51
|
Tsuchiya T, Sivarapatna A, Rocco K, Nanashima A, Nagayasu T, Niklason LE. Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration. Organogenesis 2014; 10:196-207. [PMID: 24488093 PMCID: PMC4154954 DOI: 10.4161/org.27846] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/16/2023] Open
Abstract
The shortage of donor lungs for transplantation causes a significant number of patient deaths. The availability of laboratory engineered, functional organs would be a major advance in meeting the demand for organs for transplantation. The accumulation of information on biological scaffolds and an increased understanding of stem/progenitor cell behavior has led to the idea of generating transplantable organs by decellularizing an organ and recellularizing using appropriate cells. Recellularized solid organs can perform organ-specific functions for short periods of time, which indicates the potential for the clinical use of engineered solid organs in the future. The present review provides an overview of progress and recent knowledge about decellularization and recellularization-based approaches for generating tissue engineered lungs. Methods to improve decellularization, maturation of recellularized lung, candidate species for transplantation and future prospects of lung bioengineering are also discussed.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Amogh Sivarapatna
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Kevin Rocco
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Atsushi Nanashima
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Laura E Niklason
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| |
Collapse
|
52
|
Lecht S, Stabler CT, Rylander AL, Chiaverelli R, Schulman ES, Marcinkiewicz C, Lelkes PI. Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells. Biomaterials 2014; 35:3252-62. [PMID: 24439414 DOI: 10.1016/j.biomaterials.2013.12.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 12/23/2022]
Abstract
Repopulation of decellularized lung scaffolds (DLS) is limited due to alterations in the repertoire and ratios of the residual extracellular matrix (ECM) proteins, characterized by e.g., the retention of type I collagen and loss of glycoproteins. We hypothesized that pre-treatment of decellularized matrices with defined ECM proteins, which match the repertoire of integrin receptors expressed by the cells to be seeded (e.g., embryonic stem cells) can increase the efficacy of the reseeding process. To test this hypothesis, we first determined the integrin receptors profile of mouse embryonic stem cells (mESCs). Mouse ESCs express α3, α5, α6, α9 and β1, but not α1, α2 and α4 integrin subunits, as established by Western blotting and adhesion to laminin and fibronectin, but not to collagens type I and IV. Reseeding of DLS with mESCs was inefficient (6.9 ± 0.5%), but was significantly enhanced (2.3 ± 0.1 fold) by pre-treating the scaffolds with media conditioned by A549 human lung adenocarcinoma cells, which we found to contain ∼5 μg/ml laminin. Furthermore, pre-treatment with A549-conditioned media resulted in a significantly more uniform distribution of the seeded mESCs throughout the engineered organ as compared to untreated DLS. Our study may advance whole lung engineering by stressing the importance of matching the integrin receptor repertoire of the seeded cells and the cell binding motifs of DLS.
Collapse
Affiliation(s)
- Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Alexis L Rylander
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Rachel Chiaverelli
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Edward S Schulman
- Division of Pulmonary, Critical Care and Sleep Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
53
|
Torricelli AAM, Singh V, Agrawal V, Santhiago MR, Wilson SE. Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze. Invest Ophthalmol Vis Sci 2013; 54:4026-33. [PMID: 23696606 DOI: 10.1167/iovs.13-12106] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess the ultrastructure of the epithelial basement membrane using transmission electron microscopy (TEM) in rabbit corneas with and without subepithelial stroma opacity (haze). METHODS Two groups of eight rabbits each were included in this study. Photorefractive keratectomy (PRK) was performed using an excimer laser. The first group had -4.5-diopter (-4.5D) PRK and the second group had -9.0D PRK. Contralateral eyes were unwounded controls. Rabbits were sacrificed at 4 weeks after surgery. Immunohistochemical analysis was performed to detect the myofibroblast marker α-smooth muscle actin (SMA). TEM was performed to analyze the ultrastructure of the epithelial basement membrane and stroma. RESULTS At 4 weeks after PRK, α-SMA+ myofibroblasts were present at high density in the subepithelial stroma of rabbit eyes that had -9.0D PRK, along with prominent disorganized extracellular matrix, whereas few myofibroblasts and little disorganized extracellular matrix were noted in eyes that had -4.5D PRK. The epithelial basement membrane was irregular and discontinuous and lacking typical morphology in all corneas at 1 month after -9D PRK compared to corneas at 1 month in the -4.5D PRK group. CONCLUSIONS The epithelial basement membrane acts as a critical modulator of corneal wound healing. Structural and functional defects in the epithelial basement membrane correlate to both stromal myofibroblast development from precursor cells and continued myofibroblast viability, likely through the modulation of epithelial-stromal interactions mediated by cytokines. Prolonged stromal haze in the cornea is associated with abnormal regeneration of the epithelial basement membrane.
Collapse
|
54
|
Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a blood-retinal barrier with human embryonic stem cell-derived retinal pigment epithelium: transcriptome and functional analysis. Stem Cells Transl Med 2013; 2:534-44. [PMID: 23734062 DOI: 10.5966/sctm.2012-0134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinal degenerations are a major cause of impaired vision in the elderly. Degenerations originate in either photoreceptors or the retinal pigment epithelium (RPE). RPE forms the outer blood-retinal barrier and functions intimately with photoreceptors. Animal models and cultures of RPE are commonly used to screen potential pharmaceuticals or explore RPE replacement therapy, but human RPE differs from that of other species. Human RPE forms a barrier using tight junctions composed of a unique set of claudins, proteins that determine the permeability and selectivity of tight junctions. Human adult RPE fails to replicate these properties in vitro. To develop a culture model for drug development and tissue-engineering human retina, RPE were derived from human embryonic stem cells (hESCs). Barrier properties of RPE derived from the H1 and H9 hESC lines were compared with a well-regarded model of RPE function, human fetal RPE isolated from 16-week-gestation fetuses (hfRPE). A serum-free medium (SFM-1) that enhanced the redifferentiation of hfRPE in culture also furthered the maturation of hESC-derived RPE. In SFM-1, the composition, selectivity, and permeability of tight junctions were similar to those of hfRPE. Comparison of the transcriptomes by RNA sequencing and quantitative reverse transcription-polymerase chain reaction revealed a high correlation between the hESCs and hfRPE, but there were notable differences in the expression of adhesion junction and membrane transport genes. These data indicated that hESC-derived RPE is highly differentiated but may be less mature than RPE isolated from 16-week fetuses. The study identified a panel of genes to monitor the maturation of RPE.
Collapse
Affiliation(s)
- Shaomin Peng
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Vitamin A deficiency disturbs collagen IV and laminin composition and decreases matrix metalloproteinase concentrations in rat lung. Partial reversibility by retinoic acid. J Nutr Biochem 2013; 24:137-45. [DOI: 10.1016/j.jnutbio.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 02/20/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
|
56
|
Bonvillain RW, Danchuk S, Sullivan DE, Betancourt AM, Semon JA, Eagle ME, Mayeux JP, Gregory AN, Wang G, Townley IK, Borg ZD, Weiss DJ, Bunnell BA. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A 2012; 18:2437-52. [PMID: 22764775 DOI: 10.1089/ten.tea.2011.0594] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Currently, patients with end-stage lung disease are limited to lung transplantation as their only treatment option. Unfortunately, the lungs available for transplantation are few. Moreover, transplant recipients require life-long immune suppression to tolerate the transplanted lung. A promising alternative therapeutic strategy is decellularization of whole lungs, which permits the isolation of an intact scaffold comprised of innate extracellular matrix (ECM) that can theoretically be recellularized with autologous stem or progenitor cells to yield a functional lung. Nonhuman primates (NHP) provide a highly relevant preclinical model with which to assess the feasibility of recellularized lung scaffolds for human lung transplantation. Our laboratory has successfully accomplished lung decellularization and initial stem cell inoculation of the resulting ECM scaffold in an NHP model. Decellularization of normal adult rhesus macaque lungs as well as the biology of the resulting acellular matrix have been extensively characterized. Acellular NHP matrices retained the anatomical and ultrastructural properties of native lungs with minimal effect on the content, organization, and appearance of ECM components, including collagen types I and IV, laminin, fibronectin, and sulfated glycosaminoglycans (GAG), due to decellularization. Proteomics analysis showed enrichment of ECM proteins in total tissue extracts due to the removal of cells and cellular proteins by decellularization. Cellular DNA was effectively removed after decellularization (∼92% reduction), and the remaining nuclear material was found to be highly disorganized, very-low-molecular-weight fragments. Both bone marrow- and adipose-derived mesenchymal stem cells (MSC) attach to the decellularized lung matrix and can be maintained within this environment in vitro, suggesting that these cells may be promising candidates and useful tools for lung regeneration. Analysis of decellularized lung slice cultures to which MSC were seeded showed that the cells attached to the decellularized matrix, elongated, and proliferated in culture. Future investigations will focus on optimizing the recellularization of NHP lung scaffolds toward the goal of regenerating pulmonary tissue. Bringing this technology to eventual human clinical application will provide patients with an alternative therapeutic strategy as well as significantly reduce the demand for transplantable organs and patient wait-list time.
Collapse
Affiliation(s)
- Ryan W Bonvillain
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Jensen T, Roszell B, Zang F, Girard E, Matson A, Thrall R, Jaworski DM, Hatton C, Weiss DJ, Finck C. A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng Part C Methods 2012; 18:632-46. [PMID: 22404373 DOI: 10.1089/ten.tec.2011.0584] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pulmonary diseases represent a large portion of neonatal and adult morbidity and mortality. Many of these have no cure, and new therapeutic approaches are desperately needed. De-cellularization of whole organs, which removes cellular elements but leaves intact important extracellular matrix (ECM) proteins and three-dimensional architecture, has recently been investigated for ex vivo generation of lung tissues. As specific cell culture surfaces, including ECM composition, profoundly affect cell differentiation, this approach offers a potential means of using de-cellularized lungs to direct differentiation of embryonic and other types of stem/progenitor cells into lung phenotypes. Several different methods of whole-lung de-cellularization have been reported, but the optimal method that will best support re-cellularization and generation of lung tissues from embryonic stem cells (ESCs) has not been determined. We present a 24-h approach for de-cellularizing mouse lungs utilizing a detergent-based (Triton-X100 and sodium deoxycholate) approach with maintenance of three-dimensional lung architecture and ECM protein composition. Predifferentiated murine ESCs (mESCs), with phenotypic characteristics of type II alveolar epithelial cells, were seeded into the de-cellularized lung scaffolds. Additionally, we evaluated the effect of coating the de-cellularized scaffold with either collagen or Matrigel to determine if this would enhance cell adhesion and affect mechanics of the scaffold. Finally, we subcutaneously implanted scaffolds in vivo after seeding them with mESCs that are predifferentiated to express pro-surfactant protein C (pro-SPC). The in vivo environment supported maintenance of the pro-SPC-expressing phenotype and further resulted in vascularization of the implant. We conclude that a rapid detergent-based de-cellularization approach results in a scaffold that can maintain phenotypic evidence of alveolar epithelial differentiation of ESCs and support neovascularization after in vivo implantation.
Collapse
Affiliation(s)
- Todd Jensen
- Department of Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Effects of decorin and biglycan on human airway smooth muscle cell adhesion. Matrix Biol 2012; 31:101-12. [DOI: 10.1016/j.matbio.2011.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/01/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
|
59
|
Urich D, Eisenberg JL, Hamill KJ, Takawira D, Chiarella SE, Soberanes S, Gonzalez A, Koentgen F, Manghi T, Hopkinson SB, Misharin AV, Perlman H, Mutlu GM, Budinger GRS, Jones JCR. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury. J Cell Sci 2012; 124:2927-37. [PMID: 21878500 DOI: 10.1242/jcs.080911] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3(fl/fl)), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3(fl/fl) mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 laminin in whole lung homogenates was more than 50% lower than that in control-treated mice, suggesting a relatively long half-life for the protein in the lung. Upon exposure to an injurious ventilation strategy (tidal volume of 35 ml per kg of body weight for 2 hours), the mice with a knockdown of the α3 laminin subunit had less severe injury, as shown by lung mechanics, histology, alveolar capillary permeability and survival when compared with Ad-Null-treated mice. Knockdown of the α3 laminin subunit resulted in evidence of lung inflammation. However, this did not account for their resistance to mechanical ventilation. Rather, the loss of α3 laminin was associated with a significant increase in the collagen content of the lungs. We conclude that the loss of α3 laminin in the alveolar epithelium results in an increase in lung collagen, which confers resistance to mechanical injury.
Collapse
Affiliation(s)
- Daniela Urich
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Hallström T, Singh B, Resman F, Blom AM, Mörgelin M, Riesbeck K. Haemophilus influenzae protein E binds to the extracellular matrix by concurrently interacting with laminin and vitronectin. J Infect Dis 2011; 204:1065-74. [PMID: 21881122 DOI: 10.1093/infdis/jir459] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) causes otitis media and is commonly found in patients with chronic obstructive pulmonary disease (COPD). Adhesins are important for bacterial attachment and colonization. Protein E (PE) is a recently characterized ubiquitous 16 kDa adhesin with vitronectin-binding capacity that results in increased survival in serum. In addition to PE, NTHi utilizes Haemophilus adhesion protein (Hap) that binds to the basement-membrane glycoprotein laminin. We show that most clinical isolates bind laminin and that both Hap and PE are crucial for the NTHi-dependent interaction with laminin as revealed with different mutants. The laminin-binding region is located at the N-terminus of PE, and PE binds to the heparin-binding C-terminal globular domain of laminin. PE simultaneously attracts vitronectin and laminin at separate binding sites, proving the multifunctional nature of the adhesin. This previously unknown PE-dependent interaction with laminin may contribute to NTHi colonization, particularly in smokers with COPD.
Collapse
Affiliation(s)
- Teresia Hallström
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
61
|
Sirour C, Hidalgo M, Bello V, Buisson N, Darribère T, Moreau N. Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway. Mol Biol Cell 2011; 22:2957-69. [PMID: 21680717 PMCID: PMC3154890 DOI: 10.1091/mbc.e11-01-0074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/18/2011] [Accepted: 06/09/2011] [Indexed: 01/18/2023] Open
Abstract
Dystroglycan (Dg) is a transmembrane protein involved both in the assembly and maintenance of basement membrane structures essential for tissue morphogenesis, and the transmission of signals across the plasma membrane. We used a morpholino knockdown approach to investigate the function of Dg during Xenopus laevis skin morphogenesis. The loss of Dg disrupts epidermal differentiation by affecting the intercalation of multiciliated cells, deposition of laminin, and organization of fibronectin in the extracellular matrix (ECM). Depletion of Dg also affects cell-cell adhesion, as shown by the reduction of E-cadherin expression at the intercellular contacts, without affecting the distribution of β(1) integrins. This was associated with a decrease of cell proliferation, a disruption of multiciliated-cell intercalation, and the down-regulation of the transcription factor P63, a marker of differentiated epidermis. In addition, we demonstrated that inhibition or activation of the Notch pathway prevents and promotes transcription of X-dg. Our study showed for the first time in vivo that Dg, in addition to organizing laminin in the ECM, also acts as a key signaling component in the Notch pathway.
Collapse
Affiliation(s)
- Cathy Sirour
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Magdalena Hidalgo
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
- Laboratoire Réponses Cellulaires et Fonctionnelles à l'Hypoxie, Université Paris13, EA2363, 93017 Bobigny Cedex, France
| | - Valérie Bello
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Nicolas Buisson
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Thierry Darribère
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Nicole Moreau
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| |
Collapse
|
62
|
Habermehl D, Parkitna JR, Kaden S, Brügger B, Wieland F, Gröne HJ, Schütz G. Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells. Mol Endocrinol 2011; 25:1280-8. [PMID: 21659474 PMCID: PMC5417239 DOI: 10.1210/me.2009-0380] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 05/23/2011] [Indexed: 11/19/2022] Open
Abstract
Corticosteroid treatment is an established therapy for preterm infants, and germline inactivation of the glucocorticoid receptor (GR) gene in the mouse leads to respiratory failure and postnatal lethality. Although glucocorticoids have been thought to critically act in epithelial cells inducing the functional maturation of the lung, inactivation of the GR gene exclusively in the epithelium of the developing murine lung did not impair survival. In contrast, mice lacking GR specifically in mesenchyme-derived cells displayed a phenotype strongly reminiscent of GR knockout animals and died immediately after birth. Detailed analysis of gene expression allows the conclusion that GR acts in cells of the fibroblast lineage controlling their proliferation rate and the composition of the extracellular matrix.
Collapse
Affiliation(s)
- Daniel Habermehl
- Division Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest 2011; 121:2855-62. [PMID: 21701069 DOI: 10.1172/jci57673] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/04/2011] [Indexed: 01/06/2023] Open
Abstract
Laminins and their integrin receptors are implicated in epithelial cell differentiation and progenitor cell maintenance. We report here that a previously unrecognized subpopulation of mouse alveolar epithelial cells (AECs) expressing the laminin receptor α6β4, but little or no pro-surfactant C (pro-SPC), is endowed with regenerative potential. Ex vivo, this subpopulation expanded clonally as progenitors but also differentiated toward mature cell types. Integrin β4 itself was not required for AEC proliferation or differentiation. An in vivo embryonic lung organoid assay, which we believe to be novel, was used to show that purified β4+ adult AECs admixed with E14.5 lung single-cell suspensions and implanted under kidney capsules self-organized into distinct Clara cell 10-kDa secretory protein (CC10+) airway-like and SPC+ saccular structures within 6 days. Using a bleomycin model of lung injury and an SPC-driven inducible cre to fate-map AECs, we found the majority of type II AECs in fibrotic areas were not derived from preexisting type II AECs, demonstrating that SPC- progenitor cells replenished type II AECs during repair. Our findings support the idea that there is a stable AEC progenitor population in the adult lung, provide in vivo evidence of AEC progenitor cell differentiation after parenchymal injury, and identify a strong candidate progenitor cell for maintenance of type II AECs during lung repair.
Collapse
Affiliation(s)
- Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, UCSF, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The cells of the nucleus pulposus (NP) region of the intervertebral disc play a critical role in this tissue's generation and maintenance, and alterations in NP cell viability, metabolism, and phenotype with aging may be key contributors to progressive disc degeneration. Relatively little is understood about the phenotype of NP cells, including their cell-matrix interactions which may modulate phenotype and survival. Our previous work has identified strong and region-specific expression of laminins and laminin cell-surface receptors in immature NP tissues, suggesting laminin cell-matrix interactions are uniquely important to the biology of NP cells. Whether these observed tissue-level laminin expression patterns reflect functional adhesion behaviors for these cells is not known. In this study, we examined NP cell-matrix interactions with specific matrix ligands, including various laminin isoforms, using quantitative assays of cell attachment, spreading, and adhesion strength. NP cells were found to attach in higher numbers and exhibited rapid cell spreading and higher resistance to detachment force on two laminin isoforms (LM-511,LM-332) identified to be uniquely expressed in the NP region, as compared to another laminin isoform (LM-111) and several other matrix ligands (collagen, fibronectin). Additionally, NP cells were found to attach in higher numbers to laminins as compared to cells isolated from the disc's annulus fibrosus region. These findings confirm that laminin and laminin receptor expression documented in NP tissues translates into unique functional NP cell adhesion behaviors that may be useful tools for in vitro cell culture and biomaterials that support NP cells.
Collapse
Affiliation(s)
- C.L. Gilchrist
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - A.T. Francisco
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - G.E. Plopper
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - J. Chen
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - L.A. Setton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
65
|
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 2011; 30:296-323. [PMID: 21704180 DOI: 10.1016/j.preteyeres.2011.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier by regulating the movement of solutes between the fenestrated capillaries of the choroid and the photoreceptor layer of the retina. Blood-tissue barriers use various mechanisms to accomplish their tasks including membrane pumps, transporters, and channels, transcytosis, metabolic alteration of solutes in transit, and passive but selective diffusion. The last category includes tight junctions, which regulate transepithelial diffusion through the spaces between neighboring cells of the monolayer. Tight junctions are extraordinarily complex structures that are dynamically regulated. Claudins are a family of tight junctional proteins that lend tissue specificity and selectivity to tight junctions. This review discusses how the claudins and tight junctions of the RPE differ from other epithelia and how its functions are modulated by the neural retina. Studies of RPE-retinal interactions during development lend insight into this modulation. Notably, the characteristics of RPE junctions, such as claudin composition, vary among species, which suggests the physiology of the outer retina may also vary. Comparative studies of barrier functions among species should deepen our understanding of how homeostasis is maintained in the outer retina. Stem cells provide a way to extend these studies of RPE-retinal interactions to human RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Surgery and Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | |
Collapse
|
66
|
Dekkers BGJ, Bos IST, Halayko AJ, Zaagsma J, Meurs H. The laminin β1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma. Respir Res 2010; 11:170. [PMID: 21129174 PMCID: PMC3013082 DOI: 10.1186/1465-9921-11-170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/03/2010] [Indexed: 01/21/2023] Open
Abstract
Background Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can be inhibited by the laminin-competing peptide Tyr-Ile-Gly-Ser-Arg (YIGSR). The role of laminins in ASM remodelling in chronic asthma in vivo, however, has not yet been established. Methods Using an established guinea pig model of allergic asthma, we investigated the effects of topical treatment of the airways with YIGSR on features of airway remodelling induced by repeated allergen challenge, including ASM hyperplasia and hypercontractility, inflammation and fibrosis. Human ASM cells were used to investigate the direct effects of YIGSR on ASM proliferation in vitro. Results Topical administration of YIGSR attenuated allergen-induced ASM hyperplasia and pulmonary expression of the proliferative marker proliferating cell nuclear antigen (PCNA). Treatment with YIGSR also increased both the expression of sm-MHC and ASM contractility in saline- and allergen-challenged animals; this suggests that treatment with the laminin-competing peptide YIGSR mimics rather than inhibits laminin function in vivo. In addition, treatment with YIGSR increased allergen-induced fibrosis and submucosal eosinophilia. Immobilized YIGSR concentration-dependently reduced PDGF-induced proliferation of cultured ASM to a similar extent as laminin-coated culture plates. Notably, the effects of both immobilized YIGSR and laminin were antagonized by soluble YIGSR. Conclusion These results indicate that the laminin-competing peptide YIGSR promotes a contractile, hypoproliferative ASM phenotype in vivo, an effect that appears to be linked to the microenvironment in which the cells are exposed to the peptide.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.
| | | | | | | | | |
Collapse
|
67
|
Solmesky L, Lefler S, Jacob-Hirsch J, Bulvik S, Rechavi G, Weil M. Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules. PLoS One 2010; 5. [PMID: 20844755 PMCID: PMC2937025 DOI: 10.1371/journal.pone.0012689] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022] Open
Abstract
Human mesenchymal stem cells (hMSC) are easily isolated from the bone marrow by adherence to plastic surfaces. These cells show self-renewal capacity and multipotency. A unique feature of hMSC is their capacity to survive without serum. Under this condition hMSC neither proliferate nor differentiate but maintain their biological properties unaffected. Therefore, this should be a perfect platform to study the biological effects of defined molecules on these human stem cells. We show that hMSC treated for five days with retinoic acid (RA) in the absence of serum undergo several transcriptional changes causing an inhibition of ERK related pathways. We found that RA induces the loss of hMSC properties such as differentiation potential to either osteoblasts or adipocytes. We also found that RA inhibits cell cycle progression in the presence of proliferating signals such as epidermal growth factor (EGF) combined with basic fibroblast growth factor (bFGF). In the same manner, RA showed to cause a reduction in cell adhesion and cell migration. In contrast to these results, the addition of EGF+bFGF to serum free cultures was enough to upregulate ERK activity and induce hMSC proliferation and cell migration. Furthermore, the addition of these factors to differentiation specific media instead of serum was enough to induce either osteogenesis or adipogenesis. Altogether, our results show that hMSC's ability to survive without serum enables the identification of signaling factors and pathways that are involved in their stem cell biological characteristics without possible serum interferences.
Collapse
Affiliation(s)
- Leonardo Solmesky
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Lefler
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Shlomo Bulvik
- Hematology Department, Laniado Hospital, Netanya, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Miguel Weil
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
68
|
Goody MF, Henry CA. Dynamic interactions between cells and their extracellular matrix mediate embryonic development. Mol Reprod Dev 2010; 77:475-88. [DOI: 10.1002/mrd.21157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
|
70
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 952] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
71
|
Mathias RA, Chen YS, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ. Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration. J Proteome Res 2010; 9:1007-19. [PMID: 19954229 DOI: 10.1021/pr900907g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) describes a process whereby immotile epithelial cells escape structural constraints imposed by cellular architecture and acquire a phenotype characteristic of migratory mesenchymal cells. Implicated in carcinoma progression and metastasis, EMT has been the focus of several recent proteomics-based studies aimed at identifying new molecular players. To gain insights into extracellular mediators associated with EMT, we conducted an extensive proteomic analysis of the secretome from MDCK cells following oncogenic Ras-induced EMT (21D1 cells). Using Orbitrap technology and a label-free quantitative approach, differential expression of several secreted modulators were revealed. Proteomic findings were further substantiated by mRNA transcript expression analysis with 71% concordance. MDCK cells undergoing Ras-induced EMT remodel the extracellular matrix (ECM) via diminished expression of basement membrane constituents (collagen type IV and laminin 5), up-regulation of extracellular proteases (MMP-1, kallikreins -6 and -7), and increased production and secretion of ECM constituents (SPARC, collagen type I, fibulins -1 and -3, biglycan, and decorin). Collectively, these findings suggest that hierarchical regulation of a subset of extracellular effectors may coordinate a biological response during EMT that enhances cell motility. Transient silencing of MMP-1 in 21D1 cells via siRNA-mediated knockdown attenuated cell migration. Many of the secretome proteins identified broaden our understanding of the EMT process.
Collapse
Affiliation(s)
- Rommel A Mathias
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Ko MS, Marinkovich MP. Role of dermal-epidermal basement membrane zone in skin, cancer, and developmental disorders. Dermatol Clin 2010; 28:1-16. [PMID: 19945611 DOI: 10.1016/j.det.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dermal-epidermal basement membrane zone is an important epithelial and stromal interface, consisting of an intricately organized collection of intracellular, transmembrane, and extracellular matrix proteins. The basement membrane zone has several main functions including acting as a permeability barrier, forming an adhesive interface between epithelial cells and the underlying matrix, and controlling cellular organization and differentiation. This article identifies key molecular players of the dermal-epidermal membrane zone, and highlights recent research studies that have identified structural and functional roles of these components in the context of various blistering, neoplastic, and developmental syndromes.
Collapse
Affiliation(s)
- Myung S Ko
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
73
|
Caccavari F, Valdembri D, Sandri C, Bussolino F, Serini G. Integrin signaling and lung cancer. Cell Adh Migr 2010; 4:124-9. [PMID: 20139694 PMCID: PMC2852569 DOI: 10.4161/cam.4.1.10976] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/16/2009] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of most non small cell lung carcinomas is due to their ability to efficiently invade surrounding tissues and blood vessels, finally metastasizing to distant organs. Integrin mediated adhesive interaction with the surrounding extracellular matrix is a key limiting step in the regulation of the invasive properties of several cancer cell types. Here, we examine the rising evidences about the role that integrins can play in the physiopathology of non small cell lung carcinomas by regulating cell adhesion as well as the activation of growth factors and the traffic of their cognate receptors. Modulation of the signaling pathways controlled by integrins in lung cancer cells might offer the opportunity to design and develop new drugs that might be successfully combined with conventional chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Francesca Caccavari
- Laboratory of Cell Signaling; Division of Vascular Biology; Institute for Cancer Research and Treatment and Department of Oncological Sciences; University of Torino School of Medicine; Candiolo (TO), Italy
| | - Donatella Valdembri
- Laboratory of Cell Signaling; Division of Vascular Biology; Institute for Cancer Research and Treatment and Department of Oncological Sciences; University of Torino School of Medicine; Candiolo (TO), Italy
| | - Chiara Sandri
- Laboratory of Cell Signaling; Division of Vascular Biology; Institute for Cancer Research and Treatment and Department of Oncological Sciences; University of Torino School of Medicine; Candiolo (TO), Italy
| | - Federico Bussolino
- Laboratory of Angiogenesis; Division of Vascular Biology; Institute for Cancer Research and Treatment and Department of Oncological Sciences; University of Torino School of Medicine; Candiolo (TO), Italy
| | - Guido Serini
- Laboratory of Cell Signaling; Division of Vascular Biology; Institute for Cancer Research and Treatment and Department of Oncological Sciences; University of Torino School of Medicine; Candiolo (TO), Italy
| |
Collapse
|
74
|
The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res 2009; 339:93-110. [PMID: 19885678 DOI: 10.1007/s00441-009-0893-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to serve a structural function providing support and strength to cells within tissues, is increasingly being recognized as having pleiotropic effects in development and growth. Elucidation of the role that the ECM plays in developmental processes has been significantly advanced by studying the phenotypic and developmental consequences of specific genetic alterations of ECM components in the mouse. These studies have revealed the enormous contribution of the ECM to the regulation of key processes in morphogenesis and organogenesis, such as cell adhesion, proliferation, specification, migration, survival, and differentiation. The ECM interacts with signaling molecules and morphogens thereby modulating their activities. This review considers these advances in our understanding of the function of ECM proteins during development, extending beyond their structural capacity, to embrace their new roles in intercellular signaling.
Collapse
|
75
|
The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0893-8 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
76
|
Chen J, Jing L, Gilchrist CL, Richardson WJ, Fitch RD, Setton LA. Expression of Laminin Isoforms, Receptors, and Binding Proteins Unique to Nucleus Pulposus Cells of Immature Intervertebral Disc. Connect Tissue Res 2009. [DOI: 10.1080/03008200802714925] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
77
|
Abstract
The complex structure of the lung is developed sequentially, initially by epithelial tube branching and later by septation of terminal air sacs with accompanying coordinated growth of a variety of lung epithelial and mesenchymal cells. Groups of transcriptional factors, peptide growth factors and their intracellular signaling regulators, as well as extracellular matrix proteins are programmed to be expressed at appropriate levels in the right place at the right time to control normal lung formation. Studies of lung development and lung repair/fibrosis to date have discovered that many of the same factors that control normal development are also key players in lung injury repair and fibrosis. Transforming growth factor-beta (TGF-beta) family peptide signaling is a prime example. Lack of TGF-beta signaling results in abnormal lung branching morphogenesis and alveolarization during development, whereas excessive amounts of TGF-beta signaling cause severe hypoplasia in the immature lung and fibrosis in mature lung. This leads us to propose the 'Goldilocks' hypothesis of regulatory signaling in lung development and injury repair that everything must be done just right!
Collapse
Affiliation(s)
- Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, 4650 Sunset Blvd., MS 35, Los Angeles, CA 90027, USA.
| | | | | |
Collapse
|
78
|
Gill SE, Pape MC, Leco KJ. Absence of tissue inhibitor of metalloproteinases 3 disrupts alveologenesis in the mouse. Dev Growth Differ 2009; 51:17-24. [PMID: 19128402 DOI: 10.1111/j.1440-169x.2008.01075.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) regulate extracellular matrix (ECM) degradation by matrix metalloproteinases (MMPs) throughout lung development. We examined lungs from TIMP3 null mice and found significant air space enlargement compared with wild type (WT) animals during a time course spanning early alveologenesis (post-partum days 1, 5, 9 and 14). Trichrome staining revealed a similar pattern of collagen distribution in the walls of nascent alveoli; however, the alveolar walls of TIMP3 mutant mice appeared to be thinner than controls. Assessment of MMP2 and MMP9 activities by gelatin zymography demonstrated a significant elevation in the active form of MMP2 at post-partum days 1 and 5. Treatment of null pregnant dams with a broad spectrum synthetic metalloproteinase inhibitor, GM6001, on embryonic day 16.5 enhanced the formation of primitive alveoli during the saccular stage of lung development as evidenced by a partial, but significant, rescue of alveolar size in post-partum day 1 animals. We propose that increased MMP activity in the absence of TIMP3 enhances ECM proteolysis, upsetting proper formation of primitive alveolar septa during the saccular stage of alveologenesis. Therefore, TIMP3 indirectly regulates alveolar formation in the mouse. To our knowledge, ours is the first study to demonstrate that in utero manipulation of the TIMP/MMP proteolytic axis, to specifically inhibit proteolysis, significantly affects lung development.
Collapse
Affiliation(s)
- Sean E Gill
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
79
|
Dekkers BGJ, Schaafsma D, Tran T, Zaagsma J, Meurs H. Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype. Am J Respir Cell Mol Biol 2009; 41:494-504. [PMID: 19213874 DOI: 10.1165/rcmb.2008-0251oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle (ASM) plays a key role in the development of airway hyperresponsiveness and remodeling in asthma, which may involve maturation of ASM cells to a hypercontractile phenotype. In vitro studies have indicated that long-term exposure of bovine tracheal smooth muscle (BTSM) to insulin induces a functional hypercontractile, hypoproliferative phenotype. Similarly, the extracellular matrix protein laminin has been found to be involved in both the induction and maintenance of a contractile ASM phenotype. Using BTSM, we now investigated the role of laminins in the insulin-induced hypercontractile, hypoproliferative ASM phenotype. The results demonstrate that insulin-induced hypercontractility after 8 days of tissue culture was fully prevented by combined treatment of BTSM-strips with the laminin competing peptides Tyr-Ile-Gly-Ser-Arg (YIGSR) and Arg-Gly-Asp-Ser (RGDS). YIGSR also prevented insulin-induced increases in sm-myosin expression and abrogated the suppressive effects of prolonged insulin treatment on platelet-derived growth factor-induced DNA synthesis in cultured cells. In addition, insulin time-dependently increased laminin alpha2, beta1, and gamma1 chain protein, but not mRNA abundance in BTSM strips. Moreover, as previously found for contractile protein accumulation, signaling through PI3-kinase- and Rho kinase-dependent pathways was required for the insulin-induced increase in laminin abundance and contractility. Collectively, our results indicate a critical role for beta1-containing laminins, likely laminin-211, in the induction of a hypercontractile, hypoproliferative ASM phenotype by prolonged insulin exposure. Increased laminin production by ASM could be involved in the increased ASM contractility and contractile protein expression in asthma. Moreover, the results may be of interest for the use of inhaled insulin administrations by diabetics.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
80
|
Wilkinson GA, Schittny JC, Reinhardt DP, Klein R. Role for ephrinB2 in postnatal lung alveolar development and elastic matrix integrity. Dev Dyn 2008; 237:2220-34. [PMID: 18651661 DOI: 10.1002/dvdy.21643] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alveoli are formed in the lung by the insertion of secondary tissue folds, termed septa, which are subsequently remodeled to form the mature alveolar wall. Secondary septation requires interplay between three cell types: endothelial cells forming capillaries, contractile interstitial myofibroblasts, and epithelial cells. Here, we report that postnatal lung alveolization critically requires ephrinB2, a ligand for Eph receptor tyrosine kinases expressed by the microvasculature. Mice homozygous for the hypomorphic knockin allele ephrinB2DeltaV/DeltaV, encoding mutant ephrinB2 with a disrupted C-terminal PDZ interaction motif, show severe postnatal lung defects including an almost complete absence of lung alveoli and abnormal and disorganized elastic matrix. Lung alveolar formation is not sensitive to loss of ephrinB2 cytoplasmic tyrosine phosphorylation sites. Postnatal day 1 mutant lungs show extracellular matrix alterations without differences in proportions of major distal cell populations. We conclude that lung alveolar formation relies on endothelial ephrinB2 function.
Collapse
Affiliation(s)
- George A Wilkinson
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Munich-Martinsried, Germany.
| | | | | | | |
Collapse
|
81
|
Klees RF, Salasznyk RM, Ward DF, Crone DE, Williams WA, Harris MP, Boskey A, Quaranta V, Plopper GE. Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res 2008; 314:763-73. [PMID: 18206871 PMCID: PMC2268764 DOI: 10.1016/j.yexcr.2007.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
The overall mechanisms governing the role of laminins during osteogenic differentiation of human mesenchymal stem cells (hMSC) are poorly understood. We previously reported that laminin-332 induces an osteogenic phenotype in hMSC and does so through a focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK) dependent pathway. We hypothesized that this is a result of integrin-ECM binding, and that it occurs via the known alpha3 LG3 integrin binding domain of laminin-332. To test this hypothesis we cultured hMSC on several different globular domains of laminin-332. hMSC adhered best to the LG3 domain, and this adhesion maximally activated FAK and ERK within 120 min. Prolonged culturing (8 or 16 days) of hMSC on LG3 led to activation of the osteogenic transcription factor Runx2 and expression of key osteogenic markers (osterix, bone sialoprotein 2, osteocalcin, alkaline phosphatase, extracellular calcium) in hMSC. LG3 domain binding did not increase matrix mineralization, demonstrating that the LG3 domain alone is not sufficient to induce complete osteogenic differentiation in vitro. We conclude that the LG3 domain mediates attachment of hMSC to laminin-332 and that this adhesion recapitulates most, but not all, of the osteogenic differentiation associated with laminin-5 binding to hMSC.
Collapse
Affiliation(s)
- Robert F. Klees
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180−3596
| | - Roman M. Salasznyk
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180−3596
| | - Donald F. Ward
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180−3596
| | - Donna E. Crone
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180−3596
| | - William A. Williams
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180−3596
| | - Mark P. Harris
- Vanderbilt University Medical Center, Nashville, TN 37232
| | - Adele Boskey
- Hospital for Special Surgery, New York City, NY 10021
| | - Vito Quaranta
- Vanderbilt University Medical Center, Nashville, TN 37232
| | - George E. Plopper
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180−3596
| |
Collapse
|
82
|
Tougan T, Onda H, Okuzaki D, Kobayashi S, Hashimoto H, Nojima H. Focused microarray analysis of peripheral mononuclear blood cells from Churg-Strauss syndrome patients. DNA Res 2008; 15:103-14. [PMID: 18263571 PMCID: PMC2650626 DOI: 10.1093/dnares/dsm035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA diagnostics are useful but are hampered by difficult ethical issues. Moreover, it cannot provide enough information on the environmental factors that are important for pathogenesis of certain diseases. However, this is not a problem for RNA diagnostics, which evaluate the expression of the gene in question. We here report a novel RNA diagnostics tool that can be employed with peripheral blood mononuclear cells (PBMCs). To establish this tool, we identified 290 genes that are highly expressed in normal PBMCs but not in TIG-1, a normal human fibroblast cell. These genes were entitled PREP after predominantly expressed in PBMC and included 50 uncharacterized genes. We then conducted PREP gene-focused microarray analysis on PBMCs from seven cases of Churg-Strauss syndrome (CSS), which is a small-vessel necrotizing vasculitis. We found that PREP135 (coactosin-like protein), PREP77 (prosaposin), PREP191 (cathepsin D), PREP234 (c-fgr), and PREP136 (lysozyme) were very highly up-regulated in all seven CSS patients. Another 28 genes were also up-regulated, albeit more moderately, and three were down-regulated in all CSS patients. The nature of these up- and down-regulated genes suggest that the immune systems of the patients are activated in response to invading microorganisms. These observations indicate that focused microarray analysis of PBMCs may be a practical, useful, and low-cost bedside diagnostics tool.
Collapse
Affiliation(s)
- Takahiro Tougan
- Department of Molecular Genetics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Hosokawa T, Betsuyaku T, Odajima N, Suzuki M, Mochitate K, Nasuhara Y, Nishimura M. Role of basement membrane in EMMPRIN/CD147 induction in rat tracheal epithelial cells. Biochem Biophys Res Commun 2008; 368:426-32. [PMID: 18243135 DOI: 10.1016/j.bbrc.2008.01.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 01/21/2008] [Indexed: 11/19/2022]
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) is a glycosylated transmembrane protein known to induce matrix metalloproteinases (MMPs). Although the expression of EMMPRIN is physiologically limited to fetal lung epithelium, the transcriptional regulation of this protein remains to be elucidated. We hypothesized that the interaction of epithelial cells with the basement membrane regulates EMMPRIN expression. The basement membrane has highly integrated architecture composed of specific extracellular matrix, such as laminins and type IV collagen, and exhibits multiple functions. We previously developed a structured basement membrane mimic, a synthesized basement membrane (sBM) substratum, in which laminin-111, a unique component of embryonic lungs, is incorporated. In the present study we quantified expression of EMMPRIN mRNA of rat tracheal epithelial cells cultured on sBM, laminin-111, type IV collagen, or laminin-332. EMMPRIN was upregulated on sBM and laminin-111, although this was not accompanied by MMP-9 induction. In contrast, type IV collagen and laminin-332 did not induce EMMPRIN. These findings suggest potential roles for basement membrane in the transcriptional regulation of tracheal epithelial EMMPRIN.
Collapse
Affiliation(s)
- Takeshi Hosokawa
- First Department of Medicine, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
84
|
Tsuruta D, Kobayashi H, Imanishi H, Sugawara K, Ishii M, Jones JCR. Laminin-332-integrin interaction: a target for cancer therapy? Curr Med Chem 2008; 15:1968-75. [PMID: 18691052 PMCID: PMC2992754 DOI: 10.2174/092986708785132834] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For many years, extracellular matrix (ECM) was considered to function as a tissue support and filler. However, we now know that ECM proteins control many cellular events through their interaction with cell-surface receptors and cytoplasmic signaling pathways. For example, they regulate cell proliferation, cell division, cell adhesion, cell migration, and apoptosis. We focus in this review on a laminin isoform, laminin-332 (formerly termed laminin-5), a major component of the basement membrane (BM) of skin and other epithelial tissues. It is composed of 3 subunits (alpha3beta3 and gamma3 and interacts with at least two integrin receptors expressed by epithelial cells (alpha3beta1 and alpha6beta4 integrin. Mutations in either laminin-332 or integrin alpha6beta4 result in junctional epidermolysis bullosa, a blistering skin disease, while targeting of laminin-332 by autoantibodies in cicatricial pemphigoid leads to dysadhesion of epithelial cells from their underlying connective tissue. Abnormal expression of laminin-332 and its integrin receptors is also a hallmark of certain tumor types and is believed to promote invasion of colon, breast and skin cancer cells. Moreover, there is emerging evidence that laminin-332 and its protease degradation products are not only found at the leading front of several tumors but also likely induce and/or promote tumor cell migration. Thus, in this review, we focus specifically on the role of laminin-332 and its integrin receptors in adhesion, proliferation, and migration/invasion of cancer cells. Finally, we discuss strategies for the development of laminin-332-based antagonists for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
85
|
Reddy NM, Kleeberger SR, Yamamoto M, Kensler TW, Scollick C, Biswal S, Reddy SP. Genetic dissection of the Nrf2-dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection. Physiol Genomics 2007; 32:74-81. [PMID: 17895394 DOI: 10.1152/physiolgenomics.00126.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The beta zipper (bZip) transcription factor, nuclear factor erythroid 2, like 2 (Nrf2), acting via an antioxidant/electrophile response element, regulates the expression of several antioxidant enzymes and maintains cellular redox homeostasis. Nrf2 deficiency diminishes pulmonary expression of several antioxidant enzymes, rendering them highly susceptible to various mouse models of prooxidant-induced lung injury. We recently demonstrated that Nrf2 deficiency impairs primary cultured pulmonary epithelial cell proliferation and greatly enhances sensitivity to prooxidant-induced cell death. Glutathione (GSH) supplementation rescued cells from these defects associated with Nrf2 deficiency. To further delineate the mechanisms by which Nrf2, via redox signaling, regulates cellular protection and proliferation, we compared the global expression profiling of Nrf2-deficient cells with and without GSH supplementation. We found that GSH regulates the expression of various networks of transcriptional programs including 1) several antioxidant enzymes involved in cellular detoxification of reactive oxygen species and recycling of thiol status and 2) several growth factors, growth factor receptors, and integrins that are critical for cell growth and proliferation. We also found that Nrf2 deficiency enhances the expression levels of several genes encoding proinflammatory cytokines; however, GSH supplementation markedly suppressed their expression. Collectively, these findings uncover an important insight into the nature of genes regulated by Nrf2-dependent redox signaling through GSH that are involved in cellular detoxification and proliferation.
Collapse
Affiliation(s)
- Narsa M Reddy
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Kabosova A, Azar DT, Bannikov GA, Campbell KP, Durbeej M, Ghohestani RF, Jones JCR, Kenney MC, Koch M, Ninomiya Y, Patton BL, Paulsson M, Sado Y, Sage EH, Sasaki T, Sorokin LM, Steiner-Champliaud MF, Sun TT, SundarRaj N, Timpl R, Virtanen I, Ljubimov AV. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci 2007; 48:4989-99. [PMID: 17962449 PMCID: PMC2151758 DOI: 10.1167/iovs.07-0654] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Adult human corneal epithelial basement membrane (EBM) and Descemet's membrane (DM) components exhibit heterogeneous distribution. The purpose of the study was to identify changes of these components during postnatal corneal development. METHODS Thirty healthy adult corneas and 10 corneas from 12-day- to 3-year-old children were studied by immunofluorescence with antibodies against BM components. RESULTS Type IV collagen composition of infant corneal central EBM over Bowman's layer changed from alpha1-alpha2 to alpha3-alpha4 chains after 3 years of life; in the adult, alpha1-alpha2 chains were retained only in the limbal BM. Laminin alpha2 and beta2 chains were present in the adult limbal BM where epithelial stem cells are located. By 3 years of age, beta2 chain appeared in the limbal BM. In all corneas, limbal BM contained laminin gamma3 chain. In the infant DM, type IV collagen alpha1-alpha6 chains, perlecan, nidogen-1, nidogen-2, and netrin-4 were found on both faces, but they remained only on the endothelial face of the adult DM. The stromal face of the infant but not the adult DM was positive for tenascin-C, fibrillin-1, SPARC, and laminin-332. Type VIII collagen shifted from the endothelial face of infant DM to its stromal face in the adult. Matrilin-4 largely disappeared after the age of 3 years. CONCLUSIONS The distribution of laminin gamma3 chain, nidogen-2, netrin-4, matrilin-2, and matrilin-4 is described in the cornea for the first time. The observed differences between adult and infant corneal BMs may relate to changes in their mechanical strength, corneal cell adhesion and differentiation in the process of postnatal corneal maturation.
Collapse
Affiliation(s)
- Andrea Kabosova
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago, Illinois
| | - Gregory A. Bannikov
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio
| | - Kevin P. Campbell
- University of Iowa College of Medicine and Howard Hughes Medical Institute, Iowa City, Iowa
| | - Madeleine Durbeej
- Division for Cell and Matrix Biology, Department of Experimental Medical Science, University of Lund, Lund, Sweden
| | - Reza F. Ghohestani
- Division of Dermatology and Cutaneous Surgery, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Jonathan C. R. Jones
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois
| | - M. Cristina Kenney
- Department of Ophthalmology, University of California Irvine Medical Center, Orange, California
| | - Manuel Koch
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Bruce L. Patton
- Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - E. Helene Sage
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Takako Sasaki
- Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Lydia M. Sorokin
- Institute for Physiological Chemistry and Pathobiochemistry, Münster University, Münster, Germany
| | | | - Tung-Tien Sun
- Department of Cell Biology, New York University Medical School, New York, New York
| | - Nirmala SundarRaj
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rupert Timpl
- Max-Planck-Institut fuür Biochemie, Martinsried, Germany
| | - Ismo Virtanen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Alexander V. Ljubimov
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
87
|
Teller IC, Auclair J, Herring E, Gauthier R, Ménard D, Beaulieu JF. Laminins in the developing and adult human small intestine: relation with the functional absorptive unit. Dev Dyn 2007; 236:1980-90. [PMID: 17503455 DOI: 10.1002/dvdy.21186] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of the five laminin alpha-chains was analyzed in the developing and mature human small intestine at the protein and transcript levels in order to further delineate specific involvement of individual laminins in relation to the epithelial cell state as defined along the functional crypt-villus axis. The results show that all of the alpha-laminin transcripts are expressed in significant amounts in the small intestine relative to a panel of other tissues and organs. Further analysis of their expression by indirect immunofluorescence and semi-quantitative and quantitative RT-PCR demonstrates a close correlation between transcript and protein expression, distinct epithelial and mesenchymal origins, as well as differential occurrence in intestinal basement membranes according to developmental stage, along the crypt-villus axis and in compartment-related experimental intestinal cell models. Taken together, the data point out the prime importance of alpha2-, alpha3-, and alpha5-containing laminins for the development and maintenance of the functional human intestinal epithelium.
Collapse
Affiliation(s)
- Inga C Teller
- CIHR Team on Digestive Epithelium, Département d'anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | |
Collapse
|
88
|
Isakson BE, Olsen CE, Boitano S. Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells. Respir Res 2006; 7:105. [PMID: 16884540 PMCID: PMC1559610 DOI: 10.1186/1465-9921-7-105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 08/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin alpha3beta3gamma2 (LM-332) proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC). METHODS Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca2+ waves. Expression of connexin (Cx) mRNA and proteins were assayed by reverse transcriptase - polymerase chain reaction and immunocytochemistry, respectively. RESULTS When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca2+ waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca2+waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. CONCLUSION Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function.
Collapse
Affiliation(s)
- Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia Charlottesville, Virginia 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Colin E Olsen
- Arizona Respiratory Center, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USA
| | - Scott Boitano
- Arizona Respiratory Center, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USA
- Department of Physiology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|