51
|
Son S, Oh CJ, An CS. Arabidopsis thaliana Remorins Interact with SnRK1 and Play a Role in Susceptibility to Beet Curly Top Virus and Beet Severe Curly Top Virus. THE PLANT PATHOLOGY JOURNAL 2014; 30:269-78. [PMID: 25289013 PMCID: PMC4181108 DOI: 10.5423/ppj.oa.06.2014.0061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 05/19/2023]
Abstract
Remorins, a family of plant-specific proteins containing a variable N-terminal region and conserved C-terminal domain, play a role in various biotic and abiotic stresses, including host-microbe interactions. However, their functions remain to be completely elucidated, especially for the Arabidopsis thaliana remorin group 4 (AtREM4). To elucidate the role of remorins in Arabidopsis, we first showed that AtREM4s have typical molecular characteristics of the remorins, such as induction by various types of biotic and abiotic stresses, localization in plasma membrane and homo- and hetero-oligomeric interaction. Next, we showed that their loss-of-function mutants displayed reduced susceptibility to geminiviruses, Beet Curly Top Virus and Beet Severe Curly Top Virus, while overexpressors enhanced susceptibility. Moreover, we found that they interacted with SnRK1, which phosphorylated AtREM4.1, and were degraded by the 26S proteasome pathway. These results suggest that AtREM4s may be involved in the SnRK1-mediated signaling pathway and play a role as positive regulators of the cell cycle during geminivirus infection.
Collapse
Affiliation(s)
| | | | - Chung Sun An
- Corresponding author. Phone) +82-2-880-6678, FAX) +82-2-872-1993 E-mail)
| |
Collapse
|
52
|
Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A, Ramaswamy S, Dyson NJ. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res 2014; 42:8939-53. [PMID: 25053843 PMCID: PMC4132727 DOI: 10.1093/nar/gku609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.
Collapse
Affiliation(s)
- Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eunjeong Kwon
- Massachusetts General Hospital, Cutaneous Biology Research Center, Charlestown, MA 02129, USA
| | - Robert T Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Endre Anderssen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
53
|
Le J, Zou J, Yang K, Wang M. Signaling to stomatal initiation and cell division. FRONTIERS IN PLANT SCIENCE 2014; 5:297. [PMID: 25002867 PMCID: PMC4066587 DOI: 10.3389/fpls.2014.00297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/06/2014] [Indexed: 05/06/2023]
Abstract
Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage.
Collapse
Affiliation(s)
- Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | | | | | | |
Collapse
|
54
|
Abstract
The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.
Collapse
|
55
|
Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2657-66. [PMID: 24323507 PMCID: PMC4557542 DOI: 10.1093/jxb/ert411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Alex de Mendoza
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
56
|
Kuwabara A, Gruissem W. Arabidopsis RETINOBLASTOMA-RELATED and Polycomb group proteins: cooperation during plant cell differentiation and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2667-76. [PMID: 24638900 DOI: 10.1093/jxb/eru069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RETINOBLASTOMA (RB) is a tumour suppressor gene originally discovered in patients that develop eye tumours. The pRb protein is now well established as a key cell-cycle regulator which suppresses G1-S transition via interaction with E2F-DP complexes. pRb function is also required for a wide range of biological processes, including the regulation of stem-cell maintenance, cell differentiation, permanent cell-cycle exit, DNA repair, and genome stability. Such multifunctionality of pRb is thought to be facilitated through interactions with various binding partners in a context-dependent manner. Although the molecular network in which RB controls various biological processes is not fully understood, it has been found that pRb interacts with transcription factors and chromatin modifiers to either suppress or promote the expression of key genes during the switch from cell proliferation to differentiation. RETINOBLASTOMA-RELATED (RBR) is the plant orthologue of RB and is also known to negatively control the G1-S transition. Similar to its animal counterpart, plant RBR has various roles throughout plant development; however, much of its molecular functions outside of the G1-S transition are still unknown. One of the better-characterized molecular mechanisms is the cooperation of RBR with the Polycomb repressive complex 2 (PRC2) during plant-specific developmental events. This review summarizes the current understanding of this cooperation and focuses on the processes in Arabidopsis in which the RBR-PRC2 cooperation facilitates cell differentiation and developmental transitions.
Collapse
Affiliation(s)
- Asuka Kuwabara
- Department of Biology, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
57
|
Yang K, Wang H, Xue S, Qu X, Zou J, Le J. Requirement for A-type cyclin-dependent kinase and cyclins for the terminal division in the stomatal lineage of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2449-61. [PMID: 24687979 PMCID: PMC4036514 DOI: 10.1093/jxb/eru139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis stoma is a specialized epidermal valve made up of a pair of guard cells around a pore whose aperture controls gas exchange between the shoot and atmosphere. Guard cells (GCs) are produced by a symmetric division of guard mother cells (GMCs). The R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 restrict the division of a GMC to one. Previously, the upstream regions of several core cell cycle genes were identified as the direct targets of FLP/MYB88, including the B-type cyclin-dependent kinase CDKB1;1 and A2-type cyclin CYCA2;3. Here we show that CDKA;1 is also an immediate direct target of FLP/MYB88 through the binding to cis-regulatory elements in the CDKA;1 promoter region. CDKA;1 activity is required not only for normal GMC divisions but also for the excessive cell overproliferation in flp myb88 mutant GMCs. The impaired defects of GMC division in cdkb1;1 1;2 mutants could be partially rescued by a stage-specific expression of CDKA;1. Although targeted overexpression of CDKA;1 does not affect stomatal development, ectopic expression of the D3-type cyclin CYCD3;2 induces GC subdivision, resulting in a stoma with 3-4 GCs instead of the normal two. Co-overexpression of CDKA;1 with CYCD3;2, but not with CYCA2;3, confers a synergistic effect with respect to GC subdivision. Thus, in addition to a role in stomatal formative asymmetric divisions at early developmental stages, CDKA;1 is needed in triggering GMC symmetric divisions at the late stage of stomatal development. However, timely down-regulation of CDKA;1-CYCD3 activity is required for restriction of GC proliferation.
Collapse
Affiliation(s)
- Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Hongzhe Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Xiaoxiao Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| |
Collapse
|
58
|
Sablowski R, Carnier Dornelas M. Interplay between cell growth and cell cycle in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2703-14. [PMID: 24218325 DOI: 10.1093/jxb/ert354] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marcelo Carnier Dornelas
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, CEP 13083-862, Brazil
| |
Collapse
|
59
|
Lee E, Lucas JR, Goodrich J, Sack FD. Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and FAMA transcription factor genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:566-77. [PMID: 24654956 DOI: 10.1111/tpj.12516] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
Arabidopsis guard cell (GC) fate is conferred via a transient pulse of expression of FAMA that encodes a bHLH transcription factor. Stomata often function for years, suggesting that the FAMA expression window stabilizes long-term GC identity or that additional factors operate. Transgenic lines harboring a copy of a FAMA transgene were found to induce the fate resetting of mature GCs to that of lineage-specific stem cells causing new stomata to arise within shells of the old, a Stoma-in-Stoma (SIS) phenotype. These lines disrupt the normal trimethylation on lysine 27 of histone3 (H3K27me3) on stomatal stem cell genes, a phenotype rescued by constitutive expression of the Polycomb Group (PcG) gene CURLY LEAF. Thus the stability of stomatal fate is enforced by a PcG-mediated reduction in the transcriptional accessibility of stem cell genes and by the endogenous FAMA gene itself. Moreover, a transgenic FOUR LIPS gene, which encodes a MYB protein that is not required for GC fate, also induces a SIS phenotype and disrupts H3K27 trimethylation. Thus FLP might indirectly enforce GC fate as well.
Collapse
Affiliation(s)
- Eunkyoung Lee
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
60
|
Lee E, Lucas JR, Sack FD. Deep functional redundancy between FAMA and FOUR LIPS in stomatal development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:555-65. [PMID: 24571519 DOI: 10.1111/tpj.12489] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 05/09/2023]
Abstract
Functional redundancy arises between gene paralogs as well as non-homologous genes that play a common role at a shared node. The bHLH transcription factor FAMA, along with the paralogous MYB genes, FOUR LIPS (FLP) and MYB88 all ensure that Arabidopsis stomata contain just two guard cells (GCs) by enforcing a single symmetric precursor cell division before stomatal maturity. Consistent with this function, FLP and FAMA exhibit the same expression pattern in which both translational GFP fusions emit fluorescence just before and after symmetric division; however, FAMA but not FLP is required to confer GC fate. Strikingly, swapping the genes and promoters of the FLP and FAMA genes results in the reciprocal complementation of respective loss-of-function mutants. Thus, an FLP transgene can restore GC fate to a fama mutant background. FAMA, FLP and the FLP paralog MYB88 were previously shown to influence higher order functions in stomatal development, including maintaining and stabilizing stomatal fate. Here we show that these overlapping functions are likely to also involve interactions between FLP and FAMA with the RETINOBLASTOMA-RELATED (RBR) protein.
Collapse
Affiliation(s)
- Eunkyoung Lee
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | |
Collapse
|
61
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
62
|
Li H, Soriano M, Cordewener J, Muiño JM, Riksen T, Fukuoka H, Angenent GC, Boutilier K. The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte. THE PLANT CELL 2014; 26:195-209. [PMID: 24464291 PMCID: PMC3963568 DOI: 10.1105/tpc.113.116491] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 05/19/2023]
Abstract
The haploid male gametophyte, the pollen grain, is a terminally differentiated structure whose function ends at fertilization. Plant breeding and propagation widely use haploid embryo production from in vitro-cultured male gametophytes, but this technique remains poorly understood at the mechanistic level. Here, we show that histone deacetylases (HDACs) regulate the switch to haploid embryogenesis. Blocking HDAC activity with trichostatin A (TSA) in cultured male gametophytes of Brassica napus leads to a large increase in the proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is enhanced by, but not dependent on, the high-temperature stress that is normally used to induce haploid embryogenesis in B. napus. The male gametophyte of Arabidopsis thaliana, which is recalcitrant to haploid embryo development in culture, also forms embryogenic cell clusters after TSA treatment. Genetic analysis suggests that the HDAC protein HDA17 plays a role in this process. TSA treatment of male gametophytes is associated with the hyperacetylation of histones H3 and H4. We propose that the totipotency of the male gametophyte is kept in check by an HDAC-dependent mechanism and that the stress treatments used to induce haploid embryo development in culture impinge on this HDAC-dependent pathway.
Collapse
Affiliation(s)
- Hui Li
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Mercedes Soriano
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Jan Cordewener
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Jose M. Muiño
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Tjitske Riksen
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan
| | - Gerco C. Angenent
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, 6700 AP Wageningen, The Netherlands
| | - Kim Boutilier
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
- Address correspondence to
| |
Collapse
|
63
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
64
|
Dorca-Fornell C, Pajor R, Lehmeier C, Pérez-Bueno M, Bauch M, Sloan J, Osborne C, Rolfe S, Sturrock C, Mooney S, Fleming A. Increased leaf mesophyll porosity following transient retinoblastoma-related protein silencing is revealed by microcomputed tomography imaging and leads to a system-level physiological response to the altered cell division pattern. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:914-29. [PMID: 24118480 PMCID: PMC4282533 DOI: 10.1111/tpj.12342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 05/04/2023]
Abstract
The causal relationship between cell division and growth in plants is complex. Although altered expression of cell-cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under-explored, is that altered division patterns resulting from manipulation of cell-cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma-related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high-resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell-cycle gene expression.
Collapse
Affiliation(s)
- Carmen Dorca-Fornell
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Radoslaw Pajor
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of NottinghamSutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Christoph Lehmeier
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Marísa Pérez-Bueno
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Marion Bauch
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Jen Sloan
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Colin Osborne
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Stephen Rolfe
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Craig Sturrock
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of NottinghamSutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Sacha Mooney
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of NottinghamSutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Andrew Fleming
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
65
|
Rubin SM, Sage J. Defining a new vision for the retinoblastoma gene: report from the 3rd International Rb Meeting. Cell Div 2013; 8:13. [PMID: 24257515 PMCID: PMC3866465 DOI: 10.1186/1747-1028-8-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 01/25/2023] Open
Abstract
The retinoblastoma tumor suppressor (Rb) pathway is mutated in most, if not all human tumors. In the G0/G1 phase, Rb and its family members p107 and p130 inhibit the E2F family of transcription factors. In response to mitogenic signals, Cyclin-dependent kinases (CDKs) phosphorylate Rb family members, which results in the disruption of complexes between Rb and E2F family members and in the transcription of genes essential for S phase progression. Beyond this role in early cell cycle decisions, Rb family members regulate DNA replication and mitosis, chromatin structure, metabolism, cellular differentiation, and cell death. While the RB pathway has been extensively studied in the past three decades, new investigations continue to provide novel insights into basic mechanisms of cancer development and, beyond cancer, help better understand fundamental cellular processes, from plants to mammals. This meeting report summarizes research presented at the recently held 3rd International Rb Meeting.
Collapse
Affiliation(s)
- Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
66
|
Perilli S, Perez-Perez JM, Di Mambro R, Peris CL, Díaz-Triviño S, Del Bianco M, Pierdonati E, Moubayidin L, Cruz-Ramírez A, Costantino P, Scheres B, Sabatini S. RETINOBLASTOMA-RELATED protein stimulates cell differentiation in the Arabidopsis root meristem by interacting with cytokinin signaling. THE PLANT CELL 2013; 25:4469-78. [PMID: 24285791 PMCID: PMC3875730 DOI: 10.1105/tpc.113.116632] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/04/2013] [Accepted: 11/14/2013] [Indexed: 05/23/2023]
Abstract
Maintenance of mitotic cell clusters such as meristematic cells depends on their capacity to maintain the balance between cell division and cell differentiation necessary to control organ growth. In the Arabidopsis thaliana root meristem, the antagonistic interaction of two hormones, auxin and cytokinin, regulates this balance by positioning the transition zone, where mitotically active cells lose their capacity to divide and initiate their differentiation programs. In animals, a major regulator of both cell division and cell differentiation is the tumor suppressor protein RETINOBLASTOMA. Here, we show that similarly to its homolog in animal systems, the plant RETINOBLASTOMA-RELATED (RBR) protein regulates the differentiation of meristematic cells at the transition zone by allowing mRNA accumulation of AUXIN RESPONSE FACTOR19 (ARF19), a transcription factor involved in cell differentiation. We show that both RBR and the cytokinin-dependent transcription factor ARABIDOPSIS RESPONSE REGULATOR12 are required to activate the transcription of ARF19, which is involved in promoting cell differentiation and thus root growth.
Collapse
Affiliation(s)
- Serena Perilli
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - José Manuel Perez-Perez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Riccardo Di Mambro
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Cristina Llavata Peris
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Sara Díaz-Triviño
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Marta Del Bianco
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Emanuela Pierdonati
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Laila Moubayidin
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Alfredo Cruz-Ramírez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Paolo Costantino
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Ben Scheres
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Sabrina Sabatini
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
67
|
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 2013; 11:777-88. [DOI: 10.1038/nrmicro3117] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
68
|
Reyes MI, Nash TE, Dallas MM, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 2013; 87:9691-706. [PMID: 23824791 PMCID: PMC3754110 DOI: 10.1128/jvi.01095-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/21/2013] [Indexed: 01/17/2023] Open
Abstract
Geminiviruses constitute a large family of single-stranded DNA viruses that cause serious losses in important crops worldwide. They often exist in disease complexes and have high recombination and mutation rates, allowing them to adapt rapidly to new hosts and environments. Thus, an effective resistance strategy must be general in character and able to target multiple viruses. The geminivirus replication protein (Rep) is a good target for broad-based disease control because it is highly conserved and required for viral replication. In an earlier study, we identified a set of peptide aptamers that bind to Rep and reduce viral replication in cultured plant cells. In this study, we selected 16 of the peptide aptamers for further analysis in yeast two-hybrid assays. The results of these experiments showed that all 16 peptide aptamers interact with all or most of the Rep proteins from nine viruses representing the three major Geminiviridae genera and identified two peptide aptamers (A22 and A64) that interact strongly with different regions in the Rep N terminus. Transgenic tomato lines expressing A22 or A64 and inoculated with Tomato yellow leaf curl virus or Tomato mottle virus exhibited delayed viral DNA accumulation and often contained lower levels of viral DNA. Strikingly, the effect on symptoms was stronger, with many of the plants showing no symptoms or strongly attenuated symptoms. Together, these results established the efficacy of using Rep-binding peptide aptamers to develop crops that are resistant to diverse geminiviruses.
Collapse
Affiliation(s)
- Maria Ines Reyes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
69
|
De Storme N, Geelen D. Sexual polyploidization in plants--cytological mechanisms and molecular regulation. THE NEW PHYTOLOGIST 2013; 198:670-684. [PMID: 23421646 PMCID: PMC3744767 DOI: 10.1111/nph.12184] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/01/2013] [Indexed: 05/18/2023]
Abstract
In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| |
Collapse
|
70
|
Chemes LB, Noval MG, Sánchez IE, de Prat-Gay G. Folding of a cyclin box: linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor AB pocket domain. J Biol Chem 2013; 288:18923-38. [PMID: 23632018 DOI: 10.1074/jbc.m113.467316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a "hub" protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways.
Collapse
Affiliation(s)
- Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
71
|
Ogawa D, Morita H, Hattori T, Takeda S. Molecular characterization of the rice protein RSS1 required for meristematic activity under stressful conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:54-60. [PMID: 23041461 DOI: 10.1016/j.plaphy.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/11/2012] [Indexed: 05/13/2023]
Abstract
Post embryonic growth of plants depends on cell division activity in the shoot and root meristems, in conjunction with subsequent cell differentiation. Under environmental stress conditions, where plant growth is moderately impaired, the meristematic activity is maintained by mechanisms as yet unknown. We previously showed that the rice protein RSS1, whose stability is regulated depending on the cell cycle phases, is a key factor for the maintenance of meristematic activity under stressful conditions. RSS1 interacts with a catalytic subunit of protein phosphatase 1 (PP1), but other molecular characteristics are largely unknown. Here we show that RSS1 interacts with all the PP1 expressed in the shoot apex of rice. This interaction requires one of the conserved regions of RSS1, which is important for RSS1 function. Interestingly, the recombinant RSS1 protein is highly resistant to heat with respect to its anti-coagulability and binding activity to PP1. The features of RSS1 are reminiscent of those of inhibitor-2 of animals, although it is likely that the mode of function of RSS1 is different from that of inhibitor-2. Noticeably, RSS1 binds to PP1 under extremely high ionic strength conditions in vitro. Therefore, RSS1 possibly functions by forming a stable complex with PP1.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|