51
|
Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, Vaziri ND, Ma SX, Su W, Shang YQ, Gao M, Zhang JH, Zhang L, Zhao YY, Cao G. Targeting Lactobacillus johnsonii to reverse chronic kidney disease. Signal Transduct Target Ther 2024; 9:195. [PMID: 39098923 PMCID: PMC11298530 DOI: 10.1038/s41392-024-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Accumulated evidence suggested that gut microbial dysbiosis interplayed with progressive chronic kidney disease (CKD). However, no available therapy is effective in suppressing progressive CKD. Here, using microbiomics in 480 participants including healthy controls and patients with stage 1-5 CKD, we identified an elongation taxonomic chain Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus-Lactobacillus johnsonii correlated with patients with CKD progression, whose abundance strongly correlated with clinical kidney markers. L. johnsonii abundance reduced with progressive CKD in rats with adenine-induced CKD. L. johnsonii supplementation ameliorated kidney lesion. Serum indole-3-aldehyde (IAld), whose level strongly negatively correlated with creatinine level in CKD rats, decreased in serum of rats induced using unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (NX) as well as late CKD patients. Treatment with IAld dampened kidney lesion through suppressing aryl hydrocarbon receptor (AHR) signal in rats with CKD or UUO, and in cultured 1-hydroxypyrene-induced HK-2 cells. Renoprotective effect of IAld was partially diminished in AHR deficiency mice and HK-2 cells. Our further data showed that treatment with L. johnsonii attenuated kidney lesion by suppressing AHR signal via increasing serum IAld level. Taken together, targeting L. johnsonii might reverse patients with CKD. This study provides a deeper understanding of how microbial-produced tryptophan metabolism affects host disease and discovers potential pathways for prophylactic and therapeutic treatments for CKD patients.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fei Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Yan Guo
- Department of Public Health and Sciences, University of Miami, Miami, FL, USA
| | | | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Ming Gao
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Jin-Hua Zhang
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
52
|
Zhang H, Zhu K, Zhang R, Guo Y, Wang J, Liu C, Lu X, Zhou Z, Wu W, Zhang F, Song Z, Lin S, Yang C, Li X, Liu Y, Tang Q, Yu X, Xu L, Liu C. Oleic acid-PPARγ-FABP4 loop fuels cholangiocarcinoma colonization in lymph node metastases microenvironment. Hepatology 2024; 80:69-86. [PMID: 38377465 DOI: 10.1097/hep.0000000000000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/24/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND AIMS Lymph node metastasis is a significant risk factor for patients with cholangiocarcinoma, but the mechanisms underlying cholangiocarcinoma colonization in the lymph node microenvironment remain unclear. We aimed to determine whether metabolic reprogramming fueled the adaptation and remodeling of cholangiocarcinoma cells to the lymph node microenvironment. APPROACH AND RESULTS Here, we applied single-cell RNA sequencing of primary tumor lesions and paired lymph node metastases from patients with cholangiocarcinoma and revealed significantly reduced intertumor heterogeneity and syntropic lipid metabolic reprogramming of cholangiocarcinoma after metastasis to lymph nodes, which was verified by pan-cancer single-cell RNA sequencing analysis, highlighting the essential role of lipid metabolism in tumor colonization in lymph nodes. Metabolomics and in vivo CRISPR/Cas9 screening identified PPARγ as a crucial regulator in fueling cholangiocarcinoma colonization in lymph nodes through the oleic acid-PPARγ-fatty acid-binding protein 4 positive feedback loop by upregulating fatty acid uptake and oxidation. Patient-derived organoids and animal models have demonstrated that blocking this loop impairs cholangiocarcinoma proliferation and colonization in the lymph node microenvironment and is superior to systemic inhibition of fatty acid oxidation. PPARγ-regulated fatty acid metabolic reprogramming in cholangiocarcinoma also contributes to the immune-suppressive niche in lymph node metastases by producing kynurenine and was found to be associated with tumor relapse, immune-suppressive lymph node microenvironment, and poor immune checkpoint blockade response. CONCLUSIONS Our results reveal the role of the oleic acid-PPARγ-fatty acid-binding protein 4 loop in fueling cholangiocarcinoma colonization in lymph nodes and demonstrate that PPARγ-regulated lipid metabolic reprogramming is a promising therapeutic target for relieving cholangiocarcinoma lymph node metastasis burden and reducing further progression.
Collapse
Affiliation(s)
- Honghua Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyu Zhou
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenrui Wu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fapeng Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhixiao Song
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shusheng Lin
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caini Yang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuxian Li
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qibin Tang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianhuan Yu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leibo Xu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
53
|
Chen C, Hu H, Li Z, Qi M, Qiu Y, Hu Z, Feng F, Tang W, Diao H, Sun W, Tang Z. Dietary tryptophan improves growth and intestinal health by promoting the secretion of intestinal β-defensins against enterotoxigenic Escherichia coli F4 in weaned piglets. J Nutr Biochem 2024; 129:109637. [PMID: 38574828 DOI: 10.1016/j.jnutbio.2024.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Adequate dietary L-tryptophan (Trp) governs intestinal homeostasis in piglets. However, the defensive role of Trp in the diet against enterotoxigenic Escherichia coli F4 (K88) in pigs is still poorly understood. Here, sixty (6.15 ± 1.52 kg, 24-day-old, Duroc × Landrace × Yorkshire) weaned piglets were used for an E. coli F4 attack test in a 2 × 2 factorial design. The growth (ADG, ADFI, GH), immune factors (IL-10, IgA, IgG, IgM), Trp metabolite 5-HT, intestinal morphology (jejunal and colonic VH), mRNA expression of β-defensins (jejunal BD-127, BD-119, ileal BD-1, BD-127), and abundance of beneficial microorganisms in the colon (Prevotella 9, Lactobacillus, Phascolarctobacterium, Faecalibacterium) were higher in the piglets in the HT (High Trp) and HTK (High Trp, K88) groups than in the LT (Low Trp) and LTK (Low Trp, K88) groups (P<.05), while FCR, diarrhea rate, diarrhea index, serum Trp, Kyn, IDO, D-LA, ET, and abundance of harmful microorganisms in the colon (Spirochaetes, Fusobacteria, Prevotella, Christensenellaceae R7) were lower in the HT and HTK groups than in the LT and LTK groups (P<.05). High Trp reduced the expression of virulence genes (K88 and LT) after E. coli F4 attack (P<.05). The IL-6, TNF-α was lower in the HTK group than in the LT, LTK group (P<.05). In short, a diet containing 0.35% Trp protected piglets from enterotoxigenic E. coli F4 (K88) via Trp metabolism promoting BD expression in the intestinal mucosa, which improved growth and intestinal health.
Collapse
Affiliation(s)
- Chen Chen
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Hong Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhangcheng Li
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Min Qi
- Yunnan Animal Husbandry Station, Kunming 650225, China
| | - Yibin Qiu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhijin Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Fu Feng
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Weizhong Sun
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
54
|
Xing Z, Li X, He ZNT, Fang X, Liang H, Kuang C, Li A, Yang Q. IDO1 Inhibitor RY103 Suppresses Trp-GCN2-Mediated Angiogenesis and Counters Immunosuppression in Glioblastoma. Pharmaceutics 2024; 16:870. [PMID: 39065567 PMCID: PMC11279595 DOI: 10.3390/pharmaceutics16070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is characterized by strong immunosuppression and excessive angiogenesis. Based on existing reports, it can be speculated that the resistance to anti-angiogenic drug vascular endothelial growth factor A (VEGFA) antibody correlates to the induction of novel immune checkpoint indoleamine 2,3-dioxygenase 1 (IDO1), while IDO1 has also been suggested to be related to tumor angiogenesis. Herein, we aim to clarify the potential role of IDO1 in glioma angiogenesis and the mechanism behind it. Bioinformatic analyses showed that the expressions of IDO1 and angiogenesis markers VEGFA and CD34 were positively correlated and increased with pathological grade in glioma. IDO1-overexpression-derived-tryptophan depletion activated the general control nonderepressible 2 (GCN2) pathway and upregulated VEGFA in glioma cells. The tube formation ability of angiogenesis model cells could be inhibited by IDO1 inhibitors and influenced by the activity and expression of IDO1 in condition medium. A significant increase in serum VEGFA concentration and tumor CD34 expression was observed in IDO1-overexpressing GL261 subcutaneous glioma-bearing mice. IDO1 inhibitor RY103 showed positive anti-tumor efficacy, including the anti-angiogenesis effect and upregulation of natural killer cells in GL261 glioma-bearing mice. As expected, the combination of RY103 and anti-angiogenesis agent sunitinib was proved to be a better therapeutic strategy than either monotherapy.
Collapse
Affiliation(s)
- Zikang Xing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xuewen Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China;
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| |
Collapse
|
55
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
56
|
Miao Y, Zhong C, Bao S, Wei K, Wang W, Li N, Bai C, Chen W, Tang H. Impaired tryptophan metabolism by type 2 inflammation in epithelium worsening asthma. iScience 2024; 27:109923. [PMID: 38799558 PMCID: PMC11126962 DOI: 10.1016/j.isci.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Previous researches indicate that tryptophan metabolism is critical to allergic inflammation and that indoleamine 2,3-dioxygenase 1 (IDO1), as a key enzyme, is known for its immunosuppressive properties. Therefore, we are aimed to explore whether tryptophan metabolism, especially IDO1, influences allergic asthma and clarify specific mechanism. With the analysis of clinical data, exploration in cell experiments, and verifying in HDM-induced asthma mice models, we finally found that in allergic asthma, low level of T1 cytokines along with high level of T2 cytokines inhibited the expression of IDO1 in airway epithelium, hampering the kynurenine pathway in tryptophan metabolism and decreasing the level of intracellular kynurenine (Kyn). As an endogenous ligand of aryl hydrocarbon receptor, Kyn regulated the expression of cystathionine-γ-lyase (CTH). Notably, in asthma models, enhancing either IDO1 or H2S relieved asthma, while inhibiting the activity of CTH exacerbated it. IDO1-Kyn-CTH pathway could be a potential target for treatment for allergic asthma.
Collapse
Affiliation(s)
- Yushan Miao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Caiming Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shujun Bao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Kunchen Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
57
|
Sugino KY, Janssen RC, McMahan RH, Zimmerman C, Friedman JE, Jonscher KR. Vertical Transfer of Maternal Gut Microbes to Offspring of Western Diet-Fed Dams Drives Reduced Levels of Tryptophan Metabolites and Postnatal Innate Immune Response. Nutrients 2024; 16:1808. [PMID: 38931163 PMCID: PMC11206590 DOI: 10.3390/nu16121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of Il10 (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of Lactobacillus in GF offspring. Further, the expression of Il10 was downregulated in liver myeloid cells and in LPS-stimulated bone marrow-derived macrophages (BMDM) in adult offspring, suggestive of a hypo-responsive, or tolerant, innate immune response. BMDMs from adult mice lacking AHR in macrophages exhibited a similar tolerogenic response, including diminished expression of Il10. Overall, our study shows that exposure to maternal WD alters microbial metabolites in the offspring that affect AHR signaling, potentially contributing to innate immune hypo-responsiveness and progression of MASLD, highlighting the impact of early life gut dysbiosis on offspring metabolism. Further investigations are warranted to elucidate the complex interplay between maternal diet, gut microbial function, and the development of neonatal innate immune tolerance and potential therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
| | - Rachel H. McMahan
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Chelsea Zimmerman
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
58
|
Zhao Y, Yu J, Zheng C, Zhou B. Establishment of a prognostic model for hypoxia-associated genes in OPSCC and revelation of intercellular crosstalk. Front Immunol 2024; 15:1371365. [PMID: 38887298 PMCID: PMC11181350 DOI: 10.3389/fimmu.2024.1371365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Hypoxia exerts a profound influence on the tumor microenvironment and immune response, shaping treatment outcomes and prognosis. Utilizing consistency clustering, we discerned two hypoxia subtypes in OPSCC bulk sequencing data from GEO. Key modules within OPSCC were identified through weighted gene correlation network analysis (WGCNA). Core modules underwent CIBERSORT immune infiltration analysis and GSEA functional enrichment. Univariate Cox and LASSO analyses were employed to construct prognostic models for seven hypoxia-related genes. Further investigation into clinical characteristics, the immune microenvironment, and TIDE algorithm prediction for immunotherapy response was conducted in high- and low-risk groups. scRNA-seq data were visually represented through TSNE clustering, employing the scissors algorithm to map hypoxia phenotypes. Interactions among cellular subpopulations were explored using the Cellchat package, with additional assessments of metabolic and transcriptional activities. Integration with clinical data unveiled a prevalence of HPV-positive patients in the low hypoxia and low-risk groups. Immunohistochemical validation demonstrated low TDO2 expression in HPV-positive (P16-positive) patients. Our prediction suggested that HPV16 E7 promotes HIF-1α inhibition, leading to reduced glycolytic activity, ultimately contributing to better prognosis and treatment sensitivity. The scissors algorithm effectively segregated epithelial cells and fibroblasts into distinct clusters based on hypoxia characteristics. Cellular communication analysis illuminated significant crosstalk among hypoxia-associated epithelial, fibroblast, and endothelial cells, potentially fostering tumor proliferation and metastasis.
Collapse
Affiliation(s)
| | | | | | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
59
|
Yang Y, Liu X, Liu X, Xie C, Shi J. The role of the kynurenine pathway in cardiovascular disease. Front Cardiovasc Med 2024; 11:1406856. [PMID: 38883986 PMCID: PMC11176437 DOI: 10.3389/fcvm.2024.1406856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.
Collapse
Affiliation(s)
- Yuehang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chiyang Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
60
|
Chen E, Wu J, Huang J, Zhu W, Sun H, Wang X, Lin D, Li X, Shi D, Liu Z, Huang J, Chen M, Xie F, Deng W. FLI1 promotes IFN-γ-induced kynurenine production to impair anti-tumor immunity. Nat Commun 2024; 15:4590. [PMID: 38816360 PMCID: PMC11139667 DOI: 10.1038/s41467-024-48397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC)-mediated immunosuppression within the tumor microenvironment (TME) frequently culminates in the failure of otherwise promising immunotherapies. In this study, we identify tumor-intrinsic FLI1 as a critical mediator in impairing T cell anti-tumor immunity. A mechanistic inquiry reveals that FLI1 orchestrates the expression of CBP and STAT1, facilitating chromatin accessibility and transcriptional activation of IDO1 in response to T cell-released IFN-γ. This regulatory cascade ultimately leads to augmented IDO1 expression, resulting in heightened synthesis of kynurenine (Kyn) in tumor cells. This, in turn, fosters CD8+ T cell exhaustion and regulatory T cell (Treg) differentiation. Intriguingly, we find that pharmacological inhibition of FLI1 effectively obstructs the CBP/STAT1-IDO1-Kyn axis, thereby invigorating both spontaneous and checkpoint therapy-induced immune responses, culminating in enhanced tumor eradication. In conclusion, our findings delineate FLI1-mediated Kyn metabolism as an immune evasion mechanism in NPC, furnishing valuable insights into potential therapeutic interventions.
Collapse
MESH Headings
- Kynurenine/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Animals
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Humans
- Mice
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- STAT1 Transcription Factor/metabolism
- Cell Line, Tumor
- Nasopharyngeal Carcinoma/immunology
- Nasopharyngeal Carcinoma/metabolism
- Nasopharyngeal Carcinoma/genetics
- Nasopharyngeal Carcinoma/pathology
- Nasopharyngeal Carcinoma/drug therapy
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- Mice, Inbred C57BL
- Nasopharyngeal Neoplasms/immunology
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/pathology
- Nasopharyngeal Neoplasms/drug therapy
- Nasopharyngeal Neoplasms/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Tumor Escape/drug effects
- Mice, Knockout
Collapse
Affiliation(s)
- Enni Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jiawei Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jiajia Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wancui Zhu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Haohui Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Dagui Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiaodi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zhiqiao Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jinsheng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China.
| |
Collapse
|
61
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
62
|
Huai M, Wang Y, Li J, Pan J, Sun F, Zhang F, Zhang Y, Xu L. Intelligent nanovesicle for remodeling tumor microenvironment and circulating tumor chemoimmunotherapy amplification. J Nanobiotechnology 2024; 22:257. [PMID: 38755645 PMCID: PMC11097415 DOI: 10.1186/s12951-024-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). At present, despite 5-fluorouracil (5-FU), as a clinical first-line FOLFIRINOX chemo-drug, has achieved significant therapeutic effects. Nevertheless, these unavoidable factors such as low solubility, lack of biological specificity and easy to induce immunosuppressive surroundings formation, severely limit their treatment in PDAC. As an important source of energy for many tumor cells, tryptophan (Trp), is easily degraded to kynurenine (Kyn) by indolamine 2,3- dioxygenase 1 (IDO1), which activates the axis of Kyn-AHR to form special suppressive immune microenvironment that promotes tumor growth and metastasis. However, our research findings that 5-FU can induce effectively immunogenic cell death (ICD) to further treat tumor by activating immune systems, while the secretion of interferon-γ (IFN-γ) re-induce the Kyn-AHR axis activation, leading to poor treatment efficiency. Therefore, a metal matrix protease-2 (MMP-2) and endogenous GSH dual-responsive liposomal-based nanovesicle, co-loading with 5-FU (anti-cancer drug) and NLG919 (IDO1 inhibitor), was constructed (named as ENP919@5-FU). The multifunctional ENP919@5-FU can effectively reshape the tumor immunosuppression microenvironment to enhance the effect of chemoimmunotherapy, thereby effectively inhibiting cancer growth. Mechanistically, PDAC with high expression of MMP-2 will propel the as-prepared nanovesicle to dwell in tumor region via shedding PEG on the nanovesicle surface, effectively enhancing tumor uptake. Subsequently, the S-S bond containing nanovesicle was cut via high endogenous GSH, leading to the continued release of 5-FU and NLG919, thereby enabling circulating chemoimmunotherapy to effectively cause tumor ablation. Moreover, the combination of ENP919@5-FU and PD-L1 antibody (αPD-L1) showed a synergistic anti-tumor effect on the PDAC model with abdominal cavity metastasis. Collectively, ENP919@5-FU nanovesicle, as a PDAC treatment strategy, showed excellent antitumor efficacy by remodeling tumor microenvironment to circulate tumor chemoimmunotherapy amplification, which has promising potential in a precision medicine approach.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yingjie Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Junhao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Jiaxing Pan
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Fang Sun
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Feiyu Zhang
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yi Zhang
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Leiming Xu
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
63
|
Shu G, Chen M, Liao W, Fu L, Lin M, Gui C, Cen J, Lu J, Chen Z, Wei J, Chen W, Wang Y, Zhu J, Zhao T, Liu X, Jing J, Liu GC, Pan Y, Luo J, Zhang J. PABPC1L Induces IDO1 to Promote Tryptophan Metabolism and Immune Suppression in Renal Cell Carcinoma. Cancer Res 2024; 84:1659-1679. [PMID: 38382068 PMCID: PMC11094425 DOI: 10.1158/0008-5472.can-23-2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/02/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
The tumor microenvironment (TME) in renal cell carcinomas (RCC) is marked by substantial immunosuppression and immune resistance despite having extensive T-cell infiltration. Elucidation of the mechanisms underlying immune evasion could help identify therapeutic strategies to boost the efficacy of immune checkpoint blockade (ICB) in RCC. This study uncovered a mechanism wherein the polyadenylate-binding protein PABPC1L modulates indoleamine 2,3-dioxygenase 1 (IDO1), a prospective target for immunotherapy. PABPC1L was markedly upregulated in RCC, and high PABPC1L expression correlated with unfavorable prognosis and resistance to ICB. PABPC1L bolstered tryptophan metabolism by upregulating IDO1, inducing T-cell dysfunction and Treg infiltration. PABPC1L enhanced the stability of JAK2 mRNA, leading to increased JAK2-STAT1 signaling that induced IDO1 expression. Additionally, PABPC1L-induced activation of the JAK2-STAT1 axis created a positive feedback loop to promote PABPC1L transcription. Conversely, loss of PABPC1L diminished IDO1 expression, mitigated cytotoxic T-cell suppression, and enhanced responsiveness to anti-PD-1 therapy in patient-derived xenograft models. These findings reveal the crucial role of PABPC1L in facilitating immune evasion in RCC and indicate that inhibiting PABPC1L could be a potential immunotherapeutic approach in combination with ICB to improve patient outcomes. SIGNIFICANCE PABPC1L functions as a key factor in renal cell carcinoma immune evasion, enhancing IDO1 and impeding T-cell function, and represents a potential target to enhance the efficacy of immune checkpoint blockade therapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/drug therapy
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Janus Kinase 2/metabolism
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/drug therapy
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Tryptophan/metabolism
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guannan Shu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, P.R. China
| | - Minyu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wuyuan Liao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Mingjie Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Chengpeng Gui
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Junjie Cen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jun Lu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhenhua Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jinhuan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yinghan Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiangquan Zhu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Tianxin Zhao
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, P.R. China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiaonan Liu
- Center for Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R. China
| | - Jiajia Jing
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Guo-chang Liu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, P.R. China
| | - Yihui Pan
- Department of Urology, the Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, P.R. China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
64
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
65
|
Dos Santos IL, Mitchell M, Nogueira PAS, Lafita-Navarro MC, Perez-Castro L, Eriom J, Kilgore JA, Williams NS, Guo L, Xu L, Conacci-Sorrell M. Targeting of neuroblastoma cells through Kynurenine-AHR pathway inhibition. FEBS J 2024; 291:2172-2190. [PMID: 38431776 DOI: 10.1111/febs.17109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Neuroblastoma poses significant challenges in clinical management. Despite its relatively low incidence, this malignancy contributes disproportionately to cancer-related childhood mortality. Tailoring treatments based on risk stratification, including MYCN oncogene amplification, remains crucial, yet high-risk cases often confront therapeutic resistance and relapse. Here, we explore the aryl hydrocarbon receptor (AHR), a versatile transcription factor implicated in diverse physiological functions such as xenobiotic response, immune modulation, and cell growth. Despite its varying roles in malignancies, AHR's involvement in neuroblastoma remains elusive. Our study investigates the interplay between AHR and its ligand kynurenine (Kyn) in neuroblastoma cells. Kyn is generated from tryptophan (Trp) by the activity of the enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2). We found that neuroblastoma cells displayed sensitivity to the TDO2 inhibitor 680C91, exposing potential vulnerabilities. Furthermore, combining TDO2 inhibition with retinoic acid or irinotecan (two chemotherapeutic agents used to treat neuroblastoma patients) revealed synergistic effects in select cell lines. Importantly, clinical correlation analysis using patient data established a link between elevated expression of Kyn-AHR pathway genes and adverse prognosis, particularly in older children. These findings underscore the significance of the Kyn-AHR pathway in neuroblastoma progression, emphasizing its potential role as a therapeutic target.
Collapse
MESH Headings
- Humans
- Kynurenine/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/metabolism
- Neuroblastoma/genetics
- Neuroblastoma/drug therapy
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Cell Line, Tumor
- Tryptophan Oxygenase/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/antagonists & inhibitors
- Tretinoin/pharmacology
- Signal Transduction/drug effects
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Igor Lopes Dos Santos
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Mitchell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Dell Medical School, Austin, TX, USA
| | - Pedro A S Nogueira
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyane Eriom
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
66
|
Liu J, Wang T, Zhang W, Huang Y, Wang X, Li Q. Association between Metabolic Reprogramming and Immune Regulation in Digestive Tract Tumors. Oncol Res Treat 2024; 47:273-286. [PMID: 38636467 DOI: 10.1159/000538659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The cancers of the digestive tract, including colorectal cancer (CRC), gastric cancer, and esophageal cancer, are part of the most common cancers as well as one of the most important leading causes of cancer death worldwide. SUMMARY Despite the emergence of immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1/PD-L1) in the past decade, offering renewed optimism in cancer treatment, only a fraction of patients derive benefit from these therapies. This limited efficacy may stem from tumor heterogeneity and the impact of metabolic reprogramming on both tumor cells and immune cells within the tumor microenvironment (TME). The metabolic reprogramming of glucose, lipids, amino acids, and other nutrients represents a pivotal hallmark of cancer, serving to generate energy, reducing equivalent and biological macromolecule, thereby fostering tumor proliferation and invasion. Significantly, the metabolic reprogramming of tumor cells can orchestrate changes within the TME, rendering patients unresponsive to immunotherapy. KEY MESSAGES In this review, we predominantly encapsulate recent strides on metabolic reprogramming among digestive tract cancer, especially CRC, in the TME with a focus on how these alterations influence anti-tumor immunity. Additionally, we deliberate on potential strategies to address these abnormities in metabolic pathways and the viability of combined therapy within the realm of anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
67
|
Jin E, Yin Z, Zheng X, Yan C, Xu K, Eunice FY, Gao Y. Potential of Targeting TDO2 as the Lung Adenocarcinoma Treatment. J Proteome Res 2024; 23:1341-1350. [PMID: 38421152 DOI: 10.1021/acs.jproteome.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Tryptophan catabolism plays an important role in the metabolic reconnection in cancer cells to support special demands of tumor initiation and progression. The catabolic product of the tryptophan pathway, kynurenine, has the capability of suppressing the immune reactions of tumor cells. In this study, we conducted internal and external cohort studies to reveal the importance of tryptophan 2,3-dioxygenase (TDO) for lung adenocarcinoma (LUAD). Our study further demonstrated that the TDO2 expression was associated with the proliferation, survival, and invasion of LUAD cells, and targeting TDO2 for LUAD tumors could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Er Jin
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Zhidong Yin
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009 Zhejiang Province, China
| | - Xiuxiu Zheng
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Chenhong Yan
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Kai Xu
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Fouejio Yemele Eunice
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Major Chronic Disease in the Elderly, Hangzhou 310006 Zhejiang Province, China
| |
Collapse
|
68
|
Maisonial-Besset A, Kryza D, Kopka K, Levesque S, Moreau E, Wenzel B, Chezal JM. Improved automated one-pot two-step radiosynthesis of (S)-[ 18F]FETrp, a radiotracer for PET imaging of indoleamine 2,3-dioxygenase 1 (IDO1). EJNMMI Radiopharm Chem 2024; 9:28. [PMID: 38564046 PMCID: PMC10987429 DOI: 10.1186/s41181-024-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND (S)-[18F]FETrp is a promising PET radiotracer for imaging IDO1 activity, one of the main enzymes involved in the tryptophan metabolism that plays a key role in several diseases including cancers. To date, the radiosynthesis of this tryptophan analogue remains highly challenging due to partial racemization occurring during the nucleophilic radiofluorination step. This work aims to develop a short, epimerization-free and efficient automated procedure of (S)-[18F]FETrp from a corresponding enantiopure tosylate precursor. RESULTS Enantiomerically pure (S)- and (R)-FETrp references as well as tosylate precursors (S)- and (R)-3 were obtained from corresponding Na-Boc-(L and D)-tryptophan in 2 and 4 steps, respectively. Manual optimisation of the radiolabelling conditions resulted in > 90% radiochemical conversion with more than 99% enantiomeric purity. Based on these results, the (S)-[18F]FETrp radiosynthesis was fully automated on a SynChrom R&D EVOI module to produce the radiotracer in 55.2 ± 7.5% radiochemical yield, 99.9% radiochemical purity, 99.1 ± 0.5% enantiomeric excess, and molar activity of 53.2 ± 9.3 GBq/µmol (n = 3). CONCLUSIONS To avoid racemisation and complicated purification processes, currently encountered for the radiosynthesis of (S)-[18F]FETrp, we report herein significant improvements, including a versatile synthesis of enantiomerically pure tosylate precursor and reference compound and a convenient one-pot two-step automated procedure for the radiosynthesis of (S)-[18F]FETrp. This optimised and robust production method could facilitate further investigations of this relevant PET radiotracer for imaging IDO1 activity.
Collapse
Affiliation(s)
- Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
| | - David Kryza
- Imthernat, LAGEPP, CNRS UMR 5007, Université de Lyon, Hospices Civils de Lyon, Lyon, F-69622, France
- Lumen Nuclear Medicine group, Hospices Civils de Lyon et Centre Léon Bérard, Lyon, F-69008, France
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Sophie Levesque
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, F-63011, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
| | - Barbara Wenzel
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318, Leipzig, Germany
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
69
|
Yu L, Xu L, Chen Y, Rong Y, Zou Y, Ge S, Wu T, Lai Y, Xu Q, Guo W, Liu W. IDO1 Inhibition Promotes Activation of Tumor-intrinsic STAT3 Pathway and Induces Adverse Tumor-protective Effects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1232-1243. [PMID: 38391297 DOI: 10.4049/jimmunol.2300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Pharmacological inhibition of IDO1 exhibits great promise as a strategy in cancer therapy. However, the failure of phase III clinical trials has raised the pressing need to understand the underlying reasons for this outcome. To gain comprehensive insights into the reasons behind the clinical failure of IDO1 inhibitors, it is essential to investigate the entire tumor microenvironment rather than focusing solely on individual cells or relying on knockout techniques. In this study, we conducted single-cell RNA sequencing to determine the overall response to apo-IDO1 inhibitor administration. Interestingly, although apo-IDO1 inhibitors were found to significantly activate intratumoral immune cells (mouse colon cancer cell CT26 transplanted in BALB/C mice), such as T cells, macrophages, and NK cells, they also stimulated the infiltration of M2 macrophages. Moreover, these inhibitors prompted monocytes and macrophages to secrete elevated levels of IL-6, which in turn activated the JAK2/STAT3 signaling pathway in tumor cells. Consequently, this activation enables tumor cells to survive even in the face of heightened immune activity. These findings underscore the unforeseen adverse effects of apo-IDO1 inhibitors on tumor cells and highlight the potential of combining IL-6/JAK2/STAT3 inhibitors with apo-IDO1 inhibitors to improve their clinical efficacy.
Collapse
Affiliation(s)
- Longbo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lingyan Xu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunjie Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yicheng Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Tiancong Wu
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
70
|
Chuang TD, Ton N, Rysling S, Quintanilla D, Boos D, Khorram O. Therapeutic effects of in vivo administration of an inhibitor of tryptophan 2,3-dioxygenase (680c91) for the treatment of fibroids: a preclinical study. Fertil Steril 2024; 121:669-678. [PMID: 38072367 PMCID: PMC10978289 DOI: 10.1016/j.fertnstert.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Fibroids are characterized by marked overexpression of tryptophan 2,3 dioxygenase (TDO2). The objective of this study was to determine the effectiveness of in vivo administration of an inhibitor of TDO2 (680C91) on fibroid size and gene expression. DESIGN Animal and ex vivo human study. SETTING Academic Research Institution. SUBJECTS Severe combined immunodeficiency mice bearing human fibroid xenografts treated with vehicle and TDO2 inhibitor. INTERVENTION Daily intraperitoneal administration of 680C91 or vehicle for 2 months and in vitro studies with fibroid explants. MAIN OUTCOME MEASURES Tumor weight and gene expression profile of xenografts and in vitro mechanistic experiments using fibroid explants. RESULTS Compound 680C91 was well-tolerated with no effects on blood chemistry and body weight. Treatment of mice with 680C91 resulted in 30% reduction in the weight of fibroid xenografts after 2 months of treatment and as expected lower levels of kynurenine, the byproduct of tryptophan degradation and an endogenous ligand of aryl hydrocarbon receptor (AhR) in the xenografts. The expression of cytochrome P450 family 1 subfamily B member 1 (CYP1B1), transforming growth factor β3 (TGF-β3), fibronectin (FN1), cyclin-dependent kinase 2 (CDK2), E2F transcription factor 1 (E2F1), interleukin 8 (IL-8) and secreted protein acidic and cysteine rich (SPARC) mRNA were lower in the xenografts of mice treated with 680C91 compared with vehicle controls. Similarly, the protein abundance of collagen, FN1, CYP1B1, and SPARC were lower in the xenografts of 680C9- treated mice compared with vehicle controls. Immunohistochemical analysis of xenografts indicated decreased expression of collagen, Ki67 and E2F1 but no significant changes in cleaved caspase 3 expression in mice treated with 680C91. The levels of kynurenine in the xenografts showed a direct correlation with the tumor weight and FN1 levels. In vitro studies with fibroid explants showed a significant induction of CYP1B1, TGF-β3, FN1, CDK2, E2F1, IL8, and SPARC mRNA by tryptophan, which could be blocked by cotreatment with 680C91 and the AhR antagonist CH-223191. CONCLUSION The results indicate that correction of aberrant tryptophan catabolism in fibroids could be an effective treatment through its effect to reduce cell proliferation and extracellular matrix accumulation.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, California; The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, California; The Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
71
|
Wu D, Wang G, Wen S, Liu X, He Q. ARID5A stabilizes Indoleamine 2,3-dioxygenase expression and enhances CAR T cell exhaustion in colorectal cancer. Transl Oncol 2024; 42:101900. [PMID: 38316094 PMCID: PMC10862068 DOI: 10.1016/j.tranon.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Resistance to chimeric antigen receptor (CAR) T-cell therapy remains a significant challenge in the treatment of solid tumors. This resistance is attributed to various factors, including antigen loss, immunosuppressive tumor microenvironment, and upregulated checkpoint molecules. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that promotes immune escape in tumors. In this study, we investigated the role of ARID5A (AT-rich interactive domain 5A) in resistance to CAR-T cell therapy. Our findings revealed that ARID5A upregulation in tumor cells induces T cell exhaustion and immune evasion. Mechanistically, ARID5A plays a crucial role in resistance to CAR-T cell therapy by stabilizing IDO1 mRNA, leading to upregulation of IDO1 expression. Elevated IDO1 expression facilitates the conversion of tryptophan to kynurenine, which contributes to CAR-T cell exhaustion. Moreover, kynurenine accumulation within CAR-T cells activates the aryl hydrocarbon receptor (AhR), further exacerbating the exhaustion phenotype. Importantly, we demonstrated that targeting the ARID5A-IDO1-AhR axis using AhR or IDO1 inhibitors effectively alleviated T cell exhaustion induced by ARID5A. These findings suggest that modulating the ARID5A-IDO1-AhR axis may represent a promising therapeutic strategy to overcome CAR T-cell therapy resistance in solid tumors and enhance treatment efficacy.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Jinzhou Medical University, China
| | - Guijun Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Jinzhou Medical University, China
| | | | - Xian Liu
- Jinzhou Medical University, China
| | - Qiang He
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Jinzhou Medical University, China.
| |
Collapse
|
72
|
Jia C, Wang Y, Wang Y, Cheng M, Dong W, Wei W, Zhao Y, Chang Y. TDO2-overexpressed Dendritic Cells Possess Tolerogenicity and Ameliorate Collagen-induced Arthritis by Modulating the Th17/Regulatory T Cell Balance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:941-950. [PMID: 38294261 DOI: 10.4049/jimmunol.2300442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Tolerogenic dendritic cells are promising for restoring immune homeostasis and may be an alternative therapy for autoimmune diseases such as rheumatoid arthritis. The kynurenine pathway is a vital mechanism that induces tolerance in dendritic cells (DCs). Tryptophan 2,3-dioxygenase (TDO2) is an important rate-limiting enzyme in the kynurenine pathway and participates in immune regulation. However, the role of TDO2 in shaping the tolerogenic phenotypes of DCs remains unclear. In this study, we investigated the effects and mechanisms of TDO2-overexpressed DCs in regulating the T cell balance both in vivo and in vitro. TDO2-overexpressed DC2.4 and TDO2-/- mouse bone marrow-derived DCs (BMDCs) were generated to verify the role of TDO2 in DC maturation and functionality. TDO2 overexpression in BMDCs via PGE2 treatment exhibited an immature phenotype and tolerogenic state, whereas TDO2-/- BMDCs exhibited a mature phenotype and a proinflammatory state. Furthermore, transplant of TDO2-overexpressed BMDCs alleviated collagen-induced arthritis severity in mice, which was correlated with a reduction in Th17 populations and an increase in regulatory T cells. Collectively, these results indicate that TDO2 plays an important role in the tolerogenic phenotype and may be a promising target for the generation tolerogenic DCs for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Chengyan Jia
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Yueye Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Yi Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Meng Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Weibo Dong
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|
73
|
Olszewska AM, Nowak JI, Myszczynski K, Słominski A, Żmijewski MA. Dissection of an impact of VDR and RXRA on the genomic activity of 1,25(OH) 2D 3 in A431 squamous cell carcinoma. Mol Cell Endocrinol 2024; 582:112124. [PMID: 38123121 PMCID: PMC10872374 DOI: 10.1016/j.mce.2023.112124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Human skin is the natural source, place of metabolism, and target for vitamin D3. The classical active form of vitamin D3, 1,25(OH)2D3, expresses pluripotent properties and is intensively studied in cancer prevention and therapy. To define the specific role of vitamin D3 receptor (VDR) and its co-receptor retinoid X receptor alpha (RXRA) in genomic regulation, VDR or RXRA genes were silenced in the squamous cell carcinoma cell line A431 and treated with 1,25(OH)2D3 at long incubation time points 24 h/72 h. Extending the incubation time of A431 WT (wild-type) cells with 1,25(OH)2D3 resulted in a two-fold increase in DEGs (differentially expressed genes) and a change in the amount of downregulated from 37% to 53%. VDR knockout led to a complete loss of 1,25(OH)2D3-induced genome-wide gene regulation at 24 h time point, but after 72 h, 20 DEGs were found, of which 75% were downregulated, and most of them belonged to the gene ontology group "immune response". This may indicate the existence of an alternative, secondary response to 1,25(OH)2D3. In contrast, treatment of A431 ΔRXRA cells with 1,25(OH)2D3 for 24 h only partially affected DEGs, suggesting RXRA-independent regulation. Interestingly, overexpression of classic 1,25(OH)2D3 targets, like CYP24A1 (family 24 of subfamily A of cytochrome P450 member 1) or CAMP (cathelicidin antimicrobial peptide) was found to be RXRA-independent. Also, immunofluorescence staining of A431 WT cells revealed partial VDR/RXRA colocalization after 24 h and 72 h 1,25(OH)2D3 treatment. Comparison of transcriptome changes induced by 1,25(OH)2D3 in normal keratinocytes vs. cancer cells showed high cell type specific expression pattern with only a few genes commonly regulated by 1,25(OH)2D3. Activation of the genomic pathway at least partially reversed the expression of cancer-related genes, forming a basis for anti-cancer activates of 1,25(OH)2D3. In summary, VDR or RXRA independent genomic activities of 1,25(OH)2D3 suggest the involvement of alternative factors, opening new challenges in this field.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland
| | - Kamil Myszczynski
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1aDebinki, 80-211 Gdansk, Poland
| | - Andrzej Słominski
- Department of Dermatology, University of Alabama at Birmingham, AL 35292, USA; Birmingham Veteran Administration Medical Center, Birmingham, AL 35292, USA
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland.
| |
Collapse
|
74
|
Banerjee S, Ansari AA, Upadhyay SP, Mettman DJ, Hibdon JR, Quadir M, Ghosh P, Kambhampati A, Banerjee SK. Benefits and Pitfalls of a Glycosylation Inhibitor Tunicamycin in the Therapeutic Implication of Cancers. Cells 2024; 13:395. [PMID: 38474359 PMCID: PMC10930662 DOI: 10.3390/cells13050395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The aberrant glycosylation is a hallmark of cancer progression and chemoresistance. It is also an immune therapeutic target for various cancers. Tunicamycin (TM) is one of the potent nucleoside antibiotics and an inhibitor of aberrant glycosylation in various cancer cells, including breast cancer, gastric cancer, and pancreatic cancer, parallel with the inhibition of cancer cell growth and progression of tumors. Like chemotherapies such as doxorubicin (DOX), 5'fluorouracil, etoposide, and cisplatin, TM induces the unfolded protein response (UPR) by blocking aberrant glycosylation. Consequently, stress is induced in the endoplasmic reticulum (ER) that promotes apoptosis. TM can thus be considered a potent antitumor drug in various cancers and may promote chemosensitivity. However, its lack of cell-type-specific cytotoxicity impedes its anticancer efficacy. In this review, we focus on recent advances in our understanding of the benefits and pitfalls of TM therapies in various cancers, including breast, colon, and pancreatic cancers, and discuss the mechanisms identified by which TM functions. Finally, we discuss the potential use of nano-based drug delivery systems to overcome non-specific toxicity and enhance the therapeutic efficacy of TM as a targeted therapy.
Collapse
Affiliation(s)
- Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA; (A.A.A.); (S.P.U.); (D.J.M.); (J.R.H.); (A.K.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Affan A. Ansari
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA; (A.A.A.); (S.P.U.); (D.J.M.); (J.R.H.); (A.K.)
| | - Sunil P. Upadhyay
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA; (A.A.A.); (S.P.U.); (D.J.M.); (J.R.H.); (A.K.)
| | - Daniel J. Mettman
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA; (A.A.A.); (S.P.U.); (D.J.M.); (J.R.H.); (A.K.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Pathology Department, City VA Medical Center, Kansas City, MO 64128, USA
| | - Jamie R. Hibdon
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA; (A.A.A.); (S.P.U.); (D.J.M.); (J.R.H.); (A.K.)
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58108, USA; (M.Q.); (P.G.)
| | - Pratyusha Ghosh
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58108, USA; (M.Q.); (P.G.)
| | - Anjali Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA; (A.A.A.); (S.P.U.); (D.J.M.); (J.R.H.); (A.K.)
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA; (A.A.A.); (S.P.U.); (D.J.M.); (J.R.H.); (A.K.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
75
|
Gravina AG, Pellegrino R, Esposito A, Cipullo M, Romeo M, Palladino G, Iodice P, Federico A, Troiani T. The JAK-STAT Pathway as a Therapeutic Strategy in Cancer Patients with Immune Checkpoint Inhibitor-Induced Colitis: A Narrative Review. Cancers (Basel) 2024; 16:611. [PMID: 38339367 PMCID: PMC10854551 DOI: 10.3390/cancers16030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Immunotherapy has emerged as a pivotal component in the treatment of various malignancies, encompassing lung, skin, gastrointestinal, and head and neck cancers. The foundation of this therapeutic approach lies in immune checkpoint inhibitors (ICI). While ICIs have demonstrated remarkable efficacy in impeding the neoplastic progression of these tumours, their use may give rise to substantial toxicity, notably in the gastrointestinal domain, where ICI colitis constitutes a significant aspect. The optimal positioning of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors in the therapeutic management of ICI colitis remains unclear. Numerous reports have highlighted notable improvements in ICI colitis through the application of pan-JAK-STAT inhibitors, with tofacitinib, in particular, reporting evident clinical remission of colitis. The precise mechanism by which JAK-STAT inhibitors may impact the pathogenetic process of ICI colitis remains inadequately understood. However, there is speculation regarding their potential role in modulating memory resident CD8+ T lymphocytes. The elucidation of this mechanism requires further extensive and robust evidence, and ongoing JAK-STAT-based trials are anticipated to contribute valuable insights.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Alfonso Esposito
- Oncology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Marina Cipullo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Mario Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Giovanna Palladino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Patrizia Iodice
- Oncology Division, AORN Ospedali Dei Colli, Monaldi Hospital, Via L. Bianchi, 80131 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Teresa Troiani
- Oncology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| |
Collapse
|
76
|
Wu R, Wang D, Cheng L, Su R, Li B, Fan C, Gao C, Wang C. Impaired immune tolerance mediated by reduced Tfr cells in rheumatoid arthritis linked to gut microbiota dysbiosis and altered metabolites. Arthritis Res Ther 2024; 26:21. [PMID: 38218985 PMCID: PMC10787489 DOI: 10.1186/s13075-023-03260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Patients with rheumatoid arthritis (RA) showed impaired immune tolerance characterized by reduced follicular regulatory T (Tfr) cells, and they also exhibited altered gut microbiotas and their metabolites in RA. However, the association of gut microbiotas and their metabolites with the immune tolerance mediated by Tfr cells in RA remains unclear. METHODS Peripheral blood and stool samples were collected from 32 new-onset RA patients and 17 healthy controls (HCs) in the Second Hospital of Shanxi Medical University between January 2022 and June 2022. The peripheral blood was used to detect the circulating regulatory T (Treg), helper T(Th)17, Tfr, and follicular helper T (Tfh) cells by modified flow cytometry. The stool samples were used to analyze the gut microbiotas and their metabolites via 16S rDNA sequencing and metabolomic profiling. We aimed to characterize the gut microbiotas and their metabolites in RA and identified their association with Tfr cell-mediated immune tolerance. RESULTS The new-onset RA demonstrated reduced Treg and Tfr cells, associated with the disease activity and autoantibodies. There were significant differences in gut microbiotas between the two groups as the results of β diversity analysis (P = 0.039) including 21 differential gut microbiotas from the phylum to genus levels. In which, Ruminococcus 2 was associated with the disease activity and autoantibodies of RA, and it was identified as the potential biomarker of RA [area under curve (AUC) = 0.782, 95% confidence interval (CI) = 0.636-0.929, P = 0.001]. Eleven differential metabolites were identified and participated in four main pathways related to RA. Arachidonic acid might be the potential biomarker of RA (AUC = 0.724, 95% CI = 0.595-0.909, P = 0.038), and it was the core metabolite as the positive association with six gut microbiotas enriched in RA. The reduced Tfr cells were associated with the altered gut microbiotas and their metabolites including the Ruminococcus 2, the arachidonic acid involved in the biosynthesis of unsaturated fatty acid pathway and the 3-methyldioxyindole involved in the tryptophan metabolism pathway. CONCLUSION The breakdown of immune tolerance mediated by reduced Tfr cells was associated with the altered gut microbiotas and their metabolites implying the possible mechanism of RA pathogenesis from the perspective of microecology-metabolism-immune.
Collapse
Affiliation(s)
- Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Dongming Wang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chunxue Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
77
|
Del Sole R, Stomeo T, Mergola L. Disposable Molecularly Imprinted Polymer-Modified Screen-Printed Electrodes for Rapid Electrochemical Detection of l-Kynurenine in Human Urine. Polymers (Basel) 2023; 16:3. [PMID: 38201667 PMCID: PMC10780426 DOI: 10.3390/polym16010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
l-Kynurenine (l-Kyn) is an endogenous metabolite produced in the catabolic route of l-Tryptophan (l-Trp), and it is a potential biomarker of several immunological disorders. Thus, the development of a fast and cheap technology for the specific detection of l-Kyn in biological fluids is of great relevance, especially considering its recent correlation with SARS-CoV-2 disease progression. Herein, a disposable screen-printed electrode based on a molecularly imprinted polymer (MIP) has been constructed: the o-Phenylenediamine monomer, in the presence of l-Kyn as a template with a molar ratio of monomer/template of 1/4, has been electropolymerized on the surface of a screen-printed carbon electrode (SPCE). The optimized kyn-MIP-SPCE has been characterized via cyclic voltammetry (CV), using [Fe(CN)6)]3-/4- as a redox probe and a scanning electron microscopy (SEM) technique. After the optimization of various experimental parameters, such as the number of CV electropolymerization cycles, urine pretreatment, electrochemical measurement method and incubation period, l-Kyn has been detected in standard solutions via square wave voltammetry (SWV) with a linear range between 10 and 100 μM (R2 = 0.9924). The MIP-SPCE device allowed l-Kyn detection in human urine in a linear range of 10-1000 μM (R2 = 0.9902) with LOD and LOQ values of 1.5 and 5 µM, respectively. Finally, a high selectivity factor α (5.1) was calculated for l-Kyn toward l-Trp. Moreover, the Imprinting Factor obtained for l-Kyn was about seventeen times higher than the IF calculated for l-Trp. The developed disposable sensing system demonstrated its potential application in the biomedical field.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, Via per Monteroni Km 1, 73100 Lecce, Italy;
| | - Tiziana Stomeo
- Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, Italy;
| | - Lucia Mergola
- Department of Engineering for Innovation, University of Salento, Via per Monteroni Km 1, 73100 Lecce, Italy;
| |
Collapse
|
78
|
Wiśnicki K, Donizy P, Hałoń A, Wawrzonkowski P, Janczak D, Krajewska M, Banasik M. Indoleamine 2,3-Dioxygenase 1 (IDO1) in Kidney Transplantation: A Guardian against Rejection. J Clin Med 2023; 12:7531. [PMID: 38137602 PMCID: PMC10743959 DOI: 10.3390/jcm12247531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Kidney transplantation is a crucial treatment for end-stage kidney disease, with immunosuppressive drugs helping to reduce acute rejection rates. However, kidney graft longevity remains a concern. This study explores the role of indoleamine 2,3-dioxygenase 1 (IDO1) in kidney transplant immunology. IDO1 breaks down tryptophan, affecting immune cell behavior, primarily T-cells. The research focuses on both cellular and antibody-mediated immune responses, often causing graft damage. The study assessed IDO1 expression in renal transplant biopsies from patients with graft function decline, examining its connection to clinical parameters. A total of 121 biopsy samples were evaluated for IDO1 expression using immunohistochemistry. Patients were categorized as IDO1(+) positive or IDO1(-) negative based on immunoreactivity in tubular epithelium. Results showed a significant link between IDO1 expression and rejection incidence. IDO1(+) positive patients had lower rejection rates (32.9%) compared to IDO1(-) negative ones (62.2%) [p = 0.0017], with substantial differences in antibody-mediated rejection (AMR) (5.2% vs. 20%) [p = 0.0085] and T-cell mediated rejection (TCMR) (31.6% vs. 57.8%). These associations suggest that IDO1 may play a protective role in kidney transplant rejection. IDO1 modulation could offer novel therapeutic avenues to enhance graft survival. The study underscores IDO1 as a potential marker for rejection risk assessment, with its potential applications in personalized interventions and improved patient outcomes. Further research is needed to fully comprehend the mechanisms behind IDO1's immunomodulatory functions and its potential clinical translation.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Patryk Wawrzonkowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| |
Collapse
|
79
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-to-osteoblast transition generates an immunosuppressive bone tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569496. [PMID: 38076845 PMCID: PMC10705502 DOI: 10.1101/2023.11.30.569496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.
Collapse
|
80
|
Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK, Luke JJ. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst 2023; 115:1278-1293. [PMID: 37348864 PMCID: PMC10637035 DOI: 10.1093/jnci/djad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Immunotherapy combinations are being investigated to expand the benefit of immune checkpoint blockade across many cancer types. Radiation combinations, in particular using stereotactic body radiotherapy, are of keen interest because of underlying mechanistic rationale, safety, and availability as a standard of care in certain cancers. In addition to direct tumor cytotoxicity, radiation therapy has immunomodulatory effects such as induction of immunogenic cell death, enhancement of antigen presentation, and expansion of the T-cell receptor repertoire as well as recruitment and increased activity of tumor-specific effector CD8+ cells. Combinations of radiation with cytokines and/or chemokines and anti-programmed death 1 and anticytotoxic T-lymphocyte antigen 4 therapies have demonstrated safety and feasibility, as well as the potential to improve long-term outcomes and possibly induce out of irradiated field or abscopal responses. Novel immunoradiotherapy combinations represent a promising therapeutic approach to overcome radioresistance and further enhance systemic immunotherapy. Potential benefits include reversing CD8+ T-cell exhaustion, inhibiting myeloid-derived suppressor cells, and reversing M2 macrophage polarization as well as decreasing levels of colony-stimulating factor-1 and transforming growth factor-β. Here, we discuss current data and mechanistic rationale for combining novel immunotherapy agents with radiation therapy.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uzoma K Iheagwara
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Olson
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Heath K Skinner
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
81
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
82
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
83
|
Simpson CE, Ambade AS, Harlan R, Roux A, Aja S, Graham D, Shah AA, Hummers LK, Hemnes AR, Leopold JA, Horn EM, Berman-Rosenzweig ES, Grunig G, Aldred MA, Barnard J, Comhair SAA, Tang WHW, Griffiths M, Rischard F, Frantz RP, Erzurum SC, Beck GJ, Hill NS, Mathai SC, Hassoun PM, Damico RL. Kynurenine pathway metabolism evolves with development of preclinical and scleroderma-associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L617-L627. [PMID: 37786941 PMCID: PMC11068393 DOI: 10.1152/ajplung.00177.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023] Open
Abstract
Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.
Collapse
Affiliation(s)
- Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Robert Harlan
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Aurelie Roux
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Susan Aja
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - David Graham
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Ami A Shah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Laura K Hummers
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Evelyn M Horn
- Division of Cardiology, Department of Medicine, Cornell University Medical Center, New York, New York, United States
| | - Erika S Berman-Rosenzweig
- Division of Pediatric Cardiology, Columbia University Medical Center/NewYork-Presbyterian Hospital, New York, New York, United States
| | - Gabriele Grunig
- Divisions of Environmental and Pulmonary Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - John Barnard
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Suzy A A Comhair
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - W H Wilson Tang
- Division of Heart Failure and Transplant Medicine, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, United States
| | - Megan Griffiths
- Division of Pediatric Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Franz Rischard
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Robert P Frantz
- Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Gerald J Beck
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Nicholas S Hill
- Pulmonary, Critical Care and Sleep Division, Tufts University, Boston, Massachusetts, United States
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
84
|
Zou X, Zhao D, Wen X, Chen F. NLG-919 combined with cisplatin to enhance inhibitory effect on cell migration and invasion via IDO1-Kyn-AhR pathway in human nasopharyngeal carcinoma cell. Can J Physiol Pharmacol 2023; 101:599-609. [PMID: 37459654 DOI: 10.1139/cjpp-2023-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
As a common aggressive head and neck cancer, nasopharyngeal carcinoma (NPC) received cisplatin treatment as a first-line chemotherapy. Platinum-induced resistance is a major limitation of current treatment strategy in the advanced NPC. Increased indoleamine 2,3-dioxygenase (IDO1) activities are found in cisplatin-resistant NPC cells versus cisplatin-sensitive NPC cells. As an IDO1 immunosuppressant, NLG-919 has entered clinical phase I to treat advanced solid tumors. To reverse cisplatin resistance, we investigated the combinatory application of cisplatin and NLG-919 in NPC treatment. In vitro biological studies on cisplatin-resistant and cisplatin-sensitive NPC cells were taken to imply that the combination of NLG-919 and cisplatin got a stronger impact on the induction of cell apoptosis and the inhibition of cell migration, exploring superior effect of antitumor over single drug. We proved that the mechanism of the combined therapy could inhibit the activity of IDO1, blocking amino acid tryptophan conversion to kynurenine through the kynurenine pathway, which further inhibited the aryl hydrocarbon receptor expression. Our study underscored the combination of cisplatin and NLG-919 as a potent therapeutic way for the reversal of cisplatin resistance.
Collapse
Affiliation(s)
- Xiaofeng Zou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Deming Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xin Wen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
85
|
Sin R, Sotogaku N, Ohnishi YN, Shuto T, Kuroiwa M, Kawahara Y, Sugiyama K, Murakami Y, Kanai M, Funakoshi H, Chakraborti A, Bibb JA, Nishi A. Inhibition of STAT-mediated cytokine responses to chemically-induced colitis prevents inflammation-associated neurobehavioral impairments. Brain Behav Immun 2023; 114:173-186. [PMID: 37625556 DOI: 10.1016/j.bbi.2023.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Depression can be associated with chronic systemic inflammation, and production of peripheral proinflammatory cytokines and upregulation of the kynurenine pathway have been implicated in pathogenesis of depression. However, the mechanistic bases for these comorbidities are not yet well understood. As tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), which convert tryptophan to kynurenine, are rate-limiting enzymes of the kynurenine pathway, we screened TDO or IDO inhibitors for effects on the production of proinflammatory cytokines in a mouse macrophage cell line. The TDO inhibitor 680C91 attenuated LPS-induced pro-inflammatory cytokines including IL-1β and IL-6. Surprisingly, this effect was TDO-independent, as it occurred even in peritoneal macrophages from TDO knockout mice. Instead, the anti-inflammatory effects of 680C91 were mediated through the suppression of signal transducer and activator of transcription(STAT) signaling. Furthermore, 680C91 suppressed production of proinflammatory cytokines and STAT signaling in an animal model of inflammatory bowel disease. Specifically, 680C91 effectively attenuated acute phase colon cytokine responses in male mice subjected to dextran sulfate sodium (DSS)-induced colitis. Interestingly, this treatment also prevented the development of anxiodepressive-like neurobehaviors in DSS-treated mice during the recovery phase. The ability of 680C91 to prevent anxiodepressive-like behavior in response to chemically-induced colitis appeared to be due to rescue of attenuated dopamine responses in the nucleus accumbens. Thus, inhibition of STAT-mediated, but TDO-independent proinflammatory cytokines in macrophages can prevent inflammation-associated anxiety and depression. Identification of molecular mechanisms involved may facilitate the development of new treatments for gastrointestinal-neuropsychiatric comorbidity.
Collapse
Affiliation(s)
- Ryusuke Sin
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Naoki Sotogaku
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yoshinori N Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Keita Sugiyama
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Masaaki Kanai
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Hiroshi Funakoshi
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Ayanabha Chakraborti
- Department of Translational Neuroscience, University of Arizona College of Medicine in Phoenix, Phoenix, AZ 85004-2230, USA
| | - James A Bibb
- Department of Translational Neuroscience, University of Arizona College of Medicine in Phoenix, Phoenix, AZ 85004-2230, USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan.
| |
Collapse
|
86
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
87
|
León-Letelier RA, Dou R, Vykoukal J, Sater AHA, Ostrin E, Hanash S, Fahrmann JF. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Front Oncol 2023; 13:1256769. [PMID: 37876966 PMCID: PMC10591110 DOI: 10.3389/fonc.2023.1256769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression. These advancements in our understanding of the tumor promotive role of the KP have led to the conception of novel therapeutic strategies to target the KP pathway for anti-cancer effects and reversal of immune escape. This review aims to 1) highlight the known biological functions of key enzymes in the KP, and 2) provide a comprehensive overview of existing and emerging therapies aimed at targeting discrete enzymes in the KP for anti-cancer treatment.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Hussein Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
88
|
Zheng Y, Wang X, Yang X, Xing N. Single-cell RNA sequencing reveals the cellular and molecular characteristics of high-grade and metastatic bladder cancer. Cell Oncol (Dordr) 2023; 46:1415-1427. [PMID: 37170046 DOI: 10.1007/s13402-023-00820-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE Metastatic bladder cancer (BC) has the highest somatic mutation frequency and recurrence rate of all tumors. However, the cellular and molecular characteristics of BC remain unclear. METHODS We performed single-cell RNA sequencing (scRNA-seq) on the samples of paracancerous normal tissue (PNT), primary tumor (PT) and lymph node metastasis (LNM). The proportions and gene expression profiles of different cell types in the tumor microenvironment (TME) were investigated. RESULTS In total, 50,158 cells were classified into six populations. Malignant cells of PT and LNM exhibited large mutant DNA fragments, while the cell phenotypes and gene expression profiles differed during differentiation. Metastasis was associated with a poorer prognosis than PT. Tumor-associated stromal cells and inhibitory immune cells were the main cell populations in PT and LNM. Cell-cell communication analysis revealed the roles of signaling pathways of inflammatory cancer-associated fibroblast (iCAF) and tumor-associated macrophage (TAM) in exhaustion of T cells. In addition, iCAF may recruit TAM to promote formation of the TME earlier than the differentiation of tumor cells. CONCLUSION This study through scRNA-seq enhanced our understanding of new features about the cellular and molecular similarities and differences of high-grade and metastatic bladder cancer, which might provide potential therapeutic targets in future treatment.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, No. 56, Xinjiang South Road, Yingze street, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Xin Wang
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Yingze street, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Yingze street, Yingze District, Taiyuan City, 030000, Shanxi Province, China.
| | - Nianzeng Xing
- Department of Urology and State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, 100021, China
- Department of Urology, Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030013, Shanxi Province, China
| |
Collapse
|
89
|
Bao MF, Yang XN, Wu J, Liu JX, Cai XH. Discovery and biological evaluation of a new type of dual inhibitors of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase from ethnomedicinal plant Dactylicapnos scandens. PHYTOCHEMISTRY 2023; 214:113794. [PMID: 37499850 DOI: 10.1016/j.phytochem.2023.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The root of Dactylicapnos scandens (D.Don.) Hutch (Papaveraceae), one of the most famous ethno-medicinal plants from the Bai communities in P. R. China, is used to treat various inflammations and tumours. Bioassay-guided phytochemical research on D. scandens followed by semi-synthesis led to a series of undescribed tetrahydroisoquinoline alkaloids with dual inhibitory activities against indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). The previously undescribed dark-green alkaloid dactycapnine A exhibited the best dual inhibitor effects among the identified compounds. Structure-activity relationship analysis revealed the importance of the base skeleton with a hyperconjugation system. The performed semi-synthesis further yielded bioactive dimeric and trimeric compounds with hyperconjugated systems. Performed STD NMR experiments disclosed direct interactions between dactycapnine A and IDO1/TDO. Inhibition kinetics indicated dactycapnine A as a mixed-type dual inhibitor. These findings provided a possible explanation for the anticancer properties of the ethno-medicinal plant species D. scandens.
Collapse
Affiliation(s)
- Mei-Fen Bao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Ni Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiang-Xin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
90
|
Farooqi AA, Rakhmetova V, Kapanova G, Tanbayeva G, Mussakhanova A, Abdykulova A, Ryskulova AG. Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: "Albatross around the Neck" or "Blessing in Disguise". Cells 2023; 12:2382. [PMID: 37830596 PMCID: PMC10571945 DOI: 10.3390/cells12192382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and "diametrically opposed" roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Venera Rakhmetova
- Department of Internal Diseases, Medical University of Astana, Astana 010000, Kazakhstan
| | - Gulnara Kapanova
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Gulnur Tanbayeva
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
| | - Akmaral Mussakhanova
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan;
| | - Akmaral Abdykulova
- Department of General Medical Practice, General Medicine Faculty, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Alma-Gul Ryskulova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Utenos Str. 19A, Almaty 050060, Kazakhstan;
| |
Collapse
|
91
|
Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, Sheibani M. Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy. J Nanobiotechnology 2023; 21:339. [PMID: 37735656 PMCID: PMC10512572 DOI: 10.1186/s12951-023-02083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Immune checkpoint (ICP) molecules expressed on tumor cells can suppress immune responses against tumors. ICP therapy promotes anti-tumor immune responses by targeting inhibitory and stimulatory pathways of immune cells like T cells and dendritic cells (DC). The investigation into the combination therapies through novel immune checkpoint inhibitors (ICIs) has been limited due to immune-related adverse events (irAEs), low response rate, and lack of optimal strategy for combinatorial cancer immunotherapy (IMT). Nanoparticles (NPs) have emerged as powerful tools to promote multidisciplinary cooperation. The feasibility and efficacy of targeted delivery of ICIs using NPs overcome the primary barrier, improve therapeutic efficacy, and provide a rationale for more clinical investigations. Likewise, NPs can conjugate or encapsulate ICIs, including antibodies, RNAs, and small molecule inhibitors. Therefore, combining the drug delivery system (DDS) with ICP therapy could provide a profitable immunotherapeutic strategy for cancer treatment. This article reviews the significant NPs with controlled DDS using current data from clinical and pre-clinical trials on mono- and combination IMT to overcome ICP therapeutic limitations.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Salehi-Shadkami
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
92
|
Mogenet A, Finetti P, Denicolai E, Greillier L, Boudou-Rouquette P, Goldwasser F, Lumet G, Ceccarelli M, Birnbaum D, Bedognetti D, Mamessier E, Barlesi F, Bertucci F, Tomasini P. Immunologic constant of rejection as a predictive biomarker of immune checkpoint inhibitors efficacy in non-small cell lung cancer. J Transl Med 2023; 21:637. [PMID: 37726776 PMCID: PMC10507965 DOI: 10.1186/s12967-023-04463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Anti-PD1/PDL1 immune checkpoint inhibitors (ICI) transformed the prognosis of patients with advanced non-small cell lung cancer (NSCLC). However, the response rate remains disappointing and toxicity may be life-threatening, making urgent identification of biomarkers predictive for efficacy. Immunologic Constant of Rejection signature (ICR) is a 20-gene expression signature of cytotoxic immune response with prognostic value in some solid cancers. Our objective was to assess its predictive value for benefit from anti-PD1/PDL1 in patients with advanced NSCLC. METHODS We retrospectively profiled 44 primary tumors derived from NSCLC patients treated with ICI as single-agent in at least the second-line metastatic setting. Transcriptomic analysis was performed using the nCounter® analysis system and the PanCancer Immune Profiling Panel. We then pooled our data with clinico-biological data from four public gene expression data sets, leading to a total of 162 NSCLC patients treated with single-agent anti-PD1/PDL1. ICR was applied to all samples and correlation was searched between ICR classes and the Durable Clinical Benefit (DCB), defined as stable disease or objective response according to RECIST 1.1 for a minimum of 6 months after the start of ICI. RESULTS The DCB rate was 29%; 22% of samples were classified as ICR1, 30% ICR2, 22% ICR3, and 26% ICR4. These classes were not associated with the clinico-pathological variables, but showed enrichment from ICR1 to ICR4 in quantitative/qualitative markers of immune response. ICR2-4 class was associated with a 5.65-fold DCB rate when compared with ICR1 class. In multivariate analysis, ICR classification remained associated with DCB, independently from PDL1 expression and other predictive immune signatures. By contrast, it was not associated with disease-free survival in 556 NSCLC TCGA patients untreated with ICI. CONCLUSION The 20-gene ICR signature was independently associated with benefit from anti-PD1/PDL1 ICI in patients with advanced NSCLC. Validation in larger retrospective and prospective series is warranted.
Collapse
Affiliation(s)
- Alice Mogenet
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille Univ, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Emilie Denicolai
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Laurent Greillier
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille Univ, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
| | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France-University of Paris Descartes, ARIANE, CARPEM, Paris, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France-University of Paris Descartes, ARIANE, CARPEM, Paris, France
| | - Gwenael Lumet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Davide Bedognetti
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Emilie Mamessier
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Fabrice Barlesi
- Paris-Saclay University and Medical Oncology, Gustave Roussy, Cancer Campus, Villejuif, France
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix Marseille Univ, 232, Bd de Sainte-Marguerite, 13009, Marseille, France.
| | - Pascale Tomasini
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille Univ, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| |
Collapse
|
93
|
Bel’skaya LV, Gundyrev IA, Solomatin DV. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Curr Issues Mol Biol 2023; 45:7513-7537. [PMID: 37754258 PMCID: PMC10527988 DOI: 10.3390/cimb45090474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This review summarizes the role of amino acids in the diagnosis, risk assessment, imaging, and treatment of breast cancer. It was shown that the content of individual amino acids changes in breast cancer by an average of 10-15% compared with healthy controls. For some amino acids (Thr, Arg, Met, and Ser), an increase in concentration is more often observed in breast cancer, and for others, a decrease is observed (Asp, Pro, Trp, and His). The accuracy of diagnostics using individual amino acids is low and increases when a number of amino acids are combined with each other or with other metabolites. Gln/Glu, Asp, Arg, Leu/Ile, Lys, and Orn have the greatest significance in assessing the risk of breast cancer. The variability in the amino acid composition of biological fluids was shown to depend on the breast cancer phenotype, as well as the age, race, and menopausal status of patients. In general, the analysis of changes in the amino acid metabolism in breast cancer is a promising strategy not only for diagnosis, but also for developing new therapeutic agents, monitoring the treatment process, correcting complications after treatment, and evaluating survival rates.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Ivan A. Gundyrev
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 644043 Omsk, Russia;
| |
Collapse
|
94
|
Basson C, Serem JC, Hlophe YN, Bipath P. The tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. Cancer Med 2023; 12:18691-18701. [PMID: 37644823 PMCID: PMC10557908 DOI: 10.1002/cam4.6484] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION The activation of the kynurenine pathway in cancer progression and metastasis through immunomodulatory pathways has drawn attention to the potential for kynurenine pathway inhibition. The activation of the kynurenine pathway, which results in the production of kynurenine metabolites through the degradation of tryptophan, promotes the development of intrinsically malignant properties in cancer cells while facilitating tumour immune escape. In addition, kynurenine metabolites act as biologically active substances to promote cancer development and metastasis. METHODS A literature review was conducted to investigate the role of the tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. RESULTS Evidence suggests that several enzymes and metabolites implicated in the kynurenine pathway are overexpressed in various cancers. As such, the tryptophan pathway represents a promising target for cancer treatment. However, downstream signalling pathways, including aryl hydrocarbon receptor activation, have previously induced diverse biological effects in various malignancies, which resulted in either the promotion or the inhibition of metastasis. CONCLUSION As a result, a thorough investigation of the kynurenine pathway and its regulatory mechanisms is necessary in order to properly comprehend the effects of kynurenine pathway activation involved in cancer development and metastasis.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Priyesh Bipath
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
95
|
Stukas D, Jasukaitiene A, Bartkeviciene A, Matthews J, Maimets T, Teino I, Jaudzems K, Gulbinas A, Dambrauskas Z. Targeting AHR Increases Pancreatic Cancer Cell Sensitivity to Gemcitabine through the ELAVL1-DCK Pathway. Int J Mol Sci 2023; 24:13155. [PMID: 37685961 PMCID: PMC10487468 DOI: 10.3390/ijms241713155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.
Collapse
Affiliation(s)
- Darius Stukas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Aldona Jasukaitiene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Arenida Bartkeviciene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| |
Collapse
|
96
|
Huang RZ, Liang QL, Jing XT, Wang K, Zhang HY, Wang HS, Ma XL, Wei JH, Zhang Y. Synthesis and Biological Evaluation of Novel 2-Amino-1,4-Naphthoquinone Amide-Oxime Derivatives as Potent IDO1/STAT3 Dual Inhibitors with Prospective Antitumor Effects. Molecules 2023; 28:6135. [PMID: 37630387 PMCID: PMC10459814 DOI: 10.3390/molecules28166135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 08/27/2023] Open
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) and signal transducer and activator of transcription 3 (STAT3) have emerged as significant targets in the tumor microenvironment for cancer therapy. In this study, we synthesized three novel 2-amino-1,4-naphthoquinone amide-oxime derivatives and identified them as dual inhibitors of IDO1 and STAT3. The representative compound NK3 demonstrated effective binding to IDO1 and exhibited good inhibitory activity (hIDO1 IC50 = 0.06 μM), leading to its selection for further investigation. The direct interactions between compound NK3 and IDO1 and STAT3 proteins were confirmed through surface plasmon resonance analysis. A molecular docking study of compound NK3 revealed key interactions between NK3 and IDO1, with the naphthoquinone-oxime moiety coordinating with the heme iron. In the in vitro anticancer assay, compound NK3 displayed potent antitumor activity against selected cancer cell lines and effectively suppressed nuclear translocation of STAT3. Moreover, in vivo assays conducted on CT26 tumor-bearing Balb/c mice and an athymic HepG2 xenograft model revealed that compound NK3 exhibited potent antitumor activity with low toxicity relative to 1-methyl-L-tryptophan (1-MT) and doxorubicin (DOX). Overall, these findings provided evidence that the dual inhibitors of IDO1 and STAT3 may offer a promising avenue for the development of highly effective drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Qiao-Ling Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Xiao-Teng Jing
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
- Department of Chemistry & Pharmaceutical Science, Guilin Normal College, Xinyi Road 15, Guilin 541001, China
| | - Ke Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Hui-Yong Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| |
Collapse
|
97
|
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17:585-616. [PMID: 37725232 DOI: 10.1007/s11684-023-1012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yiting Xu
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ji'an Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
98
|
Li X, Li D, Li J, Chen Y, Cai Z, Tan F. A Prognostic Model of Head and Neck Cancer Based on Amino Acid Metabolism-Related Signature and Its Implication for Immunosuppressive Microenvironment. Int J Mol Sci 2023; 24:11753. [PMID: 37511510 PMCID: PMC10380987 DOI: 10.3390/ijms241411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Amino acid metabolism has been implicated in tumorigenesis and tumor progression. Alterations in intracellular and extracellular metabolites associated with metabolic reprogramming in cancer have profound effects on gene expression, cell differentiation, and tumor immune microenvironment. However, the prognostic significance of amino acid metabolism in head and neck cancer remains to be further investigated. In this study, we identified 98 differentially expressed genes related to amino acid metabolism in head and neck cancer in The Cancer Genome Atlas. Using batch univariate Cox regression and Lasso regression, we extracted nine amino acid metabolism-related genes. Based on that, we developed the amino acid metabolism index. The prognostic value of this index was validated in two Gene Expression Omnibus cohorts. The results show that this model can help predict tumor recurrence and prognosis. The infiltration of immune cells in the tumor microenvironment was analyzed, and it was discovered that the high index is associated with an immunosuppressive microenvironment. In addition, this study demonstrated the impact of the amino acid metabolism index on clinical indicators, survival of patients with head and neck cancer, and the prediction of treatment response to immune checkpoint inhibitors. We conducted several cell experiments and demonstrated that epigenetic drugs could affect the index and enhance tumor immunity. In conclusion, our study demonstrates that the index not only has important prognostic value in head and neck cancer patients but also facilitates patient stratification for immunotherapy.
Collapse
Affiliation(s)
- Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 201804, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 201804, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
- The Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- The Royal College of Surgeons of England, London WC2A 3PE, UK
| |
Collapse
|
99
|
Shi B, Zhang X, Song Z, Dai Z, Luo K, Chen B, Zhou Z, Cui Y, Feng B, Zhu Z, Zheng J, Zhang H, He X. Targeting gut microbiota-derived kynurenine to predict and protect the remodeling of the pressure-overloaded young heart. SCIENCE ADVANCES 2023; 9:eadg7417. [PMID: 37450589 PMCID: PMC10348671 DOI: 10.1126/sciadv.adg7417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Pressure-overloaded left ventricular remodeling in young population is progressive and readily degenerate into heart failure. The aims of this study were to identify a plasma metabolite that predicts and is mechanistically linked to the disease. Untargeted metabolomics determined elevated plasma kynurenine (Kyn) in both the patient cohorts and the mice model, which was correlated with remodeling parameters. In vitro and in vivo evidence, combined with single-nucleus RNA sequencing (snRNA-seq), demonstrated that Kyn affected both cardiomyocytes and cardiac fibroblasts by activating aryl hydrocarbon receptors (AHR) to up-regulate hypertrophy- and fibrosis-related genes. Shotgun metagenomics and fecal microbiota transplantation revealed the existence of the altered gut microbiota-Kyn relationship. Supplementation of selected microbes reconstructed the gut microbiota, reduced plasma Kyn, and alleviated ventricular remodeling. Our data collectively discovered a gut microbiota-derived metabolite to activate AHR and its gene targets in remodeling young heart, a process that could be prevented by specific gut microbiota modulation.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhiying Song
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Zihao Dai
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Kai Luo
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bo Chen
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zijie Zhou
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Yue Cui
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bei Feng
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| |
Collapse
|
100
|
Semeniuk-Wojtaś A, Poddębniak-Strama K, Modzelewska M, Baryła M, Dziąg-Dudek E, Syryło T, Górnicka B, Jakieła A, Stec R. Tumour microenvironment as a predictive factor for immunotherapy in non-muscle-invasive bladder cancer. Cancer Immunol Immunother 2023; 72:1971-1989. [PMID: 36928373 PMCID: PMC10264486 DOI: 10.1007/s00262-023-03376-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
Bladder cancer (BC) can be divided into two subgroups depending on invasion of the muscular layer: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Its aggressiveness is associated, inter alia, with genetic aberrations like losses of 1p, 6q, 9p, 9q and 13q; gain of 5p; or alterations in the p53 and p16 pathways. Moreover, there are reported metabolic disturbances connected with poor diagnosis-for example, enhanced aerobic glycolysis, gluconeogenesis or haem catabolism.Currently, the primary way of treatment method is transurethral resection of the bladder tumour (TURBT) with adjuvant Bacillus Calmette-Guérin (BCG) therapy for NMIBC or radical cystectomy for MIBC combined with chemotherapy or immunotherapy. However, intravesical BCG immunotherapy and immune checkpoint inhibitors are not efficient in every case, so appropriate biomarkers are needed in order to select the proper treatment options. It seems that the success of immunotherapy depends mainly on the tumour microenvironment (TME), which reflects the molecular disturbances in the tumour. TME consists of specific conditions like hypoxia or local acidosis and different populations of immune cells including tumour-infiltrating lymphocytes, natural killer cells, neutrophils and B lymphocytes, which are responsible for shaping the response against tumour neoantigens and crucial pathways like the PD-L1/PD-1 axis.In this review, we summarise holistically the impact of the immune system, genetic alterations and metabolic changes that are key factors in immunotherapy success. These findings should enable better understanding of the TME complexity in case of NMIBC and causes of failures of current therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Syryło
- Department of General, Active and Oncological Urology, Military Institute of Medicine, Warsaw, Poland
| | - Barbara Górnicka
- Pathomorphology Department, Medical University of Warsaw, Warsaw, Poland
| | - Anna Jakieła
- Oncology Department, 4 Military Clinical Hospital with a Polyclinic, Wroclaw, Poland
| | - Rafał Stec
- Oncology Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|