51
|
Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, De Nolf W, De La Torre-Roche R, Pagano L, Pignatello J, Uchimiya M, Gardea-Torresdey J, White JC. Bioaccumulation of CeO 2 Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6609-6618. [PMID: 29281882 DOI: 10.1021/acs.jafc.7b04612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interactions of nanoparticles (NPs) with biochar and soil components may substantially influence NP availability and toxicity to biota. In the present study, earthworms ( Eisenia fetida) were exposed for 28 days to a residential or agricultural soil amended with 0-2000 mg of CeO2 NP/kg and with biochar (produced by the pyrolysis of pecan shells at 350 and 600 °C) at various application rates [0-5% (w/w)]. After 28 days, earthworms were depurated and analyzed for Ce content, moisture content, and lipid peroxidation. The results showed minimal toxicity to the worms; however, biochar (350 or 600 °C) was the dominant factor, accounting for 94 and 84% of the variance for the moisture content and lipid peroxidation, respectively, in the exposed earthworms. For both soils with 1000 mg of CeO2/kg at 600 °C, biochar significantly decreased the accumulation of Ce in the worm tissues. Amendment with 350 °C biochar had mixed responses on Ce uptake. Analysis by micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) was used to evaluate Ce localization, speciation, and persistence in CeO2- and biochar-exposed earthworms after depuration for 12, 48, and 72 h. Earthworms from the 500 mg of CeO2/kg and 0% biochar treatments eliminated most Ce after a 48 h depuration period. However, in the same treatment and with 5% BC-600 (biochar pyrolysis temperature of 600 °C), ingested biochar fragments (∼50 μm) with Ce adsorbed to the surfaces were retained in the gut after 72 h. Additionally, Ce remained in earthworms from the 2000 mg of CeO2/kg and 5% biochar treatments after depuration for 48 h. Analysis by μ-XANES showed that, within the earthworm tissues, Ce remained predominantly as Ce4+O2, with only few regions (2-3 μm2) where it was found in the reduced form (Ce3+). The present findings highlight that soil and biochar properties have a significant influence in the internalization of CeO2 NPs in earthworms; such interactions need to be considered when estimating NP fate and effects in the environment.
Collapse
Affiliation(s)
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility (ESRF) , BP 220, 38043 Grenoble Cedex, France
| | - Jose A Hernandez-Viezcas
- Department of Chemistry, Environmental Science and Engineering Ph.D. Program, University of California Center for Environmental Implications of Nanotechnology (UCCEIN) , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Wout De Nolf
- European Synchrotron Radiation Facility (ESRF) , BP 220, 38043 Grenoble Cedex, France
| | | | - Luca Pagano
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Department of Life Sciences , University of Parma , 43124 Parma , Italy
| | | | - Minori Uchimiya
- Agricultural Research Service (ARS) , United States Department of Agriculture (USDA) , New Orleans , Louisiana 70124 , United States
| | - Jorge Gardea-Torresdey
- Department of Chemistry, Environmental Science and Engineering Ph.D. Program, University of California Center for Environmental Implications of Nanotechnology (UCCEIN) , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | | |
Collapse
|
52
|
Bierkandt FS, Leibrock L, Wagener S, Laux P, Luch A. The impact of nanomaterial characteristics on inhalation toxicity. Toxicol Res (Camb) 2018; 7:321-346. [PMID: 30090585 PMCID: PMC6060709 DOI: 10.1039/c7tx00242d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/31/2018] [Indexed: 12/27/2022] Open
Abstract
During the last few decades, nanotechnology has evolved into a success story, apparent from a steadily increasing number of scientific publications as well as a large number of applications based on engineered nanomaterials (ENMs). Its widespread uses suggest a high relevance for consumers, workers and the environment, hence justifying intensive investigations into ENM-related adverse effects as a prerequisite for nano-specific regulations. In particular, the inhalation of airborne ENMs, being assumed to represent the most hazardous type of human exposure to these kinds of particles, needs to be scrutinized. Due to an increased awareness of possible health effects, which have already been seen in the case of ultrafine particles (UFPs), research and regulatory measures have set in to identify and address toxic implications following their almost ubiquitous occurrence. Although ENM properties differ from those of the respective bulk materials, the available assessment protocols are often designed for the latter. Despite the large benefit ensuing from the application of nanotechnology, many issues related to ENM behavior and adverse effects are not fully understood or should be examined anew. The traditional hypothesis that ENMs exhibit different or additional hazards due to their "nano" size has been challenged in recent years and ENM categorization according to their properties and toxicity mechanisms has been proposed instead. This review summarizes the toxicological effects of inhaled ENMs identified to date, elucidating the modes of action which provoke different mechanisms in the respiratory tract and their resulting effects. By linking particular mechanisms and adverse effects to ENM properties, grouping of ENMs based on toxicity-related properties is supposed to facilitate toxicological risk assessment. As intensive studies are still required to identify these "ENM classes", the need for alternatives to animal studies is evident and advances in cell-based test systems for pulmonary research are presented here. We hope to encourage the ongoing discussion about ENM risks and to advocate the further development and practice of suitable testing and grouping methods.
Collapse
Affiliation(s)
- Frank S Bierkandt
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Lars Leibrock
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Sandra Wagener
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Peter Laux
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Andreas Luch
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| |
Collapse
|
53
|
Könen-Adıgüzel S, Ergene S. In vitro evaluation of the genotoxicity of CeO 2 nanoparticles in human peripheral blood lymphocytes using cytokinesis-block micronucleus test, comet assay, and gamma H2AX. Toxicol Ind Health 2018; 34:293-300. [PMID: 29554819 DOI: 10.1177/0748233717753780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Engineered nanoparticles (ENPs) are used in a wide range of applications because of their unique properties. Cerium dioxide nanoparticles (CeO2 NPs) are one of the important ENPs, and they can cause negative health effects, such as genotoxicity, in humans and other living organisms. The aim of this work was to analyze the genotoxic effects of short-term (3-24 h) CeO2 NPs exposure to cultured human blood lymphocytes. Three genotoxicity systems "cytokinesis-block micronucleus test, comet assay, and gamma H2AX test" were used to show the genotoxic potential of CeO2 NPs (particle size <25 nm, concentrations: 6, 12, and 18 µg/mL). Hydrogen peroxide was selected as the positive-control genotoxic agent. Our results indicate that CeO2 NPs have genotoxic potential on human peripheral blood lymphocytes cells even at 3-24 h exposure under in vitro conditions.
Collapse
Affiliation(s)
- Serpil Könen-Adıgüzel
- Department of Biology, Faculty of Science and Letters, Mersin University, Mersin, Turkey
| | - Serap Ergene
- Department of Biology, Faculty of Science and Letters, Mersin University, Mersin, Turkey
| |
Collapse
|
54
|
Schwotzer D, Niehof M, Schaudien D, Kock H, Hansen T, Dasenbrock C, Creutzenberg O. Cerium oxide and barium sulfate nanoparticle inhalation affects gene expression in alveolar epithelial cells type II. J Nanobiotechnology 2018; 16:16. [PMID: 29463257 PMCID: PMC5819288 DOI: 10.1186/s12951-018-0343-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Understanding the molecular mechanisms of nanomaterial interacting with cellular systems is important for appropriate risk assessment. The identification of early biomarkers for potential (sub-)chronic effects of nanoparticles provides a promising approach towards cost-intensive and animal consuming long-term studies. As part of a 90-day inhalation toxicity study with CeO2 NM-212 and BaSO4 NM-220 the present investigations on gene expression and immunohistochemistry should reveal details on underlying mechanisms of pulmonary effects. The role of alveolar epithelial cells type II (AEII cells) is focused since its contribution to defense against inhaled particles and potentially resulting adverse effects is assumed. Low dose levels should help to specify particle-related events, including inflammation and oxidative stress. RESULTS Rats were exposed to clean air, 0.1, 0.3, 1.0, and 3.0 mg/m3 CeO2 NM-212 or 50.0 mg/m3 BaSO4 NM-220 and the expression of 391 genes was analyzed in AEII cells after one, 28 and 90 days exposure. A total number of 34 genes was regulated, most of them related to inflammatory mediators. Marked changes in gene expression were measured for Ccl2, Ccl7, Ccl17, Ccl22, Ccl3, Ccl4, Il-1α, Il-1ß, and Il-1rn (inflammation), Lpo and Noxo1 (oxidative stress), and Mmp12 (inflammation/lung cancer). Genes related to genotoxicity and apoptosis did not display marked regulation. Although gene expression was less affected by BaSO4 compared to CeO2 the gene pattern showed great overlap. Gene expression was further analyzed in liver and kidney tissue showing inflammatory responses in both organs and marked downregulation of oxidative stress related genes in the kidney. Increases in the amount of Ce were measured in liver but not in kidney tissue. Investigation of selected genes on protein level revealed increased Ccl2 in bronchoalveolar lavage of exposed animals and increased Lpo and Mmp12 in the alveolar epithelia. CONCLUSION AEII cells contribute to CeO2 nanoparticle caused inflammatory and oxidative stress reactions in the respiratory tract by the release of related mediators. Effects of BaSO4 exposure are low. However, overlap between both substances were detected and support identification of potential early biomarkers for nanoparticle effects on the respiratory system. Signs for long-term effects need to be further evaluated by comparison to a respective exposure setting.
Collapse
Affiliation(s)
- Daniela Schwotzer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany.
| | - Monika Niehof
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
55
|
Lebedová J, Nováková Z, Večeřa Z, Buchtová M, Dumková J, Dočekal B, Bláhová L, Mikuška P, Míšek I, Hampl A, Hilscherová K. Impact of acute and subchronic inhalation exposure to PbO nanoparticles on mice. Nanotoxicology 2018; 12:290-304. [DOI: 10.1080/17435390.2018.1438679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- J. Lebedová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Z. Nováková
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Z. Večeřa
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - M. Buchtová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno, Czech Republic
| | - J. Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - B. Dočekal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - L. Bláhová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - P. Mikuška
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - I. Míšek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno, Czech Republic
| | - A. Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - K. Hilscherová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
56
|
Chen BH, Stephen Inbaraj B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol 2018; 38:1003-1024. [PMID: 29402135 DOI: 10.1080/07388551.2018.1426555] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Amidst numerous emerging nanoparticles, cerium oxide nanoparticles (CNPs) possess fascinating pharmacological potential as they can be used as a therapeutic for various oxidative stress-associated chronic diseases such as cancer, inflammation and neurodegeneration due to unique redox cycling between Ce3+ and Ce4+ oxidation states on their surface. Lattice defects generated by the formation of Ce3+ ions and compensation by oxygen vacancies on CNPs surface has led to switching between CeO2 and CeO2-x during redox reactions making CNPs a lucrative catalytic nanoparticle capable of mimicking key natural antioxidant enzymes such as superoxide dismutase and catalase. Eventually, most of the reactive oxygen species and nitrogen species in biological system are scavenged by CNPs via an auto-regenerative mechanism in which a minimum dose can exhibit catalytic activity for a longer duration. Due to the controversial outcomes on CNPs toxicity, considerable attention has recently been drawn towards establishing relationships between the physicochemical properties of CNPs obtained by different synthesis methods and biological effects ranging from toxicity to therapeutics. Unlike non-redox active nanoparticles, variations in physicochemical properties and the surface properties of CNPs obtained from different synthesis methods can significantly affect their biological activity (inactive, antioxidant, or pro-oxidant). Moreover, these properties can influence the biological identity, cellular interactions, cellular uptake, biodistribution, and therapeutic efficiency. This review aims to highlight the critical role of various physicochemical and the surface properties of CNPs controlling their biological activity based on 165 cited references.
Collapse
Affiliation(s)
- Bing-Huei Chen
- a Department of Food Science , Fu Jen Catholic University , New Taipei City , Taiwan.,b Graduate Institute of Medicine , Fu Jen Catholic University , New Taipei City , Taiwan
| | | |
Collapse
|
57
|
Dumitrescu E, Karunaratne DP, Babu SV, Wallace KN, Andreescu S. Interaction, transformation and toxicity assessment of particles and additives used in the semiconducting industry. CHEMOSPHERE 2018; 192:178-185. [PMID: 29101857 DOI: 10.1016/j.chemosphere.2017.10.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Chemical mechanical planarization (CMP) is a widely used technique for the manufacturing of integrated circuit chips in the semiconductor industry. The process generates large amounts of waste containing engineered particles, chemical additives, and chemo-mechanically removed compounds. The environmental and health effects associated with the release of CMP materials are largely unknown and have recently become of significant concern. Using a zebrafish embryo assay, we established toxicity profiles of individual CMP particle abrasives (SiO2 and CeO2), chemical additives (hydrogen peroxide, proline, glycine, nicotinic acid, and benzotriazole), as well as three model representative slurries and their resulting waste. These materials were characterized before and after use in a typical CMP process in order to assess changes that may affect their toxicological profile and alter their surface chemistry due to polishing. Toxicity outcome in zebrafish is discussed in relation with the physicochemical characteristics of the abrasive particles and with the type and concentration profile of the slurry components pre and post-polishing, as well as the interactions between particle abrasives and additives. This work provides toxicological information of realistic CMP slurries and their polishing waste, and can be used as a guideline to predict the impact of these materials in the environment.
Collapse
Affiliation(s)
- Eduard Dumitrescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Dinusha P Karunaratne
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Kenneth N Wallace
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA.
| |
Collapse
|
58
|
Mishra V, Baranwal V, Mishra RK, Sharma S, Paul B, Pandey AC. Immunotoxicological impact and biodistribution assessment of bismuth selenide (Bi 2Se 3) nanoparticles following intratracheal instillation in mice. Sci Rep 2017; 7:18032. [PMID: 29269782 PMCID: PMC5740059 DOI: 10.1038/s41598-017-18126-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Variously synthesized and fabricated Bi2Se3 nanoparticles (NPs) have recently been explored for their theranostic properties. Herein, we investigated the long term in-vivo biodistribution of Bi2Se3 NPs and systematically screened its immune-toxic potential over lungs and other secondary organs post intratracheal instillation. X-Ray CT scan and ICP MS results revealed significant particle localization and retention in lungs monitored for 1 h and 6 months time period respectively. Subsequent particle trafficking was observed in liver, the major reticuloendothelial organ followed by gradual but incomplete renal clearance. Pulmonary cytotoxicity was also found to be associated with persistent neutrophilic and ROS generation at all time points following NP exposure. The inflammatory markers along with ROS generation further promoted oxidative stress and exaggerated additional inflammatory pathways leading to cell death. The present study, therefore, raises serious concern about the hazardous effects of Bi2Se3 NPs and calls for further toxicity assessments through different administration routes and doses as well.
Collapse
Affiliation(s)
- Vani Mishra
- Nanotechnology Application Centre (NAC), University of Allahabad, Allahabad, 211002, India.
- NMR Section, SAIF, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India.
| | - Vikas Baranwal
- Nanotechnology Application Centre (NAC), University of Allahabad, Allahabad, 211002, India
| | - Rohit K Mishra
- Centre for Bioresource Innovation and Research (CBIR), Dept. of Microbiology, Swami Vivekanand University, Sagar, 470228, M.P., India.
- Centre for Medical Diagnostic and Research (CMDR), Motilal Nehru National Institute of Technology (MNNIT), Allahabad, 211004, India.
| | - Shivesh Sharma
- Centre for Medical Diagnostic and Research (CMDR), Motilal Nehru National Institute of Technology (MNNIT), Allahabad, 211004, India
| | - Bholanath Paul
- Immunobiology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, 226001, India
| | - Avinash C Pandey
- Nanotechnology Application Centre (NAC), University of Allahabad, Allahabad, 211002, India
| |
Collapse
|
59
|
Kamika I, Tekere M. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge. AMB Express 2017; 7:63. [PMID: 28299750 PMCID: PMC5352701 DOI: 10.1186/s13568-017-0365-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/06/2017] [Indexed: 11/10/2022] Open
Abstract
Rapidly developing industry raises concerns about the environmental impacts of nanoparticles, but the effects of inorganic nanoparticles on bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium oxide nanoparticles (nCeO) on the microbiome of activated sludge system. The results showed that 18,330 over 28,201 reads generated from control samples were assigned to Proteobacteria while 5527 reads (19.6%), 3260 reads (11.567%), and 719 reads (2.55%) were assigned to unclassified_Bacteria, Firmicutes and Actinobacteria, respectively. When stressed with nCeO2 NPs, a decrease on reads was noted with 53, 48, 27.7 and 24% assigned to Proteobacteria. Gammaproteobacteria (80.57%) was found to be the most predominant Proteobacteria. The impact of nCeO2 NPs was also observed on pollutants removal as only 1.83 and 35.15% of phosphate and nitrate could be removed in the bioreactor stressed with 40 mg-nCeO2-NPs/L. This was confirmed by a drastic reduction of activities for enzymes catalysing denitrification (NaR and NiR) and degradation of polyphosphate (ADK and PPK). ADK appeared to be the most affected enzyme with activity decrease reaching over 90% when stressed with 10 mg-nCeO2/L. Furthermore, bacterial diversity was not significantly different whereas their species richness showed significant difference between control and treated samples. A large number of reads from control samples could not be classified down to the lower taxonomic level "genera" suggesting hitherto vast untapped microbial diversity. The denitrification related genera including Trichococcus and Acinetobacter were found to alternatively dominating treated samples highlighting those nCeO2 NPs could enhance the growth of some bacterial species while inhibiting those of others. Nevertheless, the study indicates that nCeO2 NPs in wastewater at very high concentrations may have some adverse effects on activated sludge process as they inhibit the removal of phosphate.
Collapse
|
60
|
Adebayo OA, Akinloye O, Adaramoye OA. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia 2017; 50. [DOI: 10.1111/and.12920] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- O. A. Adebayo
- Faculty of Basic Medical Sciences; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| | - O. Akinloye
- Faculty of Basic Medical Sciences; Department of Medical Laboratory Science; University of Lagos; Lagos Nigeria
| | - O. A. Adaramoye
- Faculty of Basic Medical Sciences; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
61
|
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2017; 107:1278-1293. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Nanoparticles have emerged as a boon for the public health applications such as drug delivery, diagnostic, and imaging. Biodegradable and non-bio degradable nanoparticles have been used at a large scale level to increase the efficiency of the biomedical process at the cellular, animal and human level. Exponential use of nanoparticles reinforces the adverse immunological changes at the human health level. Physical and chemical properties of nanoparticles often lead to a variety of immunotoxic effects such as activation of stress-related genes, membrane disruption, and release of pro-inflammatory cytokines. Delivered nanoparticles in animal or human interact with various components of the immune system such as lymphocytes, macrophages, neutrophils etc. Nanoparticles delivered above the threshold level damages the cellular physiology by the generation of reactive oxygen and nitrogen species. This review article represents the potential of nanoparticles in the field of nanomedicine and provides the critical evidence which leads to develop immunotoxicity in living cells and organisms by altering immunological responses.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
62
|
Fröhlich E. Hemocompatibility of inhaled environmental nanoparticles: Potential use of in vitro testing. JOURNAL OF HAZARDOUS MATERIALS 2017; 336:158-167. [PMID: 28494303 DOI: 10.1016/j.jhazmat.2017.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/09/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Hemocompatibility testing is an important part in the evaluation of nano-based medicines. However, it is not systematically used for the assessment of environmental particles since they do not come in contact with blood immediately. Studies on human exposure to air-borne particles and pulmonary exposure of rodents have reported alterations in blood physiology. It is not clear, whether these effects are majorly caused by tissue inflammation or translocated particles in blood. This review addresses the question, if in vitro hemocompatibility testing could help in the risk evaluation of inhaled particles. Particle blood concentrations were estimated based on exposure levels, ventilation volume, deposition rate, lung surface area, and permeability of the alveolar epithelium to particles. The categories of hemocompatibility, thrombosis, coagulation, platelets, hematology, and immunology, were introduced. Also, concentrations of ultrafine particles, silver nanoparticles, carbon nanotubes that caused adverse effects in human blood samples were compared to the estimated concentrations of translocated particles. The comparison suggested that, it is unlikely for translocated nanoparticles to be the sole cause of adverse blood effects. Nevertheless, the testing of specific hemocompatibility parameters (hemolysis and clotting) in healthy blood might help to compare biological effect of inhaled particles containing different amounts of contamination. Testing of samples from healthy and diseased persons might help to identify pathological dispositions that increase the possibility of adverse reaction of nanoparticles in blood.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Medical University of Graz, Center for Medical Research, Stiftingtalstr. 24, A-8010 Graz, Austria.
| |
Collapse
|
63
|
Dekkers S, Miller MR, Schins RPF, Römer I, Russ M, Vandebriel RJ, Lynch I, Belinga-Desaunay MF, Valsami-Jones E, Connell SP, Smith IP, Duffin R, Boere JAF, Heusinkveld HJ, Albrecht C, de Jong WH, Cassee FR. The effect of zirconium doping of cerium dioxide nanoparticles on pulmonary and cardiovascular toxicity and biodistribution in mice after inhalation. Nanotoxicology 2017; 11:794-808. [PMID: 28741972 DOI: 10.1080/17435390.2017.1357214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Development and manufacture of nanomaterials is growing at an exponential rate, despite an incomplete understanding of how their physicochemical characteristics affect their potential toxicity. Redox activity has been suggested to be an important physicochemical property of nanomaterials to predict their biological activity. This study assessed the influence of redox activity by modification of cerium dioxide nanoparticles (CeO2 NPs) via zirconium (Zr) doping on the biodistribution, pulmonary and cardiovascular effects in mice following inhalation. Healthy mice (C57BL/6 J), mice prone to cardiovascular disease (ApoE-/-, western-diet fed) and a mouse model of neurological disease (5 × FAD) were exposed via nose-only inhalation to CeO2 NPs with varying amounts of Zr-doping (0%, 27% or 78% Zr), or clean air, over a four-week period (4 mg/m3 for 3 h/day, 5 days/week). Effects were assessed four weeks post-exposure. In all three mouse models CeO2 NP exposure had no major toxicological effects apart from some modest inflammatory histopathology in the lung, which was not related to the amount of Zr-doping. In ApoE-/- mice CeO2 did not change the size of atherosclerotic plaques, but there was a trend towards increased inflammatory cell content in relation to the Zr content of the CeO2 NPs. These findings show that subacute inhalation of CeO2 NPs causes minimal pulmonary and cardiovascular effect four weeks post-exposure and that Zr-doping of CeO2 NPs has limited effect on these responses. Further studies with nanomaterials with a higher inherent toxicity or a broader range of redox activities are needed to fully assess the influence of redox activity on the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Susan Dekkers
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Mark R Miller
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - Roel P F Schins
- c IUF - Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Isabella Römer
- d School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , UK
| | - Mike Russ
- e Promethean Particles Ltd. , Nottingham , UK
| | - Rob J Vandebriel
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Iseult Lynch
- d School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , UK
| | | | - Eugenia Valsami-Jones
- d School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , UK
| | - Shea P Connell
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - Ian P Smith
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - Rodger Duffin
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - John A F Boere
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Harm J Heusinkveld
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands.,c IUF - Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Catrin Albrecht
- c IUF - Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Wim H de Jong
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Flemming R Cassee
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands.,f Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
64
|
Schwotzer D, Ernst H, Schaudien D, Kock H, Pohlmann G, Dasenbrock C, Creutzenberg O. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats. Part Fibre Toxicol 2017; 14:23. [PMID: 28701164 PMCID: PMC5508701 DOI: 10.1186/s12989-017-0204-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022] Open
Abstract
Background Nanomaterials like cerium oxide and barium sulfate are frequently processed in industrial and consumer products and exposure of humans and other organisms is likely. Generally less information is given on health effects and toxicity, especially regarding long-term exposure to low nanoparticle doses. Since inhalation is still the major route of uptake the present study focused on pulmonary effects of CeO2NM-212 (0.1, 0.3, 1.0, 3.0 mg/m3) and BaSO4NM-220 nanoparticles (50.0 mg/m3) in a 90-day exposure setup. To define particle-related effects and potential mechanisms of action, observations in histopathology, bronchoalveolar lavage and immunohistochemistry were linked to pulmonary deposition and clearance rates. This further allows evaluation of potential overload related effects. Results Lung burden values increased with increasing nanoparticle dose levels and ongoing exposure. At higher doses, cerium clearance was impaired, suggesting lung overload. Barium elimination was extremely rapid and without any signs of overload. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation with increasing severity and post-exposure persistency for CeO2. Also, marker levels for genotoxicity and cell proliferation were significantly increased. BaSO4 showed less inflammation or persistency of effects and particularly affected the nasal cavity. Conclusion CeO2 nanoparticles penetrate the alveolar space and affect the respiratory tract after inhalation mainly in terms of inflammation. Effects at low dose levels and post-exposure persistency suggest potential long-term effects and a notable relevance for human health. The generated data might be useful to improve nanoparticle risk assessment and threshold value generation. Mechanistic investigations at conditions of non-overload and absent inflammation should be further investigated in future studies.
Collapse
Affiliation(s)
- Daniela Schwotzer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany.
| | - Heinrich Ernst
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Gerhard Pohlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
65
|
Paul E, Franco-Montoya ML, Paineau E, Angeletti B, Vibhushan S, Ridoux A, Tiendrebeogo A, Salome M, Hesse B, Vantelon D, Rose J, Canouï-Poitrine F, Boczkowski J, Lanone S, Delacourt C, Pairon JC. Pulmonary exposure to metallic nanomaterials during pregnancy irreversibly impairs lung development of the offspring. Nanotoxicology 2017; 11:484-495. [DOI: 10.1080/17435390.2017.1311381] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Emmanuel Paul
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | - Marie-Laure Franco-Montoya
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | - Erwan Paineau
- Laboratoire de Physique des Solides, CNRS, University of Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Bernard Angeletti
- CEREGE, Aix Marseille Université-CNRS-IRD-Collège de France, Aix-en-Provence, France
| | - Shamila Vibhushan
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | - Audrey Ridoux
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | - Arnaud Tiendrebeogo
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | | | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | | | - Jérôme Rose
- CEREGE, Aix Marseille Université-CNRS-IRD-Collège de France, Aix-en-Provence, France
| | - Florence Canouï-Poitrine
- DHU A-TVB, IMRB, EA 7376 CEpiA (Clinical Epidemiology And Ageing Unit), Université Paris-Est Créteil (UPEC), Créteil, France
- Public Health Department, AP-HP, Henri-Mondor Teaching Hospital, Créteil, France
| | - Jorge Boczkowski
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | - Sophie Lanone
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | - Christophe Delacourt
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
| | - Jean-Claude Pairon
- Inserm U955, Equipe 04, Créteil, France
- Faculté de Médecine, DHU A-TVB, IMRB, Université Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal, Institut Santé-Travail Paris-Est, Créteil, France
| |
Collapse
|
66
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. Int J Nanomedicine 2017; 12:2913-2922. [PMID: 28435267 PMCID: PMC5391826 DOI: 10.2147/ijn.s127180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2 NPs), used as a diesel fuel catalyst, can be emitted into the ambient air, resulting in exposure to humans by inhalation. Recent studies have reported the development of lung toxicity after pulmonary exposure to CeO2 NPs. However, little is known about the possible thrombotic effects of these NPs. The present study investigated the acute (24 hours) effect of intratracheal (IT) instillation of either CeO2 NPs (0.1 or 0.5 mg/kg) or saline (control) on pulmonary and systemic inflammation and oxidative stress and thrombosis in mice. CeO2 NPs induced a significant increase of neutrophils into the bronchoalveolar lavage (BAL) fluid with an elevation of tumor necrosis factor α (TNFα) and a decrease in the activity of the antioxidant catalase. Lung sections of mice exposed to CeO2 NPs showed a dose-dependent infiltration of inflammatory cells consisting of macrophages and neutrophils. Similarly, the plasma levels of C-reactive protein and TNFα were significantly increased, whereas the activities of catalase and total antioxidant were significantly decreased. Interestingly, CeO2 NPs significantly and dose dependently induced a shortening of the thrombotic occlusion time in pial arterioles and venules. Moreover, the plasma concentrations of fibrinogen and plasminogen activator inhibitor-1 were significantly elevated by CeO2 NPs. The direct addition of CeO2 NPs (1, 5, or 25 μg/mL) to mouse whole blood, collected from the inferior vena cava, in vitro neither caused significant platelet aggregation nor affected prothrombin time or partial thromboplastin time, suggesting that the thrombotic events observed in vivo may have resulted from systemic inflammation and/or oxidative stress induced by CeO2 NPs. This study concludes that acute pulmonary exposure to CeO2 NPs induces pulmonary and systemic inflammation and oxidative stress and promotes thrombosis in vivo.
Collapse
Affiliation(s)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | | | - Priya Yuvaraju
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Al-Khod, Sultanate of Oman
| |
Collapse
|
67
|
Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H, Kock H, Tentschert J, Tlili A, Schäffer A, Sips AJAM, Yokel RA, Luch A. Biokinetics of Nanomaterials: the Role of Biopersistence. NANOIMPACT 2017; 6:69-80. [PMID: 29057373 PMCID: PMC5645051 DOI: 10.1016/j.impact.2017.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.
Collapse
Affiliation(s)
- Peter Laux
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andy M Booth
- SINTEF Materials and Chemistry, Trondheim N-7465, Norway
| | - Joseph D Brain
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Josephine Brunner
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of Inhalation Toxicology, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics & Biophysics, Leipzig University, Härtelstraße 16, 04107 Leipzig, Germany
| | - Thomas Gebel
- German Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, 44149 Dortmund, Germany
| | - Gunnar Johanson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of Inhalation Toxicology, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ahmed Tlili
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Adriënne J A M Sips
- National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
68
|
Shin SH, Lim CH, Kim YS, Lee YH, Kim SH, Kim JC. Twenty-eight-day repeated inhalation toxicity study of nano-sized lanthanum oxide in male sprague-dawley rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:1226-1240. [PMID: 27441813 DOI: 10.1002/tox.22319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Although the use of lanthanum has increased in field of high-tech industry worldwide, potential adverse effects to human health and to the environment are largely unknown. The present study aimed to investigate the potential toxicity of nano-sized lanthanum oxide (La2 O3 ) following repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed nose-only to nano-sized La2 O3 for 28 days (5 days/week) at doses of 0, 0.5, 2.5, and 10 mg/m3 . In the experimental period, we evaluated treatment-related changes including clinical signs, body weight, hematology, serum biochemistry, necropsy findings, organ weight, and histopathology findings. We also analyzed lanthanum distribution in the major organs and in the blood, bronchoalveolar lavage fluids (BALF), and oxidative stress in lung tissues. Lanthanum level was highest in lung tissues and showed a dose-dependent relation. Alveolar proteinosis was observed in all treatment groups and was accompanied by an increase in lung weight; moreover, lung inflammation was observed in the 2.5 mg/m3 and higher dose groups and was accompanied by an increase in white blood cells. In the BALF, total cell counts including macrophages and neutrophils, lactate dehydrogenase, albumin, nitric oxide, and tumor necrosis factor-alpha increased significantly in all treatment groups. Furthermore, these changes tended to deteriorate in the 10 mg/m3 group at the end of the recovery period. In the present experimental conditions, we found that the lowest-observed-adverse-effect level of nano-sized La2 O3 was 0.5 mg/m3 in male rats, and the target organ was the lung. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1226-1240, 2017.
Collapse
Affiliation(s)
- Seo-Ho Shin
- Center for Chemicals Safety and Health, Occupational Safety and Health Research Institute, KOSHA, Daejeon, 34122, Republic of Korea
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Cheol-Hong Lim
- Center for Chemicals Safety and Health, Occupational Safety and Health Research Institute, KOSHA, Daejeon, 34122, Republic of Korea
| | - Yong-Soon Kim
- Center for Chemicals Safety and Health, Occupational Safety and Health Research Institute, KOSHA, Daejeon, 34122, Republic of Korea
| | - Yong-Hoon Lee
- Center for Chemicals Safety and Health, Occupational Safety and Health Research Institute, KOSHA, Daejeon, 34122, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, 53212, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
69
|
Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis. Toxicol Appl Pharmacol 2017; 323:16-25. [PMID: 28315692 DOI: 10.1016/j.taap.2017.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/27/2022]
Abstract
The emission of cerium oxide nanoparticles (CeO2) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO2-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO2 (0.15 to 7mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28days after CeO2 (3.5mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO2-exposed rats at 28days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO2-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO2 nanoparticle exposure.
Collapse
|
70
|
Lam PL, Wong WY, Bian Z, Chui CH, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine (Lond) 2017; 12:357-385. [DOI: 10.2217/nnm-2016-0305] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology manipulates therapeutic agents at the nanoscale for the development of nanomedicines. However, there are current concerns over nanomedicines, mainly related to the possible toxicity of nanomaterials used for health medications. Due to their small size, they can enter the human body more readily than larger sized particles. Green chemistry encompasses the green synthesis of drug-loaded nanoparticles by reducing the use of hazardous materials in the synthesis process, thus reducing the adverse health impacts of pharmaceutics. This would greatly expand their potential in biomedical treatments. This review highlights the potential risks of nanomedicine formulations to health, delivery routes of green nanomedicines, recent advances in the development of green nanoscale systems for biomedical applications and future perspectives for the green development of nanomedicines.
Collapse
Affiliation(s)
- Pik-Ling Lam
- State Key Laboratory of Chirosciences, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Wai-Yeung Wong
- State Key Laboratory of Chirosciences, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Zhaoxiang Bian
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Chung-Hin Chui
- State Key Laboratory of Chirosciences, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Roberto Gambari
- Centre of Biotechnology, Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
71
|
Cho Y, Lim JH, Song MK, Jeong SC, Lee K, Heo Y, Kim TS, Ryu JC. Toxicogenomic analysis of the pulmonary toxic effects of hexanal in F344 rat. ENVIRONMENTAL TOXICOLOGY 2017; 32:382-396. [PMID: 26880647 DOI: 10.1002/tox.22242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Hexanal is a major component of indoor air pollutants and is a kind of aldehydes; it has adverse effects on human health. We performed an in vivo inhalation study and transcriptomic analysis to determine the mode of toxic actions in response to hexanal. Fischer 344 rats of both sexes were exposed by inhalation to hexanal aerosol for 4 h day-1 , 5 days week-1 for 4 weeks at 0, 600, 1000, and 1500 ppm. Throughout our microarray-based genome-wide expression analysis, we identified 56 differentially expressed genes in three doses of hexanal; among these genes, 11 genes showed dose-dependent expression patterns (10 downregulated and 1 upregulated, 1.5-fold, p < 0.05). Through a comparative toxicogenomics database (CTD) analysis of 11 genes, we determined that five genes (CCL12, DDIT4, KLF2, CEBPD, and ADH6) are linked to diverse disease categories such as cancer, respiratory tract disease, and immune system disease. These diseases were previously known for being induced by volatile organic compounds (VOCs). Our data demonstrated that the hexanal-induced dose-dependent altered genes could be valuable quantitative biomarkers to predict hexanal exposure and to perform relative risk assessments, including pulmonary toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 382-396, 2017.
Collapse
Affiliation(s)
- Yoon Cho
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-701, Korea
| | - Jung-Hee Lim
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Mi-Kyung Song
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Seung-Chan Jeong
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Kyuhong Lee
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-Si, Jeollabuk-Do, 580-185, Korea
| | - Yongju Heo
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-Si, Jeollabuk-Do, 580-185, Korea
| | - Tae Sung Kim
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-701, Korea
| | - Jae-Chun Ryu
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
| |
Collapse
|
72
|
Lewinski NA, Liu NJ, Asimakopoulou A, Papaioannou E, Konstandopoulos A, Riediker M. Air-Liquid Interface Cell Exposures to Nanoparticle Aerosols. Methods Mol Biol 2017; 1570:301-313. [PMID: 28238146 DOI: 10.1007/978-1-4939-6840-4_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The field of nanomedicine is steadily growing and several nanomedicines are currently approved for clinical use with even more in the pipeline. Yet, while the use of nanotechnology to improve targeted drug delivery to the lungs has received some attention, the use of nanoparticles for inhalation drug delivery has not yet resulted in successful translation to market as compared to intravenous drug delivery. The reasons behind the lack of inhaled nanomedicines approved for clinical use or under preclinical development are unclear, but challenges related to safety are likely to contribute. Although inhalation toxicology studies often begin using animal models, there has been an increase in the development and use of in vitro air-liquid interface (ALI) exposure systems for toxicity testing of engineered nanoparticle aerosols, which will be useful for rapid testing of candidate substances and formulations. This chapter describes an ALI cell exposure assay for measuring toxicological effects, specifically cell viability and oxidative stress, resulting from exposure to aerosols containing nanoparticles.
Collapse
Affiliation(s)
- Nastassja A Lewinski
- Institute for Work and Health (IST), University of Lausanne, Lausanne, Switzerland. .,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - Nathan J Liu
- Institute for Work and Health (IST), University of Lausanne, Lausanne, Switzerland.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | | | - Eleni Papaioannou
- Aerosol and Particle Technology Laboratory, CPERI/CERTH, Thessaloniki, Greece
| | - Athanasios Konstandopoulos
- Aerosol and Particle Technology Laboratory, CPERI/CERTH, Thessaloniki, Greece.,Department of Chemical Engineering, Aristotle University, Thessaloniki, Greece
| | - Michael Riediker
- Institute for Work and Health (IST), University of Lausanne, Lausanne, Switzerland.,SAFENANO, IOM Singapore, Singapore, Singapore
| |
Collapse
|
73
|
Lebedová J, Bláhová L, Večeřa Z, Mikuška P, Dočekal B, Buchtová M, Míšek I, Dumková J, Hampl A, Hilscherová K. Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24047-24060. [PMID: 27638805 DOI: 10.1007/s11356-016-7600-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Cadmium nanoparticles can represent a risk in both industrial and environmental settings, but there is little knowledge on the impacts of their inhalation, especially concerning longer-term exposures. In this study, mice were exposed to cadmium oxide (CdO) nanoparticles in whole body inhalation chambers for 4 to 72 h in acute and 1 to 13 weeks (24 h/day, 7 days/week) in chronic exposure to investigate the dynamics of nanoparticle uptake and effects. In the acute experiment, mice were exposed to 2.95 × 106 particles/cm3 (31.7 μg CdO/m3). The same concentration and a lower one (1.18 × 106 particles/cm3, 12.7 μg CdO/m3) were used for the chronic exposure. Transmission electron microscopy documented distribution of nanoparticles into all studied organs. Major portion of nanoparticles was retained in the lung, but longer exposure led to a greater relative redistribution into secondary organs, namely the kidney, and also the liver and spleen. Accumulation of Cd in the lung and liver occurred already after 24 h and in the brain, kidney, and spleen after 72 h of exposure, and a further increase of Cd levels was observed throughout the chronic exposure. There were significant differences in both Cd accumulation and effects between the two exposure doses. Lung weight in the higher exposure group increased up to 2-fold compared to the control. Histological analyses showed dose-dependent alterations in lung and liver morphology and damage to their tissue. Modulation of oxidative stress parameters including glutathione levels and increased lipid peroxidation occurred mainly after the greater chronic exposure. The results emphasize risk of longer-term inhalation of cadmium nanoparticles, since adverse effects occurring after shorter exposures gradually progressed with a longer exposure duration.
Collapse
Affiliation(s)
- J Lebedová
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, Building A29, CZ62500, Brno, Czech Republic
| | - L Bláhová
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, Building A29, CZ62500, Brno, Czech Republic
| | - Z Večeřa
- Institute of Analytical Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Veveří 97, CZ60200, Brno, Czech Republic
| | - P Mikuška
- Institute of Analytical Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Veveří 97, CZ60200, Brno, Czech Republic
| | - B Dočekal
- Institute of Analytical Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Veveří 97, CZ60200, Brno, Czech Republic
| | - M Buchtová
- Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - I Míšek
- Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - J Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - A Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - K Hilscherová
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, Building A29, CZ62500, Brno, Czech Republic.
| |
Collapse
|
74
|
Vallières F, Simard JC, Noël C, Murphy-Marion M, Lavastre V, Girard D. Activation of human AML14.3D10 eosinophils by nanoparticles: Modulatory activity on apoptosis and cytokine production. J Immunotoxicol 2016; 13:817-826. [PMID: 27404512 DOI: 10.1080/1547691x.2016.1203379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023] Open
Abstract
Eosinophilic inflammation is frequently observed in response to nanoparticle (NP) exposure in airway rodent models of allergies where the number of eosinophils is increased in lungs. Despite this, it is surprising that the potential cytotoxic effect of NP, as well as their direct role on eosinophils is poorly documented. The present study investigated how different NP can alter the biology of the human eosinophilic cell line AML14.3D10. It was found that among NP forms of CeO2, ZnO, TiO2, and nanosilver of 20 nm (AgNP20) or 70 nm (AgNP70) diameters, only ZnO and AgNP20 induced apoptosis. Caspases-7 and -9 were not activated by the tested NP while caspase-3 was activated by AgNP20 only. However, both ZnO and AgNP20 induced cytoskeletal breakdown as evidenced by the cleavage of lamin B1. Using an ELISArray approach for the simultaneous detection of several analytes (cytokines/chemokines), it was found that only ZnO and AgNP20 increased the production of different analytes including the potent pro-inflammatory CXCL8 (IL-8) chemokine. From the data here, we conclude that toxic effects of some NP could be observed in human eosinophil-like cells and that this could be related, at least partially, by induction of apoptosis and production of cytokines and chemokines involved in inflammation. The results of this study also indicate that distinct NP do not activate similarly human eosinophils, since ZnO and AgNP20 induce apoptosis and cytokine production while others such as TiO2, CeO2, and AgNP70 do not.
Collapse
Affiliation(s)
- Francis Vallières
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Jean-Christophe Simard
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Claudie Noël
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Maxime Murphy-Marion
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Valerie Lavastre
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Denis Girard
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| |
Collapse
|
75
|
Prajapati MV, Adebolu OO, Morrow BM, Cerreta JM. Original Research: Evaluation of pulmonary response to inhaled tungsten (IV) oxide nanoparticles in golden Syrian hamsters. Exp Biol Med (Maywood) 2016; 242:29-44. [PMID: 27534980 DOI: 10.1177/1535370216665173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Extensive industrial and military uses of tungsten have raised the possibilities of human occupational and environmental exposure to nanoparticles of this metal, with concomitant health concerns. The goal of this study was to investigate the potential mechanism of pulmonary toxicity associated with inhaled tungsten (IV) oxide nanoparticles (WO3 NPs) in Golden Syrian Hamsters. Animals exposed to WO3 NPs via inhalation were divided into three groups - control and two treatment groups exposed to either 5 or 10 mg/m3 of aerosolized WO3 NPs for 4 h/day for four days. A long-term exposure study (4 h/day for eight days) was also carried out using an additional three groups. Pulmonary toxicity assessed by examining changes in cell numbers, lactate dehydrogenase activity, alkaline phosphatase activity, total protein content, TNF-α, and HMGB1 levels in bronchoalveolar lavage fluids showed a significant difference when compared to control (P < 0.05). The molecular mechanism was established by assessing protein expression of cathepsin B, TXNIP, NLRP3, ASC, IL-1β and caspase-1. Western blot analysis indicated a 1.5 and 1.7 fold changes in NLRP3 in treatment groups (5 mg/m3, P < 0.05 and 10 mg/m3, P < 0.01, respectively), whereas levels of cathepsin B were 1.3 fold higher in lung tissue exposed to WO3 NPs suggesting activation of inflammasome pathway. Morphological changes studied using light and electron microscopy showed localization of nanoparticles and subsequent perturbation in airway epithelia, macrophages, and interstitial areas of alveolar structures. Results from the current study indicate that inhalation exposure to WO3 NPs may induce cytotoxicity, morphological changes, and lung injury via pyroptotic cell death pathway caused by activation of caspase-1.
Collapse
Affiliation(s)
| | - Olujoba O Adebolu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Benjamin M Morrow
- Materials Science & Technology, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Joseph M Cerreta
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
76
|
Davidson DC, Derk R, He X, Stueckle TA, Cohen J, Pirela SV, Demokritou P, Rojanasakul Y, Wang L. Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating. Part Fibre Toxicol 2016; 13:23. [PMID: 27142434 PMCID: PMC4855843 DOI: 10.1186/s12989-016-0134-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Background Nano-scaled cerium oxide (nCeO2) is used in a variety of applications, including use as a fuel additive, catalyst, and polishing agent, yet potential adverse health effects associated with nCeO2 exposure remain incompletely understood. Given the increasing utility and demand for engineered nanomaterials (ENMs) such as nCeO2, “safety-by-design” approaches are currently being sought, meaning that the physicochemical properties (e.g., size and surface chemistry) of the ENMs are altered in an effort to maximize functionality while minimizing potential toxicity. In vivo studies have shown in a rat model that inhaled nCeO2 deposited deep in the lung and induced fibrosis. However, little is known about how the physicochemical properties of nCeO2, or the coating of the particles with a material such as amorphous silica (aSiO2), may affect the bio-activity of these particles. Thus, we hypothesized that the physicochemical properties of nCeO2 may explain its potential to induce fibrogenesis, and that a nano-thin aSiO2 coating on nCeO2 may counteract that effect. Results Primary normal human lung fibroblasts were treated at occupationally relevant doses with nCeO2 that was either left uncoated or was coated with aSiO2 (amsCeO2). Subsequently, fibroblasts were analyzed for known hallmarks of fibrogenesis, including cell proliferation and collagen production, as well as the formation of fibroblastic nodules. The results of this study are consistent with this hypothesis, as we found that nCeO2 directly induced significant production of collagen I and increased cell proliferation in vitro, while amsCeO2 did not. Furthermore, treatment of fibroblasts with nCeO2, but not amsCeO2, significantly induced the formation of fibroblastic nodules, a clear indicator of fibrogenicity. Such in vitro data is consistent with recent in vivo observations using the same nCeO2 nanoparticles and relevant doses. This effect appeared to be mediated through TGFβ signaling since chemical inhibition of the TGFβ receptor abolished these responses. Conclusions These results indicate that differences in the physicochemical properties of nCeO2 may alter the fibrogenicity of this material, thus highlighting the potential benefits of “safety-by-design” strategies. In addition, this study provides an efficient in vitro method for testing the fibrogenicity of ENMs that strongly correlates with in vivo findings.
Collapse
Affiliation(s)
- Donna C Davidson
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Xiaoqing He
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, USA
| | - Todd A Stueckle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Joel Cohen
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sandra V Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, USA
| | - Liying Wang
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| |
Collapse
|
77
|
Dunnick KM, Morris AM, Badding MA, Barger M, Stefaniak AB, Sabolsky EM, Leonard SS. Evaluation of the effect of valence state on cerium oxide nanoparticle toxicity following intratracheal instillation in rats. Nanotoxicology 2016; 10:992-1000. [PMID: 26898289 DOI: 10.3109/17435390.2016.1157220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo.
Collapse
Affiliation(s)
- Katherine M Dunnick
- a HELD , National Institute for Occupational Safety and Health , Morgantown , WV , USA .,b Pharmaceutical and Pharmacological Sciences , West Virginia University , Morgantown , WV , USA
| | - Anna M Morris
- a HELD , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Melissa A Badding
- a HELD , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Mark Barger
- a HELD , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c RHD , National Institute for Occupational Safety and Health , Morgantown , WV , USA , and
| | - Edward M Sabolsky
- d WVU Benjamin M. Statler College of Engineering and Mineral Resources , Morgantown , WV , USA
| | - Stephen S Leonard
- a HELD , National Institute for Occupational Safety and Health , Morgantown , WV , USA .,b Pharmaceutical and Pharmacological Sciences , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
78
|
Rundle A, Robertson AB, Blay AM, Butler KMA, Callaghan NI, Dieni CA, MacCormack TJ. Cerium oxide nanoparticles exhibit minimal cardiac and cytotoxicity in the freshwater fish Catostomus commersonii. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:19-26. [PMID: 26743956 DOI: 10.1016/j.cbpc.2015.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/25/2022]
Abstract
Metal oxide nanomaterials can cause oxidative, cardiorespiratory, and osmoregulatory stress in freshwater fish. In contrast, cerium oxide nanoparticles (nCeO2) can have antioxidant effects but their aquatic toxicity has not been fully characterized. Heart rate and heart rate variability were followed in white sucker (Catostomus commersonii) acutely exposed to 1.0 mg L(-1) nCeO2 for 25 h. Malondialdehyde (MDA) was measured to assess oxidative tissue damage, and plasma cortisol, glucose, lactate, and osmolality were assessed as indicators of physiological and osmoregulatory stress. There was no MDA accumulation in gill or heart of fish exposed to nCeO2 and heart function was unchanged over the 25 h treatment. Plasma cortisol increased 6-fold but there was no change in plasma glucose or lactate. Cellular osmoregulatory toxicity was studied using an isolated red blood cell (RBC) model. In vitro exposure to 1.0 mg L(-1) nCeO2 for 1h had no effect on cell morphological parameters and did not sensitize RBCs to hemolysis under hypotonic stress. Overall, there were no indications of oxidative, cardiorespiratory, or osmoregulatory stress following acute exposure to nCeO2. Elevated plasma cortisol levels suggest that nCeO2 may exert mild toxicity to tissues outside of the cardiorespiratory system.
Collapse
Affiliation(s)
- Amanda Rundle
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Anne B Robertson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Alexandra M Blay
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Kathryn M A Butler
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Neal I Callaghan
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher A Dieni
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada.
| |
Collapse
|
79
|
Cordelli E, Keller J, Eleuteri P, Villani P, Ma-Hock L, Schulz M, Landsiedel R, Pacchierotti F. No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO2or BaSO4nanomaterials. Mutagenesis 2016; 32:13-22. [DOI: 10.1093/mutage/gew005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
80
|
Morimoto Y, Izumi H, Yoshiura Y, Fujishima K, Yatera K, Yamamoto K. Usefulness of Intratracheal Instillation Studies for Estimating Nanoparticle-Induced Pulmonary Toxicity. Int J Mol Sci 2016; 17:ijms17020165. [PMID: 26828483 PMCID: PMC4783899 DOI: 10.3390/ijms17020165] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 11/03/2022] Open
Abstract
Inhalation studies are the gold standard for the estimation of the harmful effects of respirable chemical substances, while there is limited evidence of the harmful effects of chemical substances by intratracheal instillation. We reviewed the effectiveness of intratracheal instillation studies for estimating the hazards of nanoparticles, mainly using papers in which both inhalation and intratracheal instillation studies were performed using the same nanoparticles. Compared to inhalation studies, there is a tendency in intratracheal instillation studies that pulmonary inflammation lasted longer in the lungs. A difference in pulmonary inflammation between high and low toxicity nanoparticles was observed in the intratracheal instillation studies, as in the inhalation studies. Among the endpoints of pulmonary toxicity, the kinetics of neutrophil counts, percentage of neutrophils, and chemokines for neutrophils and macrophages, heme oxygenase-1 (HO-1) in bronchoalveolar lavage fluid (BALF), reflected pulmonary inflammation, suggesting that these markers may be considered the predictive markers of pulmonary toxicity in both types of study. When comparing pulmonary inflammation between intratracheal instillation and inhalation studies under the same initial lung burden, there is a tendency that the inflammatory response following the intratracheal instillation of nanoparticles is greater than or equal to that following the inhalation of nanoparticles. If the difference in clearance in both studies is not large, the estimations of pulmonary toxicity are close. We suggest that intratracheal instillation studies can be useful for ranking the hazard of nanoparticles through pulmonary inflammation.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Yukiko Yoshiura
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Kei Fujishima
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Kazuhiro Yamamoto
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
81
|
Clark J, Gregory CC, Matthews IP, Hoogendoorn B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2015; 21:1-47. [PMID: 26643755 DOI: 10.3109/1354750x.2015.1118540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ultrafine particulate matter contribution to cardiovascular disease is not known and not regulated. PM up to 500 nm are abundant in urban air and alveolar deposition is significant. OBJECTIVE Effects beyond the alveolar barrier within the body or in vitro tissues exposed to particles <500 nm. METHODS AND RESULTS DATABASES MEDLINE; Ovid-MEDLINE PREM; Web of Science; PubMed (SciGlobe). 127 articles. Results in tables: "subject type exposed", "exposure type", "technique". CONCLUSION Heart rate, vasoactivity, atherosclerotic advancement, oxidative stress, coagulability, inflammatory changes are affected. Production of reactive oxygen species is a useful target to limit outcomes associated with UFP exposure.
Collapse
Affiliation(s)
- James Clark
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Clive C Gregory
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Ian P Matthews
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Bastiaan Hoogendoorn
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
82
|
Flaherty NL, Chandrasekaran A, Peña MDPS, Roth GA, Brenner SA, Begley TJ, Melendez JA. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives. Toxicol Lett 2015; 239:205-15. [DOI: 10.1016/j.toxlet.2015.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/12/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022]
|
83
|
Yi P, Pignatello JJ, Uchimiya M, White JC. Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13294-303. [PMID: 26461459 DOI: 10.1021/acs.est.5b03541] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heteroaggregation with indigenous particles is critical to the environmental mobility of engineered nanomaterials (ENM). We studied heteroaggregation of ceria nanoparticles (n-CeO2), as a model for metal oxide ENM, with nanoparticles of pyrogenic carbonaceous material (n-PCM) derived from pecan shell biochar, a model for natural chars and human-made chars used in soil remediation and agriculture. The TEM and STEM images of n-PCM identify both hard and soft particles, both C-rich and C,O,Ca-containing particles (with CaCO3 crystals), both amorphous and "onion-skin" C-rich particles, and traces of nanotubes. Heteroaggregation was evaluated at constant n-CeO2, variable n-PCM concentration by monitoring hydrodynamic diameter by dynamic light scattering and ζ-potential under conditions where n-PCM is "invisible". At pH 5.3, where n-CeO2 and n-PCM are positively and negatively charged, respectively, and each stable to homoaggregation, heteroaggregation is favorable and occurs by a charge neutralization-charge reversal mechanism (CNCR): in this mechanism, primary heteroaggregates that form in the initial stage are stable at low or high n-PCM concentration due to electrostatic repulsion, but unstable at intermediate n-PCM concentration, leading to secondary heteroaggregation. The greatest instability coincides with full charge neutralization. At pH 7.1, where n-CeO2 is neutral and unstable alone, and n-PCM is negative and stable alone, heteroaggregation occurs by a charge-accumulation, core-shell stabilization (CACS) mechanism: n-PCM binds to and forms a negatively charged shell on the neutral surface of the nascent n-CeO2 core, stabilizing the core-shell heteraggregate at a size that decreases with n-PCM concentration. The CNCR and CACS mechanisms give fundamental insight into heteroaggregation between oppositely charged, and between neutral and charged nanoparticles.
Collapse
Affiliation(s)
- Peng Yi
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station , New Haven, Connecticut 06511, United States
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station , New Haven, Connecticut 06511, United States
| | - Minori Uchimiya
- Agricultural Research Service, United States Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station , New Haven, Connecticut 06511, United States
| |
Collapse
|
84
|
Dogra Y, Arkill KP, Elgy C, Stolpe B, Lead J, Valsami-Jones E, Tyler CR, Galloway TS. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology 2015; 10:480-7. [PMID: 26554927 DOI: 10.3109/17435390.2015.1088587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) exhibit fast valence exchange between Ce(IV) and Ce(III) associated with oxygen storage and both pro and antioxidant activities have been reported in laboratory models. The reactivity of CeO2 NPs once they are released into the aquatic environment is virtually unknown, but this is important to determine for assessing their environmental risk. Here, we show that amphipods (Corophium volutator) grown in marine sediments containing CeO2 NPs showed a significant increase in oxidative damage compared to those grown in sediments without NPs and those containing large-sized (bulk) CeO2 particles. There was no exposure effect on survival, but significant increases in single-strand DNA breaks, lipid peroxidation and superoxide dismutase activity were observed after a 10-day exposure to 12.5 mg L(-1) CeO2. Characterisation of the CeO2 NPs dispersed in deionised or saline exposure waters revealed that more radicals were produced by CeO2 NPs compared with bulk CeO2. Electron energy loss spectroscopy (EELS) analysis revealed that both CeO2 NPs were predominantly Ce(III) in saline waters compared to deionised waters where they were predominantly Ce(IV). In both types of medium, the bulk CeO2 consisted mainly of Ce(IV). These results support a model whereby redox cycling of CeO2 NPs between Ce(III) and Ce(IV) is enhanced in saline waters, leading to sublethal oxidative damage to tissues in our test organism.
Collapse
Affiliation(s)
- Yuktee Dogra
- a Department of Biosciences , College of Life and Environmental Sciences, The Geoffrey Pope Building, University of Exeter , Exeter , UK
| | - Kenton P Arkill
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK
| | - Christine Elgy
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK
| | - Bjorn Stolpe
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK
| | - Jamie Lead
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK .,c Centre for Environmental Nanoscience and Risk, University of South Carolina , CA , USA , and
| | - Eugenia Valsami-Jones
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK .,d Department of Geography , Earth and Environmental Sciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Charles R Tyler
- a Department of Biosciences , College of Life and Environmental Sciences, The Geoffrey Pope Building, University of Exeter , Exeter , UK
| | - Tamara S Galloway
- a Department of Biosciences , College of Life and Environmental Sciences, The Geoffrey Pope Building, University of Exeter , Exeter , UK
| |
Collapse
|
85
|
Lappas CM. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem Toxicol 2015; 85:78-83. [DOI: 10.1016/j.fct.2015.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
|
86
|
Konduru NV, Jimenez RJ, Swami A, Friend S, Castranova V, Demokritou P, Brain JD, Molina RM. Silica coating influences the corona and biokinetics of cerium oxide nanoparticles. Part Fibre Toxicol 2015; 12:31. [PMID: 26458946 PMCID: PMC4603643 DOI: 10.1186/s12989-015-0106-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. METHODS We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. RESULTS Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more (141)Ce from silica-coated (35%) was cleared than from uncoated (19%) (141)CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary (141)Ce from silica-coated (141)CeO2 was still minimal (<1%) although lower than from uncoated (141)CeO2 NPs. Post-gavage, nearly 100% of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected (141)CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of (141)Ce in other organs except the liver. CONCLUSION We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration.
Collapse
Affiliation(s)
- Nagarjun V Konduru
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Renato J Jimenez
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Archana Swami
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vincent Castranova
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, P.O. Box 9530, Morgantown, WV, 26506, USA
| | - Philip Demokritou
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Joseph D Brain
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Ramon M Molina
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
87
|
Guedj AS, Kell AJ, Barnes M, Stals S, Gonçalves D, Girard D, Lavigne C. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages. Int J Nanomedicine 2015; 10:5965-79. [PMID: 26445538 PMCID: PMC4590413 DOI: 10.2147/ijn.s82205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic) acid (PLGA)-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs) and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA) as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA) in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =−5.6 mV). Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs) at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA NPs were not cytotoxic for THP-1 MDM cells, did not modulate neutrophil apoptosis in vitro, and did not show inflammatory effect in vivo in the murine air pouch model of acute inflammation. In contrast to BSA alone, BSA encapsulated into PLGA NPs increased leukocyte infiltration in vivo, suggesting the in vivo enhanced delivery and protection of the protein by the polymer nanocarrier. We demonstrated that PLGA-based nanopolymer carriers are good candidates to efficiently and safely enhance the transport of active molecules into human MDMs. In addition, we further investigated their inflammatory profile and showed that PLGA NPs have low inflammatory effects in vitro and in vivo. Thus, PLGA nanocarriers are promising as a drug delivery strategy in macrophages for prevention and eradication of intracellular pathogens such as HIV and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Anne-Sophie Guedj
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Arnold J Kell
- National Research Council of Canada, Ottawa, ON, Canada
| | | | - Sandra Stals
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - David Gonçalves
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Carole Lavigne
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
88
|
Effects of Nano-CeO₂ with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:10806-19. [PMID: 26404340 PMCID: PMC4586644 DOI: 10.3390/ijerph120910806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022]
Abstract
Cerium oxide nanoparticles (nano-CeO2) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO2 with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO2 at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO2 were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO2 were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO2 entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO2 with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell’s ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO2, the rod-like nano-CeO2 has lowest toxicity to HepG2 cells owing to its larger specific surface areas.
Collapse
|
89
|
Ma J, Mercer RR, Barger M, Schwegler-Berry D, Cohen JM, Demokritou P, Castranova V. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicol Appl Pharmacol 2015. [PMID: 26210349 DOI: 10.1016/j.taap.2015.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis.
Collapse
Affiliation(s)
- Jane Ma
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Barger
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joel M Cohen
- Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Philip Demokritou
- Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | | |
Collapse
|
90
|
Dunnick KM, Pillai R, Pisane KL, Stefaniak AB, Sabolsky EM, Leonard SS. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity. Biol Trace Elem Res 2015; 166:96-107. [PMID: 25778836 PMCID: PMC4469090 DOI: 10.1007/s12011-015-0297-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2015] [Indexed: 11/01/2022]
Abstract
Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.
Collapse
Affiliation(s)
- Katherine M Dunnick
- National Institute for Occupational Safety and Health, HELD, 1095 Willowdale Rd, Morgantown, WV, 26505, USA,
| | | | | | | | | | | |
Collapse
|
91
|
Micro- and Nanosized Particles in Nasal Mucosa: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:505986. [PMID: 26125023 PMCID: PMC4466340 DOI: 10.1155/2015/505986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/17/2014] [Accepted: 12/31/2014] [Indexed: 12/02/2022]
Abstract
Objective. The aim of this prospective study is to evaluate presence and quantity of micro- and nanosized particles (NPs) and interindividual differences in their distribution and composition in nasal mucosa. Methods. Six samples of nasal mucosa obtained by mucotomy from patients with chronic hypertrophic rhinosinusitis were examined. Samples divided into 4 parts according to the distance from the nostrils were analyzed by scanning electron microscopy and Raman microspectroscopy to detect solid particles and characterize their morphology and composition. A novel method of quantification of the particles was designed and used to evaluate interindividual differences in distribution of the particles. The findings were compared with patients' employment history. Results. In all the samples, NPs of different elemental composition were found (iron, barium, copper, titanium, etc.), predominantly in the parts most distant from nostrils, in various depths from the surface of the mucosa and interindividual differences in their quantity and composition were found, possibly in relation to professional exposition. Conclusions. This study has proven the possibility of quantification of distribution of micro- and nanosized particles in tissue samples and that the NPs may deposit in deeper layers of mucosa and their elemental composition may be related to professional exposition to the sources of NPs.
Collapse
|
92
|
Qiu Y, Rojas E, Murray RA, Irigoyen J, Gregurec D, Castro-Hartmann P, Fledderman J, Estrela-Lopis I, Donath E, Moya SE. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs. NANOSCALE 2015; 7:6588-6598. [PMID: 25789459 DOI: 10.1039/c5nr00884k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cerium Oxide nanoparticles (CeO(2-x) NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO(2-x) NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO(2-x) NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO(2-x) NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO(2-x) NPs. The brush coating does not prevent CeO(2-x) NPs from displaying antioxidant properties.
Collapse
Affiliation(s)
- Yuan Qiu
- Soft Matter Nanotechnology Laboratory, CIC biomaGune, Paseo Miramón 182 C, 20009, San Sebastián, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Murphy A, Sheehy K, Casey A, Chambers G. The surfactant dipalmitoylphophatidylcholine modifies acute responses in alveolar carcinoma cells in response to low-dose silver nanoparticle exposure. J Appl Toxicol 2015; 35:1141-9. [DOI: 10.1002/jat.3148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/10/2023]
Affiliation(s)
- A. Murphy
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| | - K. Sheehy
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| | - A. Casey
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| | - G. Chambers
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
- School of Physics; Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| |
Collapse
|
94
|
DAI C, CHEN S, WANG C, ZHANG L, GE K, ZHANG J. Ytterbium ion promotes apoptosis of primary mouse bone marrow stromal cells? J RARE EARTH 2015. [DOI: 10.1016/s1002-0721(14)60439-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
95
|
Rogers S, Rice KM, Manne NDPK, Shokuhfar T, He K, Selvaraj V, Blough ER. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans. SAGE Open Med 2015; 3:2050312115575387. [PMID: 26770770 PMCID: PMC4679220 DOI: 10.1177/2050312115575387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The continual increase in production and disposal of nanomaterials raises concerns regarding the safety of nanoparticles on the environmental and human health. Recent studies suggest that cerium oxide (CeO2) nanoparticles may possess both harmful and beneficial effects on biological processes. The primary objective of this study is to evaluate how exposure to different concentrations (0.17-17.21 µg/mL) of aggregated CeO2 nanoparticles affects indices of whole animal stress and survivability in Caenorhabditis elegans. METHODS Caenorhabditis elegans were exposed to different concentrations of CeO2 nanoparticles and evaluated. RESULTS Our findings demonstrate that chronic exposure of CeO2 nanoparticle aggregates is associated with increased levels of reactive oxygen species and heat shock stress response (HSP-4) in Caenorhabditis elegans, but not mortality. Conversely, CeO2 aggregates promoted strain-dependent decreases in animal fertility, a decline in stress resistance as measured by thermotolerance, and shortened worm length. CONCLUSION The data obtained from this study reveal the sublethal toxic effects of CeO2 nanoparticle aggregates in Caenorhabditis elegans and contribute to our understanding of how exposure to CeO2 may affect the environment.
Collapse
Affiliation(s)
- Steven Rogers
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Nandini DPK Manne
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Tolou Shokuhfar
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | - Kun He
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
- School of Material Science and Engineering, Shandong University, Jinan, China
| | | | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
- Department of Pharmaceutical Sciences and Research, Marshall University, Huntington, WV, USA
| |
Collapse
|
96
|
Farhoodi M. Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9114-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
97
|
Hong J, Pan X, Zhao X, Yu X, Sang X, Sheng L, Wang X, Gui S, Sun Q, Wang L, Hong F. Molecular mechanism of oxidative damage of lung in mice following exposure to lanthanum chloride. ENVIRONMENTAL TOXICOLOGY 2015; 30:357-365. [PMID: 24142884 DOI: 10.1002/tox.21913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Exposure to lanthanoids (Ln) elicits an adverse response such as oxidative injury of lung in animals and human. The molecular targets of Ln remain unclear. In the present study, the function and signal pathway of nuclear factor erythroid 2 related factor 2 (Nrf2) in LaCl3 -induced oxidative stress in mouse lung were investigated. Mice were exposed to 2, 5, and 10 mg/kg body weight by nasal administration for 6 consecutive months. With increased doses, La was markedly accumulated and promoted the reactive oxygen species (ROS) production in the lung, which in turn resulted in peroxidation of lipids, proteins and DNA, and severe pulmonary damages. Furthermore, LaCl3 exposure could significantly increase levels of Nrf2, heme oxygenase 1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC) expressions in the LaCl3 -exposed lung. These findings imply that the induction of Nrf2 expression is an adaptive intracellular response to LaCl3 -induced oxidative stress in mouse lung, and that Nrf2 may regulate the LaCl3 -induced pulmonary damages.
Collapse
Affiliation(s)
- Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Kyosseva SV, McGinnis JF. Cerium oxide nanoparticles as promising ophthalmic therapeutics for the treatment of retinal diseases. World J Ophthalmol 2015; 5:23-30. [DOI: 10.5318/wjo.v5.i1.23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/03/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology offers exciting new approaches for biology and medicine. In recent years, nanoparticles, particularly those of the rare metal cerium, are showing potential for a wide range of applications in medicine. Cerium oxide nanoparticles or nanoceria are antioxidants and possess catalytic activities that mimic those of super oxide dismutase and catalase, thereby protecting cells from oxidative stress. The retina is highly susceptible to oxidative stress because of its high oxygen consumption and high metabolic activity associated with exposure to light. Many retinal diseases progress through oxidative stress as a result of a chronic or acute rise in reactive oxygen species. Diseases of the retina are the leading causes of blindness throughout the world. Although some treatments may delay or slow the development of retinal diseases, there are no cures for most forms of blinding diseases. In this review is summarized evidence that cerium oxide nanoparticles can function as catalytic antioxidants in vivo in rodent models of age-related macular degeneration and inherited retinal degeneration and may represent a novel therapeutic strategy for the treatment of human eye diseases. This may shift current research and clinical practice towards the use of nanoceria, alone or in combination with other therapeutics.
Collapse
|
99
|
Francis AP, Ganapathy S, Palla VR, Murthy PB, Ramaprabhu S, Devasena T. One time nose-only inhalation of MWCNTs: Exploring the mechanism of toxicity by intermittent sacrifice in Wistar rats. Toxicol Rep 2015; 2:111-120. [PMID: 28962343 PMCID: PMC5598153 DOI: 10.1016/j.toxrep.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/08/2015] [Accepted: 02/01/2015] [Indexed: 12/24/2022] Open
Abstract
We have investigated the time-dependent effect of multi-walled carbon nanotubes (MWCNTs) in rats upon single inhalation exposure followed by intermittent sacrifice. The effects were monitored by analyzing the bronchoalveolar lavage fluid (BALF) and histopathological analysis. Cell count, neutrophils, lymphocytes, lactate dehydrogenase, alkaline phosphatase, protein and cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin 4 (IL-4)) were significantly increased, while cell viability and alveolar macrophage count significantly decreased in the BALF of MWCNT-treated rats on day 1, day 7 and day 14 post-exposure, when compared to control rats. Histopathological analysis revealed inflammation, fibrosis and granuloma in the lungs of MWCNTs-treated rats on day 7 and day 14 post-exposure. We interpret that MWCNT induces inflammation, fibrosis and granuloma characterized by progressive elevation of TNF-α and IL-4. Histopathological studies further support our view and reveal the distribution of MWCNT in lungs and tracheobronchial lymph nodes (TBLN). We conclude that MWCNT-induced pulmonary toxicity is considerable even on single exposure.
Collapse
Affiliation(s)
| | - Selvam Ganapathy
- International Institute of Biotechnology and Toxicology (IIBAT), Padappai, India
| | | | | | - Sundara Ramaprabhu
- Alternative Energy and Nanotechnology Laboratory (AENL), Nanofunctional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
100
|
Wang S, Gao Y, Huang L, Zheng S, Wang C, Yu Y, Xie K. Activation of NF-κB signaling in rare earth neodymium oxide particle-induced acute lung injury. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00075k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activation mechanism of the NF-κB signaling pathway in Nd2O3exposure-induced acute lung inflammation and pneumoconiosis.
Collapse
Affiliation(s)
- Suhua Wang
- Department of Toxicology
- School of Public Health
- Shandong University
- Jinan
- P.R. China
| | - Yanrong Gao
- Department of Environmental and Occupational Health
- School of Public Health
- Baotou Medical College
- Baotou
- P.R. China
| | - Lihua Huang
- Department of Environmental and Occupational Health
- School of Public Health
- Baotou Medical College
- Baotou
- P.R. China
| | - Shanshan Zheng
- Department of Environmental and Occupational Health
- School of Public Health
- Baotou Medical College
- Baotou
- P.R. China
| | - Chunxia Wang
- Department of Environmental and Occupational Health
- School of Public Health
- Baotou Medical College
- Baotou
- P.R. China
| | - Yanqin Yu
- Department of Environmental and Occupational Health
- School of Public Health
- Baotou Medical College
- Baotou
- P.R. China
| | - Keqin Xie
- Department of Toxicology
- School of Public Health
- Shandong University
- Jinan
- P.R. China
| |
Collapse
|