examples of Collaborative Research. Curr Med Chem 2021; 28:181-195. [PMID: 32003659 DOI: 10.2174/0929867327666200128111925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/23/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
Computational approaches have been proven to be complementary tools of interest in identifying potential candidates for drug repurposing. However, although the methods developed so far offer interesting opportunities and could contribute to solving issues faced by the pharmaceutical sector, they also come with their constraints. Indeed, specific challenges ranging from data access, standardization and integration to the implementation of reliable and coherent validation methods must be addressed to allow systematic use at a larger scale. In this mini-review, we cover computational tools recently developed for addressing some of these challenges. This includes specific databases providing accessibility to a large set of curated data with standardized annotations, web-based tools integrating flexible user interfaces to perform fast computational repurposing experiments and standardized datasets specifically annotated and balanced for validating new computational drug repurposing methods. Interestingly, these new databases combined with the increasing number of information about the outcomes of drug repurposing studies can be used to perform a meta-analysis to identify key properties associated with successful drug repurposing cases. This information could further be used to design estimation methods to compute a priori assessment of the repurposing possibilities.
Collapse
Affiliation(s)
- Quentin Vanhaelen
- Insilico Medicine, 307A, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| |
Collapse
|
67
|
Martinez-Escobar A, Luna-Callejas B, Ramón-Gallegos E. CRISPR-dCas9-Based Artificial Transcription Factors to Improve Efficacy of Cancer Treatment With Drug Repurposing: Proposal for Future Research. Front Oncol 2021; 10:604948. [PMID: 33614489 PMCID: PMC7887379 DOI: 10.3389/fonc.2020.604948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Due to the high resistance that cancer has shown to conventional therapies, it is difficult to treat this disease, particularly in advanced stages. In recent decades, treatments have been improved, being more specific according to the characteristics of the tumor, becoming more effective, less toxic, and invasive. Cancer can be treated by the combination of surgery, radiation therapy, and/or drug administration, but therapies based on anticancer drugs are the main cancer treatment. Cancer drug development requires long-time preclinical and clinical studies and is not cost-effective. Drug repurposing is an alternative for cancer therapies development since it is faster, safer, easier, cheaper, and repurposed drugs do not have serious side effects. However, cancer is a complex, heterogeneous, and highly dynamic disease with multiple evolving molecular constituents. This tumor heterogeneity causes several resistance mechanisms in cancer therapies, mainly the target mutation. The CRISPR-dCas9-based artificial transcription factors (ATFs) could be used in cancer therapy due to their possibility to manipulate DNA to modify target genes, activate tumor suppressor genes, silence oncogenes, and tumor resistance mechanisms for targeted therapy. In addition, drug repurposing combined with the use of CRISPR-dCas9-based ATFs could be an alternative cancer treatment to reduce cancer mortality. The aim of this review is to describe the potential of the repurposed drugs combined with CRISPR-dCas9-based ATFs to improve the efficacy of cancer treatment, discussing the possible advantages and disadvantages.
Collapse
Affiliation(s)
- Alejandro Martinez-Escobar
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Benjamín Luna-Callejas
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
68
|
Juarez D, Fruman DA. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021; 7:525-540. [PMID: 33358111 DOI: 10.1016/j.trecan.2020.11.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The mevalonate synthesis inhibitors, statins, are mainstay therapeutics for cholesterol management and cardiovascular health. Thirty years of research have uncovered supportive roles for the mevalonate pathway in numerous cellular processes that support oncogenesis, most recently macropinocytosis. Central to the diverse mechanisms of statin sensitivity is an acquired dependence on one mevalonate pathway output, protein geranylgeranylation. New chemical prenylation probes and the discovery of a novel geranylgeranyl transferase hold promise to deepen our understanding of statin mechanisms of action. Further, insights into statin selection and the counterproductive role of dietary geranylgeraniol highlight how we should assess statins in the clinic. Lastly, rational combination strategies preview how statins will enter the oncology toolbox.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
69
|
Xia Y, Xu F, Xiong M, Yang H, Lin W, Xie Y, Xi H, Xue Q, Ye T, Yu L. Repurposing of antipsychotic trifluoperazine for treating brain metastasis, lung metastasis and bone metastasis of melanoma by disrupting autophagy flux. Pharmacol Res 2021; 163:105295. [PMID: 33176207 DOI: 10.1016/j.phrs.2020.105295] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Targeted therapies and immunotherapy have brought substantial benefits to patients with melanoma. However, brain metastases remain the biggest threat to the survival and quality of life of melanoma patients. One of the major challenges to an effective therapy is the inability of drugs to penetrate the blood-brain barrier (BBB). Anti-schizophrenic drugs can cross the BBB, and many of them have demonstrated anti-cancer effects. Repurposing existing drugs for new clinical indications is an alluring strategy for anticancer drug discovery. Herein, we applied this strategy and screened a small collection of existing anti-schizophrenic drugs to use as anti-melanoma agents. Among them, trifluoperazine dihydrochloride (TFP) exhibited promising potencies for suppressing the growth and metastasis of melanoma, both in vitro and in vivo. TFP obviously suppressed the viability of melanoma cells within the micromolar range and inhibited the growth of melanoma in the subcutaneous mice models. Notably, intraperitoneal (i.p.) administration of TFP (40 mg/kg/day) obviously inhibited the growth of intra-carotid-injection established melanoma brain metastasis and extended the survival of brain metastasis-bearing mice. Moreover, TFP significantly suppressed lung metastasis and bone metastasis of melanoma in preclinical metastasis models. Mechanistically, TFP caused G0/G1 cell cycle arrest and mitochondrial-dependent intrinsic apoptosis of melanoma cells. In addition, TFP treatment increased the expression of microtubule associated protein 1 light chain 3 beta-II (LC3B-II) and p62 in vitro, suggesting an inhibition of autophagic flux. TFP decreased LysoTracker Red uptake after treatment, indicating impaired acidification of lysosomes. Moreover, the colocalization of LC3 with lysosomal-associated membrane protein 1 (LAMP1), a lysosome marker, was also suppressed after TFP treatment, suggesting that TFP might block the fusion of autophagosomes with lysosomes, which led to autophagosome accumulation. Taken together, our data highlight the potential of repurposing TFP as a new adjuvant drug for treating melanoma patients with brain, lung, and bone metastases.
Collapse
Affiliation(s)
- Yong Xia
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fuyan Xu
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meiping Xiong
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hao Yang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Wentao Lin
- Department of Plastic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Xie
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Huizhi Xi
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Xue
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Luoting Yu
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
70
|
Srivastava SK. Special issue: Drug repurposing for cancer therapy. Semin Cancer Biol 2021; 68:1-2. [PMID: 32679189 DOI: 10.1016/j.semcancer.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, 1718Pin. Street, Abilene, TX 79601, USA.
| |
Collapse
|
71
|
Mortezaei Z, Khosravi A. New potential anticancer drug-like compounds for squamous cell lung cancer using transcriptome network analysis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
72
|
Garcia CB, Chapman IF, Chen SH, Lazear E, Lentz TB, Williams C, Dums JT, Goller CC, Robertson SD. Integrating research into a molecular cloning course to address the evolving biotechnology landscape. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:115-128. [PMID: 33176069 DOI: 10.1002/bmb.21402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The rapid development of molecular biotechnology presents a curricular challenge for educators trying to provide students with relevant coursework. A comprehensive biology education should also include opportunities for students to develop intellectual and technical skills through authentic research experiences. Integrating relevant and interesting research projects into their classes, however, can be a challenging task for instructors. To address these varied demands, we redesigned our existing molecular cloning course to incorporate an independent research project assessing calcium signaling. In the revised course, students use traditional and recombination-based cloning strategies to generate bacterial and mammalian expression vectors encoding CaMPARI, a novel fluorescent calcium indicator. Bacterially-expressed CaMPARI is used in protein quantification and purification assays. Students must also design their own research project evaluating the effect of chemotherapeutic agents on calcium signaling in a mammalian system. Revised and novel labs were designed to be modular, facilitating their integration into the course over 2 years. End-of-semester student evaluations were compared between years revealing a significant difference in students' perception of the course's difficulty between years. This change in attitude highlights potential pedagogical considerations that must be examined when introducing new material and activities into existing courses. Since calcium signaling is important for cellular process across diverse species, instructors may be able to develop research projects within their respective areas of interest. Integration of authentic research experiences into the curriculum is challenging; however, the framework described here provides a versatile structure that can be adapted to merge diverse instructor interests with evolving educational needs.
Collapse
Affiliation(s)
- Christina B Garcia
- Biology Program, Biochemistry and Molecular Biology Program, Centre College, Danville, Kentucky, USA
| | - Ian F Chapman
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stefanie H Chen
- Department of Biological Sciences and Biotechnology Teaching Program, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Thomas B Lentz
- Department of Biological Sciences and Biotechnology Teaching Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Christina Williams
- Department of Biological Sciences and Biotechnology Teaching Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Jacob T Dums
- Viral Ecology and Informatics Laboratory, University of Delaware, Newark, New Jersey, USA
| | - Carlos C Goller
- Department of Biological Sciences and Biotechnology Teaching Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Sabrina D Robertson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
73
|
Abstract
BACKGROUND The worldwide increase in the occurrence of cancer associated with the limitations of immunotherapy and the emergence of resistance have impaired the prognosis of cancer patients, which leads to the search for alternative treatment methods. Drug repositioning, a well-established process approved by regulatory agencies, is considered an alternative strategy for the fast identification of drugs, because it is relatively less costly and represents lower risks for patients. AREAS OF UNCERTAINTY We report the most relevant studies about drug repositioning in oncology, emphasizing that its implementation faces financial and regulatory obstacles, making the creation of incentives necessary to stimulate the involvement of the pharmaceutical industry. DATA SOURCES We present 63 studies in which 52 non-anticancer drugs with anticancer activity against a number of malignancies are described. THERAPEUTIC INNOVATIONS Some have already been the target of phase III studies, such as the Add-Aspirin trial for nonmetastatic solid tumors, as well as 9 other drugs (aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, and sertraline) in the CUSP9* clinical trial for the treatment of recurrent glioblastoma. Others have already been successful in repositioning such as thalidomide, zoledronic acid, celecoxib, methotrexate, and gemcitabine. CONCLUSIONS Therefore, drug repositioning represents a promising alternative for the treatment of oncological disorders; however, the support from funding agencies and from the government is still needed, the latter regarding regulatory issues.
Collapse
|
74
|
Kaushik I, Ramachandran S, Prasad S, Srivastava SK. Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2021; 68:279-290. [PMID: 32437876 PMCID: PMC7786449 DOI: 10.1016/j.semcancer.2020.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
75
|
King L, Christie D, Dare W, Bernaitis N, Chess-Williams R, McDermott C, Forbes A, Anoopkumar-Dukie S. Quinazoline alpha-adrenoreceptor blockers as an adjunct cancer treatment: From bench to bedside. Eur J Pharmacol 2020; 893:173831. [PMID: 33359146 DOI: 10.1016/j.ejphar.2020.173831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Drug repurposing has been increasingly used by both researchers and clinicians to identify new cancer treatments. The alpha-1 adrenoreceptor blockers are a class of drugs that have been used for many years in the treatment of hypertension and benign prostatic hyperplasia. Some of the drugs in this class, notably the quinazoline derivatives, have been found to display cytotoxic properties, identifying them as potential options in the treatment of cancer. This review will examine the currently available evidence that investigates the cytotoxic and anti-cancer properties of these agents, the mechanisms behind these properties and how the alpha-1 blockers fit within current cancer therapies. It aims to answer the question of whether these agents can go from the laboratory bench top into cancer clinics.
Collapse
Affiliation(s)
- Liam King
- School of Pharmacy and Pharmacology, Griffith University, Queensland, Australia; Ramsay Pharmacy, John Flynn Private Hospital, Queensland, Australia
| | | | - Wendy Dare
- Ramsay Pharmacy, John Flynn Private Hospital, Queensland, Australia
| | - Nijole Bernaitis
- Ramsay Pharmacy, John Flynn Private Hospital, Queensland, Australia
| | | | | | - Amanda Forbes
- Faculty of Health Sciences, Bond University, Queensland, Australia
| | | |
Collapse
|
76
|
Yang J, Zhang D, Liu L, Li G, Cai Y, Zhang Y, Jin H, Chen X. Computational drug repositioning based on the relationships between substructure-indication. Brief Bioinform 2020; 22:6032618. [PMID: 33313675 DOI: 10.1093/bib/bbaa348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
At present, computational methods for drug repositioning are mainly based on the whole structures of drugs, which limits the discovery of new functions due to the similarities between local structures of drugs. In this article, we, for the first time, integrated the features of chemical-genomics (substructure-domain) and pharmaco-genomics (domain-indication) based on the assumption that drug-target interactions are mediated by the substructures of drugs and the domains of proteins to identify the relationships between substructure-indication and establish a drug-substructure-indication network for predicting all therapeutic effects of tested drugs through only information on the substructures of drugs. In total, 83 205 drug-indication relationships with different correlation scores were obtained. We used three different verification methods to indicate the accuracy of the method and the reliability of the scoring system. We predicted all indications of olaparib using our method, including the known antitumor effect and unknown antiviral effect verified by literature, and we also discovered the inhibitory mechanism of olaparib toward DNA repair through its specific sub494 (o = C-C: C), as it participates in the low synthesis of the poly subfunction of the apoptosis pathway (hsa04210) by inhibiting the Inositol 1,4,5-trisphosphate receptor(s) (ITPRs) and hydrolyzing poly (ADP ribose) polymerases. ElectroCardioGrams of four drugs (quinidine, amiodarone, milrinone and fosinopril) demonstrated the effect of anti-arrhythmia. Unlike previous studies focusing on the overall structures of drugs, our research has great potential in the search for more therapeutic effects of drugs and in predicting all potential effects and mechanisms of a drug from the local structural similarity.
Collapse
Affiliation(s)
- Jingbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Denan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Lei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Guoqi Li
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Yiyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Hongbo Jin
- Department of Physiology, Harbin Medical University
| | - Xiujie Chen
- College of Bioinformatics Science and Technology, Harbin Medical University
| |
Collapse
|
77
|
Juárez-López D, Schcolnik-Cabrera A. Drug Repurposing: Considerations to Surpass While Re-directing Old Compounds for New Treatments. Arch Med Res 2020; 52:243-251. [PMID: 33190955 DOI: 10.1016/j.arcmed.2020.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Drug repurposing has increased in recent years as an attractive option for treating a number of diseases. Compared to those brought forward via traditional chemical development, drugs intended for repurposing can enter the market faster and with lower investment from pharmaceutical companies. However, a common trend is to focus on diseases that yield higher returns to the industry, such as cancer and common metabolic and inflammatory conditions, resulting in orphan illnesses and neglected tropical diseases having fewer repurposing options for affected patients. In addition, certain legal concerns, including limited patent coverage for the repurposed drugs and pharmacological challenges in performing clinical trials, reduce the likelihood of success. In this review, we discuss the most important concerns that affect the pathway of drug repurposing, with special emphasis on the economic revenues, government-industry associations, and legal considerations that together impact the pharmaceutical industry's decision-making on which compounds may be eligible for repurposing.
Collapse
Affiliation(s)
- Daniel Juárez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada; Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada.
| |
Collapse
|
78
|
Sun N, Teng A, Zhao Y, Liu H, Tu J, Jia Q, Wang Q. Immunological and anticancer activities of seleno-ovalbumin (Se-OVA) on H22-bearing mice. Int J Biol Macromol 2020; 163:657-665. [PMID: 32634513 DOI: 10.1016/j.ijbiomac.2020.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
Ovalbumin is the main protein component of egg white. Selenium is one of the essential trace elements. In our research, ovalbumin was modified into seleno-ovalbumin. After seleno-modification, the FTIR spectrum of seleno-ovalbumin appeared two new absorption peaks which belonged to the characteristic absorption peaks of Se-O and SeO. Seleno-ovalbumin could reduce the damage of cancer to immune organs, improve the proliferation capacities of T and B lymphocytes, enhance the NK cells cytotoxicity and increase the phagocytic activity of peritoneal macrophages of H22-bearing mice. Besides, Se-OVA could block the cell cycle of solid tumors cells in G0/G1 phase and accelerate the apoptosis of solid tumors cells through mitochondrial pathway.
Collapse
Affiliation(s)
- Naxin Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China
| | - Anguo Teng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yana Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jianqiu Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qi Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
79
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
80
|
Seelig A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front Oncol 2020; 10:576559. [PMID: 33194688 PMCID: PMC7649427 DOI: 10.3389/fonc.2020.576559] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein or multidrug resistance protein (MDR1) is an adenosine triphosphate (ATP) binding cassette transporter (ABCB1) intensely investigated because it is an obstacle to successful pharmacotherapy of cancers. P-glycoprotein prevents cellular uptake of a large number of structurally and functionally diverse compounds, including most cancer therapeutics and in this way causes multidrug resistance (MDR). To overcome MDR, and thus improve cancer treatment, an understanding of P-glycoprotein inhibition at the molecular level is required. With this goal in mind, we propose rules that predict whether a compound is a modulator, substrate, inhibitor, or inducer of P-glycoprotein. This new set of rules is derived from a quantitative analysis of the drug binding and transport properties of P-glycoprotein. We further discuss the role of P-glycoprotein in immune surveillance and cell metabolism. Finally, the predictive power of the proposed rules is demonstrated with a set of FDA approved drugs which have been repurposed for cancer therapy.
Collapse
Affiliation(s)
- Anna Seelig
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
81
|
Wu J, Hu B, Sun X, Wang H, Huang Y, Zhang Y, Liu M, Liu Y, Zhao Y, Wang J, Yu Z. In silico study reveals existing drugs as α-glucosidase inhibitors: Structure-based virtual screening validated by experimental investigation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
82
|
Monzote L, Scherbakov AM, Scull R, Gutiérrez YI, Satyal P, Cos P, Shchekotikhin AE, Gille L, Setzer WN. Pharmacological Assessment of the Carvacrol Chemotype Essential Oil From Plectranthus amboinicusGrowing in Cuba. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20962233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plant-derived products are employed in various public health practices and have been considered as a major source of medicines. The genus Plectranthus (Lamiaceae) has been widely respected for its nutritional properties, its essential oil, and its therapeutic values. In the present work, the chemical characterization, antimicrobial, antiparasitic, and cytotoxic properties of the essential oil from Plectranthus amboinicus (Lour.) Spreng and its main compound carvacrol were studied. Twenty-one components were identified in the oil by gas chromatography coupled with a mass spectrometric detector. In this oil, carvacrol constitutes the major compound (71%), which represented the more abundant chemotype. The essential oil did not inhibit growth of Escherichia coli, Staphylococcus aureus, Candida albicans, Trypanosoma cruzi, or Leishmania infantum, but displayed activity against Plasmodium falciparum (half-maximal inhibitory concentration [IC50] = 5.9 µg/mL), Trypanosoma brucei (IC50= 34.9 µg/mL), and Leishmania amazonensis (IC50= 58.2 µg/mL), and the human tumor-derived cell lines MCF-7 (IC50= 29.1 µg/mL), MDA-MB-231 (IC50= 41.5 µg/mL), and 22Rv1 (IC50= 29.6 µg/mL), but no cytotoxicity was observed against nonmalignant macrophages. The antiproliferative activity of the oil could be attributed to carvacrol. However, this compound showed certain level of cytotoxicity, which suggests unspecific activity. This study provides evidence about antimicrobial and anticancer potential of the essential oil from P. amboinicus against protozoa and neoplastic diseases, particularly as an antimalarial natural product.
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Center of Research, Diagnostic and Reference, Institute of Tropical Medicine “Pedro Kouri”, Havana, Cuba
- Research Network Natural Products against Neglected Diseases (ResNetNPND)
| | | | - Ramón Scull
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana, Cuba
| | - Yamilet I. Gutiérrez
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana, Cuba
| | | | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - William N. Setzer
- Research Network Natural Products against Neglected Diseases (ResNetNPND)
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
83
|
Litecká M, Prachařová J, Kašpárková J, Brabec V, Smolková R, Gyepes R, Obuch J, Kubíček V, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XV: Antiproliferative activity of tris(5-nitro-8-quinolinolato)gallium(III) complex with noticeable selectivity against the cancerous cells. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
84
|
Zhu DS, Dong JY, Xu YY, Zhang XT, Fu SB, Liu W. Omipalisib Inhibits Esophageal Squamous Cell Carcinoma Growth Through Inactivation of Phosphoinositide 3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) and ERK Signaling. Med Sci Monit 2020; 26:e927106. [PMID: 32804918 PMCID: PMC7450785 DOI: 10.12659/msm.927106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a life-threatening digestive tract malignancy with no known curative treatment. This study aimed to investigate the antineoplastic effects of omipalisib and its underlying molecular mechanisms in ESCC using a high throughput screen. Material/Methods MTT assay and clone formation were used to determine cell viability and proliferation. Flow cytometry was conducted to detect cell cycle distribution and apoptosis. Global gene expression and mRNA expression levels were determined by RNA sequencing and real-time PCR, respectively. Protein expression was evaluated in the 4 ESCC cell lines by Western blot analysis. Finally, a xenograft nude mouse model was used to evaluate the effect of omipalisib on tumor growth in vivo. Results In the pilot screening of a 1404-compound library, we demonstrated that omipalisib markedly inhibited cell proliferation in a panel of ESCC cell lines. Mechanistically, omipalisib induced G0/G1 cell cycle arrest and apoptosis. RNA-seq, KEGG, and GSEA analyses revealed that the PI3K/AKT/mTOR pathway is the prominent target of omipalisib in ESCC cells. Treatment with omipalisib decreased expression of p-AKT, p-4EBP1, p-p70S6K, p-S6, and p-ERK, therefore disrupting the activation of PI3K/AKT/mTOR and ERK signaling. In the nude mouse xenograft model, omipalisib significantly suppressed the tumor growth in ESCC tumor-bearing mice without obvious adverse effects. Conclusions Omipalisib inhibited the proliferation and growth of ESCC by disrupting PI3K/AKT/mTOR and ERK signaling. The present study supports the rationale for using omipalisib as a therapeutic approach in ESCC patients. Further clinical studies are needed.
Collapse
Affiliation(s)
- Dong-Shan Zhu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jing-Yao Dong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yao-Yao Xu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xin-Tong Zhang
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Shi-Bo Fu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
85
|
Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm (Weinheim) 2020; 353:e2000168. [DOI: 10.1002/ardp.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kashyap K. Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
- School of Biotechnology Jawaharlal Nehru University New Delhi India
| | - Indu
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|
86
|
Yu JG, Ji CH, Shi MH. The anti-infection drug furazolidone inhibits NF-κB signaling and induces cell apoptosis in small cell lung cancer. Kaohsiung J Med Sci 2020; 36:998-1003. [PMID: 32767507 DOI: 10.1002/kjm2.12281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting nuclear factor kappa B (NF-κB) signaling pathway has become a promising strategy for the development of new antitumor drugs. In this paper, we found that anti-infection drug furazolidone (FZD) could significantly inhibit NF-κB-driven luciferase activity, and FZD could markedly inhibit both of the constitutive and tumor necrosis factor-α (TNFα)-triggered phosphorylation of NF-κB p65 in small cell lung cancer (SCLC). Further studies revealed that FZD inhibited the expression of inhibitor of kappa B kinase β (IKKβ) in SCLC cells. In addition, we found that FZD had significant antitumor activities in SCLC cells. FZD could markedly suppress the cell viability of SCLC cells dose-dependently, and FZD could significantly induce the cleavages of poly ADP-ribose polymerase (PARP) and Caspase3, the biomarkers of cell apoptosis, in SCLC cells. The flow cytometry also revealed that FZD induced cell apoptosis in SCLC cells. Finally, we also found that overexpression of constitutively activated IKKβ could significantly abolish FZD-induced cell growth inhibition in SCLC cells, which further confirmed that FZD displayed its anti-SCLC activity through regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jin-Guo Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Hong Ji
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min-Hua Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
87
|
Baker JD, Uhrich RL, Strovas TJ, Saxton AD, Kraemer BC. Targeting Pathological Tau by Small Molecule Inhibition of the Poly(A):MSUT2 RNA-Protein Interaction. ACS Chem Neurosci 2020; 11:2277-2285. [PMID: 32589834 PMCID: PMC8629322 DOI: 10.1021/acschemneuro.0c00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neurofibrillary tangles composed of aberrantly aggregating tau protein are a hallmark of Alzheimer's disease and related dementia disorders. Recent work has shown that mammalian suppressor of tauopathy 2 (MSUT2), also named ZC3H14 (Zinc Finger CCCH-Type Containing 14), controls accumulation of pathological tau in cultured human cells and mice. Knocking out MSUT2 protects neurons from neurodegenerative tauopathy and preserves learning and memory. MSUT2 protein functions to bind polyadenosine [poly(A)] tails of mRNA through its C-terminal CCCH type zinc finger domains, and loss of CCCH domain function suppresses tauopathy in Caenorhabditis elegans and mice. Thus, we hypothesized that inhibiting the poly(A):MSUT2 RNA-protein interaction would ameliorate pathological tau accumulation. Here we present a high-throughput screening method for the identification of small molecules inhibiting the poly(A):MSUT2 RNA-protein interaction. We employed a fluorescent polarization assay for initial small molecule discovery with the intention to repurpose hits identified from the NIH Clinical Collection (NIHCC). Our drug repurposing development workflow included validation of hits by dose-response analysis, specificity testing, orthogonal assays of activity, and cytotoxicity. Validated compounds passing through this screening funnel will be evaluated for translational effectiveness in future studies. This preclinical drug development pipeline identified diverse FDA approved drugs duloxetine, saquinavir, and clofazimine as potential repurposing candidates for reducing pathological tau accumulation.
Collapse
Affiliation(s)
- Jeremy D Baker
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Rikki L Uhrich
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Timothy J Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
88
|
Drug Repositioning of the α 1-Adrenergic Receptor Antagonist Naftopidil: A Potential New Anti-Cancer Drug? Int J Mol Sci 2020; 21:ijms21155339. [PMID: 32727149 PMCID: PMC7432507 DOI: 10.3390/ijms21155339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
Failure of conventional treatments is often observed in cancer management and this requires the development of alternative therapeutic strategies. However, new drug development is known to be a high-failure process because of the possibility of a lower efficacy than expected for the drug or appearance of non-manageable side effects. Another way to find alternative therapeutic drugs consists in identifying new applications for drugs already approved for a particular disease: a concept named "drug repurposing". In this context, several studies demonstrated the potential anti-tumour activity exerted by α1-adrenergic receptor antagonists and notably renewed interest for naftopidil as an anti-cancer drug. Naftopidil is used for benign prostatic hyperplasia management in Japan and a retrospective study brought out a reduced incidence of prostate cancer in patients that had been prescribed this drug. Further studies showed that naftopidil exerted anti-proliferative and cytotoxic effects on prostate cancer as well as several other cancer types in vitro, as well as ex vivo and in vivo. Moreover, naftopidil was demonstrated to modulate the expression of Bcl-2 family pro-apoptotic members which could be used to sensitise cancer cells to targeting therapies and to overcome resistance of cancer cells to apoptosis. For most of these anti-cancer effects, the molecular pathway is either not fully deciphered or shown to involve α1-adrenergic receptor-independent pathway, suggesting off target transduction signals. In order to improve its efficacy, naftopidil analogues were designed and shown to be effective in several studies. Thereby, naftopidil appears to display anti-cancer properties on different cancer types and could be considered as a candidate for drug repurposing although its anti-cancerous activities need to be studied more deeply in prospective randomized clinical trials.
Collapse
|
89
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
90
|
Han HJ, Park C, Hwang J, N.R. T, Kim SO, Han J, Woo M, B S, Ryoo IJ, Lee KH, Cha-Molstad H, Kwon YT, Kim BY, Soung NK. CPPF, A Novel Microtubule Targeting Anticancer Agent, Inhibits the Growth of a Wide Variety of Cancers. Int J Mol Sci 2020; 21:ijms21134800. [PMID: 32645923 PMCID: PMC7370279 DOI: 10.3390/ijms21134800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
In the past, several microtubule targeting agents (MTAs) have been developed into successful anticancer drugs. However, the usage of these drugs has been limited by the acquisition of drug resistance in many cancers. Therefore, there is a constant demand for the development of new therapeutic drugs. Here we report the discovery of 5-5 (3-cchlorophenyl)-N-(3-pyridinyl)-2-furamide (CPPF), a novel microtubule targeting anticancer agent. Using both 2D and 3D culture systems, we showed that CPPF was able to suppress the proliferation of diverse cancer cell lines. In addition, CPPF was able to inhibit the growth of multidrug-resistant cell lines that are resistant to other MTAs, such as paclitaxel and colchicine. Our results showed that CPPF inhibited growth by depolymerizing microtubules leading to mitotic arrest and apoptosis. We also confirmed CPPF anticancer effects in vivo using both a mouse xenograft and a two-step skin cancer mouse model. Using established zebrafish models, we showed that CPPF has low toxicity in vivo. Overall, our study proves that CPPF has the potential to become a successful anticancer chemotherapeutic drug.
Collapse
Affiliation(s)
- Ho Jin Han
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
| | - Chanmi Park
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - Joonsung Hwang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - Thimmegowda N.R.
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - Sun-Ok Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - Junyeol Han
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
| | - Minsik Woo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong, Cheongju 28160, Korea
| | - Shwetha B
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - Hyunjoo Cha-Molstad
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (Y.T.K.); (B.Y.K.); (N.-K.S.); Tel.: +82-2-740-8547 (Y.T.K.); +82-43-240-6163 (B.Y.K.); +82-43-240-6165 (N.-K.S.); Fax: +82-2-3673-2167 (Y.T.K.); +82-43-240-6259 (B.Y.K.); +82-43-240-6259 (N.-K.S.)
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.T.K.); (B.Y.K.); (N.-K.S.); Tel.: +82-2-740-8547 (Y.T.K.); +82-43-240-6163 (B.Y.K.); +82-43-240-6165 (N.-K.S.); Fax: +82-2-3673-2167 (Y.T.K.); +82-43-240-6259 (B.Y.K.); +82-43-240-6259 (N.-K.S.)
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea; (H.J.H.); (C.P.); (J.H.); (T.N.R.); (S.-O.K.); (J.H.); (M.W.); (S.B.); (I.-J.R.); (K.H.L.); (H.C.-M.)
- Correspondence: (Y.T.K.); (B.Y.K.); (N.-K.S.); Tel.: +82-2-740-8547 (Y.T.K.); +82-43-240-6163 (B.Y.K.); +82-43-240-6165 (N.-K.S.); Fax: +82-2-3673-2167 (Y.T.K.); +82-43-240-6259 (B.Y.K.); +82-43-240-6259 (N.-K.S.)
| |
Collapse
|
91
|
Peng Y, Liu P, Meng Y, Hu S, Ding J, Zhou W. Nanoscale Copper(II)-Diethyldithiocarbamate Coordination Polymer as a Drug Self-Delivery System for Highly Robust and Specific Cancer Therapy. Mol Pharm 2020; 17:2864-2873. [PMID: 32551674 DOI: 10.1021/acs.molpharmaceut.0c00284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disulfiram (DSF), an old alcohol-aversion drug, has been repurposed for cancer therapy, and mechanistic studies reveal that it needs to be metabolized to diethyldithiocarbamate (DTC) and subsequently coordinates with copper(II) to form the DTC-copper complex (CuET) for anticancer activation. Here, we utilized this mechanism to construct a CuET self-delivery nanosystem based on the metal coordination polymer for highly robust and selective cancer therapy. In our design, the nanoparticles were facilely prepared under mild conditions by virtue of the strong coordination between Cu2+ and DTC, yielding 100% CuET loading capacity and allowing for further hyaluronic acid (HA) modification (CuET@HA NPs). The CuET@HA NPs could selectively deliver into cancer cells and release the active component of CuET in response to both endo/lysosome acidic pH and intracellular abundant GSH, which induces strong cytotoxicity toward cancer cells over normal cells taking advantage of the p97 pathway interference mechanism. Upon intravenous injection, the self-assembled system could passively accumulate into a tumor and elicit potent tumor growth inhibition at a dose of 1 mg/kg without any noticeable side effects. Given the cost-effective and easily scaled-up preparation, our designed nanosystem provides a promising strategy to pave the way for clinical translation of DSF-based cancer chemotherapy.
Collapse
Affiliation(s)
- Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.,Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| |
Collapse
|
92
|
Valli D, Gruszka AM, Alcalay M. Has Drug Repurposing Fulfilled its Promise in Acute Myeloid Leukaemia? J Clin Med 2020; 9:E1892. [PMID: 32560371 PMCID: PMC7356362 DOI: 10.3390/jcm9061892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Drug repurposing is a method of drug discovery that consists of finding a new therapeutic context for an old drug. Compound identification arises from screening of large libraries of active compounds, through interrogating databases of cell line gene expression response upon treatment or by merging several types of information concerning disease-drug relationships. Although, there is a general consensus on the potential and advantages of this drug discovery modality, at the practical level to-date no non-anti-cancer repurposed compounds have been introduced into standard acute myeloid leukaemia (AML) management, albeit that preclinical validation yielded several candidates. The review presents the state-of-the-art drug repurposing approach in AML and poses the question of what has to be done in order to take a full advantage of it, both at the stage of screening design and later when progressing from the preclinical to the clinical phases of drug development. We argue that improvements are needed to model and read-out systems as well as to screening technologies, but also to more funding and trust in drug repurposing strategies.
Collapse
Affiliation(s)
- Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Alicja M. Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20 122 Milan, Italy
| |
Collapse
|
93
|
Pillaiyar T, Meenakshisundaram S, Manickam M, Sankaranarayanan M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur J Med Chem 2020; 195:112275. [PMID: 32283298 PMCID: PMC7156148 DOI: 10.1016/j.ejmech.2020.112275] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a strategy consisting of finding new indications for already known marketed drugs used in various clinical settings or highly characterized compounds despite they can be failed drugs. Recently, it emerges as an alternative approach for the rapid identification and development of new pharmaceuticals for various rare and complex diseases for which lack the effective drug treatments. The success rate of drugs repurposing approach accounts for approximately 30% of new FDA approved drugs and vaccines in recent years. This review focuses on the status of drugs repurposing approach for various diseases including skin diseases, infective, inflammatory, cancer, and neurodegenerative diseases. Efforts have been made to provide structural features and mode of actions of drugs.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | | | - Manoj Manickam
- Department of Chemistry, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| |
Collapse
|
94
|
An Integrated Genomic Strategy to Identify CHRNB4 as a Diagnostic/Prognostic Biomarker for Targeted Therapy in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12051324. [PMID: 32455963 PMCID: PMC7281299 DOI: 10.3390/cancers12051324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
Although many studies have shown the association between smoking and the increased incidence and adverse prognosis of head and neck squamous cell carcinoma (HNSCC), the mechanisms and pharmaceutical targets involved remain unclear. Here, we integrated gene expression signatures, genetic alterations, and survival analyses to identify prognostic indicators and therapeutic targets for smoking HNSCC patients, and we discovered that the FDA-approved drug varenicline inhibits the target for cancer cell migration/invasion. We first identified 18 smoking-related and prognostic genes for HNSCC by using RNA-Seq and clinical follow-up data. One of these genes, CHRNB4 (neuronal acetylcholine receptor subunit beta-4), increased the risk of death by approximately threefold in CHRNB4-high expression smokers compared to CHRNB4-low expression smokers (log rank, p = 0.00042; hazard ratio, 2.82; 95% CI, 1.55–5.14), former smokers, and non-smokers. Furthermore, we examined the functional enrichment of co-regulated genes of CHRNB4 and its 246 frequently occurring copy number alterations (CNAs). We found that these genes were involved in promoting angiogenesis, resisting cell death, and sustaining proliferation, and contributed to much worse outcomes for CHRNB4-high patients. Finally, we performed CHRNB4 gene editing and drug inhibition assays, and the results validate these observations. In summary, our study suggests that CHRNB4 is a prognostic indicator for smoking HNSCC patients and provides a potential new therapeutic drug to prevent recurrence or distant metastasis.
Collapse
|
95
|
Gabbard RD, Hoopes RR, Kemp MG. Spironolactone and XPB: An Old Drug with a New Molecular Target. Biomolecules 2020; 10:E756. [PMID: 32414008 PMCID: PMC7277409 DOI: 10.3390/biom10050756] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023] Open
Abstract
Spironolactone (SP) is commonly used for the treatment of heart failure, hypertension, and complications of cirrhosis by antagonizing the mineralocorticoid receptor. However, SP also antagonizes the androgen receptor, and thus SP has also been shown to be effective in the treatment of acne, hair loss, and hirsutism in women. Interestingly, recent drug repurposing screens have identified new and diverse functions for SP as a simulator of tumor immunosurveillance and as an inhibitor of DNA repair and viral infection. These novel pharmacological effects of SP have all been linked to the ability of SP to induce the rapid proteolytic degradation of the xeroderma pigmentosum group B (XPB) protein. XPB is a critical enzymatic component of the multi-subunit complex known as transcription factor II-H (TFIIH), which plays essential roles in both DNA repair and the initiation of transcription. Given the critical functions for XPB and TFIIH in these processes, the loss of XPB by SP could lead to mutagenesis. However, the ability of SP to promote cancer stem cell death and facilitate immune recognition may counteract the negative consequences of SP to mitigate carcinogenic risk. Thus, SP appears to have new and interesting pharmacological effects that may extend its potential uses.
Collapse
Affiliation(s)
| | | | - Michael G. Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA; (R.D.G.); (R.R.H.)
| |
Collapse
|
96
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
97
|
Pereira CA, Sayé M, Reigada C, Silber AM, Labadie GR, Miranda MR, Valera-Vera E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 2020; 147:611-633. [PMID: 32046803 PMCID: PMC10317681 DOI: 10.1017/s0031182020000207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.
Collapse
Affiliation(s)
- Claudio A. Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps – LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana R. Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
98
|
Sohraby F, Aryapour H. Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs. Semin Cancer Biol 2020; 68:249-257. [PMID: 32360530 DOI: 10.1016/j.semcancer.2020.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/07/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Managing cancer is now one of the biggest concerns of health organizations. Many strategies have been developed in drug discovery pipelines to help rectify this problem and two of the best ones are drug repurposing and computational methods. The combination of these approaches can have immense impact on the course of drug discovery. In silico drug repurposing can significantly reduce the time, the cost and the effort of drug development. Computational methods such as structure-based drug design (SBDD) and virtual screening can predict the potentials of small molecule binders, such as drugs, for having favorable effect on a particular molecular target. However, the demand for accuracy and efficiency of SBDD requires more sophisticated and complicated approaches such as unbiased molecular dynamics (UMD) simulation that has been recently introduced. As a complementary strategy, the knowledge acquired from UMD simulations can increase the chance of finding the right candidates and the pipeline of its administration is introduced and discussed in this review. An elaboration of this pipeline is also made by detailing an example, the binding and unbinding pathways of dasatinib-c-Src kinase complex, which shows that how influential this method can be in rational drug repurposing in cancer treatment.
Collapse
Affiliation(s)
- Farzin Sohraby
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran.
| |
Collapse
|
99
|
Dees S, Pontiggia L, Jasmin JF, Mercier I. Phosphorylated STAT3 (Tyr705) as a biomarker of response to pimozide treatment in triple-negative breast cancer. Cancer Biol Ther 2020; 21:506-521. [PMID: 32164483 PMCID: PMC7515519 DOI: 10.1080/15384047.2020.1726718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) displays an aggressive clinical course, heightened metastatic potential, and is linked to poor survival rates. Through its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), this subtype remains unresponsive to traditional targeted therapies. Undesirable and sometimes life-threatening side effects associated with current chemotherapeutic agents warrant the development of more targeted treatment options. Targeting signal transducer and activator of transcription 3 (STAT3), a transcription factor implicated in breast cancer (BCa) progression, has proven to be an efficient approach to halt cancer growth in vitro and in vivo. Currently, there are no FDA-approved STAT3 inhibitors for TNBC. Although pimozide, a FDA-approved antipsychotic drug, has been attributed a role as a STAT3 inhibitor in several cancers, its role on this pathway remains unexplored in TNBC. As a "one size fits all" approach cannot be applied to TNBC therapies due to the heterogeneous nature of this aggressive cancer, we hypothesized that STAT3 could be a novel biomarker of response to guide pimozide therapy. Using human cell lines representative of four TNBC subtypes (basal-like 1, basal-like 2, mesenchymal-like, mesenchymal stem-like), our current report demonstrates that pimozide significantly reduced their invasion and migration, an effect that was predicted by STAT3 phosphorylation on tyrosine residue 705 (Tyr705). Mechanistically, phosphorylated STAT3 (Tyr705) inhibition resulting from pimozide treatment caused a downregulation of downstream transcriptional targets such as matrix metalloproteinase-9 (MMP-9) and vimentin, both implicated in invasion and migration. The identification of biomarkers of response to TNBC treatments is an active area of research in the field of precision medicine and our results propose phosphorylated STAT3 (Tyr705) as a novel biomarker to guide pimozide treatment as an inhibitor of invasion and migration.
Collapse
Affiliation(s)
- Sundee Dees
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, Misher College of Arts and Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Isabelle Mercier
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA.,Program in Personalized Medicine and Targeted Therapeutics, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
100
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|