51
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
52
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
53
|
Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018; 10:E242. [PMID: 30042343 PMCID: PMC6116043 DOI: 10.3390/cancers10080242] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
Affiliation(s)
- Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
54
|
Wefers C, Schreibelt G, Massuger LFAG, de Vries IJM, Torensma R. Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG. Front Immunol 2018; 9:1412. [PMID: 29971070 PMCID: PMC6018198 DOI: 10.3389/fimmu.2018.01412] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified as the source of tumor growth and disease recurrence. Eradication of CSCs is thus essential to achieve durable responses, but CSCs are resistant to current anti-tumor therapies. Novel therapeutic approaches that specifically target CSCs will, therefore, be crucial to improve patient outcome. Immunotherapies, which boost the body's own immune system to eliminate cancerous cells, could be an alternative approach to target CSCs. Vaccines of dendritic cells (DCs) loaded with tumor antigens can evoke highly specific anti-tumor T cell responses. Importantly, DC vaccination also promotes immunological memory formation, paving the way for long-term cancer control. Here, we propose a DC vaccination that specifically targets CSCs. DCs loaded with NANOG peptides, a protein required for maintaining stem cell properties, could evoke a potent anti-tumor immune response against CSCs. We hypothesize that the resulting immunological memory will also control newly formed CSCs, thereby preventing disease recurrence.
Collapse
Affiliation(s)
- Christina Wefers
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
- Department of Obstetrics and Gynecology, Radboudumc, Nijmegen, Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| | | | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| | - Ruurd Torensma
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
55
|
Drakes ML, Mehrotra S, Aldulescu M, Potkul RK, Liu Y, Grisoli A, Joyce C, O'Brien TE, Stack MS, Stiff PJ. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand- 1 (PD-L1) in ovarian cancer. J Ovarian Res 2018. [PMID: 29843813 DOI: 10.1186/s13048-018-0414-z] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ovarian cancer is the major cause of death among gynecologic cancers with 75% of patients diagnosed with advanced disease, and only 20% of these patients having a survival duration of five years. Treatments blocking immune checkpoint molecules, programmed cell death (PD-1) or its ligand PD-ligand- I (PD-L1) have produced a beneficial and prolonged effect in a subgroup of these patients. However, there is debate in the literature concerning the prognostic value of the expression of these molecules in tumors, with immunotherapy responsiveness, and survival. We evaluated the immune landscape of the ovarian tumor microenvironment of patients, by measuring the impact of the expression of tumor PD-1, PD-L1 and infiltrating lymphocytes on stage and grade of tumors and survival, in a cohort of 55 patients with gynecologic malignancies. Most patients under study were diagnosed with advanced disease ovarian cancer. RESULTS Our studies revealed that a low density of PD-1 and of PD-L1 expressing cells in tumor tissue were significantly associated with advanced disease (P = 0.028 and P = 0.033, respectively). Moreover, PD-L1 was expressed significantly more often in high grade tumors (41.5%) than in low grade tumors of patients (7.7%) (P = 0.040). The presence of CD3 or of FoxP3 infiltrating cells with PD-L1 in patient tumors did not impact the significance of the association of PD-L1 with high grade tumors (P = 0.040), and our analyses did not show an association between the presence of PD-1 or PD-L1 and survival. CONCLUSIONS We conclude that a subgroup of advanced disease ovarian cancer patients with high grade tumors, expressing PD-L1, may be prime candidates for immunotherapy targeting PD-1 signaling.
Collapse
Affiliation(s)
- Maureen L Drakes
- Cardinal Bernardin Cancer Center, Oncology Research Institute, Department of Medicine, Loyola University Chicago, Bldg. 112, Room 232, 2160 South First Avenue, Maywood, IL, 60153, USA.
| | - Swati Mehrotra
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Monica Aldulescu
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ronald K Potkul
- Department of Obstetrics and Gynecology, Loyola University Chicago, Maywood, IL, USA
| | - Yueying Liu
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Anne Grisoli
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Timothy E O'Brien
- Department of Mathematics & Statistics, and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, USA
| | - M Sharon Stack
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Patrick J Stiff
- Cardinal Bernardin Cancer Center, Oncology Research Institute, Department of Medicine, Loyola University Chicago, Bldg. 112, Room 232, 2160 South First Avenue, Maywood, IL, 60153, USA
| |
Collapse
|
56
|
Drakes ML, Mehrotra S, Aldulescu M, Potkul RK, Liu Y, Grisoli A, Joyce C, O'Brien TE, Stack MS, Stiff PJ. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand- 1 (PD-L1) in ovarian cancer. J Ovarian Res 2018; 11:43. [PMID: 29843813 PMCID: PMC5975524 DOI: 10.1186/s13048-018-0414-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023] Open
Abstract
Background Ovarian cancer is the major cause of death among gynecologic cancers with 75% of patients diagnosed with advanced disease, and only 20% of these patients having a survival duration of five years. Treatments blocking immune checkpoint molecules, programmed cell death (PD-1) or its ligand PD-ligand- I (PD-L1) have produced a beneficial and prolonged effect in a subgroup of these patients. However, there is debate in the literature concerning the prognostic value of the expression of these molecules in tumors, with immunotherapy responsiveness, and survival. We evaluated the immune landscape of the ovarian tumor microenvironment of patients, by measuring the impact of the expression of tumor PD-1, PD-L1 and infiltrating lymphocytes on stage and grade of tumors and survival, in a cohort of 55 patients with gynecologic malignancies. Most patients under study were diagnosed with advanced disease ovarian cancer. Results Our studies revealed that a low density of PD-1 and of PD-L1 expressing cells in tumor tissue were significantly associated with advanced disease (P = 0.028 and P = 0.033, respectively). Moreover, PD-L1 was expressed significantly more often in high grade tumors (41.5%) than in low grade tumors of patients (7.7%) (P = 0.040). The presence of CD3 or of FoxP3 infiltrating cells with PD-L1 in patient tumors did not impact the significance of the association of PD-L1 with high grade tumors (P = 0.040), and our analyses did not show an association between the presence of PD-1 or PD-L1 and survival. Conclusions We conclude that a subgroup of advanced disease ovarian cancer patients with high grade tumors, expressing PD-L1, may be prime candidates for immunotherapy targeting PD-1 signaling. Electronic supplementary material The online version of this article (10.1186/s13048-018-0414-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maureen L Drakes
- Cardinal Bernardin Cancer Center, Oncology Research Institute, Department of Medicine, Loyola University Chicago, Bldg. 112, Room 232, 2160 South First Avenue, Maywood, IL, 60153, USA.
| | - Swati Mehrotra
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Monica Aldulescu
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ronald K Potkul
- Department of Obstetrics and Gynecology, Loyola University Chicago, Maywood, IL, USA
| | - Yueying Liu
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Anne Grisoli
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Timothy E O'Brien
- Department of Mathematics & Statistics, and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, USA
| | - M Sharon Stack
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Patrick J Stiff
- Cardinal Bernardin Cancer Center, Oncology Research Institute, Department of Medicine, Loyola University Chicago, Bldg. 112, Room 232, 2160 South First Avenue, Maywood, IL, 60153, USA
| |
Collapse
|
57
|
Drakes ML, Mehrotra S, Aldulescu M, Potkul RK, Liu Y, Grisoli A, Joyce C, O'Brien TE, Stack MS, Stiff PJ. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand- 1 (PD-L1) in ovarian cancer. J Ovarian Res 2018. [PMID: 29843813 DOI: 10.1186/s13048-018-0414-z]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer is the major cause of death among gynecologic cancers with 75% of patients diagnosed with advanced disease, and only 20% of these patients having a survival duration of five years. Treatments blocking immune checkpoint molecules, programmed cell death (PD-1) or its ligand PD-ligand- I (PD-L1) have produced a beneficial and prolonged effect in a subgroup of these patients. However, there is debate in the literature concerning the prognostic value of the expression of these molecules in tumors, with immunotherapy responsiveness, and survival. We evaluated the immune landscape of the ovarian tumor microenvironment of patients, by measuring the impact of the expression of tumor PD-1, PD-L1 and infiltrating lymphocytes on stage and grade of tumors and survival, in a cohort of 55 patients with gynecologic malignancies. Most patients under study were diagnosed with advanced disease ovarian cancer. RESULTS Our studies revealed that a low density of PD-1 and of PD-L1 expressing cells in tumor tissue were significantly associated with advanced disease (P = 0.028 and P = 0.033, respectively). Moreover, PD-L1 was expressed significantly more often in high grade tumors (41.5%) than in low grade tumors of patients (7.7%) (P = 0.040). The presence of CD3 or of FoxP3 infiltrating cells with PD-L1 in patient tumors did not impact the significance of the association of PD-L1 with high grade tumors (P = 0.040), and our analyses did not show an association between the presence of PD-1 or PD-L1 and survival. CONCLUSIONS We conclude that a subgroup of advanced disease ovarian cancer patients with high grade tumors, expressing PD-L1, may be prime candidates for immunotherapy targeting PD-1 signaling.
Collapse
Affiliation(s)
- Maureen L Drakes
- Cardinal Bernardin Cancer Center, Oncology Research Institute, Department of Medicine, Loyola University Chicago, Bldg. 112, Room 232, 2160 South First Avenue, Maywood, IL, 60153, USA.
| | - Swati Mehrotra
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Monica Aldulescu
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ronald K Potkul
- Department of Obstetrics and Gynecology, Loyola University Chicago, Maywood, IL, USA
| | - Yueying Liu
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Anne Grisoli
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Timothy E O'Brien
- Department of Mathematics & Statistics, and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, USA
| | - M Sharon Stack
- Department of Chemistry & Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Patrick J Stiff
- Cardinal Bernardin Cancer Center, Oncology Research Institute, Department of Medicine, Loyola University Chicago, Bldg. 112, Room 232, 2160 South First Avenue, Maywood, IL, 60153, USA
| |
Collapse
|
58
|
Tang M, Liu B, Bu X, Zhao P. Cross-talk between ovarian cancer cells and macrophages through periostin promotes macrophage recruitment. Cancer Sci 2018. [PMID: 29527764 PMCID: PMC5980394 DOI: 10.1111/cas.13567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tumor‐associated macrophages (TAMs) contribute to tumor progression, but it is not clear how they are recruited to tumor sites. Here we showed that periostin (POSTN) was present at high levels in ovarian cancer ascetic fluids and was correlated with CD163+TAMs. The high POSTN level and macrophage infiltration were inversely associated with relapse‐free survival for ovarian cancer patients. In vitro studies showed that coculture with macrophages significantly increased POSTN production in ovarian cancer cells. Further investigation found that POSTN production in ovarian cancer cells was promoted by transforming growth factor‐β generated by macrophages. Moreover, siRNA of POSTN and POSTN neutralizing antibody treatment showed that ovarian cancer cell‐derived POSTN promoted the recruitment of macrophages and modulated their cytokine secretion profile. Collectively, these data indicated that POSTN was an important factor for macrophage recruitment in the tumor microenvironment and is involved in the interactions between macrophages and ovarian cancer cells.
Collapse
Affiliation(s)
- Meng Tang
- Department of Thoracic Surgery, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Bingji Liu
- Department of Nuclear Medicine, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Xiaocui Bu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Peng Zhao
- Biotherapy Center, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
59
|
Wefers C, Duiveman-de Boer T, Zusterzeel PLM, Massuger LFAG, Fuchs D, Torensma R, Wheelock CE, de Vries IJM. Different Lipid Regulation in Ovarian Cancer: Inhibition of the Immune System. Int J Mol Sci 2018; 19:ijms19010273. [PMID: 29342108 PMCID: PMC5796219 DOI: 10.3390/ijms19010273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/22/2022] Open
Abstract
Lipid metabolism is altered in several cancer settings leading to different ratios of intermediates. Ovarian cancer is the most lethal gynecological malignancy. Cancer cells disperse in the abdominal space and ascites occurs. T cells obtained from ascites are unable to proliferate after an antigenic stimulus. The proliferation of ascites-derived T cells can be restored after culturing the cells for ten days in normal culture medium. No pathway aberrancies were detected. The acellular fraction of ascites can inhibit the proliferation of autologous as well as allogeneic peripheral blood lymphocytes, indicating the presence of soluble factors that interfere with T cell functionality. Therefore, we analyzed 109 lipid mediators and found differentially regulated lipids in suppressive ascitic fluid compared to normal abdominal fluid. Our study indicates the presence of lipid intermediates in ascites of ovarian cancer patients, which coincidences with T cell dysfunctionality. Since the immune system in the abdominal cavity is compromised, this may explain the high seeding efficiency of disseminated tumor cells. Further research is needed to fully understand the correlation between the various lipids and T cell proliferation, which could lead to new treatment options.
Collapse
Affiliation(s)
- Christina Wefers
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
- Department of Obstetrics and Gynecology, Radboudumc, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands.
| | - Tjitske Duiveman-de Boer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Petra L M Zusterzeel
- Department of Obstetrics and Gynecology, Radboudumc, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands.
| | - Leon F A G Massuger
- Department of Obstetrics and Gynecology, Radboudumc, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands.
| | - David Fuchs
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, SE-171 77 Stockholm, Sweden.
| | - Ruurd Torensma
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, SE-171 77 Stockholm, Sweden.
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
60
|
Kristeleit R, Davidenko I, Shirinkin V, El-Khouly F, Bondarenko I, Goodheart MJ, Gorbunova V, Penning CA, Shi JG, Liu X, Newton RC, Zhao Y, Maleski J, Leopold L, Schilder RJ. A randomised, open-label, phase 2 study of the IDO1 inhibitor epacadostat (INCB024360) versus tamoxifen as therapy for biochemically recurrent (CA-125 relapse)–only epithelial ovarian cancer, primary peritoneal carcinoma, or fallopian tube cancer. Gynecol Oncol 2017; 146:484-490. [DOI: 10.1016/j.ygyno.2017.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022]
|
61
|
Common variants in IL-1RN, IL-1β and TNF-α and the risk of ovarian cancer: a case control study. Cent Eur J Immunol 2017; 42:150-155. [PMID: 28860932 PMCID: PMC5573887 DOI: 10.5114/ceji.2017.69356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
AIM OF THE STUDY Several studies implicated altered inflammatory response in the susceptibility to ovarian cancer, and polymorphisms in inflammatory cytokines were shown to play an important role in the development of malignancies, including ovarian cancer (OC). Here we investigated the relationship between polymorphisms in IL-1β (-511C>T), IL-1RN VNTR, TNF-α (-308G>A), and TNF RII (-322 VNTR) and OC risk in Tunisian women. METHODS AND RESULTS Study subjects comprised 62 OC patients and 126 healthy women. Genotyping was done from genomic DNA obtained from blood simple by PCR. Positive association between IL-1RN (-VNTR) A1 allele (p = 0.0069; OR = 2.04; 95% CI:1.17-3.58) and OC risk, while negative association was seen with the A3 allele (P = 0.0034; OR = 0.09; 95% CI: 0.00-0.64), suggesting a protective role by the A3 allele. For IL-1β (-511C>T), homozygous C/C genotype was associated with significantly increased risk of OC (p = 0.0002; OR = 4.14; 95% CI: 1.77-9.76), while heterozygote C/T genotype was linked with reduced risk of OC (p = 0.0033; OR = 0.40; 95% CI: 0.20-0.78). Furthermore, TNF-α -308A allele was significantly associated with heightened risk of OC (p = 0.016; OR = 1.70; 95% CI: 1.08-2.69), and homozygote G/G genotype was associated with decreased risk of OC (p = 0.0018; OR = 0.25; 95% CI: 0.09-0.66). In contrast, TNFRII (-322 VNTR) polymorphism was not associated with altered OC risk in the studied group. CONCLUSIONS The significant association between IL-1RN VNTR, IL1-β (-511), TNF-α (-308) and OC susceptibility in Tunisian women confirms a role for altered inflammatory response in ovarian cancer pathogenesis.
Collapse
|
62
|
Zhu X, Lang J. Programmed death-1 pathway blockade produces a synergistic antitumor effect: combined application in ovarian cancer. J Gynecol Oncol 2017; 28:e64. [PMID: 28657225 PMCID: PMC5540723 DOI: 10.3802/jgo.2017.28.e64] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 05/18/2017] [Indexed: 02/08/2023] Open
Abstract
Programmed death-1 (PD-1) and its ligand are part of the immune checkpoint pathway that down-regulates effector T cells in immune response, thereby causing immune suppression. The PD-1/programmed death-ligand 1 (PD-L1) pathway can be blocked by antibodies to reverse tumor-mediated immunosuppression. However, advanced cancers such as stage III-IV ovarian cancer (OC) and certain types such as ID8 OC (a clone of C57BL/6 mouse OC) may hijack the PD-1/PD-L1 pathway to escape immune attack. When combined with chemotherapy, radiotherapy, targeted therapy, immunotherapy, or other agents, these PD-1/PD-L1 pathway blockages can produce a synergistic antitumor response in OC. Combined immunotherapy significantly prolongs overall survival by changing the tumor microenvironment through processes such as increasing the number of CD4⁺ or CD8⁺ T cells or cytokines in mice with OC and decreasing the number of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). OC patients treated with combined immunotherapy received better prognoses than those treated with monotherapy. This review reflects the move toward novel therapy combinations for OC and discusses these promising immunotherapeutic approaches, which are more cost-effective and effective than other approaches.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
63
|
da Silva RF, Yoshida A, Cardozo DM, Jales RM, Paust S, Derchain S, Guimarães F. Natural Killer Cells Response to IL-2 Stimulation Is Distinct between Ascites with the Presence or Absence of Malignant Cells in Ovarian Cancer Patients. Int J Mol Sci 2017; 18:ijms18050856. [PMID: 28513532 PMCID: PMC5454809 DOI: 10.3390/ijms18050856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their expression of activating receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and presence of EOC cells. NK cell function was evaluated by the expression of the degranulation marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood. Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells. The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α, suggesting inflammation related to the malignancy. In conclusion, the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
| | - Adriana Yoshida
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | | | | | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophie Derchain
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | - Fernando Guimarães
- Women´s Hospital "Professor Doutor José Aristodemo Pinotti"-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas, 13083-881 Campinas, Brazil.
| |
Collapse
|
64
|
Brencicova E, Jagger AL, Evans HG, Georgouli M, Laios A, Attard Montalto S, Mehra G, Spencer J, Ahmed AA, Raju-Kankipati S, Taams LS, Diebold SS. Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptor-mediated dendritic cell activation in ovarian carcinoma. PLoS One 2017; 12:e0175712. [PMID: 28410380 PMCID: PMC5391951 DOI: 10.1371/journal.pone.0175712] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DC) have the potential to instigate a tumour-specific immune response, but their ability to prime naïve lymphocytes depends on their activation status. Thus, for tumour immunotherapy to be effective, the provision of appropriate DC activation stimuli such as Toll-like receptor (TLR) agonists is crucial in order to overcome immunosuppression associated with the tumour microenvironment. To address this, we investigated how ovarian carcinoma (OC)-associated ascites impedes activation of DC by TLR agonists. Our results show that ascites reduces the TLR-mediated up-regulation of CD86 and partially inhibits the production of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-12 and tumour necrosis factor α (TNFα) in monocyte-derived DC from healthy controls. We further observe an impaired T cell stimulatory capacity of DC upon activation with TLR agonists in the presence of ascites, indicating that their functionality is affected by the immunosuppressive factors. We identify IL-10 and prostaglandin E2 (PGE2) as the pivotal immunosuppressive components in OC-associated ascites compromising TLR-mediated DC activation. Interestingly, IL-10 is present in both ascites from patients with malignant OC and in peritoneal fluid from patients with benign ovarian conditions and both fluids have similar ability to reduce TLR-mediated DC activation. However, depletion of IL-10 from ascites revealed that the presence of paracrine IL-10 is not crucial for ascites-mediated suppression of DC activation in response to TLR activation. Unlike IL-10, PGE2 is absent from peritoneal fluid of patients with benign conditions and selectively reduces TNFα induction in response to TLR-mediated activation in the presence of OC-associated ascites. Our study highlights PGE2 as an immunosuppressive component of the malignant OC microenvironment rendering PGE2 a potentially important target for immunotherapy in OC.
Collapse
Affiliation(s)
- Eva Brencicova
- Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
| | - Ann L. Jagger
- Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
| | - Hayley G. Evans
- Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
- Centre for Molecular & Cellular Biology of Inflammation (CMCBI), Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
| | - Mirella Georgouli
- Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
| | - Alex Laios
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | | | - Gautam Mehra
- Department of Gynaecological Oncology, St Thomas’ Hospital, London, United Kingdom
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
| | - Ahmed A. Ahmed
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | | | - Leonie S. Taams
- Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
- Centre for Molecular & Cellular Biology of Inflammation (CMCBI), Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
| | - Sandra S. Diebold
- Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Zhang T, Ye L, Han L, He Q, Zhu J. Knockdown of HVEM, a Lymphocyte Regulator Gene, in Ovarian Cancer Cells Increases Sensitivity to Activated T Cells. Oncol Res 2017; 24:189-96. [PMID: 27458100 PMCID: PMC7838697 DOI: 10.3727/096504016x14641336229602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is highly malignant with a gradually increasing incidence and a high mortality rate. Immunosuppression is induced in ovarian cancer, although the mechanism detail is not clear. It has been indicated that HVEM (herpesvirus entry mediator) B- and T-lymphocyte attenuator (BTLA) negatively regulates the immune responses of T lymphocytes. Here, HVEM mRNA was found to be elevated in ovarian cancer tissue samples and primary ovarian cancer cells in comparison with benign tissue samples. We then knocked down HVEM expression in an ovarian cancer cell line, OVCAR3, by lentivirus-based small hairpin RNA (shRNA). Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis showed that HVEM-shRNA had no effect on the proliferation, early apoptosis, or cell cycle distribution of OVCAR3. We then isolated activated T cells and performed coculture experiments in Transwell. Remarkably, HVEM-silenced ovarian cancer cells (primary ovarian cancer cells and OVCAR3) increased the number of T cells and the secretion of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), while activated T cells promoted the apoptosis of HVEM-silenced ovarian cancer cells. The current study partially explains the immune escape mechanism of ovarian cancer cells and provides a possible target for immunotherapy.
Collapse
Affiliation(s)
- Ting Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
66
|
Brencicova E, Diebold SS. Antibody-mediated depletion of immunosuppressive factors from ovarian carcinoma-associated ascites for investigation of paracrine versus autocrine effects. J Immunol Methods 2017; 443:18-25. [PMID: 28159551 PMCID: PMC5333792 DOI: 10.1016/j.jim.2017.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/25/2022]
Abstract
Many studies seek to explore the impact of extrinsic soluble factors present in serum, interstitial fluids or cell-conditioned media on cells in vitro. A convenient approach to elucidate the effects of a particular factor is its selective neutralization. However, intrinsic production of soluble factors such as cytokines by the cultured cells is common and can have an impact via autocrine mechanisms. The addition of cytokine-specific neutralizing antibodies leads to neutralization of the targeted factors irrespective of their source and affects paracrine and autocrine effects alike. Thus, neutralization assays are not suitable to irrevocably demonstrate that the examined factors exert their effect via a paracrine mechanism. We were interested in investigating the impact of immunosuppressive factors present in ovarian carcinoma-associated ascites by dissecting paracrine versus autocrine effects of interleukin 10 (IL-10) and prostaglandin E2 (PGE2) on the activation of monocyte-derived dendritic cells (DC). We explored several methods of depletion based on introduction of the neutralizing antibodies bound to beads. Here we describe the pitfalls of the investigated depletion approaches and show the importance of monitoring the presence of residual neutralizing antibodies in the sample upon depletion, which impacts on the suitability of the approach to distinguish paracrine from autocrine effects. Only one of three investigated approaches showed no dislocation of neutralizing antibody from the beads into the sample. This method, which is based on covalently linking antibody to magnetic beads harbouring a reactive group allowed for the complete removal of the investigated factors from ascites and represents an elegant tool to elucidate immunoregulatory or -stimulatory cytokine networks in considerably more depth than the use of neutralizing antibodies in cell cultures alone can contribute.
Collapse
Affiliation(s)
- E Brencicova
- King's College London, Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, UK; University of Bern, Institute for Forensic Medicine, Switzerland
| | - S S Diebold
- King's College London, Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, UK; The National Institute for Biological Standards and Control, Biotherapeutics Division, UK.
| |
Collapse
|
67
|
Cacan E. Epigenetic-mediated immune suppression of positive co-stimulatory molecules in chemoresistant ovarian cancer cells. Cell Biol Int 2017; 41:328-339. [DOI: 10.1002/cbin.10729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Ercan Cacan
- Department of Molecular Biology Genetics; Gaziosmanpasa University; Tokat 60250 Turkey
| |
Collapse
|
68
|
Hampras SS, Sucheston-Campbell LE, Cannioto R, Chang-Claude J, Modugno F, Dörk T, Hillemanns P, Preus L, Knutson KL, Wallace PK, Hong CC, Friel G, Davis W, Nesline M, Pearce CL, Kelemen LE, Goodman MT, Bandera EV, Terry KL, Schoof N, Eng KH, Clay A, Singh PK, Joseph JM, Aben KK, Anton-Culver H, Antonenkova N, Baker H, Bean Y, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Despierre E, Dicks E, Doherty JA, du Bois A, Dürst M, Easton D, Eccles D, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Gronwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hogdall C, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kelley JL, Kiemeney LA, Klapdor R, Kolomeyevskaya N, Krakstad C, Kjaer SK, Kruszka B, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Liu S, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, et alHampras SS, Sucheston-Campbell LE, Cannioto R, Chang-Claude J, Modugno F, Dörk T, Hillemanns P, Preus L, Knutson KL, Wallace PK, Hong CC, Friel G, Davis W, Nesline M, Pearce CL, Kelemen LE, Goodman MT, Bandera EV, Terry KL, Schoof N, Eng KH, Clay A, Singh PK, Joseph JM, Aben KK, Anton-Culver H, Antonenkova N, Baker H, Bean Y, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Despierre E, Dicks E, Doherty JA, du Bois A, Dürst M, Easton D, Eccles D, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Gronwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hogdall C, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kelley JL, Kiemeney LA, Klapdor R, Kolomeyevskaya N, Krakstad C, Kjaer SK, Kruszka B, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Liu S, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Moes-Sosnowska J, Narod SA, Nedergaard L, Nevanlinna H, Nickels S, Olson SH, Orlow I, Weber RP, Paul J, Pejovic T, Pelttari LM, Perkins B, Permuth-Wey J, Pike MC, Plisiecka-Halasa J, Poole EM, Risch HA, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schernhammer E, Schmitt K, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Tangen IL, Teo SH, Thompson PJ, Timorek A, Tsai YY, Tworoger SS, Tyrer J, van Altena AM, Vergote I, Vierkant RA, Walsh C, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Gayther SA, Ramus SJ, Sellers TA, Schildkraut JM, Phelan CM, Berchuck A, Chenevix-Trench G, Cunningham JM, Pharoah PP, Ness RB, Odunsi K, Goode EL, Moysich KB. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget 2016; 7:69097-69110. [PMID: 27533245 PMCID: PMC5340115 DOI: 10.18632/oncotarget.10215] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 12/31/1969] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/immunology
- Adult
- Aged
- Carcinoma, Ovarian Epithelial
- Female
- Gene Expression Regulation, Neoplastic
- Gene Frequency
- Genetic Predisposition to Disease/genetics
- Genotype
- Humans
- Middle Aged
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/immunology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/immunology
- Polymorphism, Single Nucleotide
- Protein Serine-Threonine Kinases/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Risk Factors
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Shalaka S. Hampras
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Lara E. Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Rikki Cannioto
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Francesmary Modugno
- Department of Epidemiology and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Women's Cancer Research Program, Magee-Women's Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Leah Preus
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul K. Wallace
- Department of Flow & Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Grace Friel
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Mary Nesline
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Celeste L. Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Linda E. Kelemen
- Alberta Health Services-Cancer Care, Department of Population Health Research, Calgary, Alberta, Canada
| | - Marc T. Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Elisa V. Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Kathryn L. Terry
- Obstetrics and Gynecology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nils Schoof
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kevin H. Eng
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alyssa Clay
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Prashant K. Singh
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Janine M. Joseph
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Katja K.H. Aben
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hoda Anton-Culver
- Department of Epidemiology and School of Medicine, University of California Irvine, Irvine, California, USA
| | - Natalia Antonenkova
- Byelorussian Institute for Oncology and Medical Radiology Aleksandrov N.N., Minsk, Belarus
| | - Helen Baker
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Yukie Bean
- Department of Obstetrics & Gynecology and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Maria Bisogna
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Natalia Bogdanova
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Angela Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
| | - Karen Carty
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Linda S. Cook
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel W. Cramer
- Obstetrics and Gynecology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Clinic of Opthalmology, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joe Dennis
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Evelyn Despierre
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Belgium
| | - Ed Dicks
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Jennifer A. Doherty
- Department of Community and Family Medicine, Section of Biostatistics & Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Doug Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Diana Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Robert P. Edwards
- Department of Obstetrics, Gynecology & Reproductive Sciences and Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A. Fasching
- Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, California, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Aleksandra Gentry-Maharaj
- Institute for Women's Health, Population Health Sciences, University College - London, London, United Kingdom
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Rosalind Glasspool
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Patricia Harrington
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Hanis Nazihah Hasmad
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | | | - Claus Hogdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Edwin S. Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Beth Y. Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melissa Kellar
- Department of Obstetrics & Gynecology and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph L. Kelley
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rüdiger Klapdor
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nonna Kolomeyevskaya
- Division of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Susanne K. Kjaer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bridget Kruszka
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Jolanta Kupryjanczyk
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Belgium
| | - Sandrina Lambrechts
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Belgium
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Alice W. Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Shashikant Lele
- Division of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Arto Leminen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Douglas A. Levine
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Karen Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Lubinski
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Lene Lundvall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Leon F.A.G. Massuger
- Department of Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Valeria McGuire
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - John R. McLaughlin
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ian McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Usha Menon
- Women's Cancer, UCL EGA Institute for Women's Health, London, UK
| | - Joanna Moes-Sosnowska
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Steven A. Narod
- Women's College Research Institute, Toronto, Ontario, Canada
| | - Lotte Nedergaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Stefan Nickels
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - James Paul
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Tanja Pejovic
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Liisa M. Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Barbara Perkins
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Jenny Permuth-Wey
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Joanna Plisiecka-Halasa
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Elizabeth M. Poole
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mary Anne Rossing
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joseph H. Rothstein
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - Anja Rudolph
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Iwona K. Rzepecka
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Helga B. Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Eva Schernhammer
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristina Schmitt
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ira Schwaab
- Institut für Humangenetik Wiesbaden, Wiesbaden, Germany
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yurii B Shvetsov
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Nadeem Siddiqui
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, Scotland, UK
| | - Weiva Sieh
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - Honglin Song
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Ingvild L. Tangen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
| | - Pamela J. Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Agnieszka Timorek
- Department of Obstetrics, Gynecology and Oncology, Warsaw Medical University and Brodnowski Hospital, Warsaw, Poland
| | - Ya-Yu Tsai
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shelley S. Tworoger
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Tyrer
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Anna M. van Altena
- Department of Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Belgium
| | - Robert A. Vierkant
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Christine Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shan Wang-Gohrke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Alice S. Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - Kristine G. Wicklund
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yin-Ling Woo
- Department of Obstetrics and Gynaecology, Affiliated with UM Cancer Research Institute, Faculty of Medicine, University of Malaya, Malaysia
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Argyrios Ziogas
- Department of Epidemiology and School of Medicine, University of California Irvine, Irvine, California, USA
| | - Simon A. Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Susan J. Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Thomas A. Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Joellen M. Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Catherine M. Phelan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia Chenevix-Trench
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- On behalf of the Australian Ovarian Cancer Study Group
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Roberta B. Ness
- School of Public Health, The University of Texas, Houston, Texas, USA
| | - Kunle Odunsi
- Division of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ellen L. Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
69
|
Association of Immunosuppression with DR6 Expression during the Development and Progression of Spontaneous Ovarian Cancer in Laying Hen Model. J Immunol Res 2016; 2016:6729379. [PMID: 27579331 PMCID: PMC4989061 DOI: 10.1155/2016/6729379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/10/2016] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OVCA) mainly disseminates in the peritoneal cavity. Immune functions are important to prevent OVCA progression and recurrence. The mechanism of immunosuppression, a hallmark of tumor progression, is not well understood. The goal of this study was to determine the immune system's responses and its suppression during OVCA development and progression in hens. Frequencies of CD8+ T cells and IgY-containing cells and expression of immunosuppressors including IRG1 and DR6 in OVCA at early and late stages in hens were examined. Frequencies of stromal but not the intratumoral CD+8 T cells and IgY-containing cells increased significantly (P < 0.01) during OVCA development and progression. Tumor progression was associated with increased expression of IRG1 and DR6 and decreased infiltration of immune cells into the tumor. Frequency of stromal but not intratumoral immune cells increases during OVCA development and progression. Tumor-induced IRG1 and DR6 may prevent immune cells from invading the tumor.
Collapse
|
70
|
Longuespée R, Casadonte R, Kriegsmann M, Pottier C, Picard de Muller G, Delvenne P, Kriegsmann J, De Pauw E. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology. Proteomics Clin Appl 2016; 10:701-19. [PMID: 27188927 DOI: 10.1002/prca.201500140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.
Collapse
Affiliation(s)
- Rémi Longuespée
- Proteopath GmbH, Trier, Germany.,Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | | | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Jörg Kriegsmann
- Proteopath GmbH, Trier, Germany.,MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
71
|
Qian XQ, Chen LL, Cheng Q, Tian Y, Luo XF, Wan XY. Inhibition of Notch 1 receptor influenced the differentiation of Lin-CD45RA-dendritic cell precursors within ovarian carcinoma microenvironment. BMC Immunol 2016; 17:14. [PMID: 27259477 PMCID: PMC4893273 DOI: 10.1186/s12865-016-0150-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/08/2016] [Indexed: 02/02/2023] Open
Abstract
Background Previous evidence suggested that the differentiation of Lin-CD45RA-DC precursors were prior to plasmcytoid dendritic cells (pDCs) than myeloid dendritic cells (mDCs) within ovarian cancer microenvironment. However, the mechanism is still unclear. Therefore, we investigated the function of Notch 1 signal pathway in the differentiation of Lin-CD45RA-DC precursors. Methods The CD34+ hematopoietic stem cells were extracted from umbilical cord blood in term parturition, and Lin-CD45RA-DC precusors were separated and induced mature. Expression of Notch1 receptor and ligands in Lin-CD45RA-DC precusors was detected by Real-time PCR and was down-regulated by shRNA or γ-secretase inhibitor (GSI). Flow cytometry was used to analyze the subset of DCs with or without SKOV3 culture supernatants. IL-12 level was detected by ELISA. Results Expression of Notch1 receptors and ligands were detected in Lin-CD45RA-DC precursor cells. The Notch1 mRNA in Lin-CD45RA-DC precursors can be down-regulated by shRNA-Notch1 lentivirus transfection and GSI. ShRNA mediated Notch 1 knock-down significantly differentiated less plasmcytoid dendritic cells (pDCs), but generated more myeloid dendritic cells (mDCs), and this would not be influenced by the supernatant of the ovarian carcinoma cell line. GSI had the same effect in the differentiation of pDC. The secretion of IL-12 significantly increased after Notch1 knock-down with or without SKOV3 culture supernatants. Conclusions Notch1 is an important signaling pathway in the differentiation of Lin-CD45RA-DC precursor cells to plasmcytoid dendritic cells (pDCs). And this would not be affected by the supernatant of the ovarian carcinoma cell line.
Collapse
Affiliation(s)
- Xue-Qian Qian
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Li Chen
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Cheng
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Tian
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79#, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Feng Luo
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yun Wan
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China. .,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
72
|
Flies DB, Higuchi T, Harris JC, Jha V, Gimotty PA, Adams SF. Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer. Oncoimmunology 2016; 5:e1185583. [PMID: 27622059 DOI: 10.1080/2162402x.2016.1185583] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022] Open
Abstract
Although immune infiltrates in ovarian cancer are associated with improved survival, the ovarian tumor environment has been characterized as immunosuppressive, due in part to functional shifts among dendritic cells with disease progression. We hypothesized that flux in dendritic cell subpopulations with cancer progression were responsible for observed differences in antitumor immune responses in early and late-stage disease. Here we identify three dendritic cell subsets with disparate functions in the ovarian tumor environment. CD11c+CD11b(-)CD103(+) dendritic cells are absent in the peritoneal cavity of healthy mice but comprise up to 40% of dendritic cells in tumor-bearing mice and retain T cell stimulatory capacity in advanced disease. Among CD11c+CD11b+ cells, Lair-1 expression distinguishes stimulatory and immunoregulatory DC subsets, which are also enriched in the tumor environment. Notably, PD-L1 is expressed by Lair-1(hi) immunoregulatory dendritic cells, and may contribute to local tumor antigen-specific T cell dysfunction. Using an adoptive transfer model, we find that PD-1 blockade enables tumor-associated CD103(+) dendritic cells to promote disease clearance. These data demonstrate that antitumor immune capacity is maintained among local dendritic cell subpopulations in the tumor environment with cancer progression. Similar dendritic cell subsets are present in malignant ascites from women with ovarian cancer, supporting the translational relevance of these results.
Collapse
Affiliation(s)
- Dallas B Flies
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Tomoe Higuchi
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Jaryse C Harris
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Vibha Jha
- Ovarian Cancer Research Center, The University of Pennsylvania , Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, The University of Pennsylvania , Philadelphia, PA, USA
| | - Sarah F Adams
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
73
|
Liu H, Zhang G, Huang J, Ma S, Mi K, Cheng J, Zhu Y, Zha X, Huang W. Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-κB signaling in vitro. J Transl Med 2016; 14:104. [PMID: 27118139 PMCID: PMC4847224 DOI: 10.1186/s12967-016-0845-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/30/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND TLR4/MD-2 complex-mediated MyD88-dependent activation of NF-κB and Akt promotes tumor-associated immunosuppression in epithelial ovarian cancer (EOC) via induction of immunesuppressive cytokines and indoleamine 2,3-dioxygenase (IDO). Atractylenolide I (AO-1) is a naturally occurring sesquiterpene lactone known to change the conformational ensemble of human MD-2 on EOC cells. This study examined the modulation by AO-1 of TLR4/MD-2 complex-mediated MyD88/NF-κB signaling. METHODS The expression and activation of NF-κB, Akt and IDO1 by MyD88(+) EOC SKOV3 cells was determined using western blot; the TLR4/MD-2 complex on SKOV3 cells and the phenotype of T lymphocytes were determined using flow cytometry; IDO activity was evaluated by measuring L-kynurenine; Immunesuppressive cytokines were detected using ELISA; T-cell proliferation to mitogen stimulation was assessed by MTT assay; the cytotoxicity of lymphocytes and NK cells was measured using LDH-cytotoxicity assay. RESULTS AO-1 could down-regulate expression of TLR4/MD-2 complex, resulting in downregulation of MyD88/NF-κB signaling and activation of NF-κB, Akt and IDO1 and secretion of IL-6, TGF-β1, VEGF and IL-17A by EOC SKOV3 cells, and further reduce increased levels of regulatory T cells (Treg cells) and improve decreased proliferative response and antitumor cytotoxicity of T lymphocytes exposed to EOC SKOV3 cell supernatant. CONCLUSION AO-1 may reverse EOC cell-mediated immunosuppression through blocking TLR4/MD-2 complex-mediated MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- Hong Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3 of South People's Road, Chengdu, 610041, China.,Department of Gynecologic Oncology, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Jianming Huang
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Shiqi Ma
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Kun Mi
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Jia Cheng
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Yi Zhu
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China.,Department of Ultrasound, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Xiao Zha
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3 of South People's Road, Chengdu, 610041, China.
| |
Collapse
|
74
|
Gasparri ML, Attar R, Palaia I, Perniola G, Marchetti C, Di Donato V, Farooqi AA, Papadia A, Panici PB. Tumor infiltrating lymphocytes in ovarian cancer. Asian Pac J Cancer Prev 2016; 16:3635-8. [PMID: 25987014 DOI: 10.7314/apjcp.2015.16.9.3635] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- Department of Gynecologic-Obstetrical and Urologic Sciences, "Sapienza" University of Rome, Italy E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Coosemans A, Decoene J, Baert T, Laenen A, Kasran A, Verschuere T, Seys S, Vergote I. Immunosuppressive parameters in serum of ovarian cancer patients change during the disease course. Oncoimmunology 2015; 5:e1111505. [PMID: 27141394 DOI: 10.1080/2162402x.2015.1111505] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 12/30/2022] Open
Abstract
Neoplastic cells can escape immune control leading to cancer growth. Regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) are crucial in immune escape. TAM are divided based on their immune profile, M1 are immunostimulatory while M2 are immunosuppressive. Research so far has mainly focused on the intratumoral behavior of these cells. This study, on the other hand, explored the systemic changes of the key metabolites [IL-4 (interleukin), IL-13, arginase, IL-10, VEGF-A (vascular endothelial growth factor), CCL-2 (chemokine (C-C) motif ligand 2) and TGF-β (transforming growth factor)] linked to Treg, MDSC and TAM during the course of the disease in ovarian and fallopian tube cancer patients. Serum samples were therefore analyzed at diagnosis, after (interval)-debulking surgery and after chemotherapy (paclitaxel-carboplatin). We also determined galectin-1 (gal-1), involved in angiogenesis and tumor-mediated immune evasion. We found significantly lower levels of IL-10, VEGF-A, TGF-β and arginase and higher levels of gal-1 after chemotherapy compared to diagnosis. After debulking surgery, a decrease in IL-10 was significant. Gal-1 and CCL-2 appeared independent prognostic factors for progression-free and overall survival (OS) (multivariate analysis). These results will help us in the decision making of future therapies in order to further modulate the immune system in a positive way.
Collapse
Affiliation(s)
- An Coosemans
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Judit Decoene
- Department of Gynecology and Obstetrics, UZ Leuven , Leuven, Belgium
| | - Thaïs Baert
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Annouschka Laenen
- Biostatistics and Statistical Bioinformatics Center of Leuven, KU Leuven , Leuven, Belgium
| | - Ahmad Kasran
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven , Leuven, Belgium
| | - Tina Verschuere
- Department of Neuroscience, Laboratory of Experimental Neurosurgery, KU Leuven , Leuven, Belgium
| | - Sven Seys
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven , Leuven, Belgium
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
76
|
Gharwan H, Bunch KP, Annunziata CM. The role of reproductive hormones in epithelial ovarian carcinogenesis. Endocr Relat Cancer 2015; 22:R339-63. [PMID: 26373571 DOI: 10.1530/erc-14-0550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
Epithelial ovarian cancer comprises ∼85% of all ovarian cancer cases. Despite acceptance regarding the influence of reproductive hormones on ovarian cancer risk and considerable advances in the understanding of epithelial ovarian carcinogenesis on a molecular level, complete understanding of the biologic processes underlying malignant transformation of ovarian surface epithelium is lacking. Various hypotheses have been proposed over the past several decades to explain the etiology of the disease. The role of reproductive hormones in epithelial ovarian carcinogenesis remains a key topic of research. Primary questions in the field of ovarian cancer biology center on its developmental cell of origin, the positive and negative effects of each class of hormones on ovarian cancer initiation and progression, and the role of the immune system in the ovarian cancer microenvironment. The development of the female reproductive tract is dictated by the hormonal milieu during embryogenesis. Intensive research efforts have revealed that ovarian cancer is a heterogenous disease that may develop from multiple extra-ovarian tissues, including both Müllerian (fallopian tubes, endometrium) and non-Müllerian structures (gastrointestinal tissue), contributing to its heterogeneity and distinct histologic subtypes. The mechanism underlying ovarian localization, however, remains unclear. Here, we discuss the role of reproductive hormones in influencing the immune system and tipping the balance against or in favor of developing ovarian cancer. We comment on animal models that are critical for experimentally validating existing hypotheses in key areas of endocrine research and useful for preclinical drug development. Finally, we address emerging therapeutic trends directed against ovarian cancer.
Collapse
Affiliation(s)
- Helen Gharwan
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kristen P Bunch
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christina M Annunziata
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
77
|
Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol 2015; 37:5455-66. [PMID: 26563374 DOI: 10.1007/s13277-015-4313-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022] Open
Abstract
Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.
Collapse
|
78
|
Zhang S, Ke X, Zeng S, Wu M, Lou J, Wu L, Huang P, Huang L, Wang F, Pan S. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol 2015; 12:580-91. [PMID: 26166762 PMCID: PMC4579658 DOI: 10.1038/cmi.2015.57] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 01/02/2023] Open
Abstract
Regulatory T (Treg) cells may participate in mediating a suppressive microenvironment that blunts successful anti-tumor immunotherapy. Recent studies show that CD8+ Treg cells might impede effective immune responses to established tumors. However, there is limited research regarding CD8+ Treg cells in ovarian cancer (OC) patients. Here, we investigated CD8+ Treg cells in OC patients and their in vitro induction. The immunohistochemistry of tumor-infiltrating lymphocytes revealed a significant correlation between the intratumoral CD8+ T cells and the forkhead box p3 (Foxp3)+ cells in the intraepithelial and stromal areas of advanced OC tissues. We examined the expression of Treg markers in CD8+ T cells from the peripheral blood and fresh tumor tissues of OC patients using flow cytometry. Our results indicated an increase in the CD8+ Treg cell subsets of OC patients compared with those in patients with benign ovarian tumors and healthy controls, including an increased expression of CD25, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and Foxp3 and decreased CD28 expression. To demonstrate whether the tumor microenvironment could convert CD8+ effector T cells into suppressor cells, we used an in vitro transwell culturing system. Compared with the CD8+ T cells cultured alone, the CD8+ Treg cells induced in vitro by coculture with SK-OV-3/A2780 showed increased CTLA-4 and Foxp3 expression and decreased CD28 expression. In addition, the in vitro-induced CD8+ Treg cells inhibited naïve CD4+ T-cell proliferation, which was partially mediated through TGF-β1 and IFN-γ. Our study suggests that CD8+ Treg cells were increased in OC patients and could be induced in vitro, which may be the way that tumors limit antitumor immunity and evade immune surveillance.
Collapse
Affiliation(s)
- Shuping Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Xing Ke
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Suyun Zeng
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Obstetrics and Gynecology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Meng Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jianfang Lou
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Lei Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Peijun Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
79
|
Zhang WW, Liu KJ, Hu GL, Liang WJ. Preoperative platelet/lymphocyte ratio is a superior prognostic factor compared to other systemic inflammatory response markers in ovarian cancer patients. Tumour Biol 2015; 36:8831-7. [DOI: 10.1007/s13277-015-3533-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023] Open
|
80
|
Abstract
The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment.
Collapse
Affiliation(s)
- Phillip P Santoiemma
- a Ovarian Cancer Research Center ; Department of Obstetrics and Gynecology ; Perelman School of Medicine; University of Pennsylvania ; Philadelphia , PA USA
| | | |
Collapse
|
81
|
Santoiemma PP, Powell DJ. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol Ther 2015. [PMID: 25894333 DOI: 10.1080/15384047.2015.1040960]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment.
Collapse
Affiliation(s)
- Phillip P Santoiemma
- a Ovarian Cancer Research Center ; Department of Obstetrics and Gynecology ; Perelman School of Medicine; University of Pennsylvania ; Philadelphia , PA USA
| | | |
Collapse
|
82
|
Abstract
The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment.
Collapse
Affiliation(s)
- Phillip P Santoiemma
- a Ovarian Cancer Research Center ; Department of Obstetrics and Gynecology ; Perelman School of Medicine; University of Pennsylvania ; Philadelphia , PA USA
| | | |
Collapse
|
83
|
JAMMAL MILLENAPRATA, DA SILVA ALLISONARAÚJO, FILHO AGRIMALDOMARTINS, DE CASTRO CÔBO ELIÂNGELA, ADAD SHEILAJORGE, MURTA EDDIEFERNANDOCANDIDO, NOMELINI ROSEKEILASIMÕES. Immunohistochemical staining of tumor necrosis factor-α and interleukin-10 in benign and malignant ovarian neoplasms. Oncol Lett 2015; 9:979-983. [PMID: 25624918 PMCID: PMC4301559 DOI: 10.3892/ol.2014.2781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/21/2014] [Indexed: 01/29/2023] Open
Abstract
Ovarian cancer is the ninth most common malignancy and the fifth leading cause of cancer death in women in the USA. The majority of malignant tumors of the ovary are diagnosed at an advanced stage, making it the most fatal gynecological cancer. The aim of the current study was to determine whether there are differences in immunohistochemical tissue staining of cytokine tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) between benign tumors and malignant primary ovarian cancer. In total, 28 patients undergoing surgery for ovarian cysts were evaluated, and a diagnosis of benign neoplasm (n=14) or malignant neoplasm (n=14) was determined. An immunohistochemical study of histological sections of ovarian tumors was conducted. The results were analyzed using Fisher's exact test, with P<0.05 indicating a statistically significant difference. Immunohistochemical staining of IL-10 was increased in malignant tumors compared with benign tumors (P=0.0128). For TNF-α, the immunohistochemical staining was more intense in malignant neoplasms, however, a statistically significant difference was not observed. These results indicate that the analysis of cytokines may be useful as a potential tissue marker of ovarian malignancy.
Collapse
Affiliation(s)
- MILLENA PRATA JAMMAL
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro (UFTM), 38025-440 Uberaba, MG, Brazil
| | - ALLISON ARAÚJO DA SILVA
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro (UFTM), 38025-440 Uberaba, MG, Brazil
| | - AGRIMALDO MARTINS FILHO
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro (UFTM), 38025-440 Uberaba, MG, Brazil
| | - ELIÂNGELA DE CASTRO CÔBO
- Department of Special Pathology, Federal University of Triângulo Mineiro (UFTM), 38025-440 Uberaba, MG, Brazil
| | - SHEILA JORGE ADAD
- Department of Special Pathology, Federal University of Triângulo Mineiro (UFTM), 38025-440 Uberaba, MG, Brazil
| | - EDDIE FERNANDO CANDIDO MURTA
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro (UFTM), 38025-440 Uberaba, MG, Brazil
| | - ROSEKEILA SIMÕES NOMELINI
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro (UFTM), 38025-440 Uberaba, MG, Brazil
| |
Collapse
|
84
|
Russell S, Duquette M, Liu J, Drapkin R, Lawler J, Petrik J. Combined therapy with thrombospondin-1 type I repeats (3TSR) and chemotherapy induces regression and significantly improves survival in a preclinical model of advanced stage epithelial ovarian cancer. FASEB J 2015; 29:576-88. [PMID: 25395453 PMCID: PMC4314231 DOI: 10.1096/fj.14-261636] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 01/15/2023]
Abstract
Most women are diagnosed with epithelial ovarian cancer (EOC) at advanced stage, where therapies have limited effectiveness and the long-term survival rate is low. We evaluated the effects of combined antiangiogenic and chemotherapy treatments on advanced stage EOC. Treatment of EOC cells with a recombinant version of the thrombospondin-1 type I repeats (3TSR) induced more apoptotic cell death (36.5 ± 9.6%) in vitro compared to untreated controls (4.1 ± 1.4). In vivo, tumors were induced in an orthotopic, syngeneic mouse model of advanced stage EOC. Mice were treated with 3TSR (4 mg/kg per day) alone or in combination with chemotherapy drugs delivered with maximum tolerated dose or metronomic scheduling. Pretreatment with 3TSR induced tumor regression, normalized tumor vasculature, and improved uptake of chemotherapy drugs. Combination 3TSR and metronomic chemotherapy induced the greatest tumor regression (6.2-fold reduction in size compared to PBS-treated controls) and highest survival when treatment was initiated at advanced stage. 3TSR binding to its receptor, CD36 (cluster of differentiation 36), increased binding of CD36 and SHP-1, which significantly inhibited phosphorylation of the VEGF receptor. In this study, we describe a novel treatment approach and mechanism of action with 3TSR and chemotherapy that induces regression of advanced stage EOC and significantly improves survival.-Russell, S., Duquette, M., Liu, J., Drapkin, R., Lawler, J., Petrik, J. Combined therapy with thrombospondin-1 type I repeats (3TSR) and chemotherapy induces regression and significantly improves survival in a preclinical model of advanced stage epithelial ovarian cancer.
Collapse
Affiliation(s)
- Samantha Russell
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | | | - Joyce Liu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronny Drapkin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
85
|
Chard LS, Maniati E, Wang P, Zhang Z, Gao D, Wang J, Cao F, Ahmed J, El Khouri M, Hughes J, Wang S, Li X, Denes B, Fodor I, Hagemann T, Lemoine NR, Wang Y. A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer. Clin Cancer Res 2014; 21:405-16. [PMID: 25416195 DOI: 10.1158/1078-0432.ccr-14-0464] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Vaccinia virus has strong potential as a novel therapeutic agent for treatment of pancreatic cancer. We investigated whether arming vaccinia virus with interleukin-10 (IL10) could enhance the antitumor efficacy with the view that IL10 might dampen the host immunity to the virus, increasing viral persistence, thus maximizing the oncolytic effect and antitumor immunity associated with vaccinia virus. EXPERIMENTAL DESIGN The antitumor efficacy of IL10-armed vaccinia virus (VVLΔTK-IL10) and control VVΔTK was assessed in pancreatic cancer cell lines, mice bearing subcutaneous pancreatic cancer tumors and a pancreatic cancer transgenic mouse model. Viral persistence within the tumors was examined and immune depletion experiments as well as immunophenotyping of splenocytes were carried out to dissect the functional mechanisms associated with the viral efficacy. RESULTS Compared with unarmed VVLΔTK, VVLΔTK-IL10 had a similar level of cytotoxicity and replication in vitro in murine pancreatic cancer cell lines, but rendered a superior antitumor efficacy in the subcutaneous pancreatic cancer model and a K-ras-p53 mutant-transgenic pancreatic cancer model after systemic delivery, with induction of long-term antitumor immunity. The antitumor efficacy of VVLΔTK-IL10 was dependent on CD4(+) and CD8(+), but not NK cells. Clearance of VVLΔTK-IL10 was reduced at early time points compared with the control virus. Treatment with VVLΔTK-IL10 resulted in a reduction in virus-specific, but not tumor-specific CD8(+) cells compared with VVLΔTK. CONCLUSIONS These results suggest that VVLΔTK-IL10 has strong potential as an antitumor therapeutic for pancreatic cancer.
Collapse
Affiliation(s)
- Louisa S Chard
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Eleni Maniati
- Center for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Dongling Gao
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Jiwei Wang
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Fengyu Cao
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Jahangir Ahmed
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Margueritte El Khouri
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Hughes
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bela Denes
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Istvan Fodor
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Thorsten Hagemann
- Center for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R Lemoine
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China.
| | - Yaohe Wang
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
86
|
Vasaturo A, Verdoes M, de Vries J, Torensma R, Figdor CG. Restoring immunosurveillance by dendritic cell vaccines and manipulation of the tumor microenvironment. Immunobiology 2014; 220:243-8. [PMID: 25466585 DOI: 10.1016/j.imbio.2014.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve from normal cells throughout life and are usually recognized by our immune system and destroyed, a process called immunosurveillance. Unfortunately, in some instances cancer cells paralyze our immune system, resulting in outgrowth and spreading of the tumor. Understanding the complexity of immunomodulation by tumors is important for the development of therapeutical strategies. Nowadays, various approaches have been developed to enhance anti-tumor immune responses and abrogate the immune dampening effect of the tumor and its surrounding environment, including dendritic cell-based vaccines, therapies to counteract myeloid derived suppressor cell function within the tumor and antagonists of inhibitory signaling pathways to overcome 'immune checkpoints'. The challenge is now to find the right combination of immune based therapies to fully restore immune function and provide a more efficacious and enduring anti-tumor response.
Collapse
Affiliation(s)
- Angela Vasaturo
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Jolanda de Vries
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Ruurd Torensma
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Carl G Figdor
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
87
|
Vallen MJ, van der Steen SC, van Tilborg AA, Massuger LF, van Kuppevelt TH. Sulfated sugars in the extracellular matrix orchestrate ovarian cancer development: ‘When sweet turns sour’. Gynecol Oncol 2014; 135:371-81. [DOI: 10.1016/j.ygyno.2014.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 01/14/2023]
|
88
|
Zhang A, Zheng Y, Que Z, Zhang L, Lin S, Le V, Liu J, Tian J. Astragaloside IV inhibits progression of lung cancer by mediating immune function of Tregs and CTLs by interfering with IDO. J Cancer Res Clin Oncol 2014; 140:1883-90. [PMID: 24980548 DOI: 10.1007/s00432-014-1744-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/10/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE Tumor cells have developed multiple mechanisms to escape immune recognition mediated by T cells. Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing enzyme inducing immune tolerance, is involved in tumor escape from host immune systems in mice. Astragaloside IV (AS-IV), an extract from a commonly used Chinese medicinal plant Astragalus membranaceus, has been shown to be capable of restoring the impaired T-cell functions in cancer patients. The purpose of this study was to investigate the mechanisms underlying the anticancer properties of AS-IV. METHODS Here, we used IDO-overexpressed murine Lewis lung carcinoma cells to establish an orthotopic lung cancer model in C57BL/6 mice. Next, tumor growth was evaluated in several different treatment groups: control (saline), AS-IV, paclitaxel, and 1-methyl tryptophan (an inhibitor of IDO). We then analyzed the percentages of various immune cell subsets among the splenic lymphocytes of lung cancer mice by flow cytometry. The level of IDO was measured by real-time PCR and Western blot. RESULTS We showed that the growth of tumor was suppressed by AS-IV treatment in vivo. AS-IV also could down-regulate regulatory T cells (Tregs) and up-regulate cytotoxic T lymphocytes (CTLs) in vivo and in vitro. Consistent with its ability to interfere with T-cell immunity, AS-IV blocked IDO induction both in vitro and in vivo. CONCLUSIONS The results of these studies indicate that AS-IV has in vivo anticancer activity and can enhance the immune response by inhibiting the Tregs frequency and induce the activity of CTLs, which might be related to the inhibition of IDO expression.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/enzymology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Cell Line, Tumor
- Coculture Techniques
- Disease Progression
- Drug Screening Assays, Antitumor
- Female
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Mice, Inbred C57BL
- Neoplasm Transplantation
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Saponins/pharmacology
- Saponins/therapeutic use
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Triterpenes/pharmacology
- Triterpenes/therapeutic use
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
- Tryptophan/therapeutic use
- Tumor Burden/drug effects
- Tumor Escape/drug effects
Collapse
Affiliation(s)
- Anle Zhang
- Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Tanizaki Y, Kobayashi A, Toujima S, Shiro M, Mizoguchi M, Mabuchi Y, Yagi S, Minami S, Takikawa O, Ino K. Indoleamine 2,3-dioxygenase promotes peritoneal metastasis of ovarian cancer by inducing an immunosuppressive environment. Cancer Sci 2014; 105:966-73. [PMID: 24826982 PMCID: PMC4317851 DOI: 10.1111/cas.12445] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 12/21/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that has immunoregulatory functions. Our prior study showed that tumoral IDO overexpression is involved in disease progression and impaired patient survival in human ovarian cancer, although its mechanism remains unclear. The purpose of the present study is to clarify the role of IDO during the process of peritoneal dissemination of ovarian cancer. Indoleamine 2,3-dioxygenase cDNA was transfected into the murine ovarian carcinoma cell line OV2944-HM-1, establishing stable clones of IDO-overexpressing cells (HM-1-IDO). Then HM-1-IDO or control vector-transfected cells (HM-1-mock) were i.p. transplanted into syngeneic immunocompetent mice. The HM-1-IDO-transplanted mice showed significantly shortened survival compared with HM-1-mock-transplanted (control) mice. On days 11 and 14 following transplantation, the tumor weight of peritoneal dissemination and ascites volume were significantly increased in HM-1-IDO-transplanted mice compared with those of control mice. This tumor-progressive effect was coincident with significantly reduced numbers of CD8+ T cells and natural killer cells within tumors as well as increased levels of transforming growth factor-β and interleukin-10 in ascites. Finally, treatment with the IDO inhibitor 1-methyl-tryptophan significantly suppressed tumor dissemination and ascites with reduced transforming growth factor-β secretion. These findings showed that tumor-derived IDO promotes the peritoneal dissemination of ovarian cancer through suppression of tumor-infiltrating effector T cell and natural killer cell recruitment and reciprocal enhancement of immunosuppressive cytokines in ascites, creating an immunotolerogenic environment within the peritoneal cavity. Therefore, IDO may be a promising molecular target for the therapeutic strategy of ovarian cancer.
Collapse
Affiliation(s)
- Yuko Tanizaki
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Ovarian cancer is the most lethal malignancy of the female reproductive system and the fifth leading cause of cancer death in women. In the year 2012 alone, United States had 22,280 new ovarian cancer cases and 15,500 deaths were reported. About 7%-10% of ovarian cancers result from an inherited tendency to develop the disease. Ovarian cancer has the ability to escape the immune system because of its pathological interactions between cancer cells and host immune cells in the tumor microenvironment create an immunosuppressive network that promotes tumor growth, protects the tumor from immune system. The levels of immune suppressive elements like regulatory T cells, plasmacytoid dendritic cells and cytokines such as IL-10, IL-6, TNF-α, and TGF-β are elevated in the tumor microenvironment. Vascular endothelial growth factor is known to have an immune suppressing role besides its angiogenic role in the tumor microenvironment. Ovarian cancer is associated with high mortality partly due to difficulties in early diagnosis and development of metastases. These problems may overcome by developing accurate mouse models that should mimic the complexity of human ovarian cancer. Such animal models are better suited to understand pathophysiology, metastases, and also for preclinical testing of targeted molecular therapeutics. Immunotherapy is an area of active investigation and off late many clinical trials is ongoing to prevent disease progression. The main aim of dendritic cells vaccination is to stimulate tumor specific effector T cells that can reduce tumor size and induce immunological memory to prevent tumor relapse.
Collapse
Affiliation(s)
- T Sree Latha
- 1Department of Genetics & Genomics, Yogi Vemana University, Kadapa, India
| | | | | | | | | |
Collapse
|
91
|
da Silva RF, Petta CA, Derchain SF, Alici E, Guimarães F. Up-regulation of DNAM-1 and NKp30, associated with improvement of NK cells activation after long-term culture of mononuclear cells from patients with ovarian neoplasia. Hum Immunol 2014; 75:777-84. [PMID: 24882570 DOI: 10.1016/j.humimm.2014.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/18/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
This study aimed at evaluating the functional activation and activating receptors expression on resting, short- and long-term NK and NK-like T cells from blood of ovarian neoplasia patients. Blood from patients with adnexal benign alterations (n = 10) and ovarian cancer (grade I-IV n = 14) were collected after signed consent. Effector cells activation was evaluated by the expression of the CD107a molecule. Short-term culture was conducted overnight with IL-2 and long-term culture for 21 days, by a method designed to expand CD56(+) lymphocytes. Short-term culture significantly increased NK cells activation compared to resting NK cells (p<0.05), however, the long-term procedure supported an even higher increase (p<0.001). Resting NK-like T cells showed poor activation, which was not altered by the culture procedures. The long-term culture effectively increased the expression of the activating receptors on NK and NK-like T cells, either by increasing the number of cells expressing a given receptor and/or by up-regulating their expression intensity. As a conclusion, the long-term culture system employed, resulted in a high number of functional NK cells. The culture system was particularly efficient on the up-regulation of NKp30 and DNAM-1 receptors on NK cells.
Collapse
Affiliation(s)
- Rodrigo Fernandes da Silva
- Hospital da Mulher Professor Doutor José Aristodemo Pinotti - Centro de Atenção Integral à Saúde da Mulher, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos Alberto Petta
- Hospital da Mulher Professor Doutor José Aristodemo Pinotti - Centro de Atenção Integral à Saúde da Mulher, University of Campinas (UNICAMP), Campinas, Brazil; Departamento de Tocoginecologia, Faculdade de Ciências Médicas, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sophie Françoise Derchain
- Hospital da Mulher Professor Doutor José Aristodemo Pinotti - Centro de Atenção Integral à Saúde da Mulher, University of Campinas (UNICAMP), Campinas, Brazil; Departamento de Tocoginecologia, Faculdade de Ciências Médicas, University of Campinas (UNICAMP), Campinas, Brazil
| | - Evren Alici
- Cell and Gene Therapy, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Fernando Guimarães
- Hospital da Mulher Professor Doutor José Aristodemo Pinotti - Centro de Atenção Integral à Saúde da Mulher, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
92
|
Charbonneau B, Moysich KB, Kalli KR, Oberg AL, Vierkant RA, Fogarty ZC, Block MS, Maurer MJ, Goergen KM, Fridley BL, Cunningham JM, Rider DN, Preston C, Hartmann LC, Lawrenson K, Wang C, Tyrer J, Song H, deFazio A, Johnatty SE, Doherty JA, Phelan CM, Sellers TA, Ramirez SM, Vitonis AF, Terry KL, Van Den Berg D, Pike MC, Wu AH, Berchuck A, Gentry-Maharaj A, Ramus SJ, Diergaarde B, Shen H, Jensen A, Menkiszak J, Cybulski C, Lubiński J, Ziogas A, Rothstein JH, McGuire V, Sieh W, Lester J, Walsh C, Vergote I, Lambrechts S, Despierre E, Garcia-Closas M, Yang H, Brinton LA, Spiewankiewicz B, Rzepecka IK, Dansonka-Mieszkowska A, Seibold P, Rudolph A, Paddock LE, Orlow I, Lundvall L, Olson SH, Hogdall CK, Schwaab I, du Bois A, Harter P, Flanagan JM, Brown R, Paul J, Ekici AB, Beckmann MW, Hein A, Eccles D, Lurie G, Hays LE, Bean YT, Pejovic T, Goodman MT, Campbell I, Fasching PA, Konecny G, Kaye SB, Heitz F, Hogdall E, Bandera EV, Chang-Claude J, Kupryjanczyk J, Wentzensen N, Lambrechts D, Karlan BY, Whittemore AS, Culver HA, Gronwald J, Levine DA, Kjaer SK, Menon U, Schildkraut JM, Pearce CL, Cramer DW, Rossing MA, Chenevix-Trench G, Pharoah PD, Gayther SA, et alCharbonneau B, Moysich KB, Kalli KR, Oberg AL, Vierkant RA, Fogarty ZC, Block MS, Maurer MJ, Goergen KM, Fridley BL, Cunningham JM, Rider DN, Preston C, Hartmann LC, Lawrenson K, Wang C, Tyrer J, Song H, deFazio A, Johnatty SE, Doherty JA, Phelan CM, Sellers TA, Ramirez SM, Vitonis AF, Terry KL, Van Den Berg D, Pike MC, Wu AH, Berchuck A, Gentry-Maharaj A, Ramus SJ, Diergaarde B, Shen H, Jensen A, Menkiszak J, Cybulski C, Lubiński J, Ziogas A, Rothstein JH, McGuire V, Sieh W, Lester J, Walsh C, Vergote I, Lambrechts S, Despierre E, Garcia-Closas M, Yang H, Brinton LA, Spiewankiewicz B, Rzepecka IK, Dansonka-Mieszkowska A, Seibold P, Rudolph A, Paddock LE, Orlow I, Lundvall L, Olson SH, Hogdall CK, Schwaab I, du Bois A, Harter P, Flanagan JM, Brown R, Paul J, Ekici AB, Beckmann MW, Hein A, Eccles D, Lurie G, Hays LE, Bean YT, Pejovic T, Goodman MT, Campbell I, Fasching PA, Konecny G, Kaye SB, Heitz F, Hogdall E, Bandera EV, Chang-Claude J, Kupryjanczyk J, Wentzensen N, Lambrechts D, Karlan BY, Whittemore AS, Culver HA, Gronwald J, Levine DA, Kjaer SK, Menon U, Schildkraut JM, Pearce CL, Cramer DW, Rossing MA, Chenevix-Trench G, Pharoah PD, Gayther SA, Ness RB, Odunsi K, Sucheston LE, Knutson KL, Goode EL. Large-scale evaluation of common variation in regulatory T cell-related genes and ovarian cancer outcome. Cancer Immunol Res 2014; 2:332-40. [PMID: 24764580 PMCID: PMC4000890 DOI: 10.1158/2326-6066.cir-13-0136] [Show More Authors] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The presence of regulatory T cells (Treg) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag single-nucleotide polymorphisms (SNP) in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in 10,084 women with invasive epithelial ovarian cancer, including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous carcinoma cases of European descent across 28 studies from the Ovarian Cancer Association Consortium (OCAC). The strongest associations were found for endometrioid carcinoma and IL2RA SNPs rs11256497 [HR, 1.42; 95% confidence interval (CI), 1.22-1.64; P = 5.7 × 10(-6)], rs791587 (HR, 1.36; 95% CI, 1.17-1.57; P = 6.2 × 10(-5)), rs2476491 (HR, = 1.40; 95% CI, 1.19-1.64; P = 5.6 × 10(-5)), and rs10795763 (HR, 1.35; 95% CI, 1.17-1.57; P = 7.9 × 10(-5)), and for clear cell carcinoma and CTLA4 SNP rs231775 (HR, 0.67; 95% CI, 0.54-0.82; P = 9.3 × 10(-5)) after adjustment for age, study site, population stratification, stage, grade, and oral contraceptive use. The rs231775 allele associated with improved survival in our study also results in an amino acid change in CTLA4 and previously has been reported to be associated with autoimmune conditions. Thus, we found evidence that SNPs in genes related to Tregs seem to play a role in ovarian cancer survival, particularly in patients with clear cell and endometrioid epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bridget Charbonneau
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Ann L. Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert A. Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Zachary C. Fogarty
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew J. Maurer
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Krista M. Goergen
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - David N. Rider
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | - Lynn C. Hartmann
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Chen Wang
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Tyrer
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Honglin Song
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Anna deFazio
- Department of Gynaecological Oncology, Westmead Hospital and Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, Australia
| | - Sharon E. Johnatty
- Cancer Division, Queensland Institute of Medical Research, Herston, QLD, Australia
| | - Jennifer A. Doherty
- Section of Biostatistics and Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Catherine M. Phelan
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Thomas A. Sellers
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Starr M. Ramirez
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Allison F. Vitonis
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn L. Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Aleksandra Gentry-Maharaj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Susan J. Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Brenda Diergaarde
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard Shen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Allan Jensen
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Janusz Menkiszak
- Department of Surgical Gynecology and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Argyrios Ziogas
- Department of Epidemiology, Center for Cancer Genetics Research and Prevention, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Joseph H. Rothstein
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Valerie McGuire
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Weiva Sieh
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christine Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - Evelyn Despierre
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK and Breakthrough Breast Cancer Research Centre, London, UK
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Beata Spiewankiewicz
- Department of Gynecologic Oncology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Iwona K. Rzepecka
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | - Petra Seibold
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Anja Rudolph
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | | | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Lene Lundvall
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Claus K. Hogdall
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ira Schwaab
- Institut für Humangenetik Wiesbaden, Wiesbaden, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/ Knappschaft GmbH, Essen, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/ Knappschaft GmbH, Essen, Germany
| | - James M. Flanagan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Robert Brown
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - James Paul
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W. Beckmann
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center, Erlangen, Germany
| | - Alexander Hein
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center, Erlangen, Germany
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, University Hospital Southampton, UK
| | - Galina Lurie
- Cancer Epidemiology Program, University of Hawaii Cancer Center, HI, USA
| | - Laura E. Hays
- Department of Hematology and Oncology and the Knight Cancer Institute, Portland, OR, USA
| | - Yukie T. Bean
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Marc T. Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ian Campbell
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter A. Fasching
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, SA
| | - Gottfried Konecny
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, SA
| | - Stanley B. Kaye
- Division of Clinical Studies, The Institute of Cancer Research and the Royal Marsden Hospital, Sutton, UK
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/ Knappschaft GmbH, Essen, Germany
| | - Estrid Hogdall
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Elisa V. Bandera
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jolanta Kupryjanczyk
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Beth Y. Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice S. Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hoda Anton Culver
- Department of Epidemiology, Center for Cancer Genetics Research and Prevention, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Douglas A. Levine
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Susanne K. Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Joellen M. Schildkraut
- Cancer Prevention, Detection and Control Research Program, Duke Cancer Institute, Durham, NC, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Celeste Leigh Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - for AOCS group
- Department of Gynaecological Oncology, Westmead Hospital and Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, Australia
- Cancer Division, Queensland Institute of Medical Research, Herston, QLD, Australia
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - ACS
- Cancer Division, Queensland Institute of Medical Research, Herston, QLD, Australia
| | - Paul D.P. Pharoah
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simon A. Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Roberta B. Ness
- The University of Texas School of Public Health, Houston, TX, USA
| | - Kunle Odunsi
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lara E. Sucheston
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- The Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | - Ellen L. Goode
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
93
|
Yellapa A, Bitterman P, Sharma S, Guirguis AS, Bahr JM, Basu S, Abramowicz JS, Barua A. Interleukin 16 expression changes in association with ovarian malignant transformation. Am J Obstet Gynecol 2014; 210:272.e1-10. [PMID: 24380743 DOI: 10.1016/j.ajog.2013.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/24/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Long-term unresolved inflammation has been suggested as a risk factor for the development of various malignancies. The goal of this study was to examine whether the expression of interleukin (IL)-16, a proinflammatory cytokine, changes in association with ovarian cancer (OVCA) development. STUDY DESIGN In an exploratory study, changes in IL-16 expression in association with OVCA development and progression were determined using ovarian tissues and serum samples from healthy subjects (n = 10) and patients with benign (n = 10) and malignant ovarian tumors at early (n = 8) and late (n = 20) stages. In the prospective study, laying hens, a preclinical model of spontaneous OVCA, were monitored (n = 200) for 45 weeks with serum samples collected at 15-week interval. Changes in serum levels of IL-16 relative to OVCA development were examined. RESULTS The frequency of IL-16-expressing cells increased significantly in patients with OVCA (P < .001) compared to healthy subjects and patients with benign ovarian tumors. The concentration of serum IL-16 was higher in patients with benign tumors (P < .05) than in healthy subjects and increased further in patients with early-stage (P < .05) and late-stage (P < .03) OVCA. Increase in tissue expression and serum levels of IL-16 in patients with early and late stages of OVCA were positively correlated with the increase in ovarian tumor-associated microvessels. Prospective monitoring showed that serum levels of IL-16 increase significantly (P < .002) even before ovarian tumors become grossly detectable in hens. CONCLUSION This study showed that tissue expression and serum levels of IL-16 increase in association with malignant ovarian tumor development and progression.
Collapse
|
94
|
Chemokine receptors in epithelial ovarian cancer. Int J Mol Sci 2013; 15:361-76. [PMID: 24384839 PMCID: PMC3907814 DOI: 10.3390/ijms15010361] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 01/03/2023] Open
Abstract
Ovarian carcinoma is the deadliest gynecologic malignancy with very poor rate of survival, and it is characterized by the presence of vast incurable peritoneal metastasis. Studies of the role of chemokine receptors, a family of proteins belonging to the group of G protein-coupled receptors, in ovarian carcinoma strongly placed this family of membrane receptors as major regulators of progression of this malignancy. In this review, we will discuss the roles that chemokine-receptor interactions play to support angiogenesis, cell proliferation, migration, adhesion, invasion, metastasis, and immune evasion in progression of ovarian carcinoma. Data regarding the role that the chemokine receptors play in the disease progression accumulated insofar strongly suggest that this family of proteins could be good therapeutic targets against ovarian carcinoma.
Collapse
|
95
|
Cheng M, Zhi K, Gao X, He B, Li Y, Han J, Zhang Z, Wu Y. Activation of cellular immunity and marked inhibition of liver cancer in a mouse model following gene therapy and tumor expression of GM-SCF, IL-21, and Rae-1. Mol Cancer 2013; 12:166. [PMID: 24350772 PMCID: PMC3878360 DOI: 10.1186/1476-4598-12-166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/07/2013] [Indexed: 01/11/2023] Open
Abstract
Background Cancer is both a systemic and a genetic disease. The pathogenesis of cancer might be related to dampened immunity. Host immunity recognizes nascent malignant cells – a process referred to as immune surveillance. Augmenting immune surveillance and suppressing immune escape are crucial in tumor immunotherapy. Methods A recombinant plasmid capable of co-expressing granulocyte-macrophage colony- stimulating factor (GM-SCF), interleukin-21 (IL-21), and retinoic acid early transcription factor-1 (Rae-1) was constructed, and its effects determined in a mouse model of subcutaneous liver cancer. Serum specimens were assayed for IL-2 and INF-γ by ELISA. Liver cancer specimens were isolated for Rae-1 expression by RT-PCR and Western blot, and splenocytes were analyzed by flow cytometry. Results The recombinant plasmid inhibited the growth of liver cancer and prolonged survival of tumor-loaded mice. Activation of host immunity might have contributed to this effect by promoting increased numbers and cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) following expression of GM-SCF, IL-21, and Rae-1. By contrast, the frequency of regulatory T cells was decreased, Consequently, activated CTL and NK cells enhanced their secretion of INF-γ, which promoted cytotoxicity of NK cells and CTL. Moreover, active CTL showed dramatic secretion of IL-2, which stimulates CTL. The recombinant expression plasmid also augmented Rae-1 expression by liver cancer cells. Rae-1 receptor expressing CTL and NK cells removed liver cancer. Conclusions The recombinant expression plasmid inhibited liver cancer by a mechanism that involved activation of cell-mediated immunity and Rae-1 in liver cancer.
Collapse
Affiliation(s)
- Mingrong Cheng
- Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai 201318, China.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Macciò A, Madeddu C. The role of interleukin-6 in the evolution of ovarian cancer: clinical and prognostic implications--a review. J Mol Med (Berl) 2013; 91:1355-1368. [PMID: 24057813 DOI: 10.1007/s00109-013-1080-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022]
Abstract
An increasing number of studies emphasize the role of inflammation and metabolic changes in the induction of cancer-related symptoms, which can affect cancer evolution and prognosis. These changes result from the interactions between the tumor and the host. To date, however, markers of this peculiar condition, which can help clinicians to manage patients better, have still not been identified with certainty. Epithelial ovarian cancer (EOC) appears to be particularly appropriate to study these interactions because of its biological characteristics, its peculiar evolution, and the relevant scientific evidence available. Immunosuppression, anemia, depression, and weight loss affect the evolution of EOC and appear to be directly related to the immune-metabolic changes. In light of the aforementioned evidence, our review will focus on interleukin-6 (IL-6) and its role as potential marker of the patients' immune-metabolic status, to better monitor disease outcome and identify the most appropriate therapeutic strategy in EOC. Furthermore, leptin will be discussed as a sensor of the changes of energy metabolism induced by IL-6.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Gynecologic Oncology, "A. Businco" Hospital, Regional Referral Center for Cancer Disease, via Edward Jenner, 09121, Cagliari, Italy,
| | | |
Collapse
|
97
|
Barua A, Bradaric MJ, Bitterman P, Abramowicz JS, Sharma S, Basu S, Lopez H, Bahr JM. Dietary supplementation of Ashwagandha (Withania somnifera, Dunal) enhances NK cell function in ovarian tumors in the laying hen model of spontaneous ovarian cancer. Am J Reprod Immunol 2013; 70:538-50. [PMID: 24188693 DOI: 10.1111/aji.12172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/05/2013] [Indexed: 01/21/2023] Open
Abstract
PROBLEM Ovarian cancer (OVCA) disseminates in a distinct pattern through peritoneal metastasis and little is known about the immunosuppression in the tumor microenvironment. Our goal was to determine changes in NK cell population during OVCA development and the effects of Ashwagandha (Withania somnifera, Dunal) supplementation on NK cell localization in laying hens with OVCA. METHODS Frequency of NK cells in ovarian tumors at early and late stages in 3- to 4-year-old hens (exploratory study) as well as in hens supplemented with dietary Ashwagandha root powder for 90 days (prospective study) was examined. RESULTS The population of stromal NK cells but not the intratumoral NK cells increased with OVCA development and progression. Ashwagandha supplementation decreased the incidence and progression of OVCA. Both the stromal and intratumoral NK cell population increased significantly (P < 0.0001) in Ashwagandha supplementated hens. CONCLUSION The results of this study suggest that the population of stromal and tumorinfiltrating NK cells is increased by dietary Ashwagandha supplementation. Thus, Ashwagandha may enhance antitumor function of NK cells. This study may be useful for a clinical study to determine the effects of dietary Ashwagandha on NK cell immune function in patients with ovarian cancer.
Collapse
|
98
|
Di J, Duiveman-de Boer T, Figdor CG, Torensma R. Aiming to immune elimination of ovarian cancer stem cells. World J Stem Cells 2013; 5:149-162. [PMID: 24179603 PMCID: PMC3812519 DOI: 10.4252/wjsc.v5.i4.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/15/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer accounts for only 3% of all cancers in women, but it causes more deaths than any other gynecologic cancer. Treatment with chemotherapy and cytoreductive surgery shows a good response to the therapy. However, in a large proportion of the patients the tumor grows back within a few years. Cancer stem cells, that are less responsive to these treatments, are blamed for this recurrence of disease. Immune therapy either cellular or humoral is a novel concept to treat cancer. It is based on the notice that immune cells invade the tumor. However, the tumor invest heavily to escape from immune elimination by recruiting several immune suppressive mechanisms. These processes are normally in place to limit excessive immune activation and prevent autoimmune phenomena. Here, we discuss current knowledge about the immune (suppressive) status in ovarian cancer. Moreover, we discuss the immunological targets of ovarian cancer stem cells.
Collapse
|
99
|
Charbonneau B, Goode EL, Kalli KR, Knutson KL, Derycke MS. The immune system in the pathogenesis of ovarian cancer. Crit Rev Immunol 2013; 33:137-64. [PMID: 23582060 DOI: 10.1615/critrevimmunol.2013006813] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer. While several studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease, recent genetic and protein analyses also suggest a role in disease incidence. Recent studies also show that anti-tumor immunity is often negated by immune suppressive cells present in the tumor microenvironment. These suppressive immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, future research into immunotherapy targeting ovarian cancer will likely become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression or by disrupting critical cytokine networks.
Collapse
Affiliation(s)
- Bridget Charbonneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
100
|
Li YQ, Liu FF, Zhang XM, Guo XJ, Ren MJ, Fu L. Tumor secretion of CCL22 activates intratumoral Treg infiltration and is independent prognostic predictor of breast cancer. PLoS One 2013; 8:e76379. [PMID: 24124553 PMCID: PMC3790712 DOI: 10.1371/journal.pone.0076379] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/26/2013] [Indexed: 12/27/2022] Open
Abstract
It has been reported that dense intratumoral infiltration of Foxp3 +Tregs (Tregs) was an independent factor for poor prognosis of breast cancer (BC) patients. However, the cytokines activating the Treg infiltration are not known. This study was undertaken to evaluate the role of CCL22 and TGF-β1 in this cascade and their prognostic significance for BC patients. 417 cases of invasive breast cancer were selected from the prior study cohort and the expressions of CCL22 and TGF-β1 were assessed by immunohistochemistry. It was identified that tumor secretion of CCL22 was positively correlated with the intratumoral Treg infiltration (P<0.0001), but its association with lymphoid aggregates surrounding the tumor was not proven to be significant (P=0.056). Moreover, CCL22 expression was found to be associated with the tumor histological features known to be related with unfavorable prognosis of patients, including high histological grade (P<0.0001), negative ER (P<0.0001), negative PR (P=0.001), and HER2 amplification (P=0.028). Similar to intratumoral Treg infiltrates, CCL22 tumor secretion correlated with the prognosis of the molecular subtypes of breast carcinoma (P<0.0001). Univariate analysis revealed CCL22 to be an independent prognostic factor for overall survival (OS, P<0.0001) and progression-free survival (PFS, P<0.0001) of BC patients that were confirmed by multivariate analysis (P=0.011 and P=0.010 respectively). In contrast, although TGF-β1 expression was positively correlated with both Tregs infiltrates into the tumor bed and lymphoid aggregates surrounding the tumor (P=0.023; P=0.046, respectively), its expression was not significantly associated with the molecular subtypes of breast carcinoma and the prognosis of the patients. Our study indicates that both CCL22 and TGF-β1 are candidate chemoattractants for intratumoral Foxp3 +Tregs infiltration; however, unlike the later, CCL22 is an independent prognostic predictor of BC patients, and it therefore may have the potential to serve as a target for immunotherapeutic strategy of BC.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fang-Fang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xin-Min Zhang
- Department of Pathology and Laboratory Medicine, Temple University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Xiao-Jing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mei-Jing Ren
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, China
- * E-mail:
| |
Collapse
|