51
|
García-Arriaza J, Arnáez P, Jiménez JL, Gómez CE, Muñoz-Fernández MÁ, Esteban M. Vector replication and expression of HIV-1 antigens by the HIV/AIDS vaccine candidate MVA-B is not affected by HIV-1 protease inhibitors. Virus Res 2012; 167:391-6. [PMID: 22659488 DOI: 10.1016/j.virusres.2012.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 02/07/2023]
Abstract
MVA-B is an attenuated poxvirus vector expressing human immunodeficiency virus type 1 Env, Gag, Pol, and Nef antigens from clade B, and is considered a promising HIV/AIDS vaccine candidate. Recently, a phase I clinical trial in human healthy volunteers has shown that MVA-B is safe and highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4(+) and CD8(+) T cell responses to HIV-1 antigens, with preference for effector memory T cells; and it also triggers the induction of specific antibodies to Env in most of the vaccines. While MVA recombinants expressing HIV-1 antigens are being used or plan to use in therapeutic clinical trials, little is known on the effect of HIV-1 highly active antiretroviral therapy in MVA life cycle. To define this role, here we have evaluated in established cell cultures and human dendritic cells to what extent different HIV-1 protease inhibitors affect virus replication and expression of HIV-1 antigens during MVA-B infection. The results obtained revealed that the most commonly used HIV-1 protease inhibitors (atazanavir, ritonavir, and lopinavir) had no effect on MVA-B virus growth kinetics, even at higher concentrations than those normally used on HAART. Furthermore, expression of gp120 and the fused Gag-Pol-Nef polyprotein in permissive and non-permissive cells infected with MVA-B were also not affected. These findings are relevant information for the therapeutic use of MVA-B as an HIV-1/AIDS vaccine.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
52
|
Vijayan A, Gómez CE, Espinosa DA, Goodman AG, Sanchez-Sampedro L, Sorzano COS, Zavala F, Esteban M. Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:6407-17. [PMID: 22615208 DOI: 10.4049/jimmunol.1102492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Gómez CE, Perdiguero B, Jiménez V, Filali-Mouhim A, Ghneim K, Haddad EK, Quakkerlaar ED, Delaloye J, Harari A, Roger T, Dunhen T, Sékaly RP, Melief CJM, Calandra T, Sallusto F, Lanzavecchia A, Wagner R, Pantaleo G, Esteban M. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. PLoS One 2012; 7:e35485. [PMID: 22536391 PMCID: PMC3334902 DOI: 10.1371/journal.pone.0035485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 02/04/2023] Open
Abstract
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Victoria Jiménez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Abdelali Filali-Mouhim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Khader Ghneim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Esther D. Quakkerlaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Julie Delaloye
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thomas Dunhen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | - Ralf Wagner
- University of Regensburg, Regensburg, Germany
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
54
|
Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines 2012; 10:1221-40. [PMID: 21854314 DOI: 10.1586/erv.11.79] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Less than 200 years after its introduction, widespread use of vaccinia virus (VACV) as a smallpox vaccine has eradicated variola virus. Along with the remarkable success of the vaccination program, frequent and sometimes severe adverse reactions to VACV were encountered. After eradication, VACV has been reserved for select populations who might be at significant risk for orthopoxvirus infections. Events over the past decade have renewed concerns over the potential use of variola virus as a biological weapon. Accordingly, interest in VACV and attenuated derivatives has increased, both as vaccines against smallpox and as vectors for other vaccines. This article will focus on new developments in the field of orthopoxvirus immunization and will highlight recent advances in the use of vaccinia viruses as vectors for infectious diseases and malignancies.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Three Blackfan Circle, E/CLS-1006, Boston, MA 02215, USA.
| | | |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW In the present review, we will provide the scientific rationale for applying systems biology to the development of vaccines and particularly HIV vaccines, the predictive power of systems biology on the vaccine immunological profile, the correlation between systems biology and the immunological functional profiles of different candidate vaccines, and the value of systems biology in the selection process of identifying the best-in-class candidate vaccines and in the decision process to move into in-vivo evaluation in clinical trials. RECENT FINDINGS Systems biology has been recently applied to the characterization of the protective yellow fever vaccine YF17D and of seasonal flu vaccines. This has been instrumental in the identification of the components of the immune response that need to be stimulated by the vaccine in order to generate protective immunity. It is worth noting that a systems biology approach is currently being performed to identify correlates of immune protection of the RV144 Thai vaccine, the only known vaccine that showed modest protection against HIV reacquisition. SUMMARY Systems biology represents a novel and powerful approach to predict the vaccine immunological profile, to identify the protective components of the immune response, and to help in the selection process of the best-in-class vaccines to move into clinical development.
Collapse
Affiliation(s)
- Elias K Haddad
- Vaccine and Gene Therapy Institute, Florida, Port St. Lucie, Florida, USA.
| | | |
Collapse
|
56
|
Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02). Vaccine 2011; 29:8309-16. [DOI: 10.1016/j.vaccine.2011.08.098] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/29/2011] [Accepted: 08/19/2011] [Indexed: 12/24/2022]
|
57
|
García-Arriaza J, Nájera JL, Gómez CE, Tewabe N, Sorzano COS, Calandra T, Roger T, Esteban M. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS One 2011; 6:e24244. [PMID: 21909386 PMCID: PMC3164197 DOI: 10.1371/journal.pone.0024244] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nolawit Tewabe
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
58
|
The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens. J Virol 2011; 85:11468-78. [PMID: 21865377 DOI: 10.1128/jvi.05165-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Attenuated poxvirus vectors expressing human immunodeficiency virus type 1 (HIV-1) antigens are considered promising HIV/AIDS vaccine candidates. Here, we describe the nature of T cell immune responses induced in healthy volunteers participating in a phase I clinical trial in Spain after intramuscular administration of three doses of the recombinant MVA-B-expressing monomeric gp120 and the fused Gag-Pol-Nef (GPN) polyprotein of clade B. The majority (92.3%) of the volunteers immunized had a positive specific T cell response at any time postvaccination as detected by gamma interferon (IFN-γ) intracellular cytokine staining (ICS) assay. The CD4(+) T cell responses were predominantly Env directed, whereas the CD8(+) T cell responses were similarly distributed against Env, Gag, and GPN. The proportion of responders after two doses of MVA-B was similar to that obtained after the third dose of MVA-B vaccination, and the responses were sustained (84.6% at week 48). Vaccine-induced CD8(+) T cells to HIV-1 antigens after 1 year were polyfunctional and distributed mainly within the effector memory (TEM) and terminally differentiated effector memory (TEMRA) T cell populations. Antivector T cell responses were mostly induced by CD8(+) T cells, highly polyfunctional, and of TEMRA phenotype. These findings demonstrate that the poxvirus MVA-B vaccine candidate given alone is highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4 and CD8 T cell responses to HIV-1 antigens, with preference for TEM. Thus, on the basis of the immune profile of MVA-B in humans, this immunogen can be considered a promising HIV/AIDS vaccine candidate.
Collapse
|
59
|
Climent N, Guerra S, García F, Rovira C, Miralles L, Gómez CE, Piqué N, Gil C, Gatell JM, Esteban M, Gallart T. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+) T cell responses in HIV-1-infected individuals. PLoS One 2011; 6:e19644. [PMID: 21625608 PMCID: PMC3097254 DOI: 10.1371/journal.pone.0019644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/06/2011] [Indexed: 01/04/2023] Open
Abstract
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Collapse
Affiliation(s)
- Núria Climent
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Quakkelaar ED, Redeker A, Haddad EK, Harari A, McCaughey SM, Duhen T, Filali-Mouhim A, Goulet JP, Loof NM, Ossendorp F, Perdiguero B, Heinen P, Gomez CE, Kibler KV, Koelle DM, Sékaly RP, Sallusto F, Lanzavecchia A, Pantaleo G, Esteban M, Tartaglia J, Jacobs BL, Melief CJM. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors. PLoS One 2011; 6:e16819. [PMID: 21347234 PMCID: PMC3039654 DOI: 10.1371/journal.pone.0016819] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/11/2011] [Indexed: 01/07/2023] Open
Abstract
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Collapse
Affiliation(s)
- Esther D. Quakkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Elias K. Haddad
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Alexandre Harari
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Stella Mayo McCaughey
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thomas Duhen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Abdelali Filali-Mouhim
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Jean-Philippe Goulet
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Nikki M. Loof
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paul Heinen
- Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | | | - Karen V. Kibler
- Arizona State University, Tempe, Arizona, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rafick P. Sékaly
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | | | | | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | | | - Jim Tartaglia
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | | | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- ISA Pharmaceuticals B.V., Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
61
|
García-Arriaza J, Nájera JL, Gómez CE, Sorzano COS, Esteban M. Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS One 2010; 5:e12395. [PMID: 20811493 PMCID: PMC2927552 DOI: 10.1371/journal.pone.0012395] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. Methodology/Principal Findings In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. Conclusions/Significance These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
62
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
63
|
Guerra S, González JM, Climent N, Reyburn H, López-Fernández LA, Nájera JL, Gómez CE, García F, Gatell JM, Gallart T, Esteban M. Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS. J Virol 2010; 84:8141-52. [PMID: 20534857 PMCID: PMC2916545 DOI: 10.1128/jvi.00749-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/28/2010] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to define the effects on antigen-presenting cells of the expression of HIV antigens from an attenuated poxvirus vector. We have analyzed the transcriptional changes in gene expression following infection of human immature monocyte-derived dendritic cells (DC) with recombinant modified vaccinia virus Ankara (MVA) expressing the genes encoding the gp120 and Gag-Pol-Nef antigens of HIV type 1 clade B (referred to as MVA-B) versus parental MVA infection. Using microarray technology and real-time reverse transcription-PCR, we demonstrated that the HIV proteins induced the expression of cytokines, cytokine receptors, chemokines, chemokine receptors, and molecules involved in antigen uptake and processing, including major histocompatibility complex (MHC) genes. Levels of mRNAs for interleukin-1, beta interferon, CCR8, and SCYA20 were higher after HIV antigen production. MVA-B infection also modulated the expression of antigen processing and presentation genes: the gene for MICA was upregulated, whereas those for HLA-DRA and HSPA5 were downregulated. Indeed, the increased expression of the gene for MICA, a glycoprotein related to major histocompatibility complex class I molecules, was shown to enhance the interaction between MVA-B-infected target cells and cytotoxic lymphocytes. The expression profiles of the genes for protein kinases such as JAK1 and IRAK2 were activated after HIV antigen expression. Several genes included in the JAK-STAT and mitogen-activated protein kinase signaling pathways were regulated after HIV antigen expression. Our findings provide the first gene signatures in DC of a candidate MVA-B vaccine expressing four HIV antigens and identified the biological roles of some of the regulatory genes, like that for MICA, which will help in the design of more effective MVA-derived vaccines.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - José Manuel González
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Núria Climent
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Hugh Reyburn
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Luis A. López-Fernández
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - José L. Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Felipe García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - José M. Gatell
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Teresa Gallart
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| |
Collapse
|
64
|
Manuel ER, Wang Z, Li Z, La Rosa C, Zhou W, Diamond DJ. Intergenic region 3 of modified vaccinia ankara is a functional site for insert gene expression and allows for potent antigen-specific immune responses. Virology 2010; 403:155-62. [PMID: 20471051 PMCID: PMC2879446 DOI: 10.1016/j.virol.2010.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/21/2009] [Accepted: 04/15/2010] [Indexed: 11/16/2022]
Abstract
Integration of exogenous DNA into modified vaccinia Ankara (MVA) is often accomplished using mapped deletion sites in the viral genome. Since MVA has a large capacity (> or =30kb) for foreign gene inserts and a limited number of unique integration sites, development of additional integration sites is needed to take full advantage of the extraordinary capacity for foreign gene insertion. In this report, we evaluate an alternative insertion site known as intergenic region 3 (IGR3). Recombinant MVA carrying the cytomegalovirus pp65 gene in IGR3 (rMVA-pp65-IGR3) demonstrated expression and genetic stability of the insert gene upon passage. Immunization of transgenic HLA-A2 mice with rMVA-pp65-IGR3 induced robust antigen-specific immune responses. Moreover, rMVA-pp65-IGR3-infected human EBV-transformed B cell lines were able to stimulate high levels of pp65-specific memory T cell responses in human PBMCs. These data support the usage of IGR3 for the development of highly immunogenic rMVA vaccines for clinical or veterinary use.
Collapse
Affiliation(s)
| | | | - Zhongqi Li
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Corinna La Rosa
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Wendi Zhou
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Don J. Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| |
Collapse
|
65
|
Nájera JL, Gómez CE, García-Arriaza J, Sorzano CO, Esteban M. Insertion of vaccinia virus C7L host range gene into NYVAC-B genome potentiates immune responses against HIV-1 antigens. PLoS One 2010; 5:e11406. [PMID: 20613977 PMCID: PMC2894869 DOI: 10.1371/journal.pone.0011406] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/08/2010] [Indexed: 11/18/2022] Open
Abstract
Background The highly attenuated vaccinia virus strain NYVAC expressing HIV-1 components has been evaluated as a vaccine candidate in preclinical and clinical trials with encouraging results. We have previously described that the presence of C7L in the NYVAC genome prevents the induction of apoptosis and renders the vector capable of replication in human and murine cell lines while maintaining an attenuated phenotype in mice. Methodology/Principal Findings In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses four HIV-1 antigens from clade B (Env, Gag, Pol and Nef) (referred as NYVAC-B-C7L). In the present study, we have compared the in vitro and in vivo behavior of NYVAC-B and NYVAC-B-C7L. In cultured cells, NYVAC-B-C7L expresses higher levels of heterologous antigen than NYVAC-B as determined by Western blot and fluorescent-activated cell sorting to score Gag expressing cells. In a DNA prime/poxvirus boost approach with BALB/c mice, both recombinants elicited robust, broad and multifunctional antigen-specific T-cell responses to the HIV-1 immunogens expressed from the vectors. However, the use of NYVAC-B-C7L as booster significantly enhanced the magnitude of the T cell responses, and induced a more balanced cellular immune response to the HIV-1 antigens in comparison to that elicited in animals boosted with NYVAC-B. Conclusions/Significance These findings demonstrate the possibility to enhance the immunogenicity of the highly attenuated NYVAC vector by the insertion of the host-range gene C7L and suggest the use of this modified vector as an improved vaccine candidate against HIV/AIDS.
Collapse
Affiliation(s)
- José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | - Carlos Oscar Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
66
|
Immediate-early expression of a recombinant antigen by modified vaccinia virus ankara breaks the immunodominance of strong vector-specific B8R antigen in acute and memory CD8 T-cell responses. J Virol 2010; 84:8743-52. [PMID: 20538860 DOI: 10.1128/jvi.00604-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Efficient T-cell responses against recombinant antigens expressed by vaccinia virus vectors require expression of these antigens in the early phase of the virus replication cycle. The kinetics of recombinant gene expression in poxviruses are largely determined by the promoter chosen. We used the highly attenuated modified vaccinia virus Ankara (MVA) to determine the role of promoters in the induction of CD8 T-cell responses. We constructed MVA recombinants expressing either enhanced green fluorescent protein (EGFP) or chicken ovalbumin (OVA), each under the control of a hybrid early-late promoter (pHyb) containing five copies of a strong early element or the well-known early-late p7.5 or pS promoter for comparison. In primary or cultured cells, EGFP expression under the control of pHyb was detected within 30 min, as an immediate-early protein, and remained higher over the first 6 h of infection than p7.5- or pS-driven EGFP expression. Repeated immunizations of mice with recombinant MVA expressing OVA under the control of the pHyb promoter led to superior acute and memory CD8 T-cell responses compared to those to p7.5- and pS-driven OVA. Moreover, OVA expressed under the control of pHyb replaced the MVA-derived B8R protein as the immunodominant CD8 T-cell antigen after three or more immunizations. This is the first demonstration of an immediate-early neoantigen expressed by a poxviral vector resulting in superior induction of neoantigen-specific CD8 T-cell responses.
Collapse
|
67
|
Modified H5 promoter improves stability of insert genes while maintaining immunogenicity during extended passage of genetically engineered MVA vaccines. Vaccine 2009; 28:1547-57. [PMID: 19969118 PMCID: PMC2821965 DOI: 10.1016/j.vaccine.2009.11.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 11/22/2022]
Abstract
We have engineered recombinant (r) Modified Vaccinia Ankara (MVA) to express multiple antigens under the control of either of two related vaccinia synthetic promoters (pSyn) with early and late transcriptional activity or the modified H5 (mH5) promoter which has predominant early activity. We sequentially passaged these constructs and analyzed their genetic stability by qPCR, and concluded that rMVA expressing multiple antigens using the mH5 promoter exhibit remarkable genetic stability and maintain potent immunogenicity after serial passage. In contrast, rMVA expressing antigens using engineered vaccinia synthetic E/L (pSyn I or II) promoters are genetically unstable. Progressive accumulation of antigen loss variants resulted in a viral preparation with lower immunogenicity after serial passage. Metabolic labeling, followed by cold chase revealed little difference in stability of proteins expressed from mH5 or pSyn promoter constructs. We conclude that maintenance of genetic stability which is achieved using mH5, though not with pSyn promoters, is linked to timing, not the magnitude of expression levels of foreign antigen, which is more closely associated with immunogenicity of the vaccine.
Collapse
|
68
|
Wild J, Bieler K, Köstler J, Frachette MJ, Jeffs S, Vieira S, Esteban M, Liljeström P, Pantaleo G, Wolf H, Wagner R. Preclinical evaluation of the immunogenicity of C-type HIV-1-based DNA and NYVAC vaccines in the Balb/C mouse model. Viral Immunol 2009; 22:309-19. [PMID: 19811088 DOI: 10.1089/vim.2009.0038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Collapse
Affiliation(s)
- Jens Wild
- Institute of Medical Microbiology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Jacobs BL, Langland JO, Kibler KV, Denzler KL, White SD, Holechek SA, Wong S, Huynh T, Baskin CR. Vaccinia virus vaccines: past, present and future. Antiviral Res 2009; 84:1-13. [PMID: 19563829 PMCID: PMC2742674 DOI: 10.1016/j.antiviral.2009.06.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/30/2009] [Accepted: 06/04/2009] [Indexed: 12/23/2022]
Abstract
Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence.
Collapse
Affiliation(s)
- Bertram L Jacobs
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Jing L, McCaughey SM, Davies DH, Chong TM, Felgner PL, De Rosa SP, Wilson CB, Koelle DM. ORFeome approach to the clonal, HLA allele-specific CD4 T-cell response to a complex pathogen in humans. J Immunol Methods 2009; 347:36-45. [PMID: 19520082 PMCID: PMC2715169 DOI: 10.1016/j.jim.2009.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 11/21/2022]
Abstract
The CD4 T-cell response to vaccinia promotes antibody and long-term CD8 responses. HLA class II molecules present microbial epitopes to CD4 T-cells. In humans, at least 3 loci encode cell-surface peptide-binding HLA class II heterodimers. Using intracellular cytokine cytometry (ICC) assays, we determined that HLA DR had the strongest contribution to vaccinia antigen presentation. Among panels of vaccinia-restricted T-cell clones, most were DR-restricted but rare DQ-restricted clones were also recovered. Vaccinia has over 200 open reading frames (ORFs), providing a significant bottleneck to assigning fine specificity. To overcome this, we expressed each predicted vaccinia ORF using in vitro transcription and translation. Array-based pool proteins were used to rapidly assign fine specificity to each DQ-restricted clone and to a sample of HLA DR-restricted clones. Reactivity was confirmed using synthetic peptides for selected CD4 T-cell clones. This method should be broadly applicable to the study of large-genome, sequenced pathogens, and could also be used to investigate T-cell responses to cDNAs expressed in neoplastic and autoimmune disorders in which CD4 responses might be adaptive or harmful.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 251, Seattle, WA 98102
| | - Stella Mayo McCaughey
- Department of Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 251, Seattle, WA 98102
| | - D. Huw Davies
- Department of Molecular Biology & Biochemistry, 3315 McGaugh Hall, University of California Irvine, Irvine, CA 92697
| | - Tiana M. Chong
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 251, Seattle, WA, 98102
| | - Phillip L. Felgner
- Department of Medicine, University of California 3052 Hewitt Hall, Mail Code: 4068, Irvine, CA 92697
| | - Stephen P. De Rosa
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 251, Seattle, WA, 98102
- Vaccine and Infectious Diseases Institute, Fred Hutchinson Cancer Research Center, 1616 Eastlake Avenue East, Seattle, WA, 98102
| | - Christopher B. Wilson
- Department of Immunology, 1959 NE Pacific Street, Mail Stop University of Washington, Seattle, WA, 98195
| | - David M. Koelle
- Department of Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 251, Seattle, WA 98102
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 251, Seattle, WA, 98102
- Vaccine and Infectious Diseases Institute, Fred Hutchinson Cancer Research Center, 1616 Eastlake Avenue East, Seattle, WA, 98102
- Department of Global Health Medicine, University of Washington, 1616 Eastlake Avenue East, Seattle, WA, 98102
| |
Collapse
|
71
|
Gómez CE, Nájera JL, Sánchez R, Jiménez V, Esteban M. Multimeric soluble CD40 ligand (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens. Vaccine 2009; 27:3165-74. [PMID: 19446187 DOI: 10.1016/j.vaccine.2009.03.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/06/2009] [Accepted: 03/19/2009] [Indexed: 02/07/2023]
Abstract
The attenuated poxvirus vectors MVA and NYVAC are now in clinical trials against HIV/AIDS. Due to the vectors restricted replication capacity in human cells, approaches to enhance their immunogenicity are highly desirable. Here, we have analyzed the ability of a soluble form of hexameric CD40L (sCD40L) to stimulate specific immune responses to HIV antigens when inoculated in mice during priming with DNA and in the booster with MVA or NYVAC, expressing the vectors HIV-1 Env, Gag, Pol and Nef antigens from clade B. Our findings revealed that sCD40L in DNA/poxvirus combination enhanced the magnitude about 2-fold (DNA-B/MVA-B) and 4-fold (DNA-B/NYVAC-B), as well as the breath of the HIV antigen specific cellular immune responses. sCD40L was necessary in both prime and boost inoculations triggering a potent polarization of the Th response towards a Th1 type. In DNA-B/NYVAC-B regime the addition of sCD40L significantly enhanced the humoral immune response against HIV gp160, but not in DNA-B/MVA-B combination. These findings provided evidence for the immunostimulatory benefit of sCD40L when DNA and the poxvirus vectors MVA and NYVAC are used as immunogens.
Collapse
Affiliation(s)
- Carmen E Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
72
|
Huang X, Lu B, Yu W, Fang Q, Liu L, Zhuang K, Shen T, Wang H, Tian P, Zhang L, Chen Z. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination. PLoS One 2009; 4:e4180. [PMID: 19159014 PMCID: PMC2613559 DOI: 10.1371/journal.pone.0004180] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 12/06/2008] [Indexed: 11/25/2022] Open
Abstract
Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels (∼2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (∼10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.
Collapse
Affiliation(s)
- Xiaoxing Huang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Bin Lu
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Wenbo Yu
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Qing Fang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ke Zhuang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Tingting Shen
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Haibo Wang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Po Tian
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Linqi Zhang
- AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Comprehensive AIDS Research Center, Tsinghua University, Beijing, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- * E-mail:
| |
Collapse
|
73
|
Suzuki H, Kidokoro M, Fofana IB, Ohashi T, Okamura T, Matsuo K, Yamamoto N, Shida H. Immunogenicity of newly constructed attenuated vaccinia strain LC16m8Delta that expresses SIV Gag protein. Vaccine 2009; 27:966-71. [PMID: 19135118 DOI: 10.1016/j.vaccine.2008.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/23/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
Abstract
We developed the method to efficiently construct recombinant vaccinia viruses based on LC16m8Delta strain that can replicate in mammalian cells but is still safe in human. Immunization in a prime-boost strategy using DNA and LC16m8Delta expressing SIV Gag elicited 7-30-fold more IFN-gamma-producing T cells in mice than that using DNA and non-replicating vaccinia DIs recombinant strain. As the previous study on the DNA-prime and recombinant DIs-boost anti-SIV vaccine showed protective efficacy in the macaque model [Someya K, Ami Y, Nakasone T, Izumi Y, Matsuo K, Horibata S, et al. Induction of positive cellular and humoral responses by a prime-boost vaccine encoded with simian immunodeficiency virus gag/pol. J Immunol 2006;176(3):1784-95], LC16m8Delta would have potential as a better recombinant viral vector for HIV vaccine.
Collapse
Affiliation(s)
- Hajime Suzuki
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Wang Z, Zhou W, Srivastava T, La Rosa C, Mandarino A, Forman SJ, Zaia JA, Britt WJ, Diamond DJ. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector. Virology 2008; 377:379-90. [PMID: 18538366 PMCID: PMC2504324 DOI: 10.1016/j.virol.2008.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/25/2008] [Accepted: 04/24/2008] [Indexed: 11/25/2022]
Abstract
A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4(+) and CD8(+) T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4(+) and CD8(+) T cell subsets.
Collapse
Affiliation(s)
| | | | | | | | | | - SJ Forman
- Division of Hematology and HCT, City of Hope Comprehensive Cancer Center, California 91010
| | - JA Zaia
- Laboratory of Vaccine Research, Division of Virology, Beckman Research Institute of the City of Hope, California 91010
| | - WJ Britt
- Department of Pediatrics, University of Alabama, 35233
| | - DJ Diamond
- *Don J. Diamond, PhD, Laboratory of Vaccine Research, Fox South, 1000B, Beckman Research Institute of the City of Hope, 1500 E. Duarte Rd., Duarte CA 91010, Tel 626.256.4673 x63450, Fax 626.301.8981,
| |
Collapse
|
75
|
Nino-Fong R, Johnston JB. Poxvirus-based vaccine platforms: getting at those hard-to-reach places. Future Virol 2008. [DOI: 10.2217/17460794.3.2.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Rodolfo Nino-Fong
- Institute for Nutrisciences & Health, National Research Council Canada, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - James B Johnston
- Institute for Nutrisciences & Health, National Research Council Canada, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| |
Collapse
|
76
|
Mooij P, Balla-Jhagjhoorsingh SS, Koopman G, Beenhakker N, van Haaften P, Baak I, Nieuwenhuis IG, Kondova I, Wagner R, Wolf H, Gómez CE, Nájera JL, Jiménez V, Esteban M, Heeney JL. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J Virol 2008; 82:2975-88. [PMID: 18184713 PMCID: PMC2258966 DOI: 10.1128/jvi.02216-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/13/2007] [Indexed: 12/20/2022] Open
Abstract
Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4(+) and CD8(+) T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4(+) T-cell response (NYVAC). Remarkably, vector-induced differences in CD4(+)/CD8(+) T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4(+) T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4(+) T-cell responses showed efficacies similar to those with stronger CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Shephard E, Burgers WA, Van Harmelen JH, Monroe JE, Greenhalgh T, Williamson C, Williamson AL. A multigene HIV type 1 subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to a DNA vaccine in mice. AIDS Res Hum Retroviruses 2008; 24:207-17. [PMID: 18240963 DOI: 10.1089/aid.2007.0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Heterologous prime-boost vaccine strategies have generated high frequencies of antigen-specific T cells in preclinical and clinical trials of candidate HIV vaccines. We have developed a DNA (SAAVI DNA-C) and MVA (SAAVI MVA-C) vaccine based on HIV-1 subtype C for testing in clinical trials. Both vaccines contain five subtype C genes: gag, reverse transcriptase, tat, and nef, expressed as a polyprotein, and a truncated env (gp150). The individual vaccines induced CD8(+) and CD4(+) T cells specific for the vaccine-expressed antigens in BALB/c mice. Combining the vaccines in a DNA prime and MVA boost regimen increased the cumulative peptide response compared to the DNA vaccine alone 10-fold, to over 6000 SFU/10(6) splenocytes in the IFN-gamma ELISPOT assay. Th1 cytokine IFN-gamma and TNF-alpha levels from HIV-specific CD8(+) and CD4(+) T cells increased 20- and 8-fold, respectively, with a SAAVI MVA-C boost. Effector and effector memory RT- and Env-specific memory CD8(+) T cell subsets were boosted after MVA immunization, and over time the cells returned to an intermediate memory phenotype similar to that prior to the boost. Immunization of guinea pigs with the DNA-MVA combination induced high titers of antibodies to gp120, although neutralizing activity was weak or absent. The demonstration that these vaccines induce potent cellular immune responses merits their testing in clinical trials.
Collapse
Affiliation(s)
- Enid Shephard
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- MRC/UCT Liver Research Centre, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Joanne H. Van Harmelen
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
78
|
Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol 2007; 18:546-56. [PMID: 18063357 PMCID: PMC2245896 DOI: 10.1016/j.copbio.2007.10.010] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 01/11/2023]
Abstract
Viral vectors provide a convenient means to deliver vaccine antigens to select target cells or tissues. A broad spectrum of replicating and non-replicating vectors is available. An appropriate choice for select applications will depend on the biology of the infectious agent targeted, as well as factors such as whether the vaccine is intended to prevent infection or boost immunity in already infected individuals, prior exposure of the target population to the vector, safety, and the number and size of gene inserts needed. Here several viral vectors under development as HIV/AIDS vaccines are reviewed. A vaccine strategy based on initial priming with a replicating vector to enlist the innate immune system, target mucosal inductive sites, and prime both cellular and humoral systemic and mucosal immune responses is proposed. Subsequently, boosting with a replicating or non-replicating vector and/or protein subunits could lead to induction of necessary levels of protective immunity.
Collapse
Affiliation(s)
- Marjorie Robert-Guroff
- National Institutes of Health, National Cancer Institute, Vaccine Branch, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20892-5065, United States.
| |
Collapse
|
79
|
Gómez CE, Nájera JL, Domingo-Gil E, Ochoa-Callejero L, González-Aseguinolaza G, Esteban M. Virus distribution of the attenuated MVA and NYVAC poxvirus strains in mice. J Gen Virol 2007; 88:2473-2478. [PMID: 17698656 DOI: 10.1099/vir.0.83018-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant vaccinia viruses based on the attenuated NYVAC and MVA strains are promising vaccine candidates against a broad spectrum of diseases. Whilst these vectors are safe and immunogenic in animals and humans, little is known about their comparative behaviour in vivo. In this investigation, a head-to-head analysis was carried out of virus dissemination in mice inoculated by the mucosal or systemic route with replication-competent (WRluc) and attenuated recombinant (MVAluc and NYVACluc) viruses expressing the luciferase gene. Bioluminescence imaging showed that, in contrast to WRluc, the attenuated recombinants expressed the reporter gene transiently, with MVAluc expression limited to the first 24 h and NYVACluc giving a longer signal, up to 72 h post-infection, for most of the routes assayed. Moreover, luciferase levels in MVAluc-infected tissues peaked earlier than those in tissues infected by NYVACluc. These findings may be of immunological relevance when these vectors are used as recombinant vaccines.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Elena Domingo-Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Laura Ochoa-Callejero
- Division of Hepatology and Gene Therapy, Center for Investigation in Applied Medicine (CIMA), University of Navarra, 31080 Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Division of Hepatology and Gene Therapy, Center for Investigation in Applied Medicine (CIMA), University of Navarra, 31080 Pamplona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
80
|
Gómez CE, Nájera JL, Jiménez V, Bieler K, Wild J, Kostic L, Heidari S, Chen M, Frachette MJ, Pantaleo G, Wolf H, Liljeström P, Wagner R, Esteban M. Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 2006; 25:1969-92. [PMID: 17224219 DOI: 10.1016/j.vaccine.2006.11.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/06/2006] [Accepted: 11/23/2006] [Indexed: 11/20/2022]
Abstract
Recombinants based on the attenuated vaccinia virus strains MVA and NYVAC are considered candidate vectors against different human diseases. In this study we have generated and characterized in BALB/c and in transgenic HHD mice the immunogenicity of two attenuated poxvirus vectors expressing in a single locus (TK) the codon optimized HIV-1 genes encoding gp120 and Gag-Pol-Nef (GPN) polyprotein of clade C (referred as MVA-C and NYVAC-C). In HHD mice primed with either MVA-C or NYVAC-C, or primed with DNA-C and boosted with the poxvirus vectors, the splenic T cell responses against clade C peptides spanning gp120/GPN was broad and mainly directed against Gag-1, Env-1 and Env-2 peptide pools. In BALB/c mice immunized with the homologous or the heterologous combination of poxvirus vectors or with Semliki forest virus (SFV) vectors expressing gp120/GPN, the immune response was also broad but the most immunogenic peptides were Env-1, GPN-1 and GPN-2. Differences in the magnitude of the cellular immune responses were observed between the poxvirus vectors depending on the protocol used. The specific cellular immune response triggered by the poxvirus vectors was Th1 type. The cellular response against the vectors was higher for NYVAC than for MVA in both HHD and BALB/c mice, but differences in viral antigen recognition between the vectors was observed in sera from the poxvirus-immunized animals. These results demonstrate the immunogenic potential of MVA-C and NYVAC-C as novel vaccine candidates against clade C of HIV-1.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Base Sequence
- Codon/genetics
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genetic Vectors
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Animal
- Molecular Sequence Data
- Semliki forest virus
- Spleen/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus
- Viral Vaccines
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|