51
|
Fang GM, Chen XX, Yang QQ, Zhu LJ, Li NN, Yu HZ, Meng XM. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
52
|
Zhang S, Gao B, Wang X, Zhu S. Loop Replacement Enhances the Ancestral Antibacterial Function of a Bifunctional Scorpion Toxin. Toxins (Basel) 2018; 10:toxins10060227. [PMID: 29867003 PMCID: PMC6024585 DOI: 10.3390/toxins10060227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 01/22/2023] Open
Abstract
On the basis of the evolutionary relationship between scorpion toxins targeting K+ channels (KTxs) and antibacterial defensins (Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546–559), we performed protein engineering experiments to modify a bifunctional KTx (i.e., weak inhibitory activities on both K+ channels and bacteria) via substituting its carboxyl loop with the structurally equivalent loop of contemporary defensins. As expected, the engineered peptide (named MeuTXKα3-KFGGI) remarkably improved the antibacterial activity, particularly on some Gram-positive bacteria, including several antibiotic-resistant opportunistic pathogens. Compared with the unmodified toxin, its antibacterial spectrum also enlarged. Our work provides a new method to enhance the antibacterial activity of bifunctional scorpion venom peptides, which might be useful in engineering other proteins with an ancestral activity.
Collapse
Affiliation(s)
- Shangfei Zhang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Xueli Wang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
53
|
Intraspecific venom variation in southern African scorpion species of the genera Parabuthus, Uroplectes and Opistophthalmus (Scorpiones: Buthidae, Scorpionidae). Toxicon 2018; 144:83-90. [DOI: 10.1016/j.toxicon.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 11/19/2022]
|
54
|
Deng Y, Gu J, Yan Z, Wang M, Ma C, Zhang J, Jiang G, Ge M, Xu S, Xu Z, Xiao L. De novo transcriptomic analysis of the venomous glands from the scorpion Heterometrus spinifer revealed unique and extremely high diversity of the venom peptides. Toxicon 2018; 143:1-19. [DOI: 10.1016/j.toxicon.2017.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 02/07/2023]
|
55
|
Batista C, Martins J, Restano-Cassulini R, Coronas F, Zamudio F, Procópio R, Possani L. Venom characterization of the Amazonian scorpion Tityus metuendus. Toxicon 2018; 143:51-58. [DOI: 10.1016/j.toxicon.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
|
56
|
Ward MJ, Ellsworth SA, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon 2018; 142:14-29. [DOI: 10.1016/j.toxicon.2017.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023]
|
57
|
Pottosin I, Dobrovinskaya O. Two-pore cation (TPC) channel: not a shorthanded one. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:83-92. [PMID: 32291023 DOI: 10.1071/fp16338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/05/2016] [Indexed: 06/11/2023]
Abstract
Two-pore cation (TPC) channels form functional dimers in membranes, delineating acidic intracellular compartments such as vacuoles in plants and lysosomes in animals. TPC1 is ubiquitously expressed in thousands of copies per vacuole in terrestrial plants, where it is known as slow vacuolar (SV) channel. An SV channel possesses high permeability for Na+, K+, Mg2+, and Ca2+, but requires high (tens of μM) cytosolic Ca2+ and non-physiological positive voltages for its full activation. Its voltage dependent activation is negatively modulated by physiological concentrations of vacuolar Ca2+, Mg2+and H+. Double control of the SV channel activity from cytosolic and vacuolar sides keeps its open probability at a minimum and precludes a potentially harmful global Ca2+ release. But this raises the question of what such' inactive' channel could be good for? One possibility is that it is involved in ultra-local Ca2+ signalling by generating 'hotspots' - microdomains of extremely high cytosolic Ca2+. Unexpectedly, recent studies have demonstrated the essential role of the TPC1 in the systemic Ca2+ signalling, and the crystal structure of plant TPC1, which became available this year, unravels molecular mechanisms underlying voltage and Ca2+ gating. This review emphasises the significance of these ice-breaking findings and sets a new perspective for the TPC1-based Ca2+ signalling.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián,Colima, Col. 28045, México
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián,Colima, Col. 28045, México
| |
Collapse
|
58
|
Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational Studies of Snake Venom Toxins. Toxins (Basel) 2017; 10:E8. [PMID: 29271884 PMCID: PMC5793095 DOI: 10.3390/toxins10010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.
Collapse
Affiliation(s)
- Paola G Ojeda
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - David Ramírez
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
59
|
Moreels L, Peigneur S, Yamaguchi Y, Vriens K, Waelkens E, Zhu S, Thevissen K, Cammue BPA, Sato K, Tytgat J. Expanding the pharmacological profile of κ-hefutoxin 1 and analogues: A focus on the inhibitory effect on the oncogenic channel K v10.1. Peptides 2017; 98:43-50. [PMID: 27578329 DOI: 10.1016/j.peptides.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Peptide toxins, such as scorpion peptides, are interesting lead compounds in the search for novel drugs. In this paper, the focus is on the scorpion peptide κ-hefutoxin 1. This peptide displays a cysteine-stabilized helix-loop-helix fold (CSα/α) and is known to be a weak Kv1.x inhibitor. Due to the low affinity of κ-hefutoxin 1 for these channels, it is assumed that the main target(s) of κ-hefutoxin 1 remain(s) unknown. In order to identify novel targets, electrophysiological measurements and antifungal assays were performed. The effect of κ-hefutoxin 1 was previously evaluated on a panel of 11 different voltage-gated potassium channels. Here, we extended this target screening with the oncogenic potassium channel Kv10.1. κ-Hefutoxin 1 was able to inhibit this channel in a dose-dependent manner (IC50∼26μM). Although the affinity is rather low, this is the first peptide toxin ever described to be a Kv10.1 inhibitor. The structure-activity relationship of κ-hefutoxin 1 on Kv10.1 was investigated by testing eight κ-hefutoxin 1 variants using the two-electrode voltage clamp technique. Several important amino acid residues were identified; the functional dyad residues (Tyr5 and Lys19), N-terminal residues (Gly1 and His2) and the amidated C-terminal residue (Cys22). Since the CSα/α fold is also found in a class of antifungal plant peptides, the α-hairpinines, we investigated the antifungal activity of κ-hefutoxin 1. κ-Hefutoxin 1 showed low activity against the plant pathogen Fusarium culmorum and no activity against three other yeast and fungal species, even at high concentrations (∼100μM).
Collapse
Affiliation(s)
- Lien Moreels
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium.
| | - Yoko Yamaguchi
- Department of Environmental Science, Fukuoka Women's University, Fukuoka 813-8529, Japan.
| | - Kim Vriens
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, PO Box 2460, 3001 Leuven, Belgium.
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, PO Box 901, 3000 Leuven, Belgium.
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, PO Box 2460, 3001 Leuven, Belgium.
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, PO Box 2460, 3001 Leuven, Belgium; VIB Department of Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
| | - Kazuki Sato
- Department of Environmental Science, Fukuoka Women's University, Fukuoka 813-8529, Japan.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium.
| |
Collapse
|
60
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
61
|
Szloszár A, Fülöp F, Mándity IM. Accelerated Synthesis of Protected Peptides in a Continuous-Flow Fixed-Bed Reactor. ChemistrySelect 2017. [DOI: 10.1002/slct.201701489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aliz Szloszár
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 H-6720 Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 H-6720 Szeged Hungary
- Stereochemistry Research Group; Hungarian Academy of Sciences; Eötvös u. 6 H-6720 Szeged Hungary
| | - István M. Mándity
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 H-6720 Szeged Hungary
| |
Collapse
|
62
|
Olamendi-Portugal T, Csoti A, Jimenez-Vargas J, Gomez-Lagunas F, Panyi G, Possani L. Pi5 and Pi6, two undescribed peptides from the venom of the scorpion Pandinus imperator and their effects on K + -channels. Toxicon 2017; 133:136-144. [DOI: 10.1016/j.toxicon.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 01/15/2023]
|
63
|
Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal Activity against Filamentous Fungi of Ts1, a Multifunctional Toxin from Tityus serrulatus Scorpion Venom. Front Microbiol 2017. [PMID: 28634472 PMCID: PMC5459920 DOI: 10.3389/fmicb.2017.00984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are ubiquitous and multipotent components of the innate immune defense arsenal used by both prokaryotic and eukaryotic organisms. The search for new AMPs has increased in recent years, due to the growing development of microbial resistance to therapeutical drugs. In this work, we evaluate the effects of Tityus serrulatus venom (Tsv), its fractions and its major toxin Ts1, a beta-neurotoxin, on fungi growth. The fractions were obtained by ion-exchange chromatography of Tsv. The growth inhibition of 11 pathogenic and non-pathogenic filamentous fungi (Aspergillus fumigatus, A. nidulans, A. niger, A. terreus, Neurospora crassa, Penicillium corylophilum, P. ochrochloron, P. verrucosum, P. viridicatum, P. waksmanii, and Talaromyces flavus) was evaluated by quantitative microplate reader assay. Tsv (100 and 500 μg/well, which correspond to 1 and 5 mg/mL, respectively, of total soluble protein) was active in inhibiting growth of A. nidulans, A. terreus, P. corylophilum, and P. verrucosum, especially in the higher concentration used and at the first 30 h. After this period, fungi might have used Tsv components as alternative sources of nutrients, and therefore, increased their growth tax. Only fractions IX, X, XI, XIIA, XIIB (3 and 7.5 μg/well, which correspond to 30 and 75 μg/mL, respectively, of total soluble protein) and Ts1 (1.5, 3, and 6 μg/well, which correspond to 2.18, 4.36, and 8.72 μM, respectively) showed antifungal activity. Ts1 showed to be a non-morphogenic toxin with dose-dependent activity against A. nidulans, inhibiting 100% of fungal growth from 3 μg/well (4.36 μM). The inhibitory effect of Ts1 against A. nidulans growth was accompanied by fungistatic effects and was not amended by 1 mM CaCl2 or tetrodotoxin (46.98 and 93.96 μM). The structural differences between Ts1 and drosomycin, a potent cysteine-rich antifungal peptide, are discussed here. Our results highlight the antifungal potential of the first cysteine-containing scorpion toxin. Since Ts1 is a multifunctional toxin, we suggest that it could be used as a template in the design of engineered scorpion AMPs and in the search for new mechanisms of action of antifungal drugs.
Collapse
Affiliation(s)
- Welligton M Santussi
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Karla C F Bordon
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Ana P N Rodrigues Alves
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Camila T Cologna
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Suraia Said
- Laboratory of Industrial Enzymology, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Eliane C Arantes
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
64
|
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128:23-37. [DOI: 10.1016/j.toxicon.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
65
|
Molecular Simulations of Disulfide-Rich Venom Peptides with Ion Channels and Membranes. Molecules 2017; 22:molecules22030362. [PMID: 28264446 PMCID: PMC6155311 DOI: 10.3390/molecules22030362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Disulfide-rich peptides isolated from the venom of arthropods and marine animals are a rich source of potent and selective modulators of ion channels. This makes these peptides valuable lead molecules for the development of new drugs to treat neurological disorders. Consequently, much effort goes into understanding their mechanism of action. This paper presents an overview of how molecular simulations have been used to study the interactions of disulfide-rich venom peptides with ion channels and membranes. The review is focused on the use of docking, molecular dynamics simulations, and free energy calculations to (i) predict the structure of peptide-channel complexes; (ii) calculate binding free energies including the effect of peptide modifications; and (iii) study the membrane-binding properties of disulfide-rich venom peptides. The review concludes with a summary and outlook.
Collapse
|
66
|
Kuzmenkov AI, Peigneur S, Chugunov AO, Tabakmakher VM, Efremov RG, Tytgat J, Grishin EV, Vassilevski AA. C-Terminal residues in small potassium channel blockers OdK1 and OSK3 from scorpion venom fine-tune the selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:465-472. [PMID: 28179135 DOI: 10.1016/j.bbapap.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 01/11/2023]
Abstract
We report isolation, sequencing, and electrophysiological characterization of OSK3 (α-KTx 8.8 in Kalium and Uniprot databases), a potassium channel blocker from the scorpion Orthochirus scrobiculosus venom. Using the voltage clamp technique, OSK3 was tested on a wide panel of 11 voltage-gated potassium channels expressed in Xenopus oocytes, and was found to potently inhibit Kv1.2 and Kv1.3 with IC50 values of ~331nM and ~503nM, respectively. OdK1 produced by the scorpion Odontobuthus doriae differs by just two C-terminal residues from OSK3, but shows marked preference to Kv1.2. Based on the charybdotoxin-potassium channel complex crystal structure, a model was built to explain the role of the variable residues in OdK1 and OSK3 selectivity.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Anton O Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Valentin M Tabakmakher
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
67
|
Cid Uribe JI, Jiménez Vargas JM, Ferreira Batista CV, Zamudio Zuñiga F, Possani LD. Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found. Toxicon 2017; 125:91-98. [DOI: 10.1016/j.toxicon.2016.11.256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
68
|
The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon 2017; 125:123-130. [DOI: 10.1016/j.toxicon.2016.11.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022]
|
69
|
Zhang S, Gao B, Zhu S. Independent Origins of Scorpion Toxins Affecting Potassium and Sodium Channels. EVOLUTION OF VENOMOUS ANIMALS AND THEIR TOXINS 2017. [DOI: 10.1007/978-94-007-6458-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
70
|
Wang X, Gao B, Zhu S. Exon Shuffling and Origin of Scorpion Venom Biodiversity. Toxins (Basel) 2016; 9:toxins9010010. [PMID: 28035955 PMCID: PMC5308243 DOI: 10.3390/toxins9010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 12/01/2022] Open
Abstract
Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.
Collapse
Affiliation(s)
- Xueli Wang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
71
|
Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel) 2016; 8:toxins8120367. [PMID: 27941686 PMCID: PMC5198561 DOI: 10.3390/toxins8120367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.
Collapse
|
72
|
Nekrasova O, Kudryashova K, Fradkov A, Yakimov S, Savelieva M, Kirpichnikov M, Feofanov A. Straightforward approach to produce recombinant scorpion toxins-Pore blockers of potassium channels. J Biotechnol 2016; 241:127-135. [PMID: 27914892 DOI: 10.1016/j.jbiotec.2016.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
Scorpion venom peptide blockers (KTx) of potassium channels are a valuable tool for structure-functional studies and prospective candidates for medical applications. Low yields of recombinant KTx hamper their wide application. We developed convenient and efficient bioengineering approach to a large-scale KTx production that meets increasing demands for such peptides. Maltose-binding protein was used as a carrier for cytoplasmic expression of folded disulfide-rich KTx in E. coli. TEV protease was applied for in vitro cleavage of the target peptide from the carrier. To produce KTx with retained native N-terminal sequence, the last residue of TEV protease cleavage site (CSTEV) was occupied by the native N-terminal residue of a target peptide. It was shown that decreased efficiency of hydrolysis of fusion proteins with non-canonical CSTEV can be overcome without by-product formation. Disulfide formation and folding of a target peptide occurred in cytoplasm eliminating the need for renaturation procedure in vitro. Advantages of this approach were demonstrated by producing six peptides with three disulfide bonds related to four KTx sub-families and achieving peptide yields of 12-22mg per liter of culture. The developed approach can be of general use for low-cost production of various KTx, as well as other disulfide-rich peptides and proteins.
Collapse
Affiliation(s)
- Oksana Nekrasova
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Ksenia Kudryashova
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Arkadiy Fradkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Sergey Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Maria Savelieva
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia
| | - Mikhail Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey Feofanov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| |
Collapse
|
73
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
74
|
Cremonez CM, Maiti M, Peigneur S, Cassoli JS, Dutra AAA, Waelkens E, Lescrinier E, Herdewijn P, de Lima ME, Pimenta AMC, Arantes EC, Tytgat J. Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins. Toxins (Basel) 2016; 8:toxins8100288. [PMID: 27706049 PMCID: PMC5086648 DOI: 10.3390/toxins8100288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
To date, several families of peptide toxins specifically interacting with ion channels in scorpion venom have been described. One of these families comprise peptide toxins (called KTxs), known to modulate potassium channels. Thus far, 202 KTxs have been reported, belonging to several subfamilies of KTxs (called α, β, γ, κ, δ, and λ-KTxs). Here we report on a previously described orphan toxin from Tityus serrulatus venom, named Ts11. We carried out an in-depth structure-function analysis combining 3D structure elucidation of Ts11 and electrophysiological characterization of the toxin. The Ts11 structure is highlighted by an Inhibitor Cystine Knot (ICK) type scaffold, completely devoid of the classical secondary structure elements (α-helix and/or β-strand). This has, to the best of our knowledge, never been described before for scorpion toxins and therefore represents a novel, 6th type of structural fold for these scorpion peptides. On the basis of their preferred interaction with voltage-gated K channels, as compared to all the other targets tested, it can be postulated that Ts11 is the first member of a new subfamily, designated as ε-KTx.
Collapse
Affiliation(s)
- Caroline M Cremonez
- Laboratório de Toxinas Animais, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-903, São Paulo, Brasil.
| | - Mohitosh Maiti
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Steve Peigneur
- Toxicology & Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, P.O. Box 922, Leuven 3000, Belgium.
| | - Juliana Silva Cassoli
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Alexandre A A Dutra
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Maria Elena de Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Adriano M C Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Eliane C Arantes
- Laboratório de Toxinas Animais, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-903, São Paulo, Brasil.
| | - Jan Tytgat
- Toxicology & Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, P.O. Box 922, Leuven 3000, Belgium.
| |
Collapse
|
75
|
Zhang XY, Zhang PY. Scorpion venoms in gastric cancer. Oncol Lett 2016; 12:3683-3686. [PMID: 27900054 PMCID: PMC5104148 DOI: 10.3892/ol.2016.5134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
Venom secretions from snakes, scorpions, spiders and bees, have been widely applied in traditional medicine and current biopharmaceutical research. Possession of anticancer potential is another novel discovery for animal venoms and toxins. An increasing number of studies have shown the anticancer effects of venoms and toxins of snakes, and scorpions in vitro and in vivo, which were achieved mainly through the inhibition of cancer growth, arrest of cell cycle, induction of apoptosis and suppression of cancer metastasis. However, more evidence is needed to support this concept and the mechanisms of anticancer actions are not clearly understood. The present review is focused on the recant updates on anticancer venom research.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- Nanjing University of Chinese Medicine, Information Institute, Nanjing, Jiangsu 221009, P.R. China
| | - Pei-Ying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
76
|
Vriens K, Peigneur S, De Coninck B, Tytgat J, Cammue BPA, Thevissen K. The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels. Sci Rep 2016; 6:32121. [PMID: 27573545 PMCID: PMC5004176 DOI: 10.1038/srep32121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
Scorpion toxins that block potassium channels and antimicrobial plant defensins share a common structural CSαβ-motif. These toxins contain a toxin signature (K-C4-X-N) in their amino acid sequence, and based on in silico analysis of 18 plant defensin sequences, we noted the presence of a toxin signature (K-C5-R-G) in the amino acid sequence of the Arabidopsis thaliana defensin AtPDF2.3. We found that recombinant (r)AtPDF2.3 blocks Kv1.2 and Kv1.6 potassium channels, akin to the interaction between scorpion toxins and potassium channels. Moreover, rAtPDF2.3[G36N], a variant with a KCXN toxin signature (K-C5-R-N), is more potent in blocking Kv1.2 and Kv1.6 channels than rAtPDF2.3, whereas rAtPDF2.3[K33A], devoid of the toxin signature, is characterized by reduced Kv channel blocking activity. These findings highlight the importance of the KCXN scorpion toxin signature in the plant defensin sequence for blocking potassium channels. In addition, we found that rAtPDF2.3 inhibits the growth of Saccharomyces cerevisiae and that pathways regulating potassium transport and/or homeostasis confer tolerance of this yeast to rAtPDF2.3, indicating a role for potassium homeostasis in the fungal defence response towards rAtPDF2.3. Nevertheless, no differences in antifungal potency were observed between the rAtPDF2.3 variants, suggesting that antifungal activity and Kv channel inhibitory function are not linked.
Collapse
Affiliation(s)
- Kim Vriens
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000, Leuven, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.,VIB Department of Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.,VIB Department of Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
77
|
Olamendi-Portugal T, Bartok A, Zamudio-Zuñiga F, Balajthy A, Becerril B, Panyi G, Possani LD. Isolation, chemical and functional characterization of several new K+-channel blocking peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2016; 115:1-12. [DOI: 10.1016/j.toxicon.2016.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/04/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
|
78
|
ElFessi-Magouri R, Peigneur S, Khamessi O, Srairi-Abid N, ElAyeb M, Mille BG, Cuypers E, Tytgat J, Kharrat R. Kbot55, purified from Buthus occitanus tunetanus venom, represents the first member of a novel α-KTx subfamily. Peptides 2016; 80:4-8. [PMID: 26079392 DOI: 10.1016/j.peptides.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/13/2023]
Abstract
Kbot55 is a 39 amino acid peptide isolated from the venom of the Tunisian scorpion Buthus occitanus tunetanus. This peptide is cross-linked by 3 disulfide bridges and has a molecular mass of 4128.65Da. Kbot55 is very low represented in the venom and thus represents a challenge for biochemical characterization. In this study, Kbot55 has been subjected to a screening on ion channels expressed in Xenopus laevis oocytes. It was found that Kbot55 targets voltage-gated potassium channels with high affinity. Kbot55 shows very low amino acid identity with other scorpion potassium toxins and therefore was considered a bona fide novel type of scorpion toxin. Sequence alignment analysis indicated that Kbot55 is the first representative of the new α-Ktx31 subfamily and therefore was classified as α-Ktx31.1.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Steve Peigneur
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Oussema Khamessi
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Bea Garcia Mille
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Eva Cuypers
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia.
| |
Collapse
|
79
|
Peigneur S, Yamaguchi Y, Kawano C, Nose T, Nirthanan S, Gopalakrishnakone P, Tytgat J, Sato K. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning. Biochemistry 2016; 55:2927-35. [PMID: 27159046 DOI: 10.1021/acs.biochem.6b00139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, University of Leuven , Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium
| | - Yoko Yamaguchi
- Department of Environment Sciences, Fukuoka Women's University , Fukuoka 813-8529, Japan
| | - Chihiro Kawano
- Department of Environment Sciences, Fukuoka Women's University , Fukuoka 813-8529, Japan
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University , Fukuoka, 819-0395, Japan
| | | | - Ponnampalam Gopalakrishnakone
- Venom and Toxin Research Program, Yong Loo Lin School of Medicine, National University of Singapore , Singapore 117597, Singapore
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven , Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium
| | - Kazuki Sato
- Department of Environment Sciences, Fukuoka Women's University , Fukuoka 813-8529, Japan
| |
Collapse
|
80
|
Molecular basis for the toxin insensitivity of scorpion voltage-gated potassium channel MmKv1. Biochem J 2016; 473:1257-66. [DOI: 10.1042/bcj20160178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 12/29/2022]
Abstract
Our work is the first to uncover the mechanisms by which scorpions resist their own venoms at the ion channel receptor level and enriched our knowledge of the co-evolution of venomous animals and their venoms for hundreds of million years.
Collapse
|
81
|
Zhang HY, Xu Q, Li F, Tian PC, Wang YH, Xiong Y, Zhang YH, Wei DQ. Recent progresses of simulations on passive membrane permeations in China. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2015.1135333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
82
|
El Hidan MA, Touloun O, El Hiba O, Laadraoui J, Ferehan H, Boumezzough A. Peripheral and central effects of intracerebroventricular microinjection of Hottentotta gentili (Pallary, 1924) (Scorpiones, Buthidae) venom. Toxicon 2016; 111:22-30. [PMID: 26718260 DOI: 10.1016/j.toxicon.2015.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Central effects of scorpion venom toxins have been neglected, due both to the common belief that scorpion venoms act by targeting peripheral organs and also to the misunderstanding that these peptides do not cross the brain-blood barrier (BBB). Determining whether scorpion neurotoxicity is restricted to peripheral actions or whether a central mechanism may be partly responsible for systemic manifestations could be crucial in clinical therapy trends. The present study therefore aims to assess histopathological damages in some organs (heart, kidney, liver, and lungs) and the related biochemical impairments, together with a neurobehavioral investigation following an intracerebroventricular (i.c.v) micro-injection of Hottentotta gentili (Scorpiones, Buthidae) venom (0.47 μg/kg). I.c.v. injection of venom produced focal fragmentation of myocardial fibers, while lungs showed rupture of the alveolar structure. Concurrently, there was a significant rise in the serum enzymes levels of ASAT, ALAT, CPK and LDH. Meanwhile, we observed behavioral alterations such as a hypoactivity, and in addition the venom seems to have a marked anxiogenic-like effect. The present investigation has brought new experimental evidence of a peripheral impact of central administration of H. gentili venom, such impact was manifested by physiological and behavioral disturbances, the last of these appearing to reflect profound neuro-modulatory action of H. gentili venom.
Collapse
Affiliation(s)
- Moulay Abdelmonaim El Hidan
- Laboratory of Ecology and Environment L2E, (URAC 32, CNRST, ERACNERS 06) Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390-40080, Marrakesh, Morocco.
| | - Oulaid Touloun
- Laboratory of Ecology and Environment L2E, (URAC 32, CNRST, ERACNERS 06) Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390-40080, Marrakesh, Morocco; Polyvalent Laboratory of Research & Development LPVRD, Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Omar El Hiba
- Neurosciences, Pharmacology and Environment Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Jawad Laadraoui
- Laboratory of Pharmacology, Neurobiology and Behavior, Department of Biology, Faculty of Sciences Semlalia Cadi Ayyad University, Marrakesh, Morocco
| | - Hind Ferehan
- Laboratory of Pharmacology, Neurobiology and Behavior, Department of Biology, Faculty of Sciences Semlalia Cadi Ayyad University, Marrakesh, Morocco
| | - Ali Boumezzough
- Laboratory of Ecology and Environment L2E, (URAC 32, CNRST, ERACNERS 06) Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390-40080, Marrakesh, Morocco.
| |
Collapse
|
83
|
Feng J, Xie Z, Yang W, Zhao Y, Xiang F, Cao Z, Li W, Chen Z, Wu Y. Human beta-defensin 1, a new animal toxin-like blocker of potassium channel. Toxicon 2016; 113:1-6. [PMID: 26854370 DOI: 10.1016/j.toxicon.2016.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
The discovery of human β-defensin 2 (hBD2), as a Kv1.3 channel inhibitor with the unique molecular mechanism and novel immune modulatory function, suggests that human β-defensins are a novel class of channel ligands. Here, the function and mechanism of the human β-defensin 1 (hBD1) binding to potassium channels was investigated. Based on the structural similarity between hBD1 and Kv1.3 channel-sensitive hBD2, hBD1 was found to selectively inhibit human and mouse Kv1.3 channels with IC50 values of 11.8 ± 3.1 μM and 13.2 ± 4.0 μM, respectively. Different from hBD2 modifying Kv1.3 channel activation and increasing activation time constant, hBD1 did not affect the activation feature of both human and mouse Kv1.3 channels. In comparison with hBD2 simultaneously interacting with the extracellular S1-S2 linker and pore region of Kv1.3 channel, the chimeric channel and mutagenesis experiments showed that hBD1 only bound to the extracellular pore region of Kv1.3 channel instead of extracellular S1-S2 linker or S3-S4 linker. Together, these findings enhance knowledge of hBD1 as a new immune-related Kv1.3 channel blocker and highlight the major functional differences between hBD1 and hBD2 to explore in future research.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
84
|
Santibáñez-López CE, Francke OF, Ureta C, Possani LD. Scorpions from Mexico: From Species Diversity to Venom Complexity. Toxins (Basel) 2015; 8:E2. [PMID: 26712787 PMCID: PMC4728524 DOI: 10.3390/toxins8010002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/25/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Oscar F Francke
- Colección Nacional de Arácnidos, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70-233, Distrito Federal 04510, Mexico.
| | - Carolina Ureta
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, Distrito Federal 04510, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| |
Collapse
|
85
|
Bartok A, Fehér K, Bodor A, Rákosi K, Tóth GK, Kövér KE, Panyi G, Varga Z. An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility. Sci Rep 2015; 5:18397. [PMID: 26689143 PMCID: PMC4686915 DOI: 10.1038/srep18397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
The voltage-gated Kv1.3 K+ channel plays a key role in the activation of T lymphocytes. Kv1.3 blockers selectively suppress immune responses mediated by effector memory T cells, which indicates the great potential of selective Kv1.3 inhibitors in the therapy of certain autoimmune diseases. Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin is a high affinity blocker of Kv1.3, but also blocks Kv1.2 with similar potency. We designed and produced three AnTx variants: ([F32T]-AnTx, [N17A]-AnTx, [N17A/F32T]-AnTx) using solid-phase synthesis with the goal of improving the selectivity of the toxin for Kv1.3 over Kv1.2 while keeping the high affinity for Kv1.3. We used the patch-clamp technique to determine the blocking potency of the synthetic toxins on hKv1.3, mKv1.1, hKv1.2 and hKCa3.1 channels. Of the three variants [N17A/F32T]-AnTx maintained the high affinity of the natural peptide for Kv1.3 but became more than 16000-fold selective over Kv1.2. NMR data and molecular dynamics simulations suggest that the more rigid structure with restricted conformational space of the double substituted toxin compared to the flexible wild-type one is an important determinant of toxin selectivity. Our results provide the foundation for the possibility of the production and future therapeutic application of additional, even more selective toxins targeting various ion channels.
Collapse
Affiliation(s)
- Adam Bartok
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Debrecen, H-4012, Hungary
| | - Krisztina Fehér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.,Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Kinga Rákosi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Debrecen, H-4012, Hungary.,MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Egyetem tér 1, H-4032, Hungary
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Egyetem tér 1, H-4032, Hungary.,Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Debrecen, H-4012, Hungary
| |
Collapse
|
86
|
Lima PC, Bordon KCF, Pucca MB, Cerni FA, Zoccal KF, Faccioli LH, Arantes EC. Partial purification and functional characterization of Ts19 Frag-I, a novel toxin from Tityus serrulatus scorpion venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:49. [PMID: 26628901 PMCID: PMC4666072 DOI: 10.1186/s40409-015-0051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The yellow scorpion Tityus serrulatus (Ts) is responsible for the highest number of accidents and the most severe scorpion envenoming in Brazil. Although its venom has been studied since the 1950s, it presents a number of orphan peptides that have not been studied so far. The objective of our research was to isolate and identify the components present in the fractions VIIIA and VIIIB of Ts venom, in order to search for a novel toxin. The major isolated toxins were further investigated for macrophage modulation. METHODS The fractions VIIIA and VIIIB, obtained from Ts venom cation exchange chromatography, were rechromatographed on a C18 column (4.6 × 250 mm) followed by a reversed-phase chromatography using another C18 column (2.1 × 250 mm). The main eluted peaks were analyzed by MALDI-TOF and Edman's degradation and tested on macrophages. RESULTS The previously described toxins Ts2, Ts3-KS, Ts4, Ts8, Ts8 propeptide, Ts19 Frag-II and the novel peptide Ts19 Frag-I were isolated from the fractions VIIIA and VIIIB. Ts19 Frag-I, presenting 58 amino acid residues, a mass of 6,575 Da and a theoretical pI of 8.57, shares high sequence identity with potassium channel toxins (KTx). The toxins Ts4, Ts3-KS and the partially purified Ts19 Frag-I did not produce cytotoxic effects on macrophage murine cells line (J774.1). On the other hand, Ts19 Frag-I induced the release of nitric oxide (NO) by macrophages, while Ts4 and Ts3-KS did not affect the NO production at the tested concentration (50 μg/mL). At the same concentration, Ts19 Frag-I and Ts3-KS increased the production of interleukin-6 (IL-6). Ts19 Frag-I and Ts4 did not induce the release of IL-10, IL-1β or tumor necrosis factor-α by macrophage cells using the tested concentration (50 μg/mL). CONCLUSIONS We partially purified and determined the complete sequence and chemical/physical parameters of a new β-KTx, denominated Ts19 Frag-I. The toxins Ts4, Ts3-KS and Ts19 Frag-I showed no cytotoxicity toward macrophages and induced IL-6 release. Ts19 Frag-I also induced the release of NO, suggesting a pro-inflammatory activity.
Collapse
Affiliation(s)
- Priscila C Lima
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karina F Zoccal
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Lucia H Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil.,Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
87
|
Rodríguez-Ravelo R, Batista CV, Coronas FI, Zamudio FZ, Hernández-Orihuela L, Espinosa-López G, Ruiz-Urquiola A, Possani LD. Comparative proteomic analysis of male and female venoms from the Cuban scorpion Rhopalurus junceus. Toxicon 2015; 107:327-34. [DOI: 10.1016/j.toxicon.2015.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
|
88
|
Zhang L, Shi W, Zeng XC, Ge F, Yang M, Nie Y, Bao A, Wu S, E G. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J Proteomics 2015; 128:231-50. [DOI: 10.1016/j.jprot.2015.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
|
89
|
Takacs Z, Imredy JP, Bingham JP, Zhorov BS, Moczydlowski EG. Interaction of the BKCa channel gating ring with dendrotoxins. Channels (Austin) 2015; 8:421-32. [PMID: 25483585 DOI: 10.4161/19336950.2014.949186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca(2+)-activated K(+) channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of δ-dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the β2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating.
Collapse
|
90
|
ElFessi-Magouri R, Peigneur S, Othman H, Srairi-Abid N, ElAyeb M, Tytgat J, Kharrat R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS One 2015; 10:e0137611. [PMID: 26398235 PMCID: PMC4580410 DOI: 10.1371/journal.pone.0137611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Houcemeddine Othman
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
91
|
Cordeiro FA, Amorim FG, Anjolette FAP, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis 2015; 21:24. [PMID: 26273285 PMCID: PMC4535291 DOI: 10.1186/s40409-015-0028-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
Collapse
Affiliation(s)
- Francielle A Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernando A P Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
92
|
Santibáñez-López CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon 2015; 107:317-26. [PMID: 26187850 DOI: 10.1016/j.toxicon.2015.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Abstract
Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| |
Collapse
|
93
|
Pucca MB, Cerni FA, Peigneur S, Bordon KCF, Tytgat J, Arantes EC. Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic" Toxin from Tityus serrulatus Venom. Toxins (Basel) 2015; 7:2534-50. [PMID: 26153865 PMCID: PMC4516927 DOI: 10.3390/toxins7072534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 01/21/2023] Open
Abstract
The toxin, previously described as a "non-toxic" toxin, was isolated from the scorpion venom of Tityus serrulatus (Ts), responsible for the most severe and the highest number of accidents in Brazil. In this study, the subtype specificity and selectivity of Ts4 was investigated using six mammalian Nav channels (Nav1.2→Nav1.6 and Nav1.8) and two insect Nav channels (DmNav1 and BgNav). The electrophysiological assays showed that Ts4 specifically inhibited the fast inactivation of Nav1.6 channels, the most abundant sodium channel expressed in the adult central nervous system, and can no longer be classified as a "non-toxic peptide". Based on the results, we could classify the Ts4 as a classical α-toxin. The Ts4 3D-structural model was built based on the solved X-ray Ts1 3D-structure, the major toxin from Ts venom with which it shares high sequence identity (65.57%). The Ts4 model revealed a flattened triangular shape constituted by three-stranded antiparallel β-sheet and one α-helix stabilized by four disulfide bonds. The absence of a Lys in the first amino acid residue of the N-terminal of Ts4 is probably the main responsible for its low toxicity. Other key amino acid residues important to the toxicity of α- and β-toxins are discussed here.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
94
|
Coronas FIV, Diego-García E, Restano-Cassulini R, de Roodt AR, Possani LD. Biochemical and physiological characterization of a new Na(+)-channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus. Peptides 2015; 68:11-6. [PMID: 24862827 DOI: 10.1016/j.peptides.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/12/2023]
Abstract
A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na(+)-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.
Collapse
Affiliation(s)
- Fredy I V Coronas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Elia Diego-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Rita Restano-Cassulini
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires and Ministerio de Salud de la Nación, Argentina.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
95
|
Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS One 2015; 10:e0127883. [PMID: 26020943 PMCID: PMC4447460 DOI: 10.1371/journal.pone.0127883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative bioactive compounds that could be used to seed research into new pharmacological compounds and increase our understanding of the function of different ion channels.
Collapse
Affiliation(s)
- Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
96
|
Kohl B, Rothenberg I, Ali SA, Alam M, Seebohm G, Kalbacher H, Voelter W, Stoll R. Solid phase synthesis, NMR structure determination of α-KTx3.8, its in silico docking to Kv1.x potassium channels, and electrophysiological analysis provide insights into toxin-channel selectivity. Toxicon 2015; 101:70-8. [PMID: 25953725 DOI: 10.1016/j.toxicon.2015.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/07/2015] [Accepted: 04/29/2015] [Indexed: 12/29/2022]
Abstract
Animal venoms, such as those from scorpions, are a potent source for new pharmacological substances. In this study we have determined the structure of the α-KTx3.8 (named as Bs6) scorpion toxin by multidimensional (1)H homonuclear NMR spectroscopy and investigated its function by molecular dynamics (MD) simulations and electrophysiological measurements. Bs6 is a potent inhibitor of the Kv1.3 channel which plays an important role during the activation and proliferation of memory T-cells (TEM), which play an important role in autoimmune diseases. Therefore, it could be an interesting target for treatment of autoimmune diseases. In this study, Bs6 was synthesised by solid phase synthesis and its three-dimensional (3D) structure has been determined. To gain a deeper insight into the interaction of Bs6 with different potassium channels like hKv1.1 and hKv1.3, the protein-protein complex was modelled based on known toxin-channel structures and tested for stability in MD simulations using GROMACS. The toxin-channel interaction was further analysed by electrophysiological measurements of different potassium channels like hKv1.3 and hKv7.1. As potassium channel inhibitors could play an important role to overcome autoimmune diseases like multiple sclerosis and type-1 diabetes mellitus, our data contributes to the understanding of the molecular mechanism of action and will ultimately help to develop new potent inhibitors in future.
Collapse
Affiliation(s)
- Bastian Kohl
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Biomolecular Spectroscopy, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Ina Rothenberg
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Syed Abid Ali
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen D-72076, Germany; HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi 75270, Pakistan
| | - Mehtab Alam
- Dow International College, Dow University of Health Sciences, Karachi 75270, Pakistan
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen D-72076, Germany
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen D-72076, Germany.
| | - Raphael Stoll
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Biomolecular Spectroscopy, Ruhr University of Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
97
|
Kuzmenkov AI, Vassilevski AA, Kudryashova KS, Nekrasova OV, Peigneur S, Tytgat J, Feofanov AV, Kirpichnikov MP, Grishin EV. Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1: AN INTEGRATED TRANSCRIPTOMIC AND PROTEOMIC STUDY. J Biol Chem 2015; 290:12195-209. [PMID: 25792741 DOI: 10.1074/jbc.m115.637611] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/β and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Vassilevski
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,
| | - Kseniya S Kudryashova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Oksana V Nekrasova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Alexey V Feofanov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Mikhail P Kirpichnikov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Eugene V Grishin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
98
|
Quintero-Hernández V, Ramírez-Carreto S, Romero-Gutiérrez MT, Valdez-Velázquez LL, Becerril B, Possani LD, Ortiz E. Transcriptome analysis of scorpion species belonging to the Vaejovis genus. PLoS One 2015; 10:e0117188. [PMID: 25659089 PMCID: PMC4319844 DOI: 10.1371/journal.pone.0117188] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022] Open
Abstract
Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family.
Collapse
Affiliation(s)
- Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - María Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | | | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| |
Collapse
|
99
|
Luna-Ramírez K, Bartok A, Restano-Cassulini R, Quintero-Hernández V, Coronas FIV, Christensen J, Wright CE, Panyi G, Possani LD. Structure, molecular modeling, and function of the novel potassium channel blocker urotoxin isolated from the venom of the Australian scorpion Urodacus yaschenkoi. Mol Pharmacol 2014; 86:28-41. [PMID: 24723491 DOI: 10.1124/mol.113.090183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
This communication reports the structural and functional characterization of urotoxin, the first K(+) channel toxin isolated from the venom of the Australian scorpion Urodacus yaschenkoi. It is a basic peptide consisting of 37 amino acids with an amidated C-terminal residue. Urotoxin contains eight cysteines forming four disulfide bridges with sequence similarities resembling the α-potassium channel toxin 6 (α-KTx-6) subfamily of peptides; it was assigned the systematic number of α-KTx-6.21. Urotoxin is a potent blocker of human voltage-gated potassium channel (Kv)1.2 channels, with an IC50 of 160 pM, whereas its affinity for other channels tested was in the nanomolar range (hKv1.1, IC50 = 253 nM; hKv1.3, IC50 = 91 nM; and hKCa3.1, IC50 = 70 nM). The toxin had no effect on hKv1.4, hKv1.5, human ether-à-go-go-related gene type 1 (hERG1), or human ether-à-go-go-like (hELK2) channels. Multiple sequence alignments from the venom gland transcriptome showed the existence of four other new peptides similar to urotoxin. Computer modeling of urotoxin's three-dimensional structure suggests the presence of the α/β-scaffold characteristic of other scorpion toxins, although very likely forming an uncommon disulfide pairing pattern. Using molecular dynamics, a model for the binding of this peptide to human Kv1.2 and hKv1.1 channels is presented, along with the binding of an in silico mutant urotoxin (Lys25Ala) to both channels. Urotoxin enriches our knowledge of K(+) channel toxins and, due to its high affinity for hKv1.2 channels, it may be a good candidate for the development of pharmacologic tools to study the physiologic functions of K(+) channels or related channelopathies and for restoring axonal conduction in demyelinated axons.
Collapse
Affiliation(s)
- Karen Luna-Ramírez
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Adam Bartok
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Rita Restano-Cassulini
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Veronica Quintero-Hernández
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Fredy I V Coronas
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Janni Christensen
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Christine E Wright
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Gyorgy Panyi
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| | - Lourival D Possani
- Australian Venom Research Unit and Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia (K.L.-R., C.E.W.); Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Mexico (R.R.-C., V.Q.-H., F.I.V.C., L.D.P.); Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary (A.B., G.P.); MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary (G.P.); and Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia (J.C.)
| |
Collapse
|
100
|
Mille BG, Peigneur S, Diego-García E, Predel R, Tytgat J. Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus. Toxicon 2014; 83:75-83. [DOI: 10.1016/j.toxicon.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/05/2014] [Accepted: 03/04/2014] [Indexed: 01/02/2023]
|