51
|
Embryonic Explant Culture: Studying Effects of Regulatory Molecules on Gene Expression in Craniofacial Tissues. Methods Mol Biol 2017; 1537:367-380. [PMID: 27924605 DOI: 10.1007/978-1-4939-6685-1_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The ex vivo culture of embryonic tissue explants permits the continuous monitoring of growth and morphogenesis at specific embryonic stages. The functions of soluble regulatory molecules can be analyzed by introducing them into culture medium or locally with beads to the tissue. Gene expression in the manipulated tissue explants can be analyzed using in situ hybridization, quantitative PCR, and reporter constructs combined to organ culture to examine the functions of the signaling molecules.
Collapse
|
52
|
Tsujimura T, Idei M, Yoshikawa M, Takase O, Hishikawa K. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases. World J Stem Cells 2016; 8:288-296. [PMID: 27679685 PMCID: PMC5031890 DOI: 10.4252/wjsc.v8.i9.288] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023] Open
Abstract
The gene encoding bone morphogenetic protein-7 (BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of BMP7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.
Collapse
|
53
|
Togo Y, Takahashi K, Saito K, Kiso H, Tsukamoto H, Huang B, Yanagita M, Sugai M, Harada H, Komori T, Shimizu A, MacDougall M, Bessho K. Antagonistic Functions of USAG-1 and RUNX2 during Tooth Development. PLoS One 2016; 11:e0161067. [PMID: 27518316 PMCID: PMC4982599 DOI: 10.1371/journal.pone.0161067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/30/2016] [Indexed: 12/02/2022] Open
Abstract
Supernumerary teeth and tooth agenesis are common morphological anomalies in humans. We previously obtained evidence that supernumerary maxillary incisors form as a result of the successive development of the rudimentary maxillary incisor tooth germ in Usag-1 null mice. The development of tooth germs is arrested in Runx2 null mice, and such mice also exhibit lingual epithelial buds associated with the upper molars and incisors. The aim of this study is to investigate the potential crosstalk between Usag-1 and Runx2 during tooth development. In the present study, three interesting phenomena were observed in double null Usag-1-/-/Runx2-/- mice: the prevalence of supernumerary teeth was lower than in Usag-1 null mice; tooth development progressed further compared than in Runx2 null mice; and the frequency of molar lingual buds was lower than in Runx2 null mice. Therefore, we suggest that RUNX2 and USAG-1 act in an antagonistic manner. The lingual bud was completely filled with odontogenic epithelial Sox2-positive cells in the Usag-1+/+/Runx2-/- mice, whereas almost no odontogenic epithelial Sox2-positive cells contributed to supernumerary tooth formation in the rudimentary maxillary incisors of the Usag-1-/-/Runx2+/+ mice. Our findings suggest that RUNX2 directly or indirectly prevents the differentiation and/or proliferation of odontogenic epithelial Sox2-positive cells. We hypothesize that RUNX2 inhibits the bone morphogenetic protein (BMP) and/or Wnt signaling pathways regulated by USAG-1, whereas RUNX2 expression is induced by BMP signaling independently of USAG-1.
Collapse
Affiliation(s)
- Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
- * E-mail:
| | - Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Boyen Huang
- School of Dentistry and Health Sciences, Faculty of Science, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910–1193, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Iwate, 028–3694, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852–8588, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Mary MacDougall
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham, Alabama, United States of America
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| |
Collapse
|
54
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
55
|
Collette NM, Yee CS, Hum NR, Murugesh DK, Christiansen BA, Xie L, Economides AN, Manilay JO, Robling AG, Loots GG. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells. Bone 2016; 88:20-30. [PMID: 27102547 PMCID: PMC6277141 DOI: 10.1016/j.bone.2016.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1(-/-)) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1(-/-) cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1(-/-) mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1(-/-) 5day calluses harbor >2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1(-/-) mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum.
Collapse
Affiliation(s)
- Nicole M Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Cristal S Yee
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA
| | - Nicholas R Hum
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Deepa K Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | | | - LiQin Xie
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Jennifer O Manilay
- Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA
| | | | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA.
| |
Collapse
|
56
|
Asahara M, Saito K, Kishida T, Takahashi K, Bessho K. Unique pattern of dietary adaptation in the dentition of Carnivora: its advantage and developmental origin. Proc Biol Sci 2016. [PMCID: PMC4920314 DOI: 10.1098/rspb.2016.0375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carnivora is a successful taxon in terms of dietary diversity. We investigated the dietary adaptations of carnivoran dentition and the developmental background of their dental diversity, which may have contributed to the success of the lineage. A developmental model was tested and extended to explain the unique variability and exceptional phenotypes observed in carnivoran dentition. Carnivorous mammalian orders exhibited two distinct patterns of dietary adaptation in molars and only Carnivora evolved novel variability, exhibiting a high correlation between relative molar size and the shape of the first molar. Studies of Bmp7-hetero-deficient mice, which may exhibit lower Bmp7 expression, suggested that Bmp7 has pleiotropic effects on these two dental traits. Its effects are consistent with the pattern of dietary adaptation observed in Carnivora, but not that observed in other carnivorous mammals. A molecular evolutionary analysis revealed that Bmp7 sequence evolved by natural selection during ursid evolution, suggesting that it plays an evolutionary role in the variation of carnivoran dentition. Using mouse experiments and a molecular evolutionary analysis, we extrapolated the causal mechanism of the hitherto enigmatic ursid dentition (larger M2 than M1 and M3). Our results demonstrate how carnivorans acquired novel dental variability that benefits their dietary divergence.
Collapse
Affiliation(s)
- Masakazu Asahara
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto Univerisity, Kyoto, Japan
| | | | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto Univerisity, Kyoto, Japan
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto Univerisity, Kyoto, Japan
| |
Collapse
|
57
|
Abstract
Bone morphogenetic proteins (BMPs), originally identified as osteoinductive components in extracts derived from bone, are now known to play important roles in a wide array of processes during formation and maintenance of various organs including bone, cartilage, muscle, kidney, and blood vessels. BMPs and the related "growth and differentiation factors" (GDFs) are members of the transforming growth factor β (TGF-β) family, and transduce their signals through type I and type II serine-threonine kinase receptors and their intracellular downstream effectors, including Smad proteins. Furthermore, BMP signals are finely tuned by various agonists and antagonists. Because deregulation of the BMP activity at multiple steps in signal transduction is linked to a wide variety of human diseases, therapeutic use of activators and inhibitors of BMP signaling will provide potential avenues for the treatment of the human disorders that are caused by hypo- and hyperactivation of BMP signals, respectively.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Tetsuro Watabe
- Section of Biochemistry, Department of Bio-Matrix, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
58
|
Liu L, Wu S, Yang Y, Cai J, Zhu X, Wu J, Li M, Guan H. SOSTDC1 is down-regulated in non-small cell lung cancer and contributes to cancer cell proliferation. Cell Biosci 2016; 6:24. [PMID: 27087917 PMCID: PMC4832458 DOI: 10.1186/s13578-016-0091-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most commonly diagnosed and fatal cancer worldwide. Sclerostin domain containing protein 1 (SOSTDC1) has been found to be tumor-suppressive in several types of cancers. However, the expression level and biological functions of SOSTDC1 in NSCLC remain unknown. Our current study aimed to identify the biological significance of SOSTDC1 in NSCLC. Results We found that SOSTDC1 was significantly down-regulated in NSCLC. Moreover, patients with higher expression of SOSTDC1 had a significant better prognosis than those with lower SOSTDC1 expression. Ectopic expression of SOSTDC1 in NSCLC cell lines A549 and NCI-H520 could inhibit proliferation as shown by MTT, colony formation, soft agar and EdU incorporation assays in vitro. Furthermore, A549 cells stably expressing ectopic SOSTDC1 grew more slowly and formed smaller tumors than vector-control cells in vivo. Mechanistic studies demonstrated that SOSTDC1 over-expression led to increased p21Cip and p27Kip levels, thereby decreasing Rb phosphorylation status and E2F transcription activity. Conclusions SOSTDC1 is down-regulated in NSCLC, and its expression level is indicative of clinical outcome of patients with the disease. SOSTDC1 might represent a tumor suppressor through inhibiting the proliferation of NSCLC cells by regulating p21Cip and p27Kip, which in turn affects Rb-E2F signaling.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Shanshan Wu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Yi Yang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Junchao Cai
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| |
Collapse
|
59
|
Ray HJ, Niswander LA. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development 2016; 143:1192-204. [PMID: 26903501 DOI: 10.1242/dev.129825] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/16/2016] [Indexed: 12/29/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors.
Collapse
Affiliation(s)
- Heather J Ray
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Lee A Niswander
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
60
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|
61
|
Tian Y, Ma P, Liu C, Yang X, Crawford DM, Yan W, Bai D, Qin C, Wang X. Inactivation of Fam20B in the dental epithelium of mice leads to supernumerary incisors. Eur J Oral Sci 2015; 123:396-402. [PMID: 26465965 DOI: 10.1111/eos.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Tooth formation is tightly regulated by epithelial-mesenchymal interactions via hierarchic cascades of signaling molecules. The glycosaminoglycan (GAG) chains covalently attached to the core protein of proteoglycans (PGs) provide docking sites for signaling molecules and their receptors during the morphogenesis of tissues and organs. Although PGs are believed to play important roles in tooth formation, little is known about their exact functions in this developmental process and the relevant molecular basis. Family with sequence similarity member 20-B (FAM20B) is a newly identified kinase that phosphorylates the xylose in the common linkage region connecting the GAG with the protein core of PGs. The phosphorylation of xylose is essential for elongation of the common linkage region and the subsequent GAG assembly. In this study, we generated a Fam20B-floxed allele in mice and found that inactivating Fam20B in the dental epithelium leads to supernumerary maxillary and mandibular incisors. This finding highlights the pivotal role of PGs in tooth morphogenesis and opens a new window for understanding the regulatory mechanism of PG-mediated signaling cascades during tooth formation.
Collapse
Affiliation(s)
- Ye Tian
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA.,Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Pan Ma
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Chao Liu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xiudong Yang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Derrick M Crawford
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Wenjuan Yan
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Ding Bai
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
62
|
Jussila M, Aalto AJ, Sanz Navarro M, Shirokova V, Balic A, Kallonen A, Ohyama T, Groves AK, Mikkola ML, Thesleff I. Suppression of epithelial differentiation by Foxi3 is essential for molar crown patterning. Development 2015; 142:3954-63. [PMID: 26450968 DOI: 10.1242/dev.124172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/27/2015] [Indexed: 12/27/2022]
Abstract
Epithelial morphogenesis generates the shape of the tooth crown. This is driven by patterned differentiation of cells into enamel knots, root-forming cervical loops and enamel-forming ameloblasts. Enamel knots are signaling centers that define the positions of cusp tips in a tooth by instructing the adjacent epithelium to fold and proliferate. Here, we show that the forkhead-box transcription factor Foxi3 inhibits formation of enamel knots and cervical loops and thus the differentiation of dental epithelium in mice. Conditional deletion of Foxi3 (Foxi3 cKO) led to fusion of molars with abnormally patterned shallow cusps. Foxi3 was expressed in the epithelium, and its expression was reduced in the enamel knots and cervical loops and in ameloblasts. Bmp4, a known inducer of enamel knots and dental epithelial differentiation, downregulated Foxi3 in wild-type teeth. Using genome-wide gene expression profiling, we showed that in Foxi3 cKO there was an early upregulation of differentiation markers, such as p21, Fgf15 and Sfrp5. Different signaling pathway components that are normally restricted to the enamel knots were expanded in the epithelium, and Sostdc1, a marker of the intercuspal epithelium, was missing. These findings indicated that the activator-inhibitor balance regulating cusp patterning was disrupted in Foxi3 cKO. In addition, early molar bud morphogenesis and, in particular, formation of the suprabasal epithelial cell layer were impaired. We identified keratin 10 as a marker of suprabasal epithelial cells in teeth. Our results suggest that Foxi3 maintains dental epithelial cells in an undifferentiated state and thereby regulates multiple stages of tooth morphogenesis.
Collapse
Affiliation(s)
- Maria Jussila
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Anne J Aalto
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Maria Sanz Navarro
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Vera Shirokova
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Anamaria Balic
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Aki Kallonen
- Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 64, Helsinki 00014, Finland
| | - Takahiro Ohyama
- Department of Otolaryngology, Head & Neck Surgery and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA
| | - Andrew K Groves
- Program in Developmental Biology, Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marja L Mikkola
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Irma Thesleff
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| |
Collapse
|
63
|
Cho SW, van Rijssel JC, Witte F, de Bakker MA, Richardson MK. The sonic hedgehog signaling pathway and the development of pharyngeal arch Derivatives in Haplochromis piceatus, a Lake Victoria cichlid. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
64
|
Balic A, Thesleff I. Tissue Interactions Regulating Tooth Development and Renewal. Curr Top Dev Biol 2015; 115:157-86. [DOI: 10.1016/bs.ctdb.2015.07.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
65
|
|
66
|
Greenblatt MB, Kim JM, Oh H, Park KH, Choo MK, Sano Y, Tye CE, Skobe Z, Davis RJ, Park JM, Bei M, Glimcher LH, Shim JH. p38α MAPK is required for tooth morphogenesis and enamel secretion. J Biol Chem 2014; 290:284-95. [PMID: 25406311 DOI: 10.1074/jbc.m114.599274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678-27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38α(K14) mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.
Collapse
Affiliation(s)
- Matthew B Greenblatt
- From the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115,
| | - Jung-Min Kim
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Hwanhee Oh
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Kwang Hwan Park
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, the Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyung Choo
- the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Yasuyo Sano
- the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Coralee E Tye
- the Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, 05405
| | | | - Roger J Davis
- the Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jin Mo Park
- the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Marianna Bei
- the Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Laurie H Glimcher
- the Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Jae-Hyuck Shim
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065,
| |
Collapse
|
67
|
Ellies DL, Economou A, Viviano B, Rey JP, Paine-Saunders S, Krumlauf R, Saunders S. Wise regulates bone deposition through genetic interactions with Lrp5. PLoS One 2014; 9:e96257. [PMID: 24789067 PMCID: PMC4006890 DOI: 10.1371/journal.pone.0096257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise−/− mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development.
Collapse
Affiliation(s)
- Debra L. Ellies
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Androulla Economou
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Beth Viviano
- Department of Pediatrics, Washington University Medical School, Saint Louis, Missouri, United States of America
| | - Jean-Philippe Rey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Stephenie Paine-Saunders
- Department of Pediatrics, Washington University Medical School, Saint Louis, Missouri, United States of America
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
- Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas, United States of America
| | - Scott Saunders
- Department of Pediatrics, Washington University Medical School, Saint Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University Medical School, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
68
|
Schmid D, Zeis T, Schaeren-Wiemers N. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells. ASN Neuro 2014; 6:137-57. [PMID: 24641305 PMCID: PMC4834722 DOI: 10.1042/an20130031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/16/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022] Open
Abstract
In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.
Collapse
Key Words
- camp
- forskolin
- in vitro
- microarray
- schwann cell differentiation
- bmp, bone morphogenetic protein
- camp, cyclic adenosine monophosphate
- cns, central nervous system
- creb, camp-response-element-binding protein
- david, database for annotation, visualization and integrated discovery
- dgc, dystrophin–glycoprotein complex
- ecm, extracellular matrix
- fdr, false discovery rate
- go, gene ontology
- ipa, ingenuity pathway analysis
- mag, myelin-associated glycoprotein
- mapk, mitogen-activated protein kinase
- mbp, myelin basic protein
- mpz/p0, myelin protein zero
- nf-κb, nuclear factor κb
- olig1, oligodendrocyte transcription factor 1
- pca, principal component analysis
- pfa, paraformaldehyde
- pka, protein kinase a
- pns, peripheral nervous system
- qrt–pcr, quantitative rt–pcr
- s.d., standard deviation
Collapse
Affiliation(s)
- Daniela Schmid
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Thomas Zeis
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|
69
|
Vogel P, Liu J, Platt KA, Read RW, Thiel M, Vance RB, Brommage R. Malformation of Incisor Teeth in Grem2-/- Mice. Vet Pathol 2014; 52:224-9. [DOI: 10.1177/0300985814528218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GREMLIN 2 ( GREM2)—formerly, protein related to Dan and cerberus ( PRDC)—is a potent antagonist of the bone morphogenetic proteins 2 and 4, but little else in known about its functions. We found that Grem2-/- mice developed small deformed mandibular and maxillary incisors, indicating that GREMLIN2 is required for normal tooth morphogenesis. Although DEXA scans suggested that bone mineral density might be increased in Grem2-/- mice, histology did not reveal any evident bone phenotype. Grem2-/- mice did not display any other notable phenotypes evaluated in a high-throughput screening process that encompassed a range of immunologic, metabolic, ophthalmic, and behavioral parameters. Our findings indicate that Grem2 can be added to the growing list of genes that affect tooth development in mice.
Collapse
Affiliation(s)
- P. Vogel
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - J. Liu
- Department of Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - K. A. Platt
- Department of Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. W. Read
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - M. Thiel
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. B. Vance
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. Brommage
- Department of Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| |
Collapse
|
70
|
Brook AH, Jernvall J, Smith RN, Hughes TE, Townsend GC. The dentition: the outcomes of morphogenesis leading to variations of tooth number, size and shape. Aust Dent J 2014; 59 Suppl 1:131-42. [DOI: 10.1111/adj.12160] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- AH Brook
- School of Dentistry; The University of Adelaide; South Australia Australia
- Institute of Dentistry; Queen Mary University of London; United Kingdom
| | - J Jernvall
- Institute of Biotechnology; University of Helsinki; Finland
| | - RN Smith
- School of Dentistry; University of Liverpool; Liverpool United Kingdom
| | - TE Hughes
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - GC Townsend
- School of Dentistry; The University of Adelaide; South Australia Australia
| |
Collapse
|
71
|
Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol 2014; 45:487-96. [DOI: 10.1007/s10735-014-9572-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 01/07/2023]
|
72
|
Kowalczyk-Quintas C, Schneider P. Ectodysplasin A (EDA) - EDA receptor signalling and its pharmacological modulation. Cytokine Growth Factor Rev 2014; 25:195-203. [PMID: 24508088 DOI: 10.1016/j.cytogfr.2014.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 01/08/2023]
Abstract
The TNF family ligand ectodysplasin A (EDA) regulates the induction, morphogenesis and/or maintenance of skin-derived structures such as teeth, hair, sweat glands and several other glands. Deficiencies in the EDA - EDA receptor (EDAR) signalling pathway cause hypohidrotic ectodermal dysplasia (HED). This syndrome is characterized by the absence or malformation of several skin-derived appendages resulting in hypotrychosis, hypodontia, heat-intolerance, dry skin and dry eyes, susceptibility to airways infections and crusting of various secretions. The EDA-EDAR system is an important effector of canonical Wnt signalling in developing skin appendages. It functions by stimulating NF-κB-mediated transcription of effectors or inhibitors of the Wnt, Sonic hedgehog (SHH), fibroblast growth factor (FGF) and transforming growth factor beta (TGFβ) pathways that regulate interactions within or between epithelial and mesenchymal cells and tissues. In animal models of Eda-deficiency, soluble EDAR agonists can precisely correct clinically relevant symptoms with low side effects even at high agonist doses, indicating that efficient negative feedback signals occur in treated tissues. Hijacking of the placental antibody transport system can help deliver active molecules to developing foetuses in a timely manner. EDAR agonists may serve to treat certain forms of ectodermal dysplasia.
Collapse
Affiliation(s)
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
73
|
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 2014; 25-26:11-21. [DOI: 10.1016/j.semcdb.2014.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
|
74
|
Molecular patterning of the mammalian dentition. Semin Cell Dev Biol 2013; 25-26:61-70. [PMID: 24355560 DOI: 10.1016/j.semcdb.2013.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/20/2013] [Accepted: 12/09/2013] [Indexed: 01/15/2023]
Abstract
Four conserved signaling pathways, including the bone morphogenetic proteins (Bmp), fibroblast growth factors (Fgf), sonic hedgehog (Shh), and wingless-related (Wnt) pathways, are each repeatedly used throughout tooth development. Inactivation of any of these resulted in early tooth developmental arrest in mice. The mutations identified thus far in human patients with tooth agenesis also affect these pathways. Recent studies show that these signaling pathways interact through positive and negative feedback loops to regulate not only morphogenesis of individual teeth but also tooth number, shape, and spatial pattern. Increased activity of each of the Fgf, Shh, and canonical Wnt signaling pathways revitalizes development of the physiologically arrested mouse diastemal tooth germs whereas constitutive activation of canonical Wnt signaling in the dental epithelium is able to induce supernumerary tooth formation even in the absence of Msx1 and Pax9, two transcription factors required for normal tooth development beyond the early bud stage. Bmp4 and Msx1 act in a positive feedback loop to drive sequential tooth formation whereas the Osr2 transcription factor restricts Msx1-mediated expansion of the mesenchymal odontogenic field along both the buccolingual and anteroposterior axes to pattern mouse molar teeth in a single row. Moreover, the ectodermal-specific ectodysplasin (EDA) signaling pathway controls tooth number and tooth shape through regulation of Fgf20 expression in the dental epithelium, whereas Shh suppresses Wnt signaling through a negative feedback loop to regulate spatial patterning of teeth. In this article, we attempt to integrate these exciting findings in the understanding of the molecular networks regulating tooth development and patterning.
Collapse
|
75
|
D'Souza DG, Rana K, Milley KM, MacLean HE, Zajac JD, Bell J, Brenner S, Venkatesh B, Richardson SJ, Danks JA. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii). Gen Comp Endocrinol 2013; 193:1-9. [PMID: 23871650 DOI: 10.1016/j.ygcen.2013.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Jawed vertebrates (Gnasthostomes) are broadly separated into cartilaginous fishes (Chondricthyes) and bony vertebrates (Osteichthyes). Cartilaginous fishes are divided into chimaeras (e.g. ratfish, rabbit fish and elephant shark) and elasmobranchs (e.g. sharks, rays and skates). Both cartilaginous fish and bony vertebrates are believed to have a common armoured bony ancestor (Class Placodermi), however cartilaginous fish are believed to have lost bone. This study has identified and investigated genes involved in skeletal development in vertebrates, in the cartilaginous fish, elephant shark (Callorhinchus milii). Ctnnb1 (β-catenin), Sfrp (secreted frizzled protein) and a single Sost or Sostdc1 gene (sclerostin or sclerostin domain-containing protein 1) were identified in the elephant shark genome and found to be expressed in a number of tissues, including cartilage. β-catenin was also localized in several elephant shark tissues. The expression of these genes, which belong to the Wnt/β-catenin pathway, is required for normal bone formation in mammals. These findings in the cartilaginous skeleton of elephant shark support the hypothesis that the common ancestor of cartilaginous fishes and bony vertebrates had the potential for making bone.
Collapse
Affiliation(s)
- Damian G D'Souza
- School of Medical Sciences, RMIT University, Bundoora 3083, Australia; Health Innovations Research Institute, RMIT University, Bundoora 3083, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Osteoporosis is a skeletal disorder characterized by bone loss, which results in architectural deterioration of the skeleton, compromised bone strength and an increased risk of fragility fractures. Most current therapies for osteoporosis stabilize the skeleton by inhibiting bone resorption (antiresorptive agents), but the development of anabolic therapies that can increase bone formation and bone mass is of great interest. Wnt signalling induces differentiation of bone-forming cells (osteoblasts) and suppresses the development of bone-resorbing cells (osteoclasts). The Wnt pathway is controlled by antagonists that interact either directly with Wnt proteins or with Wnt co-receptors. The importance of Wnt signalling in bone formation is indicated by skeletal disorders such as sclerosteosis and van Buchem syndrome, which are caused by mutations in the gene encoding the Wnt antagonist sclerostin (SOST). Experiments in mice have shown that downregulation or neutralization of Wnt antagonists enhances bone formation. Phase II clinical trials show that 1-year treatment with antisclerostin antibodies increases bone formation, decreases bone resorption and leads to a substantial increase in BMD. Consequently, Wnt signalling can be targeted by the neutralization of its extracellular antagonists to obtain a skeletal anabolic response.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Centre, 114 Woodland Street, Hartford, CT 06105-1299, USA.
| |
Collapse
|
77
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
78
|
Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a β-catenin-dependent manner. Mol Cell Biol 2013; 33:4732-44. [PMID: 24081330 DOI: 10.1128/mcb.00456-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The differentiation of dental epithelia into enamel-producing ameloblasts or the root epithelial lineage compartmentalizes teeth into crowns and roots. Bmp signaling has been linked to enamel formation, but its role in root epithelial lineage differentiation is unclear. Here we show that cessation of epithelial Bmp signaling by Bmpr1a depletion during the differentiation stage switched differentiation of crown epithelia into the root lineage and led to formation of ectopic cementum-like structures. This phenotype is related to the upregulation of Wnt/β-catenin signaling and epithelial-mesenchymal transition (EMT). Although epithelial β-catenin depletion during the differentiation stage also led to variable enamel defect and precocious/ectopic formation of fragmented root epithelia in some teeth, it did not cause ectopic cementogenesis and inhibited EMT in cultured dental epithelia. Concomitant epithelial β-catenin depletion rescued EMT and ectopic cementogenesis caused by Bmpr1a depletion. These data suggested that Bmp and Wnt/β-catenin pathways interact antagonistically in dental epithelia to regulate the root lineage differentiation and EMT. These findings will aid in the design of new strategies to promote functional differentiation in the regeneration and tissue engineering of teeth and will provide new insights into the dynamic interactions between the Bmp and Wnt/β-catenin pathways during cell fate decisions.
Collapse
|
79
|
Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y. FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 2013; 140:4375-85. [PMID: 24067353 DOI: 10.1242/dev.097733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated β-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits β-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular β-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3β in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating β-catenin signaling activity during tooth development.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner. Dev Biol 2013; 383:90-105. [PMID: 23994639 PMCID: PMC3861057 DOI: 10.1016/j.ydbio.2013.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/08/2023]
Abstract
WNT signaling is critical in most aspects of skeletal development and
homeostasis, and antagonists of WNT signaling are emerging as key regulatory
proteins with great promise as therapeutic agents for bone disorders. Here we
show that Sost and its paralog Sostdc1 emerged
through ancestral genome duplication and their expression patterns have diverged
to delineate non-overlapping domains in most organ systems including
musculoskeletal, cardiovascular, nervous, digestive, reproductive and
respiratory. In the developing limb, Sost and
Sostdc1 display dynamic expression patterns with
Sost being restricted to the distal ectoderm and
Sostdc1 to the proximal ectoderm and the mesenchyme. While
Sostdc1–/– mice lack any obvious
limb or skeletal defects, Sost–/–
mice recapitulate the hand defects described for Sclerosteosis patients.
However, elevated WNT signaling in
Sost–/–;
Sostdc1–/– mice causes
misregulation of SHH signaling, ectopic activation of Sox9 in
the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner.
In addition, we show that the syndactyly documented in Sclerosteosis is present
in both Sost–/– and
Sost–/–;
Sostdc1–/– mice, and is driven
by misregulation of Fgf8 in the AER, a region lacking
Sost and Sostdc1 expression. This study
highlights the complexity of WNT signaling in skeletal biology and disease and
emphasizes how redundant mechanism and non-cell autonomous effects can synergize
to unveil new intricate phenotypes caused by elevated WNT signaling.
Collapse
|
81
|
Gopal G, Raja UM, Shirley S, Rajalekshmi KR, Rajkumar T. SOSTDC1 down-regulation of expression involves CpG methylation and is a potential prognostic marker in gastric cancer. Cancer Genet 2013; 206:174-82. [PMID: 23830730 DOI: 10.1016/j.cancergen.2013.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 01/15/2023]
Abstract
Sclerostin domain containing 1 (SOSTDC1) is reportedly down-regulated in various cancers. Our purpose was to study whether epigenetic mechanisms were involved in the down-regulation of expression in gastric cancer. Expression analysis of SOSTDC1 in gastric cancer cell lines indicated mRNA down-regulation. Our reporter assays and gene reactivation studies using 5-aza-2'-deoxycytidine, a DNA demethylating agent, and trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, demonstrated that epigenetic mechanisms are involved in the down-regulation of SOSTC1 expression. Methylation analysis of the SOSTDC1 promoter CpGs using methylation-specific polymerase chain reaction analysis revealed methylation in gastric cancer cell lines and tissue samples. A majority of tumors (17 of 18) with observed methylation exhibited down-regulation of mRNA expression relative to apparently normal gastric tissues. Immunoreactivity for SOSTDC1 in gastric tumors (24 of 46, 52.1%) was down-regulated relative to normal tissues (36 of 38, 94.7%) (P = 0.00001). The difference in expression between gastric tumor subtypes, intestinal and diffuse, was significant (P = 0.040). Expression of SOSTDC1 in gastric tumors increased the probability of both overall and disease-free survival. When overexpressed in AGS cells, cell proliferation, cell cycle progression, and anchorage-independent growth was repressed. The present findings indicate SOSTDC1 down-regulation involves methylation; SOSTDC1 expression is a potential prognostic factor and tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (Women's India Association), Chennai, India
| | | | | | | | | |
Collapse
|
82
|
Yin W, Ye X, Fan H, Bian Z. Methylation state of the EDA gene promoter in Chinese X-linked hypohidrotic ectodermal dysplasia carriers. PLoS One 2013; 8:e62203. [PMID: 23626789 PMCID: PMC3633848 DOI: 10.1371/journal.pone.0062203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED) which is caused by genetic ectodysplasin A (EDA) deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom. Methods A large Chinese XLHED family was reported and the entire coding region and exon–intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers’ tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system. Results A known frameshift mutation (c.573–574 insT) was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI), 18 (78.26%) carriers were hypermethylated at these 4 sites. Conclusion Chinese XLHED carriers often have a hypermethylated EDA promoter.
Collapse
Affiliation(s)
- Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoqian Ye
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Huali Fan
- The Second General Department, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
83
|
Shirokova V, Jussila M, Hytönen MK, Perälä N, Drögemüller C, Leeb T, Lohi H, Sainio K, Thesleff I, Mikkola ML. Expression of Foxi3 is regulated by ectodysplasin in skin appendage placodes. Dev Dyn 2013; 242:593-603. [PMID: 23441037 DOI: 10.1002/dvdy.23952] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Foxi3 is a member of the large forkhead box family of transcriptional regulators, which have a wide range of biological activities including manifold developmental processes. Heterozygous mutation in Foxi3 was identified in several hairless dog breeds characterized by sparse fur coat and missing teeth. A related phenotype called hypohidrotic ectodermal dysplasia (HED) is caused by mutations in the ectodysplasin (Eda) pathway genes. RESULTS Expression of Foxi3 was strictly confined to the epithelium in developing ectodermal appendages in mouse embryos, but no expression was detected in the epidermis. Foxi3 was expressed in teeth and hair follicles throughout embryogenesis, but in mammary glands only during the earliest stages of development. Foxi3 expression was decreased and increased in Eda loss- and gain-of-function embryos, respectively, and was highly induced by Eda protein in embryonic skin explants. Also activin A treatment up-regulated Foxi3 mRNA levels in vitro. CONCLUSIONS Eda and activin A were identified as upstream regulators of Foxi3. Foxi3 is a likely transcriptional target of Eda in ectodermal appendage placodes suggesting that HED phenotype may in part be produced by compromised Foxi3 activity. In addition to hair and teeth, Foxi3 may have a role in nail, eye, and mammary, sweat, and salivary gland development.
Collapse
Affiliation(s)
- Vera Shirokova
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ahn Y, Sims C, Logue JM, Weatherbee SD, Krumlauf R. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 2013; 140:583-93. [PMID: 23293290 DOI: 10.1242/dev.085118] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The future site of skin appendage development is marked by a placode during embryogenesis. Although Wnt/β-catenin signaling is known to be essential for skin appendage development, it is unclear which cellular processes are controlled by the signaling and how the precise level of the signaling activity is achieved during placode formation. We have investigated roles for Lrp4 and its potential ligand Wise (Sostdc1) in mammary and other skin appendage placodes. Lrp4 mutant mice displayed a delay in placode initiation and changes in distribution and number of mammary precursor cells leading to abnormal morphology, number and position of mammary placodes. These Lrp4 mammary defects, as well as limb defects, were associated with elevated Wnt/β-catenin signaling and were rescued by reducing the dose of the Wnt co-receptor genes Lrp5 and Lrp6, or by inactivating the gene encoding β-catenin. Wise-null mice phenocopied a subset of the Lrp4 mammary defects and Wise overexpression reduced the number of mammary precursor cells. Genetic epistasis analyses suggest that Wise requires Lrp4 to exert its function and that, together, they have a role in limiting mammary fate, but Lrp4 has an early Wise-independent role in facilitating placode formation. Lrp4 and Wise mutants also share defects in vibrissa and hair follicle development, suggesting that the roles played by Lrp4 and Wise are common to skin appendages. Our study presents genetic evidence for interplay between Lrp4 and Wise in inhibiting Wnt/β-catenin signaling and provides an insight into how modulation of Wnt/β-catenin signaling controls cellular processes important for skin placode formation.
Collapse
Affiliation(s)
- Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
85
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
86
|
Fraser GJ, Bloomquist RF, Streelman JT. Common developmental pathways link tooth shape to regeneration. Dev Biol 2013; 377:399-414. [PMID: 23422830 DOI: 10.1016/j.ydbio.2013.02.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/11/2023]
Abstract
In many non-mammalian vertebrates, adult dentitions result from cyclical rounds of tooth regeneration wherein simple unicuspid teeth are replaced by more complex forms. Therefore and by contrast to mammalian models, the numerical majority of vertebrate teeth develop shape during the process of replacement. Here, we exploit the dental diversity of Lake Malawi cichlid fishes to ask how vertebrates generally replace their dentition and in turn how this process acts to influence resulting tooth morphologies. First, we used immunohistochemistry to chart organogenesis of continually replacing cichlid teeth and discovered an epithelial down-growth that initiates the replacement cycle via a labial proliferation bias. Next, we identified sets of co-expressed genes from common pathways active during de novo, lifelong tooth replacement and tooth morphogenesis. Of note, we found two distinct epithelial cell populations, expressing markers of dental competence and cell potency, which may be responsible for tooth regeneration. Related gene sets were simultaneously active in putative signaling centers associated with the differentiation of replacement teeth with complex shapes. Finally, we manipulated targeted pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in vivo with small molecules and demonstrated dose-dependent effects on both tooth replacement and tooth shape. Our data suggest that the processes of tooth regeneration and tooth shape morphogenesis are integrated via a common set of molecular signals. This linkage has subsequently been lost or decoupled in mammalian dentitions where complex tooth shapes develop in first generation dentitions that lack the capacity for lifelong replacement. Our dissection of the molecular mechanics of vertebrate tooth replacement coupled to complex shape pinpoints aspects of odontogenesis that might be re-evolved in the lab to solve problems in regenerative dentistry.
Collapse
Affiliation(s)
- Gareth J Fraser
- Parker H. Petit Institute for Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
87
|
Abstract
The morphogenesis of ectodermal organs is regulated by epithelial mesenchymal interactions mediated by conserved signaling molecules. Analyzing the roles of these molecules will increase our understanding of mechanisms regulating organogenesis, and organ culture methods provide powerful tools in this context. Here we present two organ culture methods for skin and tooth development: the hanging drop method for the short-term culture of small explants and the Trowell-type method for the long-term cultures of variable size explants. The latter allows manipulations such as combining separated epithelial and mesenchymal tissues and the use of signal-releasing beads. The effects of signaling molecules on morphogenesis can be observed during culture by using tissues from GFP-reporter mice. After culture, the effects of signals on gene expression can be analyzed by in situ hybridization or quantitative RT-PCR.
Collapse
Affiliation(s)
- Pauliina M Munne
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
88
|
Salazar-Ciudad I. Tooth patterning and evolution. Curr Opin Genet Dev 2012; 22:585-92. [PMID: 23266218 DOI: 10.1016/j.gde.2012.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/28/2012] [Accepted: 10/24/2012] [Indexed: 11/28/2022]
Abstract
Teeth are a good system for studying development and evolution. Tooth development is largely independent of the rest of the body and teeth can be grown in culture to attain almost normal morphology. Their development is not affected by the patterns of movement or sensorial perception in the embryo. Teeth are hard and easily preserved. Thus, there is plenty of easily accessible information about the patterns of morphological variation occurring between and within species. This review summarises recent work and describes how tooth development can be understood as the coupling between a reaction-diffusion system and differential growth produced by diffusible growth factors: which growth factors are involved, how they affect each other's expression and how they affect the spatial patterns of proliferation that lead to final morphology. There are some aspects of tooth development, however, that do not conform to some common assumptions in many reaction-diffusion models. Those are discussed here since they provide clues about how reaction-diffusion systems may work in actual developmental systems. Mathematical models implementing what we know about tooth development are discussed.
Collapse
Affiliation(s)
- Isaac Salazar-Ciudad
- Evolutionary Phenomics Group, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
89
|
Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development 2012; 139:3487-97. [PMID: 22949612 DOI: 10.1242/dev.085084] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Teeth are found in almost all vertebrates, and they therefore provide a general paradigm for the study of epithelial organ development and evolution. Here, we review the developmental mechanisms underlying changes in tooth complexity and tooth renewal during evolution, focusing on recent studies of fish, reptiles and mammals. Mammals differ from other living vertebrates in that they have the most complex teeth with restricted capacity for tooth renewal. As we discuss, however, limited tooth replacement in mammals has been compensated for in some taxa by the evolution of continuously growing teeth, the development of which appears to reuse the regulatory pathways of tooth replacement.
Collapse
Affiliation(s)
- Jukka Jernvall
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, FIN 00014, Finland.
| | | |
Collapse
|
90
|
Henley KD, Gooding KA, Economides AN, Gannon M. Inactivation of the dual Bmp/Wnt inhibitor Sostdc1 enhances pancreatic islet function. Am J Physiol Endocrinol Metab 2012; 303:E752-61. [PMID: 22829579 PMCID: PMC3468431 DOI: 10.1152/ajpendo.00531.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress.
Collapse
Affiliation(s)
- Kathryn D Henley
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | | | | | | |
Collapse
|
91
|
Oommen S, Otsuka-Tanaka Y, Imam N, Kawasaki M, Kawasaki K, Jalani-Ghazani F, Anderegg A, Awatramani R, Hindges R, Sharpe PT, Ohazama A. Distinct roles of microRNAs in epithelium and mesenchyme during tooth development. Dev Dyn 2012; 241:1465-72. [PMID: 22753148 DOI: 10.1002/dvdy.23828] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Tooth development is known to be mediated by the cross-talk between signaling pathways, including Shh, Fgf, Bmp, and Wnt. MicroRNAs (miRNAs) are 19- to 25-nt noncoding small single-stranded RNAs that negatively regulate gene expression by binding target mRNAs, which is believed to be important for the fine-tuning signaling pathways in development. To investigate the role of miRNAs in tooth development, we examined mice with either mesenchymal (Wnt1Cre/Dicer(fl/fl)) or epithelial (ShhCre/Dicer(fl/fl)) conditional deletion of Dicer, which is essential for miRNA processing. RESULTS By using a CD1 genetic background for Wnt1Cre/Dicer(fl/fl), we were able to examine tooth development, because the mutants retained mandible and maxilla primordia. Wnt1Cre/Dicer(fl/fl) mice showed an arrest or absence of teeth development, which varied in frequency between incisors and molars. Extra incisor tooth formation was found in ShhCre/Dicer(fl/fl) mice, whereas molars showed no significant anomalies. Microarray and in situ hybridization analysis identified several miRNAs that showed differential expression between incisors and molars. CONCLUSION In tooth development, miRNAs thus play different roles in epithelium and mesenchyme, and in incisors and molars.
Collapse
Affiliation(s)
- Shelly Oommen
- Craniofacial Development and Stem cell biology, and Biomedical Research Centre, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Uchibe K, Shimizu H, Yokoyama S, Kuboki T, Asahara H. Identification of novel transcription-regulating genes expressed during murine molar development. Dev Dyn 2012; 241:1217-26. [PMID: 22639370 DOI: 10.1002/dvdy.23808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mechanism of tooth development is a complex process regulated by numerous genes including transcription factors, growth factors, and other intra- and extracellular molecules. Especially, transcription factors play a central role in gene expression, regulating a wide spectrum of biological processes including organogenesis. Substantial evidence has been demonstrated by a number of studies using genetically engineered animal models. However, detailed molecular mechanisms of tooth development have not been completely elucidated, partially because numerous genes that play essential roles in tooth development remain unidentified. RESULTS In this study, we conducted an expression-based screening using gene expression database and in situ hybridization assays. Based on the gene expression database "EMBRYS," 207 out of 1,520 genes were expressed in the maxillary and/or mandibular processes and thus were selected for further analysis by section in situ hybridization. Among these candidates, 28 genes were newly identified as potential factors associated with tooth development by in situ hybridization assays with frontal sections of embryonic day 13.5 and 14.5 mouse embryos. The expression patterns were also examined at embryonic day 16.5 and 18.5. CONCLUSIONS These results will contribute to elucidating the mechanisms of tooth development and to improving the technology for regeneration of tooth.
Collapse
Affiliation(s)
- Kenta Uchibe
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Japan
| | | | | | | | | |
Collapse
|
93
|
Nicotinic receptor Alpha7 expression during tooth morphogenesis reveals functional pleiotropy. PLoS One 2012; 7:e36467. [PMID: 22666322 PMCID: PMC3364260 DOI: 10.1371/journal.pone.0036467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 04/06/2012] [Indexed: 01/16/2023] Open
Abstract
The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ.
Collapse
|
94
|
Närhi K, Tummers M, Ahtiainen L, Itoh N, Thesleff I, Mikkola ML. Sostdc1 defines the size and number of skin appendage placodes. Dev Biol 2012; 364:149-61. [PMID: 22509524 DOI: 10.1016/j.ydbio.2012.01.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Mammary glands and hair follicles develop as ectodermal organs sharing common features during embryonic morphogenesis. The molecular signals controlling the initiation and patterning of skin appendages involve the bone morphogenetic proteins and Wnt family members, which are commonly thought to serve as inhibitory and activating cues, respectively. Here, we have examined the role of the Bmp and Wnt pathway modulator Sostdc1 in mammary gland, and hair and vibrissa follicle development using Sostdc1-null mice. Contrary to previous speculations, loss of Sostdc1 did not affect pelage hair cycling. Instead, we found that Sostdc1 limits the number of developing vibrissae and other muzzle hair follicles, and the size of primary hair placodes. Sostdc1 controls also the size and shape of mammary buds. Furthermore, Sostdc1 is essential for suppression of hair follicle fate in the normally hairless nipple epidermis, but its loss also promotes the appearance of supernumerary nipple-like protrusions. Our data suggest that functions of Sostdc1 can be largely attributed to its ability to attenuate Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Katja Närhi
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
95
|
Miyake A, Nihno S, Murakoshi Y, Satsuka A, Nakayama Y, Itoh N. Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mech Dev 2012; 128:577-90. [PMID: 22265871 DOI: 10.1016/j.mod.2012.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
96
|
Chi L, Saarela U, Railo A, Prunskaite-Hyyryläinen R, Skovorodkin I, Anthony S, Katsu K, Liu Y, Shan J, Salgueiro AM, Belo JA, Davies J, Yokouchi Y, Vainio SJ. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development. PLoS One 2011; 6:e27676. [PMID: 22114682 PMCID: PMC3219680 DOI: 10.1371/journal.pone.0027676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/21/2011] [Indexed: 01/02/2023] Open
Abstract
The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.
Collapse
Affiliation(s)
- Lijun Chi
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti Railo
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilya Skovorodkin
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shelagh Anthony
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Liu
- Texas A&M Health Science Center, Center for Development and Diseases, Institute of Biosciences and Technology, Houston, Texas, United States of America
| | - Jingdong Shan
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ana Marisa Salgueiro
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - José António Belo
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuji Yokouchi
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
97
|
Update on Wnt signaling in bone cell biology and bone disease. Gene 2011; 492:1-18. [PMID: 22079544 DOI: 10.1016/j.gene.2011.10.044] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.
Collapse
|
98
|
Bone morphogenetic protein modulator BMPER is highly expressed in malignant tumors and controls invasive cell behavior. Oncogene 2011; 31:2919-30. [PMID: 22020334 DOI: 10.1038/onc.2011.473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that exert important functions in cell proliferation, migration and differentiation. Till date, multiple human tumors have been reported to display a dysregulation of several members of the BMP pathway that is associated with enhanced malignant tumor growth and metastasis. BMPER (BMP endothelial cell precursor-derived regulator) is a direct BMP modulator that is necessary for BMPs to exert their full-range signaling activity. Moreover, BMPER is expressed by endothelial cells and their progenitors, and has pro-angiogenic features in these cells. Here, we describe the expression of BMPER in human specimens of lung, colon and cervix carcinomas and cell lines derived from such carcinomas. In contrast to healthy tissues, BMPER is highly expressed upon malignant deterioration. Functionally, loss of BMPER in the lung tumor cell line A549 impairs proliferation, migration, invasion as well as tumor cell-induced endothelial cell sprout formation. In contrast, stimulation of A549 cells with exogenous BMPER had no further effect. We found that the BMPER effect may be transduced by regulation of the BMP target transcription factor inhibitor of DNA binding 1 (Id1) and matrix metalloproteinases (MMPs) 9 and 2. These facilitators of cell migration are downregulated when BMPER is absent. To prove the relevance of our in vitro results in vivo, we generated Lewis lung carcinoma cells with impaired BMPER expression and implanted them into the lungs of C57BL/6 mice. In this model, the absence of BMPER resulted in severely reduced tumor growth and tumor angiogenesis. Taken together, these data unequivocally demonstrate that the BMP modulator BMPER is highly expressed in malignant tumors and tumor growth is dependent on the presence of BMPER.
Collapse
|
99
|
Clausen KA, Blish KR, Birse CE, Triplette MA, Kute TE, Russell GB, D’Agostino RB, Miller LD, Torti FM, Torti SV. SOSTDC1 differentially modulates Smad and beta-catenin activation and is down-regulated in breast cancer. Breast Cancer Res Treat 2011; 129:737-46. [PMID: 21113658 PMCID: PMC3685185 DOI: 10.1007/s10549-010-1261-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/10/2010] [Indexed: 01/08/2023]
Abstract
Sclerostin domain containing 1 (SOSTDC1) protein regulates processes from development to cancer by modulating activity of bone morphogenetic protein (BMP) and wingless/int (Wnt) signaling pathways. As dysregulation of both BMP and Wnt signaling has been observed in breast cancer, we investigated whether disruption of SOSTDC1 signaling occurs in breast cancer. SOSTDC1 mRNA expression levels in breast tissue were examined using a dot blot. Affymetrix microarray data on SOSTDC1 levels were correlated with breast cancer patient survival using Kaplan-Meier plots. Correlations between SOSTDC1 protein levels and clinical parameters were assessed by immunohistochemistry of a breast cancer tissue microarray. SOSTDC1 secretion and BMP and Wnt signaling were investigated using immunoblotting. We found that SOSTDC1 is expressed in normal breast tissue and this expression is reduced in breast cancer. High levels of SOSTDC1 mRNA correlated with increased patient survival; conversely, SOSTDC1 protein levels decreased as tumor size and disease stage increased. Treatment of breast cancer cells with recombinant SOSTDC1 or Wise, a SOSTDC1 orthologue, demonstrated that SOSTDC1 selectively blocks BMP-7-induced Smad phosphorylation without diminishing BMP-2 or Wnt3a-induced signaling. In conclusion, SOSTDC1 mRNA and protein are reduced in breast cancer. High SOSTDC1 mRNA levels correlate with increased distant metastasis-free survival in breast cancer patients. SOSTDC1 differentially affects Wnt3a, BMP-2, and BMP-7 signaling in breast cancer cells. These results identify SOSTDC1 as a clinically important extracellular regulator of multiple signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Kathryn A. Clausen
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Kimberly R. Blish
- Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Matthew A. Triplette
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Timothy E. Kute
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory B. Russell
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ralph B. D’Agostino
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Frank M. Torti
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Suzy V. Torti
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
100
|
He JW, Yue H, Hu WW, Hu YQ, Zhang ZL. Contribution of the sclerostin domain-containing protein 1 (SOSTDC1) gene to normal variation of peak bone mineral density in Chinese women and men. J Bone Miner Metab 2011; 29:571-81. [PMID: 21221677 DOI: 10.1007/s00774-010-0253-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/21/2010] [Indexed: 02/05/2023]
Abstract
A genome-wide linkage analysis in Chinese families revealed a significant quantitative trait loci on chromosome 7p21.1 for femoral neck bone mineral density (BMD) (LOD = 3.68), and a potential candidate gene, sclerostin domain-containing protein 1 (SOSTDC1), is located in this region. SOSTDC1 belongs to a class of bone morphogenetic protein (BMP) antagonists that bind BMPs and regulate their signaling. We therefore genotyped 6 tag single nucleotide polymorphisms (tag-SNPs) in SOSTDC1 gene using allele-specific PCR method and investigated the association between SOSTDC1 gene polymorphisms and peak BMD variation in 401 Chinese female-offspring nuclear families (including 1260 subjects) and 400 Chinese male-offspring nuclear families (including 1215 subjects), respectively. Using both family-based (quantitative transmission disequilibrium test) and population-based (ANOVA) methods of analyses, BMD values were adjusted for age, height and weight. In female-offspring nuclear families, we found a significant within family association between rs16878759 and the lumbar spine peak BMD (P = 0.003) and rs16878759 accounted for 1.4% of the lumbar spine peak BMD variation. Moreover, haplotype CCC (containing rs12699800, rs16878759, and rs17619769) had a significant within family association with the lumbar spine peak BMD (P = 0.001) and accounted for 1.9% of the peak BMD variation at this bone site. However, in the male-offspring nuclear families, we failed to detect any significant association between any SNP or haplotype and peak BMD at any bone site. In conclusion, our results indicate for the first time that the genetic polymorphisms in SOSTDC1 have an effect on attainment and maintenance of peak bone mass in Chinese women.
Collapse
Affiliation(s)
- Jin-Wei He
- Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|